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Three-body scattering hypervolume of identical fermions in one dimension
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We study the zero-energy collision of three identical spin-polarized fermions with short-range interactions in
one dimension. We derive the asymptotic expansions of the three-body wave function when the three fermions
are far apart or one pair and the third fermion are far apart, and the three-body scattering hypervolume DF

appears in the coefficients of such expansions. If the two-body interaction is attractive and supports two-body
bound states, DF acquires a negative imaginary part related to the amplitudes of the outgoing waves describing
the departure of the resultant bound pair and the remaining free fermion. For weak interaction potentials, we
derive an approximate formula of the hypervolume by using the Born expansion. For the square-barrier and the
square-well potentials and the Gaussian potential, we solve the three-body Schrödinger equation to compute
DF numerically. We also calculate the shifts of energy and of pressure of spin-polarized one-dimensional Fermi
gases due to a nonzero DF and the three-body recombination rate in one dimension.
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I. INTRODUCTION

One-dimensional (1D) quantum gases can be experi-
mentally realized by applying strong confinement in two
transverse directions and allow free motion along the longi-
tudinal direction [1–10]. 1D quantum gases are very different
from the ordinary three-dimensional (3D) quantum gases
[11,12].

The three-body problem in 1D has been studied for
many years [13–20]. In this paper, we define and study the
three-body scattering hypervolume of identical spin-polarized
fermions in 1D. The scattering hypervolume is a three-body
analog of the two-body scattering length [21], which can be
extracted from the wave function of two particles colliding at
zero energy. If the interaction is short ranged, i.e., the inter-
action potential vanishes beyond a finite pairwise distance re,
the wave function of two particles colliding at zero energy in
1D is

φl (s) = (|s| − al )Yl (s) (1)

at |s| > re in the center-of-mass frame, where al is the two-
body scattering length in 1D, s is the difference of the
coordinates of the two particles, and l can be 0 or 1 for s-wave
collisions or p-wave collisions, respectively. Y0(s) = 1 and
Y1(s) = sgn(s). Here sgn(s) is the sign function. sgn(s) = 1
for s > 0, sgn(s) = 0 for s = 0, and sgn(s) = −1 for s < 0.

For particles in higher-dimensional spaces, people have
defined and studied the three-body scattering hypervolume in
various systems [21–29]. The three-body scattering hypervol-
umes have been defined and studied for identical bosons in 3D
[21–24,27], distinguishable particles in 3D [25,26], identical
spin-polarized fermions in 3D [28] or in two dimensions (2D)
[29]. In this paper, we define the scattering hypervolume DF
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of identical spin-polarized fermions in 1D by studying the
wave function of three such fermions colliding at zero en-
ergy, and study its analytical and numerical calculations and
its physical implications. Our results may be applicable to
ultracold atomic Fermi gases confined in one dimension.

This paper is organized as follows. In Sec. II we define
the two-body p-wave special functions. In Sec. III we derive
the asymptotic expansions of the three-body wave function for
zero energy collision. The scattering hypervolume DF appears
in the coefficients in these expansions. In Sec. IV, we derive
an approximate formula of DF for weak interaction potentials
by using the Born expansion. For the square-barrier and the
square-well potentials and the Gaussian potential we numeri-
cally compute DF for various interaction strengths. In Sec. V
we consider the dilute spin-polarized Fermi gas in 1D and
derive the shifts of its energy and pressure due to a nonzero
DF . In Sec. VI, we derive the formula for the three-body
recombination rate of the dilute spin-polarized Fermi gas in
1D in terms of the imaginary part of DF .

II. TWO-BODY SPECIAL FUNCTIONS

For identical spin-polarized fermions in 1D, the s-wave
two-body scattering is forbidden due to Fermi statistics, and
only the p-wave scattering is permitted. The two-fermion
scattering wave function � in the center-of-mass frame with
collision energy E = h̄2k2/m, where m is the mass of each
fermion and h̄ is Planck’s constant over 2π , satisfies the fol-
lowing Schrödinger equation:

d2�(s)

ds2
+

[
k2 − mV (s)

h̄2

]
�(s) = 0, (2)

where V (s) is the two-body interaction potential. We assume
that V (s) is an even function of s, namely V (s) = V (|s|), and
that it vanishes at |s| > re. At |s| > re, Eq. (2) is simplified as
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d2�/ds2 + k2� = 0, and its solution is

�(s) = A sin(k|s| + δp)sgn(s), (3)

where δp is the p-wave scattering phase shift which obeys the
effective range expansion in 1D [30,31]:

k cot δp = − 1

ap
+ 1

2
rpk2 + 1

4!
r′

pk4 + O(k6). (4)

Here ap is the p-wave scattering length in 1D, rp is the p-wave
effective range, and r′

p is the p-wave shape parameter.
If the collision energy is small, namely |k| � 1/re, the

wave function can be expanded in powers of k2:

�(k)(s) = φ(s) + k2 f (s) + k4g(s) + O(k6), (5)

where φ, f , g, . . . are called the two-body special functions
and they satisfy the equations [25,28]

H̃φ = 0, H̃ f = φ, H̃g = f , . . . , (6)

where H̃ is defined as

H̃ ≡ − d2

ds2
+ m

h̄2 V (s). (7)

The two-body special functions at |s| > re can be extracted
from Eq. (3). By choosing the coefficient A = −ap/ sin δp, we
get

φ(s) = (|s| − ap)sgn(s), (8a)

f (s) =
(

−|s|3
6

+ ap

2
|s|2 − 1

2
aprp|s|

)
sgn(s), (8b)

g(s) =
(

|s|5
120

− ap

24
|s|4 + aprp

12
|s|3 − apr′

p

24
|s|

)
sgn(s) (8c)

for |s| > re.

III. ASYMPTOTICS OF THE THREE-BODY
WAVE FUNCTION

We consider the collision of three fermions with finite
range interactions at zero energy in the center-of-mass frame.
The three-body wave function �(x1, x2, x3) satisfies the fol-
lowing Schrödinger equation:

−
3∑

i=1

h̄2

2m

∂2�

∂x2
i

+
3∑

i=1

V (si )� + U (s1, s2, s3)� = 0, (9)

where xi is the coordinate of the ith fermion, and si ≡ x j − xk .
The indices (i, j, k) = (1, 2, 3), (2,3,1), or (3,1,2). U is the
three-body potential. We assume that the interactions among
these fermions depend only on the interparticle distances. The
total momentum of the three fermions is zero such that the
wave function is translationally invariant. We assume that
V (si ) = 0 if |si| > re, and that U (s1, s2, s3) = 0 if |s1|, |s2|,
or |s3| is greater than re.

To uniquely determine the wave function for the zero en-
ergy collision, we need to also specify the asymptotic behavior
of � when the three particles are far apart. Suppose that the

leading-order term �0 in the wave function scales as Bp at
large B, where B = [(s2

1 + s2
2 + s2

3)/2]1/2 is the hyperradius.
�0 should also satisfy the free Schrödinger equation (∂2

1 +
∂2

2 + ∂2
3 )�0 = 0. The most important channel for zero-energy

collisions, for purposes of understanding ultracold collisions,
should be the one with the minimum value of p [28]. We find
that the minimum value of p for three identical fermions in 1D
is pmin = 3, and the leading-order term �0 is

�0 = s1s2s3 = (x2 − x3)(x3 − x1)(x1 − x2). (10)

One can check that �0 in Eq. (10) is translationally invariant
and it obeys the Fermi statistics.

