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Striped dilute liquid of dipolar bosons in two dimensions
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We investigate the phases of a Bose-Einstein condensate of dipolar atoms restricted to move in a two-
dimensional plane. The dipole moments are all aligned in a direction tilted with respect to the plane normal.
As a result of the attractive and repulsive components of the dipole-dipole interaction, the dipolar gas has a
self-bound phase, which is stabilized by quantum fluctuations. Tilting the dipoles tunes the anisotropy of the
dipole-dipole interaction, which can trigger a spatial density modulation. In this work we study these two aspects
and investigate the conditions for the formation of a self-bound and striped phase, which has been realized in
experiments with dipolar droplets. We use a variational method based on the hypernetted-chain Euler-Lagrange
optimization of a Jastrow-Feenberg ansatz for the many-body wave function to study the ground-state properties.
This method takes into account quantum fluctuations in a nonperturbative way and thus can be used also for
strongly correlated systems.
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I. INTRODUCTION

Dipolar quantum gases, and especially dipolar Bose-
Einstein condensates (BEC), are gaining significant attention
[1] since self-bound droplets consisting of 164Dy [2–7] and
166Er [8] were realized in experiments. In contrast to Bose
mixtures, the competition between attractive and repulsive
parts of the interaction does not originate from the interaction
between the components of the mixture, but rather from the
dipole-dipole interaction itself, which in general has repulsive
and attractive regions. Quantum fluctuations have been rec-
ognized as being important for dipolar quantum gases [9,10].
Particularly, as in Bose mixtures’ droplets [11–14], quantum
fluctuations are the driving force behind the stabilization of
dipolar droplets, as confirmed by theory [15–17]. More re-
cently, dipolar mixtures have been realized in experiments
[18,19] and the properties of self-bound droplets of these mix-
tures have been described with beyond mean-field methods
[20,21]. In such droplets the components are not necessarily
miscible, but can demix while staying self-bound.

In experiments the dipole moments of all atoms are aligned
in parallel by an external magnetic field of well-controlled
strength and direction. This provides a means to modify the
anisotropy of the dipole-dipole interaction and triggers the
transition to a density-modulated, self-organized stripe phase,
which shows supersolid properties [22–27]. Such a transition
is also visible in the excitation spectrum of a dipolar BEC,
where a so-called roton minimum emerges [28–33]. Just like
a droplet, a density modulation is a state that is not stable in a
mean-field approximation [34,35], but rather is stabilized by
quantum fluctuations [36].

In previous theoretical studies [37], we observed density
modulations in the form of stripes in a two-dimensional

dipolar Bose gas with the polarization axis tilted with respect
to the perpendicular direction. In these studies, where the tilt
angle θ was small enough that the dipole interaction stayed
purely repulsive, a very high density was required to reach
the stripe phase, and no self-binding was involved. In this
work, we investigate the formation of stripes at much lower
densities which can be realized in experiments with magnetic
dipole moments. We achieve this by increasing the tilting
angle θ beyond a critical angle, where the projection of the
dipole-dipole interaction on the two-dimensional (2D) plane
becomes attractive (see Fig. 1), such that self-binding is pos-
sible. Density oscillations have been observed experimentally
[38–41]. Conventional mean-field theories are not capable of
describing such situations, and more powerful methods like
extended mean-field with Lee-Huang-Yang corrections [5,8]
or quantum Monte Carlo (QMC) techniques [17,42–45] have
to be applied. In this work, we employ the hypernetted-chain
Euler-Lagrange (HNC-EL) method [46–48], which incorpo-
rates correlations necessary to describe strongly correlated
and self-bound systems [49,50], but requires a much lower
computational effort than QMC techniques.

