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Density shift of optical lattice clocks via the multiband sampling exact diagonalization method
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Density shift plays an important role in the uncertainty of an optical lattice clock and thus has attracted a
great deal of theoretical and experimental studies. However, most of the theoretical research has considered
the single-band model and collective approximation, so the density shift of the system at higher temperatures
cannot be analyzed accurately. Here we design a numerical algorithm that combines Monte Carlo sampling and
exact diagonalization and name it multiband sampling exact diagonalization (MBSED). The MBSED method
considers the collision of atoms between multiple bands, so it can provide the density shift of an optical lattice
clock with higher precision. Such an algorithm will benefit the numerical simulation of an optical lattice clock
and may also be used in other platforms of quantum metrology.
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I. INTRODUCTION

Time, as one of the fundamental quantities, plays an im-
portant role in physics. The precise measurement of time
is key to the frontier of research including measurement of
fundamental constants [1], detecting gravitational waves [2],
testing general relativity [3–5], and searching for dark matter
[6,7]. As one of the most accurate time-frequency measure-
ment devices, the optical lattice clock (OLC) platform has
made great progress due to experimental efforts in manip-
ulating alkaline-earth or alkaline-earth-like atoms. Recently,
the OLC of Bothwell et al. has reached an ultrastable level
with a fractional frequency measurement uncertainty of 7.6 ×
10−21, so the gravitational redshift at millimeter scale can be
resolved [4].

To suppress the quantum projection noise, a large number
of atoms need to be prepared in the ground state at each
optical lattice site [8]. However, the collisions between atoms
can degrade the precision of clocks [9], so the corresponding
quantitative calculation becomes vital for quantum metrology.
On the other hand, understanding the collisional behavior
is also important for both quantum simulations [10–17] and
quantum information [18–20] based on the OLC. In the early
work in [21], only the s-wave scattering was considered due
to the inhomogeneous excitation. Then researchers found that
the p-wave scattering in fact dominates the density shift [22]
and proposed the interatomic collisional model, which de-
scribes the deep OLC under low axial (z) temperature (around
1 µK). In the calculation, only the lowest axial band was taken
into account because the axial energy gap was much larger
than the temperature effect. Meanwhile, under the collective
approximation, the frequency shift was found to be linear
with the atom density; such a prediction was checked by the
experiments of Martin et al. [23].

In previous work the atoms were assumed to stay at only
the lowest band and the density shift was calculated using
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approximate methods such as collective or mean-field ap-
proximation [22,23]. However, the density shift based on a
multiband Hamiltonian and beyond the approximation was
not studied. Furthermore, sufficient cooling could not always
be guaranteed. Considering the rapid progress of the trans-
portable [24] and space OLC [25], it might be difficult to
reach low temperature considering the potentially higher cost
of cooling compared with the laboratory. Therefore, it is im-
portant to extend the collision model to the multiband case
so that the density shift can be estimated with high preci-
sion. In this paper we first derive the multiband collisional
model of the OLC. Then we develop an advanced algorithm
which combines Monte Carlo sampling and exact diagonal-
ization to calculate the density shift of the OLC, which we
name multiband sampling exact diagonalization (MBSED). In
comparison with the collective approximation, the MBSED
method can precisely simulate the density shift in which both
the p wave and the s wave participate. Thus it could present
higher accuracy when dealing with a system when the s-wave
interaction is not effectively suppressed due to excitation in-
homogeneity. Furthermore, our p-wave interaction is with a
different sign than in previous work [22,23]. This is due to
the different derivation of the Hamiltonian and it will lead
to a huge difference in the p-wave scattering length which is
fitted through density shift data from the clock measurement.
A detailed derivation of our model is given in Appendix A.

The paper is organized as follows. In Sec. II we discuss
the effective spin model which further takes into account
the axial multiband effect of quantum many-body systems in
OLCs. In Sec. III the algorithm of multiband sampling exact
diagonalization is discussed. In Sec. IV we simulate a density
shift using the MBSED method for both Ramsey and Rabi
spectroscopies. Section V provides a summary and an outlook
for future work.

II. EFFECTIVE SPIN MODEL

We consider an OLC that uses the 1S0(|g〉) ↔ 3 P0(|e〉)
clock transition in nuclear spin-polarized 87Sr atoms. The
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atoms are loaded in a deep optical lattice constructed of laser
with magic wavelength λl = 813.43 nm [26] so that they
experience the same lattice potential. The lattice potential
Vlat = −V0cos2(klz)e−2(x2+y2 )/w2

b , where wb is the beam waist,
which is generally around 45 µm. In the following simulation,
we set it as 48 µm. In addition, kl is the wave number that

sets the recoil energy Er = h̄2k2
l

2m and V0 is the lattice depth,
which is generally greater than 40Er . In this deep lattice
regime, atoms are trapped in the center of each lattice site
(also with no intersite hopping) and the lattice potential can
be approximately treated as a three-dimensional harmonic

trap with potential Vext = 1
2 mω2

z z2 + 1
2 mω2

r (x2 + y2) where

the trap frequency νr =
√

V0
m

2
ωb

and νz =
√

2V0
m kl . The atom

temperature is characterized by the radial temperature Tr and
axial temperature Tz, which are fitted by the sideband spec-
troscopy [21]. When fitting, the theoretical model is based on
a harmonic oscillator considering perturbation, so the fitting
parameter is not the real temperature, which is why there are
two different temperatures in this system. Considering the
pairwise interaction between atoms through the s-wave and
p-wave channels [10,18,27–30], the single-site Hamiltonian
can be written as

Ĥ0 =
∑

a

∫
ψ̂†

a (r)

(
− h̄2

2m
∇2 + Vext(r)

)
ψ̂a(r)d3r + 4π h̄2a−

eg

m

∫
ψ̂†

e (r)ψ̂e(r)ψ̂†
g (r)ψ̂g(r)d3r

+ 3π h̄2

m

∑
α,β

b3
αβ

∫
{[∇ψ̂†

α (r)]ψ̂†
β (r) − ψ̂†

α (r)[∇ψ̂
†
β (r)]} · {ψ̂β (r)[∇ψ̂α (r)] − [∇ψ̂β (r)]ψ̂α (r)}d3r

+ 1

2
h̄ω0

∫
[ρ̂e(r) − ρ̂g(r)]d3r − h̄
0

2

∫
[ψ̂†

e (r)e−i(ωpt−k·r)ψ̂g(r) + H.c.]d3r, (1)

where ψ̂α (r) is a fermionic field operator at position r for
atoms with mass m in the electronic state α = g or e, ρ̂α (r) =
ψ̂†

α (r)ψ̂α (r) is the corresponding density operator, and a−
eg

is the scattering length describing collisions between two
atoms in the antisymmetric electronic state 1√

2
(|ge〉 − |eg〉).