Like what we did in previous works [21,25,28,29], we
derive the corresponding 111 expansion and 21 expansion for
the three-body wave function �. When the three particles are
all far apart from each other, such that the pairwise distances
|s1|, |s2|, |s3| go to infinity simultaneously for any fixed ratio
s1 : s2 : s3, we expand � in powers of 1/B and this expan-
sion is called the 111 expansion. When one fermion is far
away from the other two, but the two fermions are held at
a fixed distance si, we expand � in powers of 1/Ri, where
Ri = xi − (x j + xk )/2 is a Jacobi coordinate, and this is called
the 21 expansion. These expansions can be written as

� =
∞∑

p=−3

T (−p)(x1, x2, x3), (11a)

� =
∞∑

q=−2

S (−q)(R, s), (11b)

where T (−p) scales like B−p, S (−q) scales like R−q, and R ≡
Ri and s ≡ si for any i. T (−p) satisfies the free Schrödinger
equation outside of the interaction range:

−
(

∂2

∂s2
+ 3

4

∂2

∂R2

)
T (−p) = 0. (12)

FIG. 1. Diagram of the points representing t (i, j) on the (i, j)
plane. Each point with coordinates (i, j) represents t (i, j) which scales
like Ris j . Thick dots represent those points at which t (i, j) �= 0. The
term T (−p) in the 111 expansion is represented by a red dashed
line satisfying the equation i + j = −p. The term S (−q) in the 21
expansion is represented by a blue dashed line satisfying the equation
i = −q.
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If one fermion is far away from the other two, Eq. (9) becomes(
H̃ − 3

4

∂2

∂R2

)
� = 0, (13)

where H̃ is defined in Eq. (7), but the d/ds should be replaced
by ∂/∂s here. Therefore, S (−q) satisfies the following equa-
tions:

H̃S (2) = 0, H̃S (1) = 0,

H̃S (−q) = 3

4

∂2

∂R2
S (−q+2) (q � 0). (14)

To derive the two expansions, we start from the leading-
order term in the 111 expansion (which fixes the overall
amplitude of �):

T (3) = �0 = 1
4 s3 − sR2. (15)

We then first derive S (2), and then derive T (2), and then derive
S (1), and then derive T (1), and so on, all the way until S (−8).
At every step, we require the 111 expansion and the 21 expan-
sion to be consistent in the region re � |s| � |R|, in which
the wave function has a double expansion:

� =
∑
i, j

t (i, j), (16)

where t (i, j) scales as Ris j , and

T (−p) =
∑

i

t (i,−p−i), (17)

S (−q) =
∑

j

t (−q, j). (18)

In Fig. 1 we show the points on the (i, j) plane for which t (i, j)

is nonzero. Our resultant 111 expansion is

� = s1s2s3

(
1 − 3

√
3DF

2πB6

)
+

3∑
i=1

[
−apB2 cos (2�i )sgn(si ) − 6

π
a2

pBθi sin θisgn(si ) + 3

4

(
2a3

p + a2
prp

)
sgn(si )

− 3
√

3apDF

2πB4
cos (4�i )sgn(si ) − 18

√
3a2

pDF

π2B5
θi sin (5θi )sgn(si )

+ 45
√

3DF

4πB6

(
2a3

p + a2
prp

)
cos (6�i )sgn(si )

+ 405
√

3

2π2B7
a3

prpDF θi sin (7θi )sgn(si ) − 945
√

3DF

32πB8

(
6a3

pr2
p + a2

pr′
p

)
cos (8�i )sgn(si )

]
+ O(B−9), (19)

where DF is the three-body scattering hypervolume. The coefficient in T (−3) is chosen such that (∂2
s + 3

4∂2
R)T (−3) =

3
4 DF [δ′(s)δ′′(R) − 4

9δ′′′(s)δ(R)], and this coefficient will simplify the expression for the shift of the energy of three fermions
along a periodic line; see Eq. (61). �i is called the hyperangle and is defined via the following equations:

√
3

2
si = B cos �i, Ri = B sin �i. (20)

One can verify that the three hyperangles satisfy �1 = �2 − 2π
3 + 2nπ , �3 = �2 + 2π

3 + 2n′π , where n and n′ are integers.
We also define the reduced hyperangle θi ≡ arctan 2|Ri|√

3|si| , θi ∈ [0, π
2 ]. Three fermions in 1D have six different sorting orders. If

x1 < x2 < x3, the 111 expansion is simplified as

� = 2

3
√

3
B3 cos (3θ2) − 2apB2 cos (2θ2) + 2

√
3a2

pB cos θ2 − 3

4

(
2a3

p + a2
prp

)
− DF

πB3
cos (3θ2) − 3

√
3DF ap

πB4
cos (4θ2) − 18DF a2

p

πB5
cos (5θ2) − 45

√
3DF

4πB6

(
2a3

p + a2
prp

)
cos (6θ2)

− 405DF a3
prp

2πB7
cos (7θ2) − 945

√
3DF

16πB8

(
6a3

pr2
p + a2

pr′
p

)
cos (8θ2) + O(B−9). (21)

Our resultant 21 expansion is

� =
[

− R2 + 3ap|R| − 3

4

(
2a2

p + aprp
) + 3

√
3DF

2πR4
+ 9

√
3apDF

π |R|5 + 45
√

3DF

4πR6

(
2a2

p + aprp
)

+ 405
√

3DF

4π |R|7 a2
prp + 945

√
3DF

32πR8

(
6a2

pr2
p + apr′

p

)]
φ(s)

+
[
−3

2
+ 45

√
3DF

2πR6
+ 405

√
3apDF

2π |R|7 + 2835
√

3DF

8πR8

(
2a2

p + aprp
)]

f (s) + 2835
√

3DF

4πR8
g(s) + O(R−9). (22)

033306-3



ZIPENG WANG AND SHINA TAN PHYSICAL REVIEW A 108, 033306 (2023)

We need to emphasize that Eq. (22) is applicable when the
interaction does not support any two-body bound states. If the
interaction supports nb two-body bound states, three fermions
may form such a two-body bound state and a free fermion,
which fly apart with total kinetic energy equal to the released
two-body binding energy. In this case, the 21 expansion is
modified as [22]

� = �21 +
nb∑

n=1

cnφn(s) exp

(
i

2√
3
κn|R|

)
, (23)

where �21 is defined as the right-hand side of Eq. (22). The
second term on the right-hand side of Eq. (23) is the outgoing
wave with wave number 2κn/

√
3 > 0. Here φn is the wave

function of the nth two-body p-wave bound state with energy
En = −h̄2κ2

n /m and satisfies the Schrödinger equation and the
normalization condition:(

− d2

ds2
+ mV (s)

h̄2 + κ2
n

)
φn(s) = 0, (24)∫ ∞

−∞
ds|φn(s)|2 = 1. (25)

The coefficients cn are in general nonuniversal parameters that
depend on the details of the interaction potentials. cn deter-
mines the probability amplitude of producing the nth bound
state which fly apart from the remaining fermion after the
three-body zero-energy collision. But using probability con-
servation, one can show that these coefficients are related to
the imaginary part of the three-body scattering hypervolume.
As the outgoing wave contributes a positive probability flux
towards the outside of a large circle centered at the origin in
the plane of coordinates (

√
3

2 s, R), DF gains a negative imagi-
nary part to make the total flux through the circle vanish and
conserve the probability. From this conservation of probability
we derive the relation between the imaginary part of DF and
the norm-squares of the coefficients cn:

ImDF = −3
√

3

2

nb∑
n=1

κn|cn|2. (26)

Even if nb = 1, one cannot determine c1 completely from
ImDF , because the phase of c1 cannot be determined from
ImDF . To determine cn, one need to solve the three-body
Schrödinger equation using the actual interaction potentials
between the fermions.

In Sec. VI we will study the relation between ImDF and the
three-body recombination rates of one-dimensional ultracold
spin-polarized Fermi gases.