II. METHODOLOGY

In the following we consider a dipolar Bose gas that is so
tightly trapped in the z direction that we can assume particles
are restricted to move in two dimensions, taken to be the xy
plane. The Hamiltonian reads

Ĥ = − h̄2

2m

N∑
i=1

�i +
∑
i< j

v(ri − r j ), (1)
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FIG. 1. Sketch of the dipolar interaction in 2D, with the tilting
angle θ and the repulsion parameter Ch. The direction of the dipole
moment is shown by the black arrow and the repulsion is indicated by
the black circle. The compound interaction leads to a repulsive region
along the y direction and an attractive region along the x direction,
shown in red and blue, respectively.

with the interaction being the sum of the dipolar term and a
respulsive core,

v(r) = Cdd

4π

[
1

|r|3 − 3(x sin θ )2

|r|5
]

+ E0C12
h

|r|12 . (2)

In this expression Cdd sets the strength of the dipolar in-
teraction and is proportional to the square of the (electric
or magnetic) dipole moment. It is useful to define the char-
acteristic length scale r0 = mCdd/(4π h̄2) and the associated
energy scale E0 = h̄2/(mr2

0 ), which serve as units for our
calculations. All dipoles are polarized along a direction in the
xz plane that forms an angle θ with respect to the z axis (see
Fig. 1). With this geometry, the dipole-dipole interaction is
repulsive around the y direction (red regions in Fig. 1), but for
large enough θ > θc = arcsin(1/

√
3) ≈ 0.615 48 an attractive

region appears in the x direction (blue regions in Fig. 1). In
this work we explore the highly tilted polarization regime
θ > θc where the purely dipolar gas is unstable. In order to
prevent collapse, we add a short-range repulsive interaction
1/r12 potential with the short-range repulsion parameter Ch as
shown in Eq. (2). As a check of universality of this model, we
compare the results with those obtained with a 1/r6 potential
tuned to the same total scattering length.

We describe the ground state using a variational Jastrow-
Feenberg ansatz [51] of the form

�(r1, . . . , rN ) = exp

⎡
⎣ 1

2

N∑
i=1

u1(ri ) + 1

2

∑
i< j

u(ri − r j )

⎤
⎦.

(3)

The one-body functions u1(ri ) are necessary if the system is
not uniform; since we restrict ourselves to a homogeneous
Bose gas, we can set u1(ri ) ≡ 0. u(ri − r j ) are pair correla-
tions which do not vanish since the Hamiltonian (1) contains
interactions v. If u(ri − r j ) = 0, � reduces to the Hartree
wave function, i.e., the mean-field approximation. In this
sense, pair (and possibly higher-order) correlations generate
quantum fluctuations, but nonperturbatively; i.e., we do not
need to assume the corrections to mean field are small.

In order to obtain the optimal ground state, we solve the
Euler-Lagrange equation

δe

δ
√

g(r)
= 0, (4)

where e is the energy per particle,

e(ρ0) ≡ E

N
= ρ0

2

∫
d2r g(r)

[
v(r) − h̄2

4m
∇2u(r)

]
. (5)

The pair distribution function g(r) is given in terms of the
wave function in Eq. (3) as

g(r1 − r2) = N (N − 1)

〈�|�〉ρ2
0

∫
d2r3 . . . d2rN |�(r1, . . . , rN )|2.

(6)

Closure is provided by the HNC relation between g(r) and
u(r) [52]. In the following, we restrict ourselves to the
HNC-EL/0 approximation, where the so-called elementary
diagrams are neglected in the cluster expansion [52]. We have
calculated the leading contribution of the elementary diagrams
to the total energy but found it to be less than 3% for densities
ρ0r2

0 � 1 (see Appendix C). In the HNC-EL/0 framework,
Eq. (4) can be cast as[

− h̄2

m
� + v(r) + wI(r)

]√
g(r) = 0, (7)

which has the form of an effective two-body zero-energy
scattering equation with the bare potential v and an additional
induced many-body potential wI, which is defined via its
Fourier transform

wI(k) = − h̄2k2

4m

(
1 − 1

S(k)

)2

[2S(k) + 1]

in terms of the static structure factor

S(k) = 1 + FT[g(r) − 1], (8)

where FT denotes the Fourier transformation multiplied with
the density ρ0. We note that Eq. (7) is not a simple linear
differential equation because the induced potential wI depends
on g itself. The details on how to solve Eq. (7) iteratively can
be found elsewhere [47,48].