The p-wave scattering volumes b3
gg, b3

ee, and b3
eg represent

three possible electronic symmetric states |gg〉, |ee〉, and
1√
2
(|eg〉 + |ge〉), respectively. In addition, ωL is the frequency

of the probing laser and k is its wave vector; k = {kx, 0, kz} ≈
{kp�θ, 0, kp}, where �θ is a small misalignment angle be-
tween the probing laser and the lattice laser; ω0 is the atomic
transition frequency and 
0 is the bare Rabi frequency. The
previous works in [22,23] focused on the system at low
temperature (around 1 µK), so only the lowest axial band
needs to be considered. In contrast, as shown in Fig. 1(a),
the distribution of higher axial bands cannot be ignored in a
high-temperature system. Therefore, different from previous
studies [22], the expansion of the field operators in a noninter-
acting harmonic eigenbasis is not limited to the lowest axial
band

ψ̂α (r) =
∑

�n
ĉα�nφnx (x)φny (y)φnz (z), (2)

where ĉα�n annihilates a fermion in the motional mode �n =
{nx, ny, nz} and electronic state α. Because all trap frequencies
are much greater than the characteristic interaction energy,
the motional degrees of freedom are effectively frozen [22].
Considering the energy conservation law and anharmonic-
ity of the trap, the external states of atoms could remain
the same or be exchanged only after the collision. Then the
atom distribution in the external states is fixed and obtained
by sampling as the Boltzmann distribution, so the effective
model can be greatly simplified [22]. After mapping into a
spin- 1

2 model with |g〉 → |↓〉 and |e〉 → |↑〉, the many-body

interacting Hamiltonian can be written as

Ĥs

h̄
= −2πδ

N∑
i

Ŝz
i − 2π

N∑
i


iŜ
x
i −

N∑
i �= j

Ci, j

Ŝz
i + Ŝz

j

2

−
N∑

i �= j

Xi, j Ŝ
z
i Ŝz

j −
N∑

i �= j

Ji, j Ŝi · Ŝ j, (3)

where Ŝγ
i (γ = x, y, z) denotes the spin operator for the

ith external state, δ = (ωL − ω0)/2π is the laser detuning
from atomic resonance, and 
i is the mode-dependent Rabi

FIG. 1. Several quantities as a function of system tempera-
ture Tr = Tz = T with lattice frequency νz = 66 000 Hz and νr =
250 Hz. (a) Thermal populated distribution for atoms at higher bands
(nz > 0). The thermally averaged values of collision parameters (b)
Ci, j and (c) Ji, j are shown along with their corresponding standard
deviations. (d) Thermally averaged value and standard deviation of
the normalized Rabi frequency 
i/
0 with the misalignment angle
�θ = 10 mrad.
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frequency (see Appendix A). The coefficients of the effective
spin interactions are explicitly expressed as

Ji, j = a−
egGS

i, j + b3
egGP

i, j,

Ci, j = (
b3

ee − b3
gg

)
GP

i, j, (4)

Xi, j = (
b3

ee − 2b3
eg + b3

gg

)
GP

i, j,

where GS
i, j and GP

i, j denote the interaction strengths arising
from the s wave and p wave, respectively. One way to solve
the time evolution of the Hamiltonian (3) and calculate the
density shift is using the collective approximation [23], which
takes the thermal average of all the coefficients to replace
mode-dependent ones. In this approximation, the total spin
is confined in the Dicke space with total spin S = N/2 (see
Appendix B for more information about the collective ap-
proximation). This method is applicable when the system
is in a collective regime where the standard deviation of
those coefficients are small. To see the standard deviation of
mode-dependent coefficients, we sample the external states
for atoms according to the Boltzmann distribution and plot
the thermally averaged value of Ci, j , Ji, j , and 
i/
0 and their
corresponding standard deviations as a function of system
temperature Tr = Tz = T . The result is shown in Fig. 1. The
statistic property of Xi, j is not shown in Fig. 1 because it is
proportional to Ci, j [see Eq. (4)].

As we can see in Fig. 1(d), the standard deviation of the
normalized Rabi frequency 
i/
0 increases significantly with
the system temperature, which will induce strong excitation
inhomogeneity and break the collective property of the OLC
system. The collective approximation may fail when describ-
ing such a system. Therefore, in order to study the density shift
beyond the collective regime, we have developed a numerical
algorithm called multiband sampling exact diagonalization,
which is introduced in the next section.

Furthermore, as shown in Fig. 1(b), when the system tem-
perature is around 1.5 µK, atoms staying in the excited axial
state will have a non-negligible effect on the thermally aver-
aged value of Ci, j (which increases about 12% compared with
the case that considers only the lowest band). In addition, after
considering the multiband distribution of the axial external
state, we find that the standard deviation of Ci, j increases.
Because the density shift is mainly caused by the p-wave
interaction which is characterized by Ci, j , it is necessary
to consider the multiband model in an optical lattice clock
system.

III. MBSED METHOD

The algorithm of the MBSED method is pretty straightfor-
ward; the flow chart diagram is shown in Fig. 2(a). The main
process can be concisely described as follows. (i) A number of
samples are obtained according to the Boltzmann distribution.
(ii) Because the number of particles in each site is not too
high, the time evolution of the quantum state can be calculated
via diagonalization of the Hamiltonian (3). (iii) As shown in
Fig. 2(b), the probability of the excited state (the spectrum)
can be estimated by taking the mean value of all the samples.

