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We study localization properties and mobility edges of a generalized spinful Aubry-André-Harper (AAH)
model, which is the dimensional reduction of the two-dimensional Hofstadter model with a non-Abelian SU(2)
gauge potential. Depending on whether the quasiperiod is comparable with the lattice size, the model has
different localization properties. In the noncomparable case, the generalized AAH model still retains duality
properties. Tuning the non-Abelian gauge can make the system undergo an unconventional reentrant localization
phase transition as the strength of quasiperiodic potential increases. Furthermore, mobility edges exist in the
mixed phase where the localized states sit at the center of spectra. Nevertheless, the non-Abelian gauge potential
results in more mobility edges than that the Abelian gauge potential does, when the model is in the semiclassical
limit where the quasiperiod is comparable with the lattice size. Moreover, exact expressions of the mobility edges
and localization phase diagrams are analytically obtained by a semiclassical method.
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I. INTRODUCTION

The Aubry-André-Harper (AAH) model [1,2] has become
a workhorse for studying quantum localization and topolog-
ical insulators in one dimension (1D). It originates from the
dimensional reduction of the two-dimensional (2D) Hofs-
tadter model [3], describing electrons in the 2D square lattice
subjecting to an Abelian gauge potential, which is usually
generated by a uniform magnetic field. Inheriting the topo-
logical nature of the Chern insulator, it supports the Thouless
pumping [4–6]. When the strength of magnetic field is a finite
irrational number, the reduced AAH model is quasiperiodic
and supports a localization phase transition. It undergoes a
transition from a completely extended phase to a completely
localized phase at a finite strength of quasiperiodic potential,
ensured by a self-duality [1,3,7]. However, in the infinitesimal
case, a slowly varying quasiperiodic potential gives rise to
exact mobility edges, which can be obtained by an analytical
semiclassical calculation [8]. The mobility edge, which acts
as a characteristic of energy, separates the localized and ex-
tended eigenstates in the whole spectra [9,10]. It is crucial
in understanding various fundamental phenomena, such as
the metal-insulator transition and controlled transport [11],
heat engine [12], energy current rectification [13–15], super-
radiant instability [16], and even the many-body localization
[17]. Such a system with the mobility edge displays a strong
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thermoelectric response which can be used in thermoelectric
devices [11,12,18].

By introducing short- [19] or long-range hopping terms
[20], spin-orbit coupling [21,22], or the modified quasiperi-
odic potentials breaking the self-duality of the classic AAH
model [23–25], one can obtain mobility edges in gener-
alized AAH models. However, very few of them support
exact expressions of mobility edges [26–30]. Besides mobil-
ity edges, it was reported recently that, in the 1D dimerized
lattice with a staggered quasiperiodic potential, some of the
localized single-particle states become extended for an in-
termediate potential strength [19]. This system undergoes
an unconventional reentrant localization, i.e., the extended-
mixed-localized-mixed-localized phase transition. In parallel,
some generalized AAH models with slowly varying potentials
have been extensively studied [31–34] on the localization and
mobility edges. The AAH model and some of its extensions
have been experimentally realized in a variety of systems,
such as ultracold atoms [17,35–40] and photonic crystals
[4,41].

The concept of gauge potential is at the heart of mod-
ern high-energy physics and has become a fuel for research.
Quantum simulations of gauge potentials have been pursued
for decades and have resulted in new developments of lattice
gauge theories [42–47]. In this paper, we study localization
properties and mobility edges of a generalized spinful AAH
model, which is a dimensional reduction of the 2D Hofstadter
model subjected to a non-Abelian SU(2) gauge potential.
Although the Abelian gauges have been well studied and
simulated, the non-Abelian ones like the SU(2) gauge are
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still an on-going topic, the underlying study of which was
mainly restricted to numerical simulations [48]. Here, we
focus on the AAH model with a non-Abelian gauge potential
and study effects of the non-Abelian SU(2) gauge poten-
tial on localization. These were rarely discussed in literature
[21,22,49]. Given the criticality of the comparability between
the quasiperiod and the lattice size, we consider both non-
comparable and comparable cases. In the noncomparable case
with a finite irrational number, by tuning the non-Abelian
gauge, the system produces the reentrant localization transi-
tion and the mixed phase where the mobility edge can exist.
Besides, the generalized spinful AAH model still has duality.
We give the localization phase diagrams, which are decided
by the duality. On the other hand, we analytically study the
localization properties and mobility edges of the model in
the semiclassical limit where the quasiperiodic potential is
slowly varying (the comparable case with an infinitesimal
irrational number). The non-Abelian gauge induces more mo-
bility edges than the Abelian one. Exact expressions of the
mobility edges and the localization phase transition points
are obtained, which crucially depend on strengths of the non-
Abelian gauge potential.