From experience with other systems [49,50,53–55], solv-
ing the HNC-EL/0 equations is straightforward for systems
with a stable or metastable ground state, but fails to converge
if the system is unstable against infinitesimal perturbations
(e.g., spinodal instability of a system with homogeneous den-
sity [50,54]). Inspection of structural quantities like g(r) and
S(k) provides clues as to the nature of the instability (e.g.,
long-ranged oscillations in g(r) in the case of a spinodal in-
stability). More quantitative information on that is provided
by a stability analysis of the solution of the HNC-EL/0 equa-
tion [56]. For this purpose, we evaluate the Hessian, i.e., the
second functional derivative of the energy e with respect to
the pair distribution function, K (r, r′) = δ2e/δ

√
g(r)δ

√
g(r′).

If this operator is positive definite, the solution of the HNC-
EL/0 equation (4) is stable against infinitesimal perturbations
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of g(r). This is guaranteed if all eigenvalues λi in the equation∫
d2r′ K (r, r′) fi(r′) = λi fi(r) (9)

are positive. Conversely, if the lowest eigenvalue λ0 is close to
zero, the system approaches an instability. More importantly,
the eigenvector f0(r) provides information about the nature
of the instability as shown by our results below. The explicit
form of K (r, r′) is easily calculated in the HNC-EL/0 approx-
imation. Following the notation of Ref. [56], the eigenvalue
problem can be written as[

− h̄2

m
� + v(r) + wI(r) + Ŵ

]
fi(r) = λi fi(r), (10)

where the Ŵ operator is defined as

Ŵ fi(r) = ρ0

∫
d2r′ √g(r)W (r − r′)

√
g(r′) fi(r′). (11)

W is given in in momentum space as

W (k) = − h̄2k2

m

(
1 − 1

S(k)3

)
.

Since we only need the lowest eigenvalue to assess the sta-
bility, we solve Eq. (10) by imaginary time propagation (see
Appendix A for details).

III. ENERGY AND STABILITY

In the liquid phase, as opposed to the gas phase, a system is
self-bound: the energy per particle is negative and attains its
minimum at an equilibrium density ρeq. Furthermore, below
the spinodal density a homogeneous liquid becomes unstable
against long wavelength density fluctuations and then breaks
into droplets. In this section we analyze the ground-state
energy for various short-range repulsion strengths Ch, dipole
tilt angles θ , and densities ρ0 in order to check whether the
system is in a liquid phase or in a gas phase. We also assess
the stability against density fluctuations. Instead of reaching
a spinodal instability typical of isotropic liquids, we find a
transition to a density wave in the y direction, i.e., a stripe
phase.

We first fix Ch = 0.33r0 and vary the tilt angle between θ =
1.02 and θ = 1.16. The results are depicted in Fig. 2, where
we show the energy per particle e(ρ0) as a function of the
density. In each case we start the calculation at a large density
and solve Eq. (4) iteratively. The resulting pair distribution
function is then used as an input to solve the same equation at
a lower density, which ensures rapid numerical convergence.
We repeat this either until reaching zero density or until we do
not find a stable solution at nonzero density. Depending on the
tilting angle θ , three different cases can occur, corresponding
to three different phases: a gas, a homogeneous liquid, or a
striped liquid.

For θ � 1.04 the energy per particle is positive and ap-
proaches zero as ρ → 0 where it attains its minimum value
e = 0. The system is then in a gas phase and the corresponding
pressure is always positive. Beyond θ = 1.04 the system en-
ters a different phase where the energy per particle e becomes
negative as the density is lowered. The system is self-bound

FIG. 2. Energy per particle e(ρ0) as a function of the density
ρ0 for Ch = 0.33r0 and θ = 1.02–1.16. The last converging point at
the lowest density in each curve is marked with a blue open circle,
and the equilibrium energy eeq is marked with a red solid circle.
The insets show a magnification of the result for θ = 1.10 and 1.14,
which illustrates the behavior of the equation of state near the stripe
phase.