We first use the Monte Carlo method to generate samples
that follow the Boltzmann distribution. The corresponding

Average 

Spectra

,…,

�

,…,

(a)

(b)

FIG. 2. (a) Flow chart of the MBSED algorithm. After each
sampling, we diagonalize the many-body Hamiltonian according to
sampled external states and simulate the excitation spectrum (Ram-
sey or Rabi). Then we average the spectrum line shape with all
previously sampled results. After many samplings, the excitation
spectrum can be precisely obtained as well as the density shift.
(b) Schematic plot for the average spectrum. In the left plot, each
line shape is simulated by Monte Carlo sampled external states. The
right plot is the thermally averaged spectrum and the density shift is
read out from it.

partition function can be represented as

Z =
∑
nz,nr

(nr + 1) exp

(
− h̄ωz

(
nz + 1

2

)
kBTz

− h̄ωr (nr + 1)

kBTr

)
, (5)

in which ωz (ωr) is the axial (radial) trap frequency, Tz (Tr)
is the axial (radial) temperature, and nr = nx + ny labels the
radial motional state with degeneracy nr + 1. The number
of eigenstates Nz (Nr) in the axial (radial) direction can be
estimated with Ur/h̄ωz (Ur/h̄ωr), where Ur is the depth of the
lattice potential energy. Typically, Nz is approximately equal
to 5 and Nr is approximately equal to 1000. Then the motional
states of all the atoms are sampled according to the distribu-
tion (5). Notice that, because of the degeneracy in the radial
direction, the index (nx, ny) should be randomly selected after
fixing (nz, nr ). Meanwhile, the samples with atoms located in
the same motional state (nx, ny, nz ) have to be kicked out due
to the Pauli exclusion principle. Such processes are extremely
rare at high temperature and less than one per 1000 at 1 µK,
so its influence can be omitted.

After the motional index �n is sampled, the corresponding
coefficients of the Hamiltonian (3) on the basis of harmonic
eigenstates can be directly calculated (see Appendix A for
details). Then all the eigenstates |ψ〉m with eigenenergy Em
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can be obtained by using the exact diagonalization. Assuming
the system is prepared in the initial state |ψ〉0, i.e., the ground
state |ψ〉G = |↓↓ · · · ↓〉, the time-dependent wave function
turns out to be

|ψ (t )〉 =
∑

m

e−iEmt/h̄
m〈ψ |ψ〉0|ψ〉m. (6)

However, the full diagonalization requires the atom number
N to be less than approximately 20, so it is better to find
a way to truncate the Hilbert space. The initial state |ψ〉G

stays at the subspace with total spin S = N
2 but evolves into

other subspaces due to the interaction and inhomogeneous
excitations. The good thing is that the variation of 〈S〉 is very
slow, so we can project the Hamiltonian to the subspaces with
total spin equal to {N

2 , N
2 − 1, . . . , N

2 − m} when the evolution
time is not so long. The selection of the truncation number m
depends on parameters of the OLC such as temperatures and
misalignment angle.

The physical observables can be numerically calculated
by taking the mean value of all the samples, such as the
probability of the excited state. If the deviation of the mean
value converges to a certain precision, we output the final
result; otherwise, the sampling will continue.

IV. NUMERICAL SIMULATION

The MBSED method is very useful to numerically simulate
the spectroscopy with high precision in an OLC beyond the
collective regime. To demonstrate its efficiency, the densities
of both Ramsey spectroscopy and Rabi spectroscopy are esti-
mated. First, the values of scattering lengths bee and beg should
be fitted using the MBSED method. Based on the experimen-
tal data from Martin et al. [23], the fitted scattering lengths
are bee = 150.19aB and beg = 192.34aB (aB is the Bohr ra-
dius). More details related to the fitting process are shown
in Appendix C. Note that the scattering lengths we obtained
are greatly different from those in Ref. [14] (different sign),
which we think may result from the different derivation of the
effective model. Therefore, we include the derivation in detail
in Appendix A, although it has no effect on our conclusion.
Note that all simulations are based on the Hamiltonian (3), in
which inelastic collisions are neglected. Therefore, our focus
is solely on the short-time evolution, allowing us to disregard
decoherence resulting from the inelastic processes.

A. Density shift in Ramsey spectroscopy

Ramsey spectroscopy has become a well-developed tool
in time measurement [4,31]. Compared to Rabi spectroscopy,
Ramsey spectroscopy can obtain narrower spectrum lines in a
shorter light-atom interaction time.

In the Ramsey process, the atoms are initially prepared in
the ground state. A probing pulse with detuning δ is added
during the pulse time t1. Then the atoms freely evolve for
a dark time τ (without a probing laser). Finally, a probing
laser with the same detuning will be used for duration t2.
Usually, the Rabi frequency is much greater than the inter-
action strength in an experimental setup. Thus, the influence
of interatomic collisions can only be taken into account in the

FIG. 3. Schematic diagram for the Ramsey spectroscopy process
of an ensemble of atoms. Here each dot represents the quantum state
of one atom on the Bloch sphere.

dark time. Figure 3 shows a Ramsey process of an ensemble
of atoms in the presentation of the Bloch sphere.

As demonstrated in Fig. 4, the peak of the excitation frac-
tion in Ramsey spectroscopy is located at zero detuning if
the atomic collision is not considered. However, in the real
experiment, the collision can result in the deviation of the
peak δ = 2π�ν, which is equal to the density shift. Un-
der the collective approximation, the density shift 2π�ν ≈
(N − 1)(X cos 2π
t1 − C) (see Appendix D). In Ramsey
spectroscopy, the detuning and collision in pulse time can be
ignored; therefore, the excitation fraction at the end of the
first pulse p1 = 1

2 − 1
2 cos2π
t1. Thus, the density shift under

the collective approximation could be expressed as 2π�ν ≈
(N − 1)[X (1 − 2p1) − C], which is linear with p1.

To study the density shift beyond the collective regime, we
use the MBSED method. During the MBSED simulation, the
time evolution of the pulse time can be greatly simplified.
Because the interaction is negligible in comparison with the
remaining terms, each atom in the motional state is gov-
erned by a local 2 × 2 matrix. On the other hand, during
the dark time, there is no atom-light interaction. Therefore,

FIG. 4. Schematic Ramsey spectrum with and without atomic
collision.
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FIG. 5. Density shifts of Ramsey spectroscopy at different dark
time durations τ . The x axis plots the excitation fraction at the end
of the first pulse. The temperature is set to Tz = Tr = 3 µK and the
atom number is 5. The inset shows the smaller scale.

the Hamiltonian keeps the U(1) symmetry with conserved
quantities Mz = ∑N

i Ŝz
i and thus could be block diagonalized.