The rest of paper is organized as follows. In Sec. II,
we introduce the generalized AAH model, from the dimen-
sional reduction of the 2D Hofstadter model subjected to
non-Abelian SU(2) gauge potentials. Section III is devoted
to the study of duality, (reentrant) localization, and mobility
edges for the AAH model with a noncomparable quasiperi-
odicity. Derivation of the exact expressions of mobility edges
and corresponding numerical verifications for the model with
slowly varying potentials are presented in Sec. IV. Finally, we
conclude our main results and present a short discussion on
experimental realizations in Sec. V.

II. MODEL AND HAMILTONIAN

It is well known that the classic AAH model is the di-
mensional reduction of the 2D Hofstadter model, describing
electrons hopping in the square lattice threaded by a homo-
geneous magnetic field corresponding to Abelian U(1) gauge
potentials. Here we consider two-component particles in the
square lattice subjected to a synthetic gauge potential

A = (ασy, 2π�mσ0 + βσx ). (1)

σ0,x,y are Pauli operators in the two-component pseudospin
subspace. � is the strength of the Abelian U(1) gauge poten-
tial. α and β represent strengths of non-Abelian SU(2) gauge
fluxes along the x and y directions, respectively. Such a gauge
potential may be realized by laser-assisted spin-dependent
hopping [42,50,51]. The Hamiltonian of the generalized Hof-
stadter model is

HHof = −
∑
m,n

�
†
m+1,nJxeiασy�m,n

−�
†
m,n+1Jyeiβσx+i2π�m�m,n + H.c. (2)

�†
m,n = (ψ†

m,n,↑, ψ
†
m,n,↓) is the creation operator at lattice site

(m, n). m and n are indexes of sites along the x and y directions
respectively. Jx(y) are hopping amplitudes along the two direc-
tions. Because of the presence of translational symmetry in the
y direction where a periodic boundary condition is employed,
one can introduce a partial Fourier transformation and ob-
tain the dimensional reduction of the generalized Hofstadter
model, i.e.,

H (α, β ) = −Jx

∑
m

[
�†

m

(
cos α − sin α

sin α cos α

)
�m+1 + H.c.

]

−2Jy

∑
m

�†
m

[
cos β cos(2π�m + ky) − sin β sin(2π�m + ky)
− sin β sin(2π�m + ky) cos β cos(2π�m + ky)

]
�m, (3)

which is a generalized spinful AAH model. After performing
the partial Fourier transformation, Jx is the hopping amplitude
for the generalized AAH model, and we will set it as the unit
of energy (Jx = 1). Jy, corresponding to the hopping ampli-
tude in y direction, becomes the strength of the quasiperiodic
potential and the momentum ky turns into a global phase,
which is trivial on localization. Thus we will set ky = 0
without loss of generality. Here we set �†

m = (ψ†
m↑, ψ

†
m↓),

which is the creation operator at site m. ↑ and ↓ denote two
pseudospins (hyperfine levels) or legs in a ladder. � is an
irrational number, characterizing the quasiperiodicity of po-
tential. Due to the periodicity of trigonometric functions, we
can restrict � ∈ (0, 1). The model has parity-time symmetry
but not parity and time-reversal symmetries themselves when
ky = 0, and eigenstates are doubly degenerate.