and thus in a liquid phase. However, as long as θ � 1.12,
the calculation ceases to converge before e(ρ0) attains a mini-
mum; the density ρc where this happens is indicated with open
blue circles in Fig. 2. The inset for θ = 1.1 shows this more
clearly, where one can see that the liquid phase stops being
stable before reaching a homogeneous equilibrium density
ρeq. The homogeneous HNC-EL/0 equations are know to
cease to converge at a continuous phase transition [37,50]. In
the following we show that the dipolar system undergoes a
transition to a self-organized stripe phase where the density
exhibits a spatial modulation.

Figure 3 shows the static structure factor S(kx = 0, ky)
along the y direction, for θ = 1.08 and Ch = 0.33r0, and
densities spanning the range from 0.2023/r2

0 to 1/r2
0 . A pro-

nounced peak grows as the density approaches a critical value
of ρc = 0.2023/r2

0 , thus signaling increasing spatial ordering
between pairs of dipoles in the y direction. This suggests
a self-organized long-range order below ρc, where homo-
geneous HNC-EL/0 does not converge anymore. The same
behavior was observed in Ref. [37], except that here the

FIG. 3. Static structure factor S(0, ky ) for θ = 1.08 and Ch =
0.33r0 as a function of ky. As the density (color coded) is lowered
approaching a critical density of ρc = 0.2023/r2

0 , a large peak de-
velops. S(kx, 0), shown in the inset, is almost independent on ρ0 and
does not develop a peak.

033303-3



CLEMENS STAUDINGER et al. PHYSICAL REVIEW A 108, 033303 (2023)

FIG. 4. Static structure factor S(kx, ky ) for θ = 1.08 and Ch =
0.33r0 at the critical density ρc = 0.2023/r2

0 .

density is 3 orders of magnitude lower and the dipoles are in a
self-bound phase. From the position kp of the peak in S(kx =
0, ky), at ρc we can predict the wave number of the density
oscillation. The pronounced peak in S(k) is associated with
a roton excitation, according to the Bjil-Feynman approxima-
tion for the dispersion relation, h̄ω(kx, ky) = h̄2k2

2m S(kx,ky ) , which
is expected to work well at low densities. In this way, the
reported structure factor points to the emergence of a roton in-
stability along the direction of ky, compatible with a transition
to a stripe phase. In contrast to the y direction, the structure
factor in the x direction has no peak (see inset in Fig. 3), thus
showing no signs of ordering in the x direction. Figure 4 shows
the full S(kx, ky) at the critical density ρc.

Figure 5 shows the corresponding pair distribution function
g(x, y) obtained as the Fourier transform of S(kx, ky). As ex-
pected g(x, y) shows a small peak along the x direction where
the attractive well of the dipole-dipole interaction (Fig. 1)
is deepest. Other than that, the pair distribution function is
smooth. In the small range depicted, g(x, y) has little structure
along the y direction, and the oscillations in g(0, y) that lead
to the peak in S(0, ky) cannot be seen.

The emergence of a peak in the static structure factor
along the y direction is thus a strong indicator for the tran-
sition to a stripe phase. A more rigorous stability analysis
explained above leads to the same conclusion, as illustrated

FIG. 5. Pair distribution function g(x, y) for θ = 1.08 and Ch =
0.33r0 at the critical density ρc = 0.2023/r2

0 .