In addition, the detuning δ will not change the eigenvector
V of the dark time Hamiltonian and only changes the eigen-
value with a detuning-related term hδMz. Considering the
Ramsey spectroscopy is obtained by changing the detuning,
the diagonalization can be performed just once. In the fol-
lowing simulation, we set νz = 66 kHz and νr = 250 Hz and
we set the misaligned angle between the lattice and probing
laser �θ = 10 mrad to make sure that there will be a strong
noncollective effect during the time evolution. The bare Rabi
frequency 
0 is set to 500 Hz and has less effect on the density
shift since it is much higher than the collision coefficients.
In order to figure out the relation between the density shift
and p1, we vary p1 by tuning t1 at fixed t2 = 1

4

(the sec-

ond pulse is a π/2 pulse). First, the role played by the dark
time is checked. Under the collective approximation, the den-
sity shift satisfies 2π�ν ≈ (N − 1)(X cos 2π
t1 − C) while
|Xτ | 
 1. During our simulation, X is around 2π × 0.05. If
τ = 120 ms, then |Xτ | = 0.0377 
 1. Therefore, according
to the collective approximation, the density shift should be
very insensitive to τ when τ < 120 ms. However, as shown in
Fig. 5, through the MBSED method we find that even when
|Xτ | 
 1 the density shift is obviously affected by τ for a
noncollective system, especially when the dark time is short.

Then, as mentioned before, the temperature can result in
the invalidity of the collective approximation, so it is worth
verifying it. In Fig. 6 we compare the results of both the
collective approximation and MBSED methods at different
temperatures. It is obvious that there is a large deviation
between them when Tz = Tr > 3 µK. From Fig. 6 we can
extract the excitation fraction P0 where the corresponding
density shift equals zero. The collective approximation gives
the temperature-independent value P0 = 0.643. In contrast, as
shown in Fig. 7, the simulation from the MBSED method
shows that P0 decreases while temperature increases. There-
fore, the MBSED method can remedy the drawback of the
collective approximation and gives a more precise prediction
of the density shift beyond the collective regime. In addition,
the MBSED result that considers only the lowest band is also

FIG. 6. Comparison of the density shift between numerical sim-
ulation with multiple bands (red solid line), collective approximation
with multiple bands (blue dashed line), and numerical simulation
with only the lowest band (green dot-dashed line) at different tem-
peratures with the atom number equal to 5: (a) Tz = Tr = 0 µK, (b)
Tz = Tr = 1 µK, (c) Tz = Tr = 3 µK, and (d) Tz = Tr = 8 µK. The
x axis plots the excitation fraction at the end of the first pulse. The
vertical dashed lines mark the excitation fraction with a zero-density
shift.

shown in Fig. 6. We could see that the value of the density
shift under the lowest-band approximation is different from
that of the multiband case even at T = 1 µK; therefore, it is
necessary to study the density shift under the multiband model
when the excited band distribution is non-negligible. Next
we want to check the linear relation between the density shift
and atom number predicted by the collective approximation,
because this relation is usually used to estimate the density
shift in the experiment [22]. Meanwhile, we also use this
relation to fit the system parameters (see Appendix C). In
Fig. 8, after being divided by N − 1, the curves of the density
shift of different atom numbers almost overlap with each
other, so the excitation fraction with a zero-density shift is
almost unchanged with atom number. To be more explicit, we
performed a linear fit of the density shift at excitation fraction
Pe = 0.2 for different atom numbers. As shown in the legend
of Fig. 8, the linearity of the relation is very good. Considering
the corresponding temperature is Tr = Tz = 3 µK, this means

FIG. 7. Excitation fraction for zero-density shift at different tem-
peratures. The system parameters are the same as in Fig. 6.
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p1

FIG. 8. Rescaled density shift in Ramsey spectroscopy with dif-
ferent numbers of atoms. The x axis plots the excitation fraction at
the end of the first pulse. The temperature is set to Tz = Tr = 3 µK.

the linear relation of the density shift to atom number in
Ramsey spectroscopy remains for high temperature.

Finally, because OLCs work at a wide range of lattice
depths, it is important to know how the density shift changes
with the lattice depth. In the collective regime, the p-wave
interaction dominates the density shift and the p-wave in-
teraction parameters Ci, j and Xi, j are proportional to V 5/4

0 .
Therefore, the density shift should be proportional to V 5/4

0
under the collective regime. To see the density shift scaling of
V0 beyond the collective regime, the density shift is simulated
using the MBSED method with t1 = t2 as a π

2 pulse at dif-
ferent lattice depths (from 50Er to 150Er), different external
state distributions, and different misalignment angles �θ . The
external state distribution is characterized by β, which has
the dimension of temperature (µK). The relationship between

the system temperature and β is defined as T =
√

V0
100Er

β

and the data are fitted with the function of the form aV n
0 (a and

n are fitted parameters) at each β and �θ . The result is shown
in Fig. 9. We could see that the fitted parameter n decreases as

FIG. 9. Fitted parameter n of the function aV n
0 for different β

at different misalignment angles �θ . The system temperature T =√
V0/Er

100 β.

FIG. 10. Schematic plot for the simulation density shift of Rabi
spectroscopy using the MBSED method. Here pm is the maximum
excitation fraction of a π pulse Rabi spectrum and pc = pm

2 is the
half-excitation fraction; δleft and δright are the corresponding negative
detuning and positive detuning of two half-excitation fraction points.

β increases. For systems with large �θ , the decrease is even
greater.

B. Density shift in Rabi spectroscopy

In Rabi spectroscopy, the atoms are also initially prepared
in the ground state and then excited by applying a probe laser
with detuning δ with duration time t . During our simulation,
we set the duration of probing time t as a π pulse. During the
experiment, the clock transition frequency is obtained by the
average of two frequencies with the same certain excitation
fraction pc. To reach a maximum sensitivity, pc is generally
chosen as half of the maximum excitation fraction pm of
the Rabi spectrum. The density shift is determined as �ν =
δleft+δright

2 , where δleft and δright are the negative detuning and
positive detuning of two half-excitation points. A schematic
plot is shown in Fig. 10.