IV. EVALUATION OF THE SCATTERING HYPERVOLUME
FOR SEVERAL INTERACTION POTENTIALS

In this section, we first derive an approximate formula
for the hypervolume DF for weak potentials by using the
Born expansion. We then numerically compute DF for the
square-barrier and the square-well pairwise potentials and the
Gaussian pairwise potentials having various strengths.

A. Weak interaction potentials

If the potentials V (s) and U (s1, s2, s3) are weak, we can
express the wave function as a Born expansion [22,29]:

� = �0 + �1 + �2 + · · · , (27)

where �0 = s1s2s3 = s3/4 − sR2 is the wave function of three
free fermions, �n = (ĜV )n�0, Ĝ = −Ĥ−1

0 is the Green’s
operator, Ĥ0 is the three-body kinetic-energy operator, and
V = U (s1, s2, s3) + ∑

i V (si) is the interaction potential.
We derive the first-order and the second-order corrections

at |si| 	 re:

�1 = −3
√

3s1s2s3

4πB6
� −

3∑
i=1

(
α1B2 cos 2�i + α3

2

)
sgn(si )

+ O(UB−9), (28a)

�2 =
3∑

i=1

[
β1B2 cos 2�i − 6α2

1

π
Riθi + β3

]
sgn(si )

− 3
√

3s1s2s3

20πB6

(
25α2

3 − 7α1α5
) + O(V 2B−9)

+ O(UV ) + O(U 2), (28b)

where

αn = m

h̄2

∫ ∞

0
ds sn+1V (s), (29a)

β1 = m2

h̄4

∫ ∞

0
ds

∫ s

0
ds′ 2ss′2V (s)V (s′), (29b)

β3 = m2

h̄4

∫ ∞

0
ds

∫ s

0
ds′ (ss′4 + 2s3s′2)V (s)V (s′), (29c)

� = m

h̄2

∫ ∞

−∞
ds′

∫ ∞

−∞
dR′

(
1

4
s′3 − s′R′2

)2

U (s′, R′). (29d)

See Appendix A for details of the derivation.
By comparing the results in Eqs. (28) with the 111 ex-

pansion in Eq. (19), we find the expansions of ap and DF in
powers of the interaction potential:

ap = α1 − β1 + O(V 3), (30)

DF = �

2
+ 1

10

(
25α2

3 − 7α1α5
) + O(V 3)

+ O(UV ) + O(U 2). (31)

For any particular two-body potential V (s), e.g., the square-
well potential or the Gaussian potential, one can calculate
ap by solving the two-body Schrödinger equation and ver-
ify that the result is consistent with Eq. (30) if V is weak.
Equation (31) shows that DF is quadratically dependent on the
two-body potential V if V is weak, and the three-body poten-
tial U is absent. On the other hand, DF is linearly dependent
on U if U is weak.

If the interactions are not weak, one can solve the three-
body Schrödinger equation numerically at zero energy and
match the resultant wave function with the asymptotic expan-
sions in Eqs. (19) and (23) to numerically extract the value
of DF .
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FIG. 2. The possible configurations of three particles in one di-
mension. The potential vanishes outside of the colored belts. The
whole plane can be divided into six regions corresponding to six
different orders of the coordinates of the three particles. The cor-
responding order of the three particles is labeled in each region in
the figure.

B. Numerical computations

The three-body problem in 1D for zero total momentum
is equivalent to a one-body problem on a 2D plane. The
three-body wave function � here depends only on (s, R) or
(B,�), where s ≡ s2, R ≡ R2, and � ≡ �2. We define the
two-dimensional vector B = (

√
3

2 s, R), and � = �(B). The
zero-energy Schrödinger equation is

−∇2� + 4m

3h̄2 V� = 0, (32)

where ∇2 is the Laplace operator in 2D:

∇2 = 1

B

∂

∂B

(
B

∂

∂B

)
+ 1

B2

∂2

∂�2
. (33)

Because the interaction potential conserves parity and �0

has odd parity, we can assume that � has odd parity, namely,

�(−x1,−x2,−x3) = −�(x1, x2, x3). (34)

From the above equation and the Fermi statistics we can show
that

�(B,−�) = �(B,�) (35)

and

�

(
B,� + π

3

)
= −�(B,�). (36)

We can divide the 2D plane into six regions; see Fig. 2. Each
region corresponds to a specific order of the coordinates of
the three fermions, and we only need to solve Eq. (32) in
one of the six regions. In the remainder of this section, we
always choose to solve the problem in the region −π/6 <

� < π/6 which corresponds to the order of the coordinates
x1 < x2 < x3.

According to Eqs. (35) and (36), the wave function can be
expanded as the following Fourier series:

�(B,�) =
∞∑

i=1

1√
B

fi(B) cos (6i − 3)�. (37)

The potential V can also be expanded as

m

h̄2 V (B,�) = ν0(B)

2
+

∞∑
i=1

ν6i(B) cos 6i�. (38)

The Schrödinger equation (32) can be written as coupled
ordinary differential equations:

− f ′′ + U f = 0, (39)

where f = ( f1, f2, f3, . . .)T is a column vector, f ′′ means
d2 f /dB2, and U = U (B) is a symmetric matrix dependent on
B. The matrix elements of U are

Uii = (6i − 3)2 − 1/4

B2
+ 2

3
(ν0 + ν12i−6), (40a)

Ui j = 2

3
(ν6|i− j| + ν6(i+ j−1)) if i �= j. (40b)

Given the wave function on a circle with radius B centered at
the origin in the (

√
3

2 s2, R2) plane, one can use the Schrödinger
equation to uniquely determine the wave function inside such
a circle, and therefore determine the partial derivative of the
wave function with respect to B on the circle. Therefore the
partial derivative of the wave function with respect to B on
such a circle depends linearly on the wave function on such a
circle. So there is a matrix F such that

f ′ = F f . (41)

Substituting the above equation into Eq. (39), and requiring
that Eq. (39) be satisfied for all f , we find that F satisfies a
first-order differential equation:

F ′ = U − F 2. (42)

At small B, we can solve Eq. (39) to find the analytical so-
lution to fi (for square well potentials) or find an expansion
of fi in powers of B (for other potentials); from these we
can analytically determine F at infinitesimal B and see that
it is diagonal. Using the result of F at infinitesimal B as
our initial condition, we then solve Eq. (42) numerically and
determine F at B = B0 for some large B0. Matching Eq. (41)
at B = B0 with the 111 and the 21 expansions of �, we can ap-
proximately determine DF . We then compare the approximate
values of DF determined in this way by using various large
values of B0. We approximately extrapolate to the B0 → ∞
limit to find the value of DF with some numerical uncertainty.

1. Square-barrier and square-well potentials

For the square-barrier or square-well potential with
strength V0 (V0 can be positive or negative),

V (s) = V0
h̄2

mr2
0

×
{

1, |s| < r0

0, |s| > r0.
(43)
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DF - numerical
DF - Born approximation

FIG. 3. DF for weak square-barrier or square-well potentials.
The blue solid line shows the numerical results and the red dashed
line shows the Born approximation.

We can analytically calculate all the Fourier components of V:

ν0 = V0

r2
0

×
{

6, 0 � B �
√

3
2 r0

12
π

θ0,
√

3
2 r0 < B,

(44)

ν6i = V0

r2
0

×
{

0, 0 � B �
√

3
2 r0

(−1)i 12
π

sin 6iθ0
6i ,

√
3

2 r0 < B,
(45)

for i � 1, where θ0 = arcsin(
√

3r0/2B).
In the region B �

√
3r0/2, the potential V = 3V0h̄2/mr2

0
is a constant, and ν0 = 6V0/r2

0 , ν6i = 0 for i � 1. So U is
diagonal in this region and f can be analytically determined:

fi =
{

ci

√
BI6i−3(2

√
V0B/r0), V0 > 0

c′
i

√
BJ6i−3(2

√−V0B/r0), V0 < 0,
(46)

where I j is the modified Bessel function of the first kind, and
Jj is the Bessel function of the first kind.