The localization of the AAH model is crucially dependent
on the comparability between the quasiperiod 1/� and the

lattice size L, which are two characteristic lengths of the
model besides the underlying lattice constant. For a finite �,
we usually have 1/� � L, i.e., the quasiperiod is noncom-
parable with the lattice size. In the noncomparable case, the
quasiperiodic potential is incommensurate to the underlying
lattice, and the whole lattice contains many quasiperiods.
Then, the quasiperiodic potential acts as a pseudodisorder and
induces localization. On the other hand, in the semiclassical
limit with an infinitesimal �, we have 1/� � L, i.e., the
quasiperiod is comparable with the lattice size. The quasiperi-
odic potential loses its incommensurability to the underlying
lattice and is slowly varying spatially. But the potential still
can induce localization which can be analytically studied
by a semiclassical method. In the thermodynamic limit, one
needs to choose L → ∞ and also � → 0 in the comparable
case, while only L → ∞ in the noncomparable case. For
completeness, there is another trivial case with 1/� 	 L,
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where the quasiperiodic potential can be treated as a constant
potential.

The model has localization symmetries regarding both α

and β. First, H (α, β ) and H (α, β + π ) only differ by a phase
shift ky → ky + π , and they share the same localization be-
havior regardless of ky. Otherwise, H (α + π, β ) is mapped
to H (α, β ), by sending �m to (−1)m�m. On the other hand,
H (−α, β ) and H (α, β ) are related by the parity symmetry
which sends �m to �−m, and H (α,−β ) is mapped to H (α, β )
by sending �m to σz�−m. Because of these symmetries, we
restrict both α and β to the interval [0, π/2].

When αβ = 0, the model reduces to two decoupled copies
of the classic AAH model, whose localization properties es-
sentially depend on the irrational number �. When � is finite,
the system undergoes a metal-insulator phase transition at a
finite strength of the quasiperiodic potential, which is guaran-
teed by a self-duality. The system is in the extended phase
where all single-particle states are extended when Jy < 1,
whereas it is in the localized phase with all localized states
when Jy > 1. When � � 1, semiclassical analyses showed
that the model supports exact mobility edges |E | = |1 − Jy|
when Jy < 1. States with energies E lying between these two
mobility edges are extended; otherwise, they are localized.
That αβ 
= 0 is the focus of our study. In the next section,
duality and localization of the model with finite � will be
discussed. Semiclassical analyses on localization and exact
mobility edges are presented in Sec. IV.

III. DUALITY AND REENTRANT LOCALIZATION
FOR FINITE �

In this section, we focus on localization properties of
the model with finite �, whose quasiperiod is noncom-
parable with the lattice size (1/� � L). To initiate our
analyses, we perform a Fourier transformation of Eq. (3) with
ky = 0, which allows us to express the Hamiltonian in the dual
space in terms of the creation operator �

†
kx

= (ψ†
kx↑, ψ

†
kx↓).

The equation is

H∗ = −Jy

∑
kx

[
�†

kx

(
cos β − sin β
sin β cos β

)
�kx+1 + H.c.

]

− 2Jx

∑
kx

�†
kx

[
cos α cos(2π�kx ) − sin α sin(2π�kx )
− sin α sin(2π�kx ) cos α cos(2π�kx )

]
�kx .

(4)

We note that H and H∗ share the same mathematical struc-
ture, except that the coefficients are interchanged. So the
generalized AAH model still has duality. In other words, a
localized (extended) state with energy E for the system with
(Jx, Jy, α, β ) corresponds to an extended (localized) state with
the same energy E for the system with (Jy, Jx, β, α). The
model is self-dual when Jx = Jy and α = β. Otherwise, the
self-dual point does not exist.