First, the relation between the density shift and Rabi fre-
quency is checked. From Fig. 11 we can find that the density
heavily depends on the magnitude of the Rabi frequency while

FIG. 11. Density shift of Rabi spectroscopy at different Rabi
frequencies. The temperature is set to Tz = Tr = 3 µK and the atom
number is 5.
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FIG. 12. Comparison of the density shift between numerical
simulation based on the multiband model (red solid line), the lowest-
band model (green dot-dashed line), and collective approximation
(blue dashed line) at different temperatures with the atom number
equal to 5.

the system is in a strongly correlated regime. In this regime,
the Rabi frequency is no longer a magnitude larger than the
interatomic collision energy scale, which is around 0.06 Hz,
and the atomic scattering will tend to dominate the many-body
dynamics and strongly distort the Rabi spectrum, which is
bad for clock operation. Thus, we set the bare Rabi frequency
to 
0 = 5 Hz, which is much greater than atomic interaction
energy scale in the following discussion.

Then we want to study the influence of temperature. The
collective approximation can also be used in Rabi spec-
troscopy, but the time evolution cannot be solved analytically.
Therefore, we numerically calculated the density shift under
the collective approximation and compared it with that ob-
tained using the MBSED method. Figure 12 shows the density
shift of both methods at different temperatures. As in the
Ramsey case, it indicates that the collective approximation is
suitable only for low temperatures. At higher temperatures, it
will overestimate the density shift.

Next we check if the density shift has a linear relation
with the atom number. From Fig. 13 we can find that the
density shift is still linear with N − 1 in a noncollective

FIG. 13. Density shift in Rabi spectroscopy with different num-
bers of atoms in a noncollective regime. The temperature is set to
Tz = Tr = 3 µK and the misalignment angle �θ = 10 mrad.

FIG. 14. Fitted parameter n of the function aV n
0 for different

β at different misalignment angles �θ . The system temperature

T =
√

V0/Er
100 β.

system, where N is the atom number. Finally, we simulate the
density shift of Rabi spectroscopy at different lattice depths.
Similar to the Ramsey case, we first simulate the density shift
under different lattice depths V0 (also from 50Er to 150Er),
distributions β, and misalignment angles �θ . The relation-
ship between β and the system temperature T is defined as

T =
√

V0
100Er

β. The data are fitted with aV n
0 at each β and �θ .

The probing time t is set as a π pulse. The result is shown
in Fig. 14. We could see that the density shift is still propor-
tional to V 5/4

0 when the system is in a low-temperature regime
(β ≈ 0.5 µK). However, the fitted parameter n increases to
around 1.4 when β ≈ 3 µK for a small misalignment system
(�θ < 5 mrad).

V. CONCLUSION AND OUTLOOK

In this paper we extended the effective spin Hamiltonian
which describes the atomic collisions of the OLC from the
single-band case to the multiband case so that the OLC sys-
tem at higher temperatures can be described. To deal with
the extended Hamiltonian, we developed a numerical algo-
rithm, MBSED, which combines the Monte Carlo method to
sample the distribution of atoms and exact diagonalization to
simulate the time evolution of the OLC system. After im-
plementing the MBSED method on both Ramsey and Rabi
spectroscopies, we found that the collective approximation
method is valid only for the system at low temperatures.
For both Ramsey and Rabi spectroscopies, we found that the
linear relation between the density shift and atom number
still holds and in the Ramsey spectrum the special excitation
fraction where the density shift equals zero decreases with
increasing temperature.

The quantum many-spin model has been extensively stud-
ied in the field of condensed-matter physics. In order to solve
such quantum many-body problems, numerous numerical
algorithms have been developed, including exact diagonal-
ization, quantum Monte Carlo, and matrix product states.
However, in the field of OLCs, there is no work that adopts
these algorithms to solve the quantum many-body Hamil-
tonian. Thus, our work provides a bridge between OLCs
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and quantum many-body computation. Many issues could be
investigated in future work. One direction would be check-
ing how average entanglement entropy grows with the atom
number to determine whether the model could deal with the
matrix product state. Another direction could be further con-
sideration of the inelastic collision between atoms, which was
disregarded in this paper.

ACKNOWLEDGMENTS

We wish to thank A. M. Rey for discussions. This work
was supported by the National Science Foundation of China
under Grant No. 12274045. X.-F.Z. acknowledges funding
from the National Science Foundation of China under Grants
No. 12274046, No. 11874094, and No. 12147102 and Fun-
damental Research Funds for the Central Universities Grant
No. 2021CDJZYJH-003. T.W. acknowledges funding from
the Program of State Key Laboratory of Quantum Optics and
Qauntum Optics Devices (Grant No. KF202211).

APPENDIX A: EFFECTIVE HAMILTONIAN

The Hamiltonian (1) can be divided into four parts, that is,
Ĥ0 = Ĥ ext

0 + Ĥ s
0 + Ĥ p

0 + ĤRabi
0 :

Ĥ ext
0 =

∑
α

∫
ψ̂†

a (r)

(
− h̄2

2m
∇2 + Vext(r)

)
ψ̂a(r)d3r,

Ĥ s
0 = 4π h̄2a−

eg

m

∫
ψ̂†

e (r)ψ̂e(r)ψ̂†
g (r)ψ̂g(r)d3r,

Ĥ p
0 = 3π h̄2

m

∑
α,β

b3
αβ

∫
{[∇ψ̂†

a (r)]ψ̂†
β (r) − ψ̂†

α (r)[∇ψ̂
†
β (r)]}

· {[∇ψ̂α (r)]ψ̂β (r) − ψ̂α (r)[∇ψ̂β (r)]}d3r,

ĤRabi
0 = 1

2
h̄ω0

∫
[ρ̂e(r) − ρ̂g(r)]d3r

− h̄π
0

∫
[ψ̂†

e (r)e−i(ωLt−k·r)ψ̂g(r)]

− h̄π
0

∫
[ψ̂†

g (r)ei(ωLt−k·r)ψ̂e(r)].

Let us first deal with Ĥ ext
0 . Under typical working condi-

tions, the external potential can be approximately treated as
a harmonic trap Vext(r) = 1

2 mωzz2 + 1
2 mωr (x2 + y2). By ex-

panding the field operator using (2), we have

Ĥ ext
0 =

∑
α

∑
�n

[
h̄ωz

(
nz + 1

2

)
+ h̄ωr (nx + ny + 1)

]
ĉ†
α,�nĉα,�n.