At 0 < B �
√

3r0/2, F is diagonal and its elements can be
easily calculated by using Eq. (46). Equation (42) is a first-
order ordinary differential equation, and the initial value of F
at B = √

3r0/2 is known, so we can compute F numerically
at any B >

√
3r0/2. At large B, we use the 111 and the 21

expansions of the wave function in Eqs. (19) and (23) to
determine f1, f2, f3, . . . approximately. By solving Eq. (41),
we get the numerical value of the scattering hypervolume DF .
Figure 3 shows our results of DF at small V0. According to
Eq. (29a) we have

αn = V0

n + 2
rn

0 . (47)

If V0 is small, by using Eq. (31) we get

DF = 1
15V 2

0 r6
0 + O

(
V 3

0

)
. (48)

The blue solid line in Fig. 3 shows the numerical results and
the red dashed line corresponds to the Born approximation
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FIG. 4. The value of DF for the repulsive square-barrier potential
defined in Eq. (43).

DF � 1
15V 2

0 r6
0 . The numerical results agree quite well with the

Born approximation for small values of V0.
Figure 4 shows the full curve of DF for repulsive V0. DF in-

creases at 0 < V0 < Vc where Vc � 1.325. At V0 = Vc, DF has
a maximum of about 0.0099r6

0 . DF decreases at V0 > Vc. In
the following we prove that DF approaches zero as V0 → +∞
and scales as 1/V 3

0 at large V0 for the square-barrier potentials.
If V0 = +∞, the square-barrier potential becomes the

hard-core potential. In this case, the wave function goes to
zero in the blue banded region in Fig. 2. We use the new co-
ordinates B′ = (

√
3

2 (s − 2r0), R). �(B) ≡ �̃(B′) satisfies the
Laplace equation in the sector area, and �̃(B′) satisfies the
following boundary conditions:

�̃
(

B′,�′ = −π

6

)
= �̃

(
B′,�′ = π

6

)
= 0, (49)

where B′, �′ are defined via
√

3
2 (s − 2r0) = B′ cos �′, R =

B′ sin �′. In the domain −π/6 < �′ < π/6, one can easily
find the analytical solution:

�̃(B′) = 2

3
√

3
B′3 cos 3�′. (50)

If we change back to the coordinates B = (
√

3
2 s, R), we get

� = 2

3
√

3
B3 cos 3θ2 − 2B2r0 cos 2θ2 + 2

√
3Br2

0 cos θ2 − 2r3
0 .

(51)

Note that, at V0 = +∞, Eq. (51) is the exact solution and is
not just the asymptotic expansion of �. On the other hand, the
111 expansion in this area is simplified as Eq. (21). For the
hard-core potential with r0 = 1, we have ap = r0, rp = 2r0/3.
One can check that Eq. (51) agrees with Eq. (21) if DF = 0.
So DF = 0 for the hard-core potential, and this is consistent
with our numerical results for the values of DF for the square-
barrier potential at V0 → ∞.
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FIG. 5. (a) DF vs 1/V 3
0 for the repulsive square-barrier potentials. (b) DFV 3

0 vs V0 for these potentials. The subfigures (a) and (b) both show
that DF is proportional to 1/V 3

0 if V0 is large.

If V0 is large but finite, we also get an expansion in powers of 1/V0:

�̃(B′) = 2

3
√

3
B′3 cos 3θ ′ + 2√

V0
B′2 cos 2θ ′ + 2

√
3

V0
B′ cos θ ′ + 9

4V 3/2
0

+ O(B′−3)

= 2

3
√

3
B3 cos 3θ2 − 2B2 cos 2θ2

(
1 − 1√

V0

)
+ 2

√
3B cos θ2

(
1 − 1√

V0

)2

−
(

2 − 6√
V0

+ 6

V0
− 9

4V 3/2
0

)
+ O(B−3). (52)

If 1/
√

V0 � B′ � r0, the wave function �̃(B′) satisfies a
scaling law: if �̃(B′) is the solution at interaction strength
V0, then �̃(

√
λB′) is the solution at interaction strength λV0.

According to this we know the next term in the first line of
Eq. (52) should take the form 1/V 3

0 B′3, which implies that DF

scales as V −3
0 at large V0:

DF = C
V 3

0

+ o
(
V −3

0

)
. (53)

Figure 5 shows that our numerical results agree with this.
From the numerical results we get C � 0.79.

2. Gaussian potential

In this section we consider the Gaussian potential

V (s) = V0
h̄2

mr2
0

e−s2/r2
0 , (54)

where the strength V0 can be positive or negative. According
to Eq. (29a) we get

αn = 1

2
�

(
1 + n

2

)
V0rn

0 . (55)

If V0 is small, by using Eq. (31) we get the Born approximation
of DF :

DF = 3π

16
V 2

0 r6
0 + O

(
V 3

0

)
. (56)

To numerically compute the value of DF , we also Fourier-
expand the wave function and the potential function. The

Fourier components of V for the Gaussian potential can be
calculated analytically:

ν6i(B) = (−1)i 6V0

r2
0

I3i

(
2B2

3r2
0

)
e−2B2/3r2

0 , (57)

where i = 0, 1, 2, . . . . At small B, unlike the case of a square-
well potential, we cannot get an analytical expression for the
matrix F for the Gaussian potential. However we can solve
Eq. (39) to find an expansion of fi in powers of B, and get
an approximate expression for the matrix F at small B. The
remaining algorithm is similar to the case of square-well po-
tential, and we get the numerical values of DF for the repulsive
and the attractive Gaussian potentials.

Figure 6 shows our numerical results of DF at small V0.
We see that the results are consistent with the Born approxi-
mation.

Figure 7 shows the values of DF for repulsive Gaussian
potentials. DF /r6

0 has a maximum of about 0.144 at V0 � 1.91.
DF /r6

0 decreases at V0 > 1.91. The rate of the decrease is
slower than in the case of square-well potentials.

Figure 8 shows our results of DF for attractive Gaussian po-
tentials. If the potential strength is weak, there is no two-body
bound state. As the depth of the potential increases, two-body
bound states appear one by one. At V0 = Vc1 � −2.684 the
first p-wave resonance occurs, and the first two-body bound
state appears. When V0 is close to Vc1 we find an approximate
formula for ap/r0:

ap/r0 � −3.007/(V0 − Vc1) + 1.041. (58)
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FIG. 6. The values of DF for weak Gaussian potentials. The blue
solid line shows the numerical results and the red dashed line shows
the Born approximation.