Next, we use numerical methods to analyze the localization
properties. Here, � is taken as the golden ratio (

√
5 − 1)/2. In

practice, it is approximated by rational numbers � = Fn−1/Fn

with Fn the nth Fibonacci number, and the number of lattice
sites L = Fn. To characterize localization of a state, one usu-
ally uses two well-known quantities, i.e., the inverse of the
participation ratio (IPR) and fractal dimension (FD). For a

FIG. 1. (a) FDs of single-particle states, as functions of the cor-
responding energies E and quasiperiodic potential strength Jy, for
systems with α = 1 and β = π/2. (b) Semilogarithmic plots of the
distributions of IPRs for systems with the same α = 1 and β = π/2
but different strengths of quasiperiodic potential. k is the index of
states, which are arranged in the ascending order of energies. (c) Typ-
ical spatial distributions of states, for the system with Jy = 2. The
irrational number � = (

√
5 − 1)/2 � 610/987, and the total number

of lattice sites L = 987.

normalized single-particle state, the IPR is defined by P =∑
mσ |φmσ |4 [19,21,52], with φmσ the single-particle wave

function. In general, the IPR P ∝ L−ζ , where ζ is the FD.
For an extended state, P ∝ 1/L with ζ = 1, whereas the IPR
approaches 1 and ζ = 0 for a localized state. In the middle,
a state with 0 < ζ < 1 is critical and has a self-similarity. In
Fig. 1(a), we present typical FDs in the (Jy, E ) plane, whose
values are indicated by colors. FDs of states are extracted
numerically by the box-counting method [53]. Furthermore,
we present corresponding distributions of IPRs in Fig. 1(b).
When the strength Jy of the quasiperiodic potential is small
the system is in the extended phase where all P ∝ 1/L, ζ � 1,
and states are extended, whereas it is in the localized phase
for a large enough Jy where all ζ � 0, IPRs are finite, and
states are localized. In the intermediate region, it is in the
mixed phase, consisting of a finite portion of extended and
localized states. Moreover, in the mixed phase, the system
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FIG. 2. (a) MIPR and MNPR vs Jy for the system with α = 0.4π

and β = 0.34π . (b) Semilogarithmic plots of the distributions of
IPRs for the same system but with different strengths of quasiperi-
odic potential. � � 610/987 and L = 987.

hosts mobility edges, critical energies separating extended
and localized states in the spectrum. In distributions of IPRs
(FDs) where states are arranged in the ascending order of
energies, sudden jumps of them are characteristic features of
the presence of mobility edges. There are two mobility edges,
and in between them states are exponentially localized, while
outside states are extended [see Fig. 1(c) for typical spatial
distributions of states]. Two mobility edges, which form at the
center of spectrum, move towards the edges of spectrum when
the strength Jy increases, and the system thus turns into the
localized phase if Jy is large enough.

Besides the normal extended-mixed-localized phase tran-
sition, the model also supports the unconventional reentrant
localization transition, i.e., the extended-mixed-localized-
mixed-localized phase transition, when Jy increases. Besides
the IPR, we also use the normalized participation ratio (NPR),
which is defined by the “inverse” of IPR for a single-particle
state [NPR = (IPR × L)−1]. Thus, opposite to IPR, NPR ∝
1/L for a localized state, whereas it approaches 1 for an
extended state. To further characterize the localization of the
whole system, we define the mean inverse of the participation
ratio (MIPR) MIPR = ∑

k IPRk/2L and the mean normalized
participation ratio (MNPR) MNPR = ∑

k NPRk/2L, averag-
ing over all single-particle states with k the index. For a finite
value, MIPR (MNPR) highlights the presence of localized

α/π
κ

β/π

FIG. 3. Contour plot of the quantity κ in Eq. (5), which repre-
sents localization phase diagram, for the system with β = 0.5π (a) or
α = 0.5π (b). � ≈ 610/987 and L = 987.

(extended) states. Both of them are finite when the system is in
the mixed phase, whereas only one of them is finite when the
system is in the extended or localized phase. In Fig. 2(a) we
present the MIPR and MNPR for the system hosting reentrant
localization transition. Correspondingly, we show distribu-
tions of IPRs at different Jy in Fig. 2(b). Two gray regions with
finite both MIPR and MNPR correspond to the mixed phases,
and in between the system is in the localized phase with only
finite MIPR. Delocalization indeed happens in the second
mixed phase, and mobility edges emerge and disappear again
as Jy increases [see the fourth panel in Fig. 2(b)].