Therefore, Ĥ ext
0 offers only a constant energy shift.

Now let us turn to Ĥ s
0 . As before, we expand the field

operator under the harmonic basis

Ĥ s
0 = 4π h̄2

m
a−

eg

∑
�n1,�n2,�n3,�n4

ĉ†
e,�n1

ĉ†
g,�n2

ĉg,�n3 ĉe,�n4

∫
φnx1

φnx2
φnx3

φnx4
dx

×
∫

φny1
φny2

φny3
φny4

dy
∫

φnz1
φnz2

φnz3
φnz4

dz.

FIG. 15. Mode dependence of s(n1, n2, n1, n2).

By defining ξγ =
√

mωγ

h̄ γ = Rγ γ (γ = x, y, z) and

s(n1, n2, n3, n4) =
∫

Hn1 (ξ )Hn2 (ξ )Hn3 (ξ )Hn4 (ξ )

π
√

2n1+n2+n3+n4 n1!n2!n3!n4!
e−2ξ 2

dξ,

where Hn(ξ ) are Hermite polynomials, we could simplify
Ĥ s

0 as

Ĥ s
0 = 4π h̄2

m
a−

egR2
r Rz

∑
�n1,�n2,�n3,�n4

ĉ†
e,�n1

ĉ†
g,�n2

ĉg,�n3 ĉe,�n4

× s(nx1 , nx2 , nx3 , nx4 )s(ny1, ny2 , ny3 , ny4 )

× s(nz1 , nz2 , nz3 , nz4 ).

Because the motional degrees of freedom are effectively
frozen due to the energy conservation constraint [22], the
motional quanta can remain the same or be fully exchanged

FIG. 16. Mode dependence of p(n1, n2, n1, n2).
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only after collision. Therefore, only terms satisfying one of
the equations

{�n3, �n4} = {�n2, �n1}, {�n3, �n4} = {�n1, �n2} (A1)

are relevant in our calculation. The parameter space of
s(i, j, k, l ) could be squeezed to a two-dimensional space

from a four-dimensional space. In Fig. 15 we show the mode
dependence of s(n1, n2, n1, n2).

Next we define

S�ni,�n j = s(nxi , nxj , nxj , nxi )s(nyi , nyj , nyj , nyi )(nzi , nzj , nzj , nzi ).

Then

Ĥ s
0 = 2π h̄

m
R2

r Rza
−
eg

∑
�n1 �=�n2

S�n1,�n2 (ĉ†
e,�n1

ĉ†
g,�n2

ĉg,�n1 ĉe,�n2 + ĉ†
e,�n1

ĉ†
g,�n2

ĉg,�n2 ĉe,�n1 + ĉ†
g,�n1

ĉ†
e,�n2

ĉe,�n1 ĉg,�n2 + ĉ†
g,�n1

ĉ†
e,�n2

ĉe,�n2 ĉg,�n1 )

= 2π h̄

m
R2

r Rza
−
eg

∑
�n1 �=�n2

S�n1,�n2 (−ĉ†
e,�n1

ĉg,�n1 ĉ†
g,�n2

ĉe,�n2 + ĉ†
e,�n1

ĉe,�n1 ĉ†
g,�n2

ĉg,�n2 − ĉ†
g,�n1

ĉe,�n1 ĉ†
e,�n2

ĉg,�n2 + ĉ†
g,�n1

ĉg,�n1 ĉ†
e,�n2

ĉe,�n2 ).

Next we do the following mapping:

1

2
(ĉ†

e,�ni
ĉe,�ni − ĉ†

g,�ni
ĉg,�ni ) = Ŝz

ni
,

1

2
(ĉ†

e,�ni
ĉg,�ni + ĉ†

g,�ni
ĉe,�ni ) = Ŝx

ni
,

i

2
(ĉ†

g,�ni
ĉe,�ni − ĉ†

e,�ni
ĉg,�ni ) = Ŝy

ni
, ĉ†

e,�ni
ĉe,�ni + ĉ†

g,�ni
ĉg,�ni = Îni . (A2)

Then Ĥ s
0 becomes

Ĥ s
0 = −4π h̄2

m
R2

r Rza
−
eg

∑
�n1 �=�n2

S�n1,�n2 Ŝn1 · Ŝn2 .

Now we turn to the p-wave scattering Hamiltonian Ĥ p
0 . After expanding the field operator under the Harmonic eigenbasis, we

have

Ĥ p
0 = 3π h̄2

m

∑
α,β

b3
αβ

∑
�n1,�n2,�n3,�n4

ĉ†
α,�n1

ĉ†
β,�n2

ĉβ,�n3 ĉα,�n4

[ ∫ (
∂φnx1

∂ξx
φn2 − φnx1

∂φnx2

∂ξx

)(
φnx3

∂φnx4

∂ξx
− ∂φnx3

∂ξx
φn4

)
dx

× R3
r Rzs(ny1, ny2 , ny3 , ny4 )s(nz1 , nz2 , nz3 , nz4 ) +

∫ (
∂φny1

∂ξy
φn2 − φny1

∂φny2

∂ξy

)(
φny3

∂φny4

∂ξy
− ∂φny3

∂ξy
φn4

)
dy

× R3
r Rzs(nx1, nx2 , nx3 , nx4 )s(nz1 , nz2 , nz3 , nz4 ) +

∫ (
∂φnz1

∂ξz
φn2 − φnz1

∂φnz2

∂ξz

)(
φnz3

∂φnz4

∂ξz
− ∂φnz3

∂ξz
φn4

)
dz

× R2
z R2

r s(nx1 , nx2 , nx3 , nx4 )s(ny1 , ny2 , ny3 , ny4 )

]
.