At V0 = Vc2 � −17.796, the second p-wave resonance occurs,
and the second two-body bound state appears. These reso-
nances are indicated by the vertical black dot-dashed lines in
Fig. 8. At Vc1 < V0 < 0 there is no two-body bound state and
DF is real. When V0 approaches Vc1 from above, DF diverges.
To understand the behavior of DF when V0 is close to Vc1, we
plot ln(DF /r6

0 ) vs ln(V0 − Vc1) when V0 is slightly greater than
Vc1, in Fig. 9(a). It seems that there is a linear relationship. Do-
ing a linear fit, we find that DF is proportional to (V0 − Vc1)−6,
and we derive an approximate formula: DF � 0.74a6

p when V0

is slightly greater than Vc1.
At Vc2 < V0 < Vc1 there is one two-body p-wave bound

state, and in this case DF gains a negative imaginary part,
DF = ReDF + iImDF . The absolute value of ImDF is smaller
than the absolute value of ReDF for most values of V0 in this
range. When V0 approaches Vc1 from below, ReDF and ImDF

both diverge. We plot ln[Re(DF /r6
0 )] and ln[−Im(DF /r6

0 )] vs
ln(Vc1 − V0) when V0 is slightly less than Vc1, in Fig. 9(b). We
again see approximately linear relationships. Doing linear fits,
we find that ReDF seems to be proportional to (Vc1 − V0)−5

but ImDF is perhaps proportional to (Vc1 − V0)−6, and we

0 10 20 30 40 50 60
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FIG. 7. The values of DF for repulsive Gaussian potentials.

get an approximate formula: ImDF � −0.46a6
p when V0 is

slightly less than Vc1. According to the results in Sec. VI,
the divergence of ImDF indicates that a one-dimensional
spin-polarized Fermi gas will suffer strong three-body recom-
bination losses near such resonances.

If V0 is slightly less than Vc1, ap is positive and very large,
and the two-body bound state is very shallow. The energy of
the shallow bound state satisfies the universal formula:

E2 � −h̄2/ma2
p. (59)

According to the Bose-Fermi duality [32,33], the properties
of the one-dimensional Fermi system with large and positive
scattering length are similar to those of a weakly attrac-
tive bosonic system, which can be described by using the
Lieb-Liniger model [34] with the repulsive contact interaction
replaced by attractive contact interaction, and this model can
be exactly solved by using the Bethe ansatz [35]. Reference
[36] shows that such a bosonic system has a three-body bound
state with energy E3 = 4E2. Mapping this bosonic system to
the fermionic system with two-body p-wave scattering length
ap 	 r0, we infer a three-body bound state with energy

E3 � −4h̄2/ma2
p. (60)

When V0 is slightly less than Vc1, we indeed find that a three-
body bound state appears. We have numerically solved the
Schrödinger equation to find the energies of the two-body and
the three-body bound states with Gaussian pairwise interac-
tions. These energies are plotted in Fig. 10. We find that when
V0 is less than but close to Vc1, these bound-state energies
are indeed close to the predictions of the aforementioned
universal formulas.

The one-dimensional square-barrier and square-well po-
tentials and the Gaussian potential we have studied above are
different from the true interactions of ultracold atoms in quasi-
one-dimensional (quasi-1D) optical waveguides in which the
transverse motion of the atoms is frozen to a length scale a⊥
that is usually much larger than the characteristic range of the
van der Waals potential between the atoms. The 1D effective
range rp of ultracold atoms in quasi-1D is much larger than
the range of atomic interaction [37], but the model potentials
we have studied above have rp ∼ r0. In Ref. [38] it is shown
that the large 1D effective range has important consequences
for the three-body states, and in particular the ratio between
the energies of the three-body shallow bound state and the
two-body shallow bound state deviates significantly from four
at large and positive ap [38], in contrast to Eqs. (59) and (60)
in our paper. Therefore the effect of the large 1D effective
range on the three-body scattering hypervolume DF may also
be large for real ultracold atoms. The numerical calculation
of DF for real ultracold atoms is expected to be much more
difficult than the numerical calculations in this paper: one
would need to solve the three-body Schrödinger equation in
three dimensions. We leave this as an open question.

V. ENERGY SHIFTS DUE TO DF

We consider three identical spin-polarized fermions on a
line with length L and impose the periodic boundary condi-
tion on the wave function: �(x1 + L, x2, x3) = �(x1, x2, x3).
Consider an energy eigenstate in which the momenta of the
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fermions are k1, k2, and k3 in the absence of interactions.
When we introduce interactions that give rise to a nonzero
DF , the shift of the energy eigenvalue due to a nonzero DF is

Ek1k2k3 = h̄2DF

12mL2
(k1 − k2)2(k2 − k3)2(k3 − k1)2. (61)

See Appendix B for the details of the derivation of this for-
mula.

In addition, if there are two-body interactions, in general
the shift of the energy of the three fermions will also contain
terms due to the two-body parameters including ap, rp, etc.;
nevertheless, the shift due to DF in Eq. (61) is still valid. We
can also calculate the leading-order shift of the three-body
energy due to ap by using a method similar to the one used

in Appendix B:

E2-body
k1k2k3

= h̄2ap

mL
[(k1 − k2)2 + (k2 − k3)2 + (k3 − k1)2]. (62)

We then generalize the energy shift to N fermions in the
periodic length L. The number density of the fermions is
n = N/L. We define the Fermi wave number kF = πn, the
Fermi energy εF = h̄2k2

F /2m, and the Fermi temperature TF =
εF /kB, where kB is the Boltzmann constant.

A. Adiabatic shifts of energy and pressure
in the thermodynamic limit due to DF

Starting from a many-body state at a finite temperature T ,
if we introduce a nonzero DF adiabatically, the energy shift to
first order in DF is equal to the sum of the contributions from
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14
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6
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FIG. 9. (a) ln(DF /r6
0 ) vs ln(V0 − Vc1) when V0 is slightly greater than Vc1. Doing a linear fit in this double-log plot, we find that

DF � 542.9r6
0/(V0 − Vc1)5.963±0.002 � 0.74a6

p. (b) ln[Re(DF /r6
0 )] (red squares) and ln[−Im(DF /r6

0 )] (blue dots) plotted against ln(Vc1 − V0 )
when V0 is slightly less than Vc1. Doing linear fits in these double-log plots, we find that ReDF � 796r6

0/(Vc1 − V0 )4.98±0.36 and ImDF �
−337r6

0/(Vc1 − V0 )6.00±0.02 � −0.46a6
p, where we have used the approximate formula Eq. (58).
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universal formulas in Eqs. (59) and (60).

all the triples of fermions, namely,

�E = 1

6

∑
k1k2k3

Ek1k2k3 nk1 nk2 nk3 , (63)

where nk = (eβ(εk−μ) + 1)−1 is the Fermi-Dirac distribution
function, β = 1/kBT , εk = h̄2k2/2m is the kinetic energy of a
fermion, and μ is the chemical potential. The summation over
k can be replaced by a continuous integral

∑
k = L

∫
dk/(2π )

in the thermodynamic limit. Carrying out the integral, we get

�E (T ) = Nh̄2DF

768
√

πm
k8

F

× T̃ 9/2
[
3 f1/2(z) f3/2(z) f5/2(z) − f 3

3/2(z)
]
, (64)

where T̃ = T/TF , z = eβμ, and the function fν (z) is defined
as

fν (z) ≡ −Liν (−z) = 2

�(ν)

∫ ∞

0
dx

x2ν−1

1 + ex2
/z

, (65)

where Liν is the polylogarithm function. The number of
fermions satisfies

N =
∑

k

1

eβ(εk−μ) + 1
,

and this leads to the equation of the chemical potential μ:

2√
π

=
√

T̃ f1/2(eμ̃/T̃ ), (66)

where μ̃ = μ/εF .
In the low-temperature limit, namely, T � TF ,

�E (T ) = Nh̄2DF

405π2m
k8

F

[
1 + 3

2
π2T̃ 2 + O(T̃ 4)

]
. (67)

In an intermediate temperature regime, TF � T � Te,

�E (T ) = Nh̄2DF

48π2m
k8

F T̃ 3

[
1 + 9

4
√

2π T̃
+ O(T̃ −1)

]
, (68)

where Te = h̄2/2mr2
e kB. If T is comparable to or higher than

Te, the de Broglie wavelengths of the fermions will be compa-
rable to or shorter than the range re of interparticle interaction
potentials, and we can no longer use the effective parameter
DF to describe the system. See Fig. 11(a) for �E as a function
of the initial temperature.