FIG. 6. Stability analysis for Ch = 0.33r0 and θ = 1.08/1.16 and
for Ch = 0.28r0 and θ = 1.19. The left column shows the lowest
eigenvalue λ0 of the Hessian as a function of the density ρ0, while
the right column shows the eigenvector f0(r) at ρc.

in Fig. 6. The top, middle, and bottom panels correspond to
(Ch = 0.33r0, θ = 1.08), (Ch = 0.33r0, θ = 1.16), and (Ch =
0.28r0, θ = 1.19), respectively. The left panels depict the
density dependence of the lowest eigenvalue λ0 of Eq. (10).
As can be seen, λ0 approaches zero as the density approaches
ρc, confirming that the homogeneous phase becomes unstable
in that limit. As a further confirmation we show the lowest
eigenvectors f0(r) at ρc in the right column of the same figure.
The shape of f0 provides information about the least-stable
fluctuation in g(x, y), which drives the transition to a stripe
phase, showing oscillations along the y direction. These oscil-
lations are most pronounced at high densities, as seen in the
bottom panel of Fig. 6. The wave number of this oscillation is
the same as the wave number kp of the peak in S(0, ky) at ρc

(see Fig. 3). This behavior clearly signals the transition to a
phase with long-range order in the y direction. Note that in all
cases, the oscillation is strongly damped, which was not found
for the stripe phase transition at high densities in Ref. [37],
where the system is not self-bound.

When the tilting angle is increased beyond θ = 1.12 while
still keeping Ch = 0.33r0, the energy decreases further due to
the stronger attraction, but there is also a qualitative change
of the shape of the equation of state shown in Fig. 2: e(ρ0)
is not monotonous anymore, but reaches a minimum at a
homogeneous equilibrium density ρeq before reaching the crit-
ical density ρc of the transition to the stripe phase. This new
minimum corresponds to a self-bound homogeneous liquid
state. If the system were finite, the dipoles would form a two-
dimensional droplet, adjusting its radius so that the pressure
inside the droplet would be zero at ρeq. When the density is
lowered further the energy per particle starts increasing again,
up to the point where the transition to the stripe phase takes
place at ρc, as evidenced by the stability analysis shown in
Fig. 6). The lower inset in Fig. 2 shows the result for θ = 1.14,
where the energy minimum at ρeq is clearly visible.

033303-4



STRIPED DILUTE LIQUID OF DIPOLAR BOSONS IN … PHYSICAL REVIEW A 108, 033303 (2023)

FIG. 7. Phase diagram as a function of the tilting angle θ and
the short-range repulsion Ch. For a given value of Ch = 0.33r0, the
insets (a), (b), and (c) show a representative energy per particle
e(ρ0) for θ = 1.02 (gas phase), 1.08 (striped liquid phase), and 1.16
(homogeneous liquid phase). The black line indicates a resonance,
below which the interaction supports a two-body bound state.

IV. PHASE DIAGRAM

In order to obtain the full phase diagram, we calculate
e(ρ0) for a range of θ and Ch values following the protocol
described above, i.e., lowering ρ0 from a sufficiently large
value down to zero or until a homogeneous phase ceases to
be stable at a finite density value ρc. We analyze the results in
the same way as in the previous section to classify the phase
into a gas phase, a striped liquid phase, and a homogeneous
liquid phase. Figure 7 presents this classification, indicating
the phases by different symbols, as a function of θ and Ch.
Based on the grid of θ and Ch values, the boundaries between
the phases were fitted using a C-support vector machine [57],
and an analytic expression for those phase boundaries is given
in Appendix B. In Fig. 7, a white line is drawn for the fixed
repulsion parameter Ch = 0.33r0 that we used in most cal-
culations presented in the previous section. The three insets
show three examples for the equation of state e(ρ0) along this
line, each representing one of the phases. The points along the
white line are the results based on the energies e(ρ0) shown in
Fig. 2. Note that a dipolar system in 2D can also have density
oscillations at very high densities ρ0 ∼ 102/r2

0 according to
Ref. [37]. However, here we focus on the formation of a stripe
phase at orders of magnitude lower densities. The critical
densities below which we predict a stripe phase are discussed
in the following section. In the vicinity where the three phase
boundaries meet, there is a gap in our grid of θ and Ch values.
Predicting the correct phase, striped or not striped liquid,
becomes numerically quite cumbersome in that part of the
phase diagram because of the low densities involved and the
shallowness of the equation of state e(ρ0) (see Fig. 2).