By defining

p(n1, n2, n3, n4) =
∫ ( dHn1

dξ
Hn2 − Hn1

dHn2
dξ

)( dHn3
dξ

Hn4 − Hn3

dHn4
dξ

)
π

√
2n1+n2+n3+n4 n1!n2!n3!n4!

e−2ξ 2
dξ,

where the mode dependence of p(n1, n2, n1, n2) is shown in Fig. 16, and considering the collision rule (A1), Ĥ p
0 could be written

as

Ĥ p
0 = −3π h̄2

m

∑
α,β

b3
αβ

∑
�n1 �=�n2

ĉ†
α,�n1

ĉ†
β,�n2

ĉβ,�n1 ĉα,�n2

[
R4

r Rz p(nx1 , nx2 , nx1 , nx2 )s(ny1, ny2 , ny1 , ny2 )s(nz1 , nz2 , nz1 , nz2 )

+ R4
r Rz p(ny1 , ny2 , ny1 , ny2 )s(nx1, nx2 , nx1 , nx2 )s(nz1 , nz2 , nz1 , nz2 )

+ R3
z R2

r p(nz1 , nz2 , nz1 , nz2 )s(nx1 , nx2 , nx1 , nx2 )s(ny1, ny2 , ny1 , ny2 )
]

+ ĉ†
α,�n1

ĉ†
β,�n2

ĉβ,�n2 ĉα,�n1

[
R4

r Rz p(nx1 , nx2 , nx2 , nx1 )s(ny1 , ny2 , ny2 , ny1 )s(nz1 , nz2 , nz2 , nz1 ) + R4
r Rz p(ny1 , ny2 , ny2 , ny1 )

× s(nx1 , nx2 , nx2 , nx1 )s(nz1 , nz2 , nz2 , nz1 ) + R3
z R2

r p(nz1 , nz2 , nz2 , nz1 )s(nx1 , nx2 , nx2 , nx1 )s(ny1, ny2 , ny2 , ny1 )
]
.

By defining

Pr
�ni,�n j

= p(nxi , nxj , nxj , nxi )s(nyi , nyj , nyj , nyi )s(nzi , nzj , nzj , nzi ) + p(nyi , nyj , nyj , nyi )s(nxi , nxj , nxj , nxi )s(nzi , nzj , nzj , nzi ),

Pz
�ni,�n j

= p(nzi , nzj , nzj , nzi )s(nxi , nxj , nxj , nxi )s(nyi , nyj , nyj , nyi )
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and noting that p(n1, n2, n2, n1) = −p(n1, n2, n1, n2), we have

Ĥ p
0 = −3π h̄2

m

∑
α,β

b3
αβ

∑
�n1 �=�n2

(
R4

r RzP
r
�n1,�n2

+ R2
r R3

z Pz
�n1,�n2

)
(ĉ†

α,�n1
ĉ†
β,�n2

ĉβ,�n2 ĉα,�n1 − ĉ†
α,�n1

ĉ†
β,�n2

ĉβ,�n1 ĉα,�n2 ).

After mapping (A2), we get the spin Hamiltonian for p-wave scattering,

Ĥ p
0 = −3π h̄2

m

∑
�n1 �=�n2

(
R4

r RzP
r
�n1,�n2

+ R2
r R3

z Pz
�n1,�n2

)[
Sz

�n1
Sz

�n2

(
2b3

ee − 4b3
eg + 2b3

gg

) + Ŝ�n1 · Ŝ�n2 2b3
eg + (

I�n1 Sz
�n2

+ Sz
�n1

I�n2

)(
b3

ee − b3
gg

)]
.

Finally, let us turn to the Rabi term ĤRabi
0 . After expanding, we have

ĤRabi
0 = 1

2
h̄ω0

∑
�n

ĉ†
e,�nĉe,�n − ĉ†

g,�nĉg,�n − h̄π
0

(
e−iωLt

∑
�n1,�n2

∫
φ�n1 (r)eik·rφ�n1 (r)drĉ†

e,�n1
ĉg,�n2

)

− h̄π
0

(
eiωLt

∑
�n1,�n2

∫
φ�n1 (r)e−ik·rφ�n1 (r)drĉ†

e,�n1
ĉg,�n2

)
.

During the experiment, a small misalignment angle θ (θ ≈ 5 mrad) exists between the radial and longitude directions. Therefore,
the wave vector of the probing light could be

k = kL(sinθ, 0, cosθ ) ≈ kL(θ, 0, 1).

By defining


�n = 
0

∫
φ�n1 (r)eik·rφ�n1 (r)dr

= 
0e− 1
2 (η2

z +η2
x )Lnx

(
η2

x

)
Lnz

(
η2

z

)
,

where ηx =
√

h̄
2mωr

θ
λp

and ηz =
√

h̄
2mωz

1
λp

are the Lamb-Dicke parameters in the x and z directions, respectively (with λp =
698 nm the wavelength of the probing laser), and Ln is the Laguerre polynomial, ĤRabi

0 can be simplified as

ĤRabi
0 = 1

2
h̄ω0

∑
�n

ĉ†
e,�nĉe,�n − ĉ†

g,�nĉg,�n − h̄π
∑

�n

�n(e−iωLt ĉ†

e,�nĉg,�n + eiωLt ĉ†
g,�nĉe,�n)

= h̄ω0

∑
�n

Ŝz
�n − h̄π

∑
�n


�n(e−iωLt Ŝ+
�n + eiωLt Ŝ−

�n ).

Thus Ĥ0 becomes

Ĥ0 = −4π h̄2

m
R2

r Rza
−
eg

∑
�n1 �=�n2

S�n1,�n2 Ŝn1 · Ŝn2 − 3π h̄2

m

∑
�n1 �=�n2

(
R4

r RzP
r
�n1,�n2

+ R2
r R3

z Pz
�n1,�n2

)[
Sz

�n1
Sz

�n2

(
2b3

ee − 4b3
eg + 2b3

gg

) + Ŝ�n1 · Ŝ�n2 2b3
eg

+ (
Î�n1 Ŝz

�n2
+ Ŝz

�n1
Î�n2

)(
b3

ee − b3
gg

)] + h̄ω0

∑
�n

Ŝz
�n − h̄π

∑
�n


�n(e−iωLt Ŝ+
�n + eiωLt Ŝ−

�n ).