The pressure of the spin-polarized Fermi gas changes by
the following amount due to the adiabatic introduction of DF :

�p = −
(

∂�E

∂L

)
S,N

= 8�E

L
, (69)

where the subscripts S, N prescribe that we keep the entropy
S and the particle number N fixed when taking the partial
derivative. See Fig. 11(b) for �p as a function of the initial
temperature.

B. Isothermal shifts of energy and pressure in the
thermodynamic limit due to DF

If the interaction is introduced adiabatically, the tempera-
ture will increase (if DF > 0) or decrease (if DF < 0). The
change of temperature is

�T =
(

∂�E

∂S

)
N,L

. (70)

So if we introduce DF isothermally, the energy shift �E ′
should be

�E ′ = �E − C�T =
(

1 − T
∂

∂T

)
�E , (71)

where C is the heat capacity of the noninteracting Fermi gas
at constant volume. In the low-temperature limit T � TF ,

�E ′(T ) = Nh̄2DF k8
F

405π2m

[
1 − 3

2
π2T̃ 2 + O(T̃ 4)

]
. (72)

In an intermediate-temperature regime TF � T � Te,

�E ′(T ) = Nh̄2DF

48π2m
k8

F T̃ 3

[
−2 − 27

8
√

2π T̃
+ O(T̃ −1)

]
. (73)

According to Eqs. (72) and (73), �E ′ changes sign as we
increase the temperature. Therefore, there is a critical tem-
perature Tc at which �E ′ = 0. We find

Tc � 0.2268TF . (74)

The pressure of the spin-polarized Fermi gas changes by
the following amount due to the isothermal introduction of
DF :

�p′ = �p − 2C�T

L
=

(
1 − 1

4
T

∂

∂T

)
�p. (75)

In the low-temperature limit T � TF ,

�p′ = 8nh̄2DF

405π2m
k8

F

[
1 + 3

4
π2T̃ 2 + O(T̃ 4)

]
. (76)
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FIG. 11. The shifts of (a) energy and (b) pressure caused by the adiabatic (red solid lines) or isothermal (blue dashed lines) introduction of
DF vs the temperature T . At T � 0.2268TF , the isothermal energy shift �E changes sign.

In an intermediate-temperature regime TF � T � Te,

�p′ = nh̄2DF

6π2m
k8

F T̃ 3

[
1

4
+ 27

32
√

2π T̃
+ O(T̃ −1)

]
. (77)

The shifts of energy and pressure are plotted as functions
of temperature in Figs. 11(a) and 11(b), respectively.

VI. THE THREE-BODY RECOMBINATION RATE

If the collision of the three particles is purely elastic, DF is
a real number. But if the two-body interaction supports bound
states, then the three-body collisions are usually not purely
elastic, and the three-body recombination may occur. In this
case, DF becomes complex, and the three-body recombina-
tion rate constant is proportional to the imaginary part of DF

[22,39].
Within a short time �t , the probability that no recombina-

tion occurs is exp(−2|ImE |�t/h̄) � 1 − 2|ImE |�t/h̄. Then
the probability for one recombination is 2|ImE |�t/h̄. Since
each recombination event causes the loss of three low-energy
fermions, the change of the number of remaining low-energy
fermions in the short time dt is

dN = −1

6

∑
k1k2k3

3
2dt

h̄
|ImEk1k2k3 |nk1 nk2 nk3 . (78)

This leads to

dn

dt
= −L3n3, (79)

and the coefficient L3 is

L3 = π3/2

128

h̄|ImDF |
m

k6
F

× T̃ 9/2
[
3 f1/2(z) f3/2(z) f5/2(z) − f 3

3/2(z)
]
. (80)

L3 depends on the density n and the temperature T .

In the low-temperature limit T � TF ,

L3 � 2

135

(
1 + 3π2

2
T̃ 2

)
h̄|ImDF |

m
k6

F . (81)

In particular, at T = 0,

L3 = 2h̄|ImDF |
135m

k6
F , (82)

and L3 is proportional to n6.
In an intermediate-temperature regime TF � T � Te, we

find that

L3 � m2

h̄5 |ImDF |(kBT )3, (83)

and L3 is approximately proportional to T 3, which is consis-
tent with the prediction in Ref. [14].

VII. SUMMARY AND DISCUSSION

We derived the asymptotic expansions of the three-body
wave function � for identical spin-polarized fermions col-
liding at zero energy in one dimension and defined the
three-body scattering hypervolume DF . Now the scattering
hypervolumes of spin-polarized fermions have been defined
in 3D [28], 2D [29], and 1D. For weak interaction potentials,
we derived an approximate formula for DF by using the Born
expansion. For stronger interactions, one can solve the three-
body Schrödinger equation numerically at zero energy and
match the resultant wave function with the asymptotic expan-
sion formulas we have derived in this paper to numerically
compute the values of DF . We did such numerical calculations
for the square-barrier, square-well, and Gaussian potentials.

We considered three fermions along a line with periodic
boundary condition and derived the shifts of their energy
eigenvalues due to a nonzero DF and then considered the
dilute spin-polarized Fermi gas in 1D and derived the shifts
of its energy and pressure due to a nonzero DF .
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Finally, we studied the dilute spin-polarized atomic Fermi
gas in 1D with interaction potentials that support two-body
bound states, for which we have three-body recombination
processes and DF has nonzero imaginary part, and we derived
formulas for the three-body recombination rate constant L3 in
terms of the imaginary part of DF and the temperature and
density of the Fermi gas.

One can similarly define the three-body scattering hyper-
volumes for identical bosons or for distinguishable particles
in 1D and study their physical implications.

For ultracold atoms, one can use the optical lattice to con-
fine them in quasi-1D, and the van der Waals range of the
interatomic potential is usually much shorter than the radial
confinement length. One can solve the three-body problem
in three-dimensional space to numerically determine the one-
dimensional scattering hypervolume of the three atoms.
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APPENDIX A: BORN SERIES FOR WEAK INTERACTIONS

For weak interaction potentials, we can expand the wave
function as a Born series:

� = �0 + ĜV�0 + (ĜV )2�0 + · · · , (A1)

where �0 = s1s2s3 = s3/4 − sR2 is the wave function of three
free fermions, Ĝ = −Ĥ−1

0 is the Green’s operator, Ĥ0 is
the three-body kinetic-energy operator. V = U (s1, s2, s3) +∑

i V (si ), where V (si ) and U are two-body and three-body
finite-range potentials whose characteristic range is re.

1. The first-order term

The first-order term �1 in the Born series is

�1 = ĜV�0 = ĜU�0 +
∑

i

ĜVi�0

= m

h̄2

∫
d2ξ′G(ξ − ξ′)U (ξ′)�0(ξ′)

+ m

h̄2

∑
i

∫
d2ξ′G(ξ − ξ′)Vi(ξ

′)�0(ξ′), (A2)

where ξ = (s, 2R/
√

3) and ξ′ = (s′, 2R′/
√

3) are two-
dimensional vectors, and Vi(ξ

′) = V (s′
i). Without losing

generality, we set s′
2 = s′, s′

1 = − 1
2 s′ + R′, s′

3 = − 1
2 s′ − R′.