Figure 7 shows that, for tilting angle θ > 1.07, upon in-
creasing the repulsion strength Ch the system undergoes first
a transition from a striped liquid to a homogeneous liquid,
followed by a transition to a homogeneous gas. The reason
is that the increasing isotropic short-range repulsion becomes
dominant compared to the anisotropic dipole-dipole interac-
tion, which is responsible for the formation of stripes. More

FIG. 8. Scattering length a0 of the interaction (2) as a function
of the tilting angles θ for different repulsion parameters Ch between
0.26 (black/dark) and 0.40 (yellow/bright).

interestingly, an increase of the tilting angle θ , and thus of the
anisotropy, for a fixed short-range interaction, also drives the
system to the homogeneous liquid phase, as we have discussed
in Sec. III. This might seem counterintuitive at first. However,
it is actually the repulsive part of the dipole-dipole interaction
in the y direction causing the formation of stripes and this part
of the interaction does not change with θ . At the same time
the attraction in the x direction increases with increasing θ and
leads to a more strongly bound system with a higher density,
and the stripes merge as their wavelength decreases, where the
wavelength is obtained from the wave number ky of the peak
in S(0, ky) (see Fig. 3). For example, if Ch = 0.33r0 is fixed
and the tilting angle is increased from θ = 1.08 to θ = 1.16,
the wavelength decreases from λ = 11.70r0 to λ = 4.82r0.

At this point one may wonder whether the appearance
of the three phases is universal for a dipolar system with
a repulsive core, i.e., whether it depends only on the two-
dimensional scattering length a0 or changes with the model
chosen for the core. The scattering length a0 is obtained from
the long-range asymptotic form of the s-wave mode of the
zero-energy solution of the two-body problem, as described
in Ref. [58]. The resulting values are shown in Fig. 8, where
fixed Ch curves corresponding to varying θ values are shown
in different colors. As it can be seen from the plot, many
curves tend to diverge with decreasing angle, showing that
for those Ch values the system goes through a resonance,
triggering the formation of a two-body bound state. Remark-
ably, within the numerical uncertainties, the resonance line
coincides with the boundary separating the gas phase from the
homogeneous liquid and striped liquid phases in Fig. 7; it is
represented by a thick black line in the same plot. As expected,
in the gas phase the two-body problem shows no bound state,
while in the other two phases a single two-body bound state
appears for the range of Ch and θ angles considered. Since the
resonance line is by definition characterized by a diverging
scattering length, the transition between the gas phase and the
liquid phases is universal.
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FIG. 9. Critical density ρc for the transition to the stripe phase
as a function of θ and Ch. The red (right) and blue (left) surfaces
denote the regimes of the striped liquid and the homogeneous liquid,
respectively (see Fig. 7). At the border to the gas phase, ρc falls to
zero.

The transition between the striped and the homogeneous
liquid may still depend on the details of the interaction con-
sidered because the gas parameter is not small for the two
liquid phases shown in Fig. 7, ρ0a2

0 > 1 (see also the next
section). In order to check whether the same phases appear
and whether their phase boundaries change, we replaced the
two-body repulsive core C12

h /r12 in the interaction (2) with
a different repulsive potential, namely, a C̃6

h/|r|6 interaction.
We find our results are robust in that we again obtain a ho-
mogeneous and a striped liquid phase. When expressed in
terms of a0, the boundary between the two phases becomes
universal for smaller θ (closer to the gas phase), where the
equilibrium densities are small, but it depends on the details
of the model repulsion potential for larger θ , where the equi-
librium densities are large (the critical densities ρc are shown
in the following paragraph and the equilibrium densities are of
similar magnitude). The details of this analysis can be found
in Appendix D.