Next we apply a rotation frame transformation Û = exp(iωLt
∑

�n Ŝz
�n). After the transformation, we will get the effective spin

Hamiltonian in the rotated frame Ĥs = Û (Ĥ0 − ih̄ ∂
∂t )Û †. Note that [Û , Ĥ p

0 ] = [Û , Ĥ s
0 ] = 0; therefore, we should only pay

attention to Û
∑

�n 
�n(e−itωL Ŝ+
�n + eitωL Ŝ−

�n )Û †:

Û

(∑
�n


�ne−itωL Ŝ+
�n + eitωL Ŝ−

�n

)
Û † =

∑
�n1,�n2,�n3

e−iωLt
∑

�n1
Ŝz

�n1 
�n2 (e−itωL Ŝ+
�n2

+ eitωL Ŝ−
�n2

)eiωLt
∑

�n3
Ŝz

�n3

=
∑

�n

�neiωLt Ŝz

�n (e−itωL Ŝ+
�n + eitωL Ŝ−

�n )e−iωLt Ŝz
�n

=
∑

�n
2
�nŜx

�n.
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Therefore,

Ĥs = −4π h̄2

m
R2

r Rza
−
eg

∑
�n1 �=�n2

S�n1,�n2 Ŝn1 · Ŝn2 − 3π h̄2

m

∑
�n1 �=�n2

(
R4

r RzP
r
�n1,�n2

+ R2
r R3

z Pz
�n1,�n2

)[
Sz

�n1
Sz

�n2

(
2b3

ee − 4b3
eg + 2b3

gg

) + Ŝ�n1 · Ŝ�n2 2b3
eg

+ (
Î�n1 Ŝz

�n2
+ Ŝz

�n1
Î�n2

)(
b3

ee − b3
gg

)] + h̄(ω0 − ωL )
∑

�n
Ŝz

�n − h̄
∑

�n
2π
�nŜx

�n.

By defining

GS
i, j = 4π h̄

m
R2

r RzS�n1,�n2 ,

GP
i, j = 6π h̄

m

(
R4

r RzP
R
�n1,�n2

+ R2
r R3

z PZ
�n1,�n2

)
and using the definition in (4), we finally obtain the effective spin Hamiltonian (3),

Ĥ

h̄
= −2πδ

N∑
i

Ŝz
i − 2π

N∑
i


iŜ
x
i −

N∑
i �= j

Ci, j

Ŝz
i + Ŝz

j

2
−

N∑
i �= j

Xi, j Ŝ
z
i Ŝz

j −
N∑

i �= j

Ji, j �Si · �S j,

with δ = ωL−ω0
2π

.

APPENDIX B: COLLECTIVE APPROXIMATION

The interaction strengths GS
i, j and GP

i, j and Rabi frequency

i are related to the motional degree of freedom. However,
their standard deviations (�GS

i, j , �GP
i, j , and �
i) are very

small in a collective regime, which requires the temperature
to be low and the misaligned angle to be tiny. Therefore, the
collective approximation can be utilized and it stands that
these mode-dependent parameters can be replaced with their
average value. Then the Hamiltonian (3) can be approximately
written as

Ĥcol/h̄ = −2πδŜz − 2π
Ŝx − X ŜzŜz − (N − 1)CŜz,

where

Ŝγ=x,y,z =
N∑
i

Ŝγ
i , 
 =

∑N
i 
i

N
,

X =
∑N

i �= j Xi, j

N (N − 1)
, C =

∑N
i �= j Ci, j

N (N − 1)
.

Under the collective approximation, the quantum state is re-
stricted in the subspace of the Hilbert space with total spin
S = N

2 . Therefore, the Heisenberg term in the Hamiltonian (3)
is a constant and can be ignored.

APPENDIX C: FITTING THE SCATTERING LENGTH

The experiment we considered is that in Ref. [23] by
Martin et al., so the parameters are set to �θ = 5 mrad,
νr = 450 Hz, νz = 80 kHz, Tr = 3 µK, and Tz = 1.5 µK. In
the experiment [23], the average number of atoms in each site
was about 20, which is still large for our method. Thus, we
set the atom number to 12 and obtain the density shift of 20
atoms after rescaling due to the linear relation in high density.
Considering the low temperature and small misaligned angle
�θ , the truncation of Hilbert space could be used. As demon-
strated in Fig. 17, only two subspaces need to be taken into
account.

After calculating the density shift of 12 atoms, we can
obtain the density shift of 20 atoms by multiplying by a factor
of 19

11 . As shown in Fig. 18, the experimental data and the
fitting data match well, while the fitted scattering lengths are
beg = 192.34aB and bee = 150.19aB.

APPENDIX D: DENSITY SHIFT UNDER
THE COLLECTIVE APPROXIMATION

The density shift in the Ramsey spectroscopy could be
analytically calculated approximately. According to Sec. IV,
the time-evolution operator in the Ramsey process could be
written as

Û (t1, τ, t2) = e−it2Ĥp/h̄e−iτ Ĥd /h̄e−it1Ĥp/h̄,

where the Hamiltonian during the pulse time is

Ĥp/h̄ = −2π
Ŝx

FIG. 17. Numerical results of projection in the subspace with
total spin equal to S = N

2 and N
2 − 1 for different excitation fractions

at the end of the dark time in the Ramsey spectroscopy. The number
of atoms is 12 and the other parameters are the same as in the
experiment in [23].
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FIG. 18. Experimental results in Ref. [23] (black circles) and
the fitting numerical results (red solid line) of the density shift for
different excitation fractions. The fitted scattering lengths are beg =
192.34aB and bee = 150.19aB.

and the Hamiltonian during the dark time can be expressed
as

Ĥd/h̄ = −2πδŜz − X ŜzŜz − (N − 1)CŜz.

Here, approximately Ĥp does not consider atomic collision
and detuning and Ĥd does not consider the atom-light interac-
tion. We use |t1, τ, t2〉 = Û (t1, τ, t2)|0〉 to define the quantum
state during the Ramsey process, and the measurement at the
end of the dark time should be

〈Ŝz〉t1,τ,0 = −N

2
cos(2π
t1),

〈Ŝx〉t1,τ,0 = −N

2
sin(2π
t1) sin{[2πδ + (N − 1)(C − �)]τ }

× ZN−1,

〈Ŝy〉t1,τ,0 = −N

2
sin(2π
t1) cos{[2πδ + (N − 1)(C − �)]τ }

× ZN−1,

with

Z =
√

cos2 Xτ + cos2 2π
t1 sin2 Xτ ,

tan �τ = cos 2π
t1 tan Xτ.

If Xτ 
 1, then the density shift is

2π�ν = (N − 1)(� − C) ≈ (N − 1)(X cos 2π
t1 − C).
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