After introducing two types of phase transitions, now we
give phase diagrams that are decided by duality. To distin-
guish the mixed phase from extended and localized phases,
we introduce the quantity [54,55]

κ = log10(MIPR × MNPR). (5)

In the extended phase, MIPR ∝ 1/L, MNPR is finite, and
κ ∝ log10(1/L). Similarly, MIPR is finite, MNPR ∝ 1/L, and
κ ∝ log10(1/L) in the localized phase. In the mixed phase
containing extended and localized states in the spectrum, both
MIPR and MNPR are finite, thus so is κ . In Fig. 3, we present
the quantity κ in the (α(β ), Jy ) plane. When κ is very small,
the system is in the extended phase (Ext) or localized phase
(Loc), which is represented by blue areas. When κ is finite,
the system is in the mixed phase (Mix) represented by an
orange-red area. The two pictures are related by duality. To
be more specific, if the system with (Jy, α, β ) in (a) is in
the localized (extended) phase, the system with ( 1

Jy
, β, α) in

(b) is in the extended (localized) phase, which is determined
by duality even though the self-dual point does not exist.
Besides, both phase diagrams are left-right symmetric, which
is consistent with the theoretical analyses about the range of
α and β in Sec. II.

Furthermore, we present the quantity κ in (β, Jy ) plane for
systems with different α in Fig. 4. Blue regions correspond
to extended and localized phases, and the extended (local-
ized) phase is at small (large) Jy. When α = 0 or β = 0,
the model can be decoupled into two copies of the classic
AAH model, by rotations in the spin subspace [52]. Thus,
the system undergoes an extended-localized phase transition
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at Jy = 1, and the mixed phase is absent. In other cases, the
non-Abelian gauge potential induces mixed phases between
localized and extended/localized phases. The area of mixed
phases in (β, Jy) plane increases first and decreases later as
α increases. For a fixed α, the region of the mixed phases
basically increases as β increases. Besides, the reentrant lo-
calization mainly happens when α � π/4 and β � π/4.

IV. EXACT MOBILITY EDGES IN THE SEMICLASSICAL
LIMIT � � 1

Unlike in the noncomparable case with finite �, the
localization of states can be analytically studied in the
semiclassical limit. Given a single-particle eigenstate |�〉 =∑

mσ φmσψ†
mσ |0〉 with energy E , the Schrödinger equation of

amplitudes φmσ is written as[
cos α sin α

− sin α cos α

][
φm+1↑
φm+1↓

]
+

[
cos α − sin α

sin α cos α

][
φm−1↑
φm−1↓

]

+
[

2Jy cos β cos(2π�m) −2Jy sin β sin(2π�m)
−2Jy sin β sin(2π�m) 2Jy cos β cos(2π�m)

]

×
[
φm↑
φm↓

]
= E

[
φm↑
φm↓

]
(6)

Then, applying the unitary transformation in the spin
subspace, [

φm↑
φm↓

]
= 1√

2

[
1 1
i −i

][
ϕm↑
ϕm↓

]
,

which does not affect spatial localization properties of states,
plugging in the semiclassical condition that the quasiperiodic
potential is slowly varying, explicitly cos[2π�(m + 1)] ≈
cos(2π�m) ≈ cos[2π�(m − 1)], and annihilating one spin
component by substituting one equation into the other, we
obtain the equation of ϕm↓:

ϕm+2↓ + [4Jy cos α cos β cos(2π�m) − 2E cos α]ϕm+1↓

+ [
4J2

y cos(2π�m + β ) cos(2π�m − β )

− 4JyE cos β cos(2π�m) + 2 cos(2α) + E2]ϕm↓

+ [
4Jy cos α cos β cos(2π�m) − 2E cos α

]
ϕm−1,↓

+ ϕm−2↓ = 0. (7)