G is the Green’s function [22,29] in two-dimensional space
which satisfies ∇2

ξG(ξ − ξ′) = δ(ξ − ξ′), and its expression is

G(ξ − ξ′) = 1

2π
ln |ξ − ξ′|. (A3)

We define

�1i ≡ ĜVi�0. (A4)

For i = 2, we have Vi(ξ
′) = V (s′) and

�1i = m

h̄2

∫
d2ξ′G(ξ − ξ′)Vi(ξ

′)�0(ξ′)

= m

h̄2

∫ ∞

−∞
dx′

∫ ∞

−∞
dy′ 1

16π
ln[(xi − x′)2 + (yi − y′)2]

× V (x′)(x′3 − 3x′y′2). (A5)

Here and in the following, we define xi = si, x′ = s′, yi =
2Ri/

√
3, and y′ = 2R′/

√
3 for simplicity. We first integrate

over y′ in Eq. (A5). To avoid the divergence in the integral,
we integrate over y′ from −λ to λ first and then take the limit
λ → ∞. Then we integrate over x′ and take the sum over i to
get ∑

i

�1i =
∑

i

[
−1

2
α3(xi ) + 3

4
α1(xi )

(
y2

i − x2
i

)
−xiᾱ2(xi ) − 1

4

(
x3

i − 3xiy
2
i

)
ᾱ0(xi )

]
, (A6)

where the functions αn(x) and ᾱn(x) at x > 0 are defined as

αn(x) = m

h̄2

∫ x

0
dx′ x′n+1V (x′), (A7a)

ᾱn(x) = m

h̄2

∫ ∞

x
dx′x′n+1V (x′). (A7b)

At x > re, αn(x) becomes a constant αn and ᾱn(x) = 0 be-
cause the potential V (x′) vanishes at x′ > re. We also require
αn(x) to be odd functions and ᾱn(x) to be even functions of x,
namely,

αn(−x) = −αn(x), ᾱn(−x) = ᾱn(x). (A8)

If |x1|, |x2|, and |x3| are all greater than re, Eq. (A6) is simpli-
fied as∑

i

�1i =
∑

i

[
−1

2
α3 + 3

4
α1

(
y2

i − x2
i

)]
sgn(xi ). (A9)

For any values of xi,

ĜU�0 = m

h̄2

∫ ∞

−∞
dx′

∫ ∞

−∞
dy′ 1

16π
ln[(xi − x′)2 + (yi − y′)2]

× U (x′, y′)(x′3 − 3x′y′2). (A10)

Since U is a finite-range potential, the integral on the right-
hand side of Eq. (A10) may be expanded when xi and yi go to
infinity simultaneously. Expanding this integral at large B, we
get

ĜU�0 � m

h̄2

−(
x3 − 3xy2

)
24π (x2 + y2)3

∫ ∞

−∞
dx′

∫ ∞

−∞
dy′U (x′, y′)

× (x′3 − 3x′y′2)2

= − m

h̄2

3
√

3s1s2s3

4πB6

∫ ∞

−∞
ds′

∫ ∞

−∞
dR′U (s′, R′)(s′

1s′
2s′

3)2

≡ −3
√

3s1s2s3

4πB6
�. (A11)

033306-12



THREE-BODY SCATTERING HYPERVOLUME OF … PHYSICAL REVIEW A 108, 033306 (2023)

2. The second-order term

The second-order term �2 in the Born series is

�2 = ĜV�1

=
∑

i j

ĜViĜVj�0 +
∑

i

ĜViĜU�0 +
∑

i

ĜUĜVi�0 + (ĜU )2�0. (A12)

We define

�2,i j = ĜViĜVj�0

= m

h̄2

∫∫
dx′dy′ 1

4π
ln[(xi − x′)2 + (yi − y′)2]V (x′)�1 j (x

′, y′). (A13)

In particular, if j = i,

�2,ii =
∫∫

dx′dy′ 1

4π
ln

[
(xi − x′)2 + (yi − y′)2

]
V (x′)

[
− 1

2
α3(x′) + 3

4
α1(x′)(y′2 − x′2) − ᾱ2(x′)x′ − 1

4
(x′3 − 3x′y′2)ᾱ0(x′)

]
.

(A14)

If |x1|, |x2|, and |x3| are all greater than re, we can evaluate the integral to obtain

�2,ii =
[
β3 − 3

4

(
y2

i − x2
i

)
β1

]
sgn(xi ), (A15)

where β1 and β3 are defined as

β1 =
∫ ∞

0
dx

∫ x

0
dx′ 2xx′2V (x)V (x′), (A16a)

β3 =
∫ ∞

0
dx

∫ x

0
dx′ (xx′4 + 2x3x′2)V (x)V (x′). (A16b)

If j �= i,∑
j �=i

�2,i j = 1

4π

∫∫
dx′dy′ ln[(xi − x′)2 + (yi − y′)2]V (x′)

[
− 1

2
α3(x′

2) + 3

4
α3(x′

2)
(
y′2

2 − x′2
2

) − x′
2ᾱ2(x′

2)

− 1

4

(
x′3

2 − 3x′
2y′2

2

)
ᾱ0(x′

2) − 1

2
α3(x′

3) + 3

4
α3(x′

3)
(
y′2

3 − x′2
3

) − x′
2ᾱ2(x′

3) − 1

4

(
x′3

3 − 3x′
3y′2

3

)
ᾱ0(x′

3)

]
, (A17)

where x′
2 = − 1

2 x′ +
√

3
2 y′, y′

2 = −
√

3
2 x′ − 1

2 y′, x′
3 = − 1

2 x′ −
√

3
2 y′, y′

3 = +
√

3
2 x′ − 1

2 y′.∑
j �=i

�2,i j = 1

4π

∫∫
dx′dy′V (x′)

[
1

2
α3

(√
3

2
y′

)
− α1

(√
3

2
y′

)(
x′2 − 3

8
y′2

)
+

√
3

2
y′ᾱ2

(√
3

2
y′

)
−

√
3

2
x′2y′ᾱ0

(√
3

2
y′

)]

×
{

ln

[
(xi − x′)2 +

(
yi − y′ + 1√

3
x′

)2
]

− ln

[
(xi − x′)2 +

(
yi − y′ − 1√

3
x′

)2
]}

+ 1

4π

∫∫
dx′dy′V (x′)

[√
3

2
x′y′α1

(√
3

2
y′

)
+ 3

4
x′y′2ᾱ0

(√
3

2
y′

)]

×
{

ln

[
(xi − x′)2 +

(
yi − y′ + 1√

3
x′

)2
]

+ ln

[
(xi − x′)2 +

(
yi − y′ − 1√

3
x′

)2
]}

. (A18)

We define

1

2
α3

(√
3

2
y′

)
− α1

(√
3

2
y′

)(
x′2 − 3

8
y′2

)
+

√
3

2
y′ᾱ2

(√
3

2
y′

)
−

√
3

2
x′2y′ᾱ0

(√
3

2
y′

)

≡ 1

2
α3sgn(y′) − α1

(
x′2 − 3

8
y′2

)
sgn(y′) + f1(x′, y′), (A19)

where

f1(x′, y′) = f11(y′) + x′2 f12(y′), (A20)
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and

f11(y′) = 1

2
α3

(√
3

2
y′

)
− 1

2
α3sgn(y′) + 3

8
y′2α1

(√
3

2
y′

)
− 3

8
y′2α1sgn(y′) +

√
3

2
y′ᾱ2

(√
3

2
y′

)
, (A21)

f12(y′) = −α1

(√
3

2
y′

)
+ α1sgn(y′) −

√
3

2
y′ᾱ0

(√
3

2
y′

)
. (A22)

f11 and f12 are odd functions of y′. They are short-range functions, namely, they vanish at
√