V. CRITICAL DENSITY

Figure 9 shows the critical density ρc for the transition to
a stripe phase as a function of tilting angle θ and repulsion
strength Ch, showing that ρc increases with increasing θ and
decreasing Ch. The blue and red surfaces represent the regions
of the homogeneous liquid and the striped liquid, respectively
(see the phase diagram in Fig. 7). Both surfaces approach
ρc = 0 as the system approaches the gas phase, seen as a
sharp drop on the logarithmic scale in Fig. 9. This shows
that with a proper choice of θ and Ch (or a0), stripes can
be observed in arbitrarily dilute systems. This is markedly
different from previous theoretical studies of tilted dipoles
in two dimensions [37], where the dipole orientation was
not tilted above θ = arcsin(1/

√
3) such that the dipole-dipole

interaction stays purely repulsive. In that case a stripe phase
was predicted only above a critical density ρcr2

0 ∼ O(102). We
also note that in most of the range of θ and Ch explored in
this work, we have ρcr2

0 < 1. Despite the variational nature
of the calculations presented, the contribution of elementary
diagrams to the energy per particle is less than 3% (see

Appendix C for details), while third- or higher-order corre-
lations are negligible in the low-density regime considered.

VI. CONCLUSION

In this work we have explored the phase diagram of a
dipolar gas in two dimensions as a function of the dipole
tilting angle and its short-range repulsion. We have found
that this system exhibits three different phases: a gas phase,
a self-bound stripe phase, and a homogeneous liquid phase
with no stripes. We detected the transition to a stripe phase
by monitoring a peak that emerges in the structure factor
close to a critical density ρc that marks the phase transition.
The critical density depends on the short-range repulsion and
the tilting angle, and can be low enough so that it can be
realized with current experimental setups. To further confirm
the emergence of the low-density stripe phase we have also
conducted a stability analysis based on the Hessian of the
energy. Although our calculations, based on the variational
HNC-EL/0 method, always assumed homogeneity, this pro-
vides strong evidence that a self-bound and striped liquid
can form in a two-dimensional anisotropic dipolar Bose gas.
We have also analyzed the universality of the phase diagram,
checking against calculations using a different repulsive core.

While our results are compatible with a continuous tran-
sition from a homogeneous dipolar liquid phase to a striped
liquid phase, more results for the latter are necessary in
order to understand the properties of this phase and the na-
ture of the phase transition, be it first or second order. For
this purpose one can use a variational model that allows
for density modulations, such as the inhomogeneous gen-
eralization of the HNC-EL method [59], which has been
used, for example, to describe dipolar systems in quasi-2D
geometries [60,61]. Alternatively one can use exact diffusion
Monte Carlo methods, possibly with optimal HNC-EL solu-
tions as guiding wave functions. We are pursuing the latter
option to study the self-bound nature of two-dimensional
striped dipolar systems. The melting of the striped phase at
finite temperature may be studied, e.g., with path integral
Monte Carlo simulations [62] or a variational density-matrix
approach [63,64].
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APPENDIX A: STABILITY ANALYSIS

Solving for the lowest eigenvalue λ0 and associated eigen-
vector y0(x, y) of Eq. (10) can be done in several ways. Here

033303-6



STRIPED DILUTE LIQUID OF DIPOLAR BOSONS IN … PHYSICAL REVIEW A 108, 033303 (2023)

we use imaginary time propagation,

f0 = lim
t→∞ exp

[
−t

(
− h̄2

m
� + v(r) + wI(r) + Ŵ

)]
f̃ , (A1)

where f̃ is an initial guess with the only requirement being
that it have a nonzero projection onto f0. As usual, the time
propagation is split into small time steps τ such that the
exponentiation can be approximated in a suitable way. Here
we use the Trotter approximation [65]. Taking the exponent
of the potential functions v(r) and wI(r) is trivial in r space,
while the exponential of the kinetic part is carried out in
momentum space. However, the integral operator Ŵ cannot be
easily exponentiated. We could take the further approximation
exp[−τW ] ≈ 1 − τŴ , but this would require an extremely
small time step τ . Therefore, we split the integration kernel
in Eq. (11) as Ŵ = Ŵ1 + Ŵ2 + Ŵ3, with

Ŵ1 fi(r) = ρ0

∫
d2r′ [

√
g(r) − 1]W (r − r′)

√
g(r′) fi(r′),

Ŵ2 fi(r) = ρ0

∫
d2r′ W (r − r′)[

√
g(r′) − 1] fi(r′),

Ŵ3 fi(r) = ρ0

∫
d2r′ W (r − r′) fi(r′).