A similar equation for the spin-↑ component can be ob-
tained too, which has the same localization behaviors as the
spin-↓ component. Assuming ϕm↓ ∝ Zm, the above equation
becomes

(Z2 + a1Z + 1)(Z2 + a2Z + 1) = 0, (8)

where a1,2 = 2Jy cos α cos β cos(2π�m) − E cos α ± √
D

and D = 4J2
y sin2 β sin2(2π�m) + 4 sin2 α − sin2 α[E − 2Jy

cos β cos(2π�m)]2. The state is extended, if and only if,
as cos(2π�m) varies from −1 to 1, all complex roots Z of
Eq. (8) are of unitary magnitude [32]. Otherwise, the state is
localized as long as the magnitude of any one of the roots is
not unitary. The prerequisite for the existence of an extended
state or all unitary roots of Eq. (8) is that both a1,2 are real;
otherwise, the state is localized. Treating D as a quadratic
function of one variable cos(2π�m), one can find that a1,2

α=0.

β/π β/π
κ

α=0.5πα=0.4π

α=0.3πα=0.2π

α=0.1πα=0.0π

FIG. 4. Contour plot of the quantity κ in the (β, Jy) plane for
systems with different α. � � 610/987 and L = 987.

are always real functions of cos(2π�m) ∈ [−1, 1] when
α = 0 or α 
= 0 and |E | < 2 − 2Jy cos β. The calculation
is straightforward. Once a1,2 are real, the condition for all
unitary roots of Eq. (8) is that both |a1,2| < 2. When α = 0
we obtain a1,2 = 2Jy cos(2π�m ± β ) − E . Given that β

turns into global phases of quasiperiodic potentials, when
α = 0 Eq. (8) describes two decoupled copies of the classic
AAH model with additional global phase shifts which do
not affect the localization. |a1,2| < 2 result in |E | < 2 − 2Jy.
In the other case with α 
= 0 and |E | < 2 − 2Jy cos β, a
straightforward calculation shows that |a1,2| < 2 result in
0 � 2Jy − 2 cos α < |E | when β 
= 0. Concluding all the
above analyses, we obtain that states are extended when

|E | < 2 − 2Jy for αβ = 0,

0 � 2Jy − 2 cos α < |E | < 2 − 2Jy cos β for αβ 
= 0;

(9)

otherwise, states are localized. Apparently, the model also
supports mobility edges in the semiclassical limit. Exact ex-
pressions of the mobility edges are

|E | = 2 − 2Jy (10)

when αβ = 0, and

|E | = 2Jy − 2 cos α and |E | = 2 − 2Jy cos β (11)

when αβ 
= 0 and 0 < 2Jy − 2 cos α < 2 − 2Jy cos β. There
can be at most four mobility edges.
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FIG. 5. (a) log10(IPRs) of single-particle states, as function of the
corresponding energies E and quasiperiodic potential strength Jy, for
systems with α = 0 and β = 0.3π . The irrational � = √

2/618π �
1, and the total number of lattice sites L = 1000. (b) Typical spa-
tial distributions of states, whose positions in spectra are shown in
(a) (symbols).

The analytical results are consistent with numerical simu-
lations. We first focus on the case αβ = 0, and in Fig. 5(a) we
show a typical distribution of IPRs in the (Jy, E ) plane. Unlike
in the noncomparable case where due to the quasiperiodicity
the spectrum splits into several subbands as Jy increases [see
Fig. 1(a)], no splitting occurs in the semiclassical case. When
Jy is small the system is in the mixed phase, consisting of a
finite portion of extended and localized states. Extended states
are at the center of spectra, i.e., in the middle of localized
states. Critical states, separating extended and localized states
and indicating localization phase transition, only exist on the
lines of mobility edges, which are precisely described by
Eq. (10) [black dashed lines in Fig. 5(a)]. To show localization
of states, in Fig. 5(b) we show typical spatial distributions
of states whose positions in spectra are indicated by symbols
in Fig. 5(a). Differently from the ones in the noncomparable
case, which decay exponentially from a localization center,
here in the semiclassical case localized states have a finite
extended region, and then away from the edge of the region
they begin exponential decay. When Jy > 1, there seem to be
also mobility edges, given that the IPRs experience sudden
changes on extensions of the lines of exact mobility edges.
As a matter of fact states are all localized when Jy > 1 [see
spatial distributions of states indexed by triangle and star in
Fig. 5(b)]. Maybe the sudden changes are from details of the
localization of which we are unaware. Thus, when Jy > 1 the