3|y′|/2 > re.
We also define

√
3

2
x′y′α1

(√
3

2
y′

)
+ 3

4
x′y′2ᾱ0

(√
3

2
y′

)
≡

√
3

2
α1x′y′sgn(y′) + x′ f2(y′), (A23)

f2(y′) =
√

3

2
y′α1

(√
3

2
y′

)
+ 3

4
y′2ᾱ0

(√
3

2
y′

)
−

√
3

2
y′α1. (A24)

f2 is an even function of y′. It vanishes at
√

3|y′|/2 > re. Then∑
j �=i

�2,i j = 1

4π

∫∫
dx′dy′V (x′)

[
1

2
α3sgn(y′) − α1

(
x′2 − 3

8
y′2

)
sgn(y′) + f11(y′) + x′2 f12(y′)

]

×
{

ln

[
(xi − x′)2 +

(
yi − y′ + 1√

3
x′

)2
]

− ln

[
(xi − x′)2 +

(
yi − y′ − 1√

3
x′

)2
]}

+ 1

4π

∫∫
dx′dy′V (x′)

[√
3

2
α1x′y′sgn(y′) + x′ f2(y′)

]

×
{

ln

[
(xi − x′)2 +

(
yi − y′ + 1√

3
x′

)2
]

+ ln

[
(xi − x′)2 +

(
yi − y′ − 1√

3
x′

)2
]}

. (A25)

For large xi and yi, we get∑
j �=i

�2,i j = −3
√

3

π
α2

1yiθisgn(xi ) −
(
x3

i − 3xiy2
i

)
√

3π
(
x2

i + y2
i

)3

(
20

9
α2

3 − 28

45
α1α5

)
+ (terms which will cancel after summation over i) + O(B−4). (A26)

We have not evaluated the terms ĜViĜU�0, ĜUĜVi�0 and (ĜU )2�0 in the Born series. The full expression of �2 is

�2 =
∑

i

[
β3 − 3

4

(
y2

i − x2
i

)
β1 − 3

√
3

π
α2

1yiθi

]
sgn(xi ) −

(
x3 − 3xy2

)
√

3π (x2 + y2)3

(
20

3
α2

3 − 28

15
α1α5

)
+ O(V 2B−9) (A27)

+ O(UV ) + O(U 2),

as is shown in the main text.

Comparing the resultant Born series and the 111 expansion of
the wave function, we get

ap = α1 − β1 + O(V 3), (A28a)

a2
prp = −2

3
α3 + 4

3
β3 + O(V 3), (A28b)

and

DF = �

2
+ 5

2
α2

3 − 7

10
α1α5 + O(V 3)

+ O(UV ) + O(U 2). (A29)

For the square-well potential with strength V0 and range
re = 1,

α1 = 1
3V0, α3 = 1

5V0, α5 = 1
7V0, (A30a)

β1 = 2
15V 2

0 , β3 = 13
105V 2

0 . (A30b)

Substituting these results, we get

ap = 1
3V0 − 2

15V 2
0 + O

(
V 3

0

)
, (A31a)

a2
prp = − 2

15V0 + 52
315V 2

0 + O
(
V 3

0

)
, (A31b)

which are consistent with the direct calculation of ap and rp.
For the scattering hypervolume, we have

DF = 1
15V 2

0 + O
(
V 3

0

)
, (A32)
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which is consistent with the result of numerical computations
for small V0.

APPENDIX B: SHIFTS OF THE ENERGY OF THREE
FERMIONS IN ONE DIMENSION WITH PERIODIC

BOUNDARY CONDITIONS DUE TO DF

The normalized wave function of three free fermions with
momenta h̄k1, h̄k2, h̄k3 in a large periodic line with length L is

�k1k2k3 = 1√
6L3/2

∣∣∣∣∣∣
eik1x1 eik1x2 eik1x3

eik2x1 eik2x2 eik2x3

eik3x1 eik3x2 eik3x3

∣∣∣∣∣∣. (B1)

We define the Jacobi momenta h̄q, h̄p, h̄kc such that

k1 = 1
3 kc + 1

2 q + p, (B2a)

k2 = 1
3 kc + 1

2 q − p, (B2b)

k3 = 1
3 kc − q. (B2c)

h̄kc is the total momentum of three fermions. We extract
the motion of the center of mass Rc = (x1 + x2 + x3)/3,

�k1k2k3 = 1√
L

eikc·Rc�p,q. (B3)

Suppose that the typical momentum of each fermion is
≈2π h̄/λ. For small hyperradii, B � λ, we Taylor expand �p,q

and get

�p,q � −i√
6L

(
p3 − 9

4
pq2

)(
1

4
s3 − sR2

)
. (B4)

�p,q is the wave function of the relative motion of three free
fermions. If we introduce a small three-body DF adiabatically,
�p,q is changed to

�p,q � −i√
6L

(
p3 − 9

4
pq2

)(
1

4
s3 − sR2

)(
1 − 3

√
3DF

2πB6

)
(B5)

for re � B � λ. The wave function satisfies the free
Schrödinger equation outside of the range of interaction,

− h̄2

m
∇2

ξ �p,q = E�p,q, (B6)

where ξ = (s, 2R/
√

3) is a two-dimensional vector, E is the
energy of the relative motion, and B = √

3ξ/2.
For large values of L, we may compute the energy E

approximately. We rewrite Eq. (B6) as

− h̄2

m
∇2

ξ �1 = E1�1, (B7a)

− h̄2

m
∇2

ξ �
∗
2 = E2�

∗
2, (B7b)

for two slightly different interactions that yield two slightly
different scattering hypervolumes, DF1 and DF2 respectively.
Here we omit the subscript p, q for simplicity. Multiplying
both sides of Eq. (B7a) by �∗

2, multiplying both sides of
Eq. (B7b) by �1, subtracting the two resultant equations, and
taking the two-dimensional integral over ξ for ξ > ξ0 (where
ξ0 is any length scale satisfying re � ξ0 � λ), we get

− h̄2

m

∫
ξ>ξ0

d2ξ∇ξ · (�∗
2∇ξ�1 − �1∇ξ�

∗
2 )

= (E1 − E2)
∫

ξ>ξ0

d2ξ�1�
∗
2. (B8)

In the bulk part of the configuration space, �1 � �2. Note
also that the wave function for the relative motion is normal-
ized, and that the volume of the region ξ < ξ0 is small and
may be omitted in the normalization integral. So the right-
hand side of Eq. (B8) is

2√
3

(E1 − E2)
∫

ξ>ξ0

dsdR|�|2 � 2√
3

(E1 − E2). (B9)

Applying Gauss’s theorem to the left-hand side of Eq. (B8),
we get

− h̄2

m

∮
ξ=ξ0

dS · (�∗
2∇ξ�1 − �1∇ξ�

∗
2 ) � 2√

3
(E1 − E2),

(B10)
where S is the surface of the circle with radius ξ = ξ0 centered
at the origin, and dS points toward the center of the circle.

To evaluate the integral on the circle ξ = ξ0, we
parametrize ξ = (ξ (1), ξ (2) ) as

ξ (1) = ξ cos ϕ, (B11a)

ξ (2) = ξ sin ϕ, (B11b)

where 0 � ϕ < 2π . Here ξ (1) = s and ξ (2) = 2R/
√

3. The
surface element dS is

dS = − ξdϕ. (B12)

The minus sign in the above equation means that the direction
of dS is towards the origin. Assuming that �1 and �2 satisfy
Eq. (B5) with DF = DF1 and DF = DF2, respectively, and
evaluating the integral in Eq. (B10) on the circle with radius
ξ = ξ0, we get

E1 − E2 = h̄2

3mL2
(DF1 − DF2)

(
p3 − 9

4
pq2

)2

= h̄2

12mL2
(DF1 − DF2)(k1 − k2)2(k2 − k3)2

× (k3 − k1)2. (B13)

This result agrees with Eq. (61) in the main text.
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