FIG. 6. (a) log10(IPRs) of single-particle states for systems with
α = 0.4π , β = 0.2π , � = √

2/618π , and L = 1000. (b) Semilog-
arithmic plots of spatial distributions of states, whose positions in
spectra are shown in (a) (symbols).

system is in the localized phase, and only when Jy < 1 do
mobility edges exist and the system is in the mixed phase. The
extended phase is absent as long as the quasiperiodic potential
is present.

When αβ 
= 0 there are more than two mobility edges. In
Fig. 6(a) we show an exemplary distribution of IPRs in the
(Jy, E ) plane, whose structure is more complicated than the
one for αβ = 0. And in Fig. 6(b) we present spatial distribu-
tions of states in different regions whose positions in spectra
are indicated by symbols in Fig. 6(a). Despite having different
details—for example, in the distribution of the state indexed
by square there is a region where the amplitude of state is
basically smaller than that elsewhere, while the state indexed
by the circle is basically uniformly distributed—all states on
the left side of the black dashed lines, which correspond to
the exact mobility edges, are extended, whereas all states on
the right side of it are localized. The localization transition
from the mixed to localized phases happens at Jy = 1+cos α

1+cos β
,

obtained from Eq. (11).

V. CONCLUSION AND DISCUSSION

We have studied localization properties of a generalized
AAH model with a non-Abelian SU(2) gauge potential. The
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localization crucially depends on the comparability between
the quasiperiod and the lattice size. In the noncomparable
case, when the strength of the quasiperiodic potential in-
creases, the system undergoes a transition from the extended
to mixed and then to localized phases. The system also
hosts mobility edges in the mixed phase. Two mobility edges
form at the center of the spectrum and move to the edges
as the strength of the quasiperiodic potential increases. By
carefully tuning strengths of the non-Abelian gauge poten-
tial, the system strikingly presents the reentrant localization
transition, i.e., the extended-mixed-localized-mixed-localized
phase transition. Mobility edges reemerge in the reentrant
mixed phase. Furthermore, we have observed that the general-
ized AAH model retains the property of duality, and we have
given the phase diagrams showing the duality.

On the other hand, in the semiclassical limit, the localiza-
tion properties can be analytically obtained. When the strength
of quasiperiodic potential increases, the system undergoes
a transition from the mixed to localized phases at a criti-
cal strength which depends on strengths of the non-Abelian
gauge potential. The extended phase is absent as long as the
quasiperiodic potential is present. In the mixed phase, the
exact expressions of the mobility edges have been analyti-
cally determined. There are two mobility edges when any

one of the strengths of the non-Abelian gauge potential is
zero; otherwise, there are four. Extended states locate at the
middle of localized states, which is quite the opposite of the
noncomparable case.

There we would like to mention that the localization
physics discussed above can be experimentally tested. Before
the dimensional reduction, the Hofstadter model can be real-
ized in ultracold atoms, where the non-Abelian SU(2) gauge
potential can be achieved by laser-assisted spin-dependent
hopping [42,50,51]. The generalized AAH model can be real-
ized in photonic waveguides. Photonic waveguides have been
routinely used to demonstrate the localization of light [56,57].
In the tight-binding limit, propagation of classical light is
governed by i dφ j/dz = κ jφ j + ∑

l 
= j t j,lφl , which resembles
the Schrödinger equation. κ j is the refractive index of the jth
waveguide, which plays the role of potential. t j,l is the hopping
between different waveguides. In the ladder geometry, two
legs correspond to two pseudospins and rungs play the role
of lattice sites.
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