The first two terms turn out to be small because
√

g(r) − 1
becomes small for large r. The third term is still large but
has the form of a convolution integral; hence, it can be easily
exponentiated in momentum space. We obtain the following
approximate imaginary time propagation operator for small
time steps τ :

G = e− τ
2 [ h̄2k2

m +W (k)] F e− τ
2 [V (r)+wI (r)][1 − τ (Ŵ1 + Ŵ2)]

e− τ
2 [V (r)+wI (r)] F−1 e− τ

2 [ h̄2k2

m +W (k)],

where we used a symmetric form of the Trotter approxi-
mation. F denotes the fast Fourier transformation. For this
propagator we can use a time step 2 orders of magnitude larger
than for a propagator without the above splitting of Ŵ into
small and large contributions.

APPENDIX B: PHASE BOUNDARIES

We use a C-support vector machine [57] to trace the bound-
aries of the different phases shown in Fig. 7. We have trained
a classifier for each pair of the three classes ( j = 1 for the
striped liquid, j = 2 for the dipolar gas, and j = 3 for the
homogeneous liquid) The classifiers have the form

f j (x) =
∑

i

yi
jαi jk(x, xi ) + b j, (B1)

where k is the kernel, which has been chosen to be simply

k(x, x′) = (γ 〈x, x′〉)d , (B2)

where 〈· · · 〉 denotes the dot product and x = (θ,Ch). For
the upper panel in Fig. 7, d = 6, γ = 3.2531, and bj =
{−27.5267, 56.9545, 23.9379}. The dual coefficients yi

jαi j

and the support vectors (SV) xi are found in Table I. Each
support vector is used in two classifiers so there are two dual
coefficients for each xi (columns in the upper part of Table I).

TABLE I. Dual coefficients and support vectors (SV) for the
phase diagram in Fig. 7.

yi
jαi j

j = 1 0 0.776 0 0 0 2.607
6 0 6 6 2.872 0

j = 2 0 0 −3.384
0.354 0.770 0

j = 3 0 −2.775 −6 −2.285 −6 −3.812
−1.124 0 0 0 0 0

θ Ch/r0

SV class 1 1.14 0.32
1.05 0.34
1.11 0.34
1.18 0.29
1.19 0.28

1 0.29

SV class 2 1.08 0.38
1.09 0.39
1.01 0.31

SV class 3 1.09 0.38
1.13 0.33
1.09 0.35
1.16 0.31
1.17 0.3
1.21 0.27

The phase boundaries between class j and class k are then
obtained by imposing the condition

f j (x) − fk (x) = 0. (B3)

The classifier was trained with tenfold cross-validation and a
regularization parameter of C = 6, which avoids overfitting of
the training data.

APPENDIX C: ELEMENTARY DIAGRAMS

We investigated the influence of elementary diagrams by
calculating the energy contribution eele of the lowest-order
elementary diagram, the four-point diagram [52]. We calcu-
late eele using the pair distribution function g(x, y) of the
HNC-EL/0 results, i.e., from the energy optimization without
elementary diagrams. This is justified if the contribution of
elementary diagrams is small, otherwise elementary diagrams
have to be included self-consistently in the optimization. We
report the relative change in energy compared to the HNC-
EL/0 result

�eele = eele

e + eele
(C1)

in Table II for several values of θ , Ch, and ρc (striped liquid)
or ρeq (homogeneous liquid). For systems with ρ0r2

0 � 1 the
lowest-order elementary diagram only gives a small contribu-
tion and the HNC-EL/0 approximation is justified. However,
for larger densities ρ0r2

0 � 2, our estimate for the relative
energy correction �eele becomes large and the elementary
diagrams should be included self-consistently. In this density
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TABLE II. Contribution of the elementary diagrams to the total
energy �eele in percent. The third column either gives the critical
density ρc (rows 1, 3, 4, and 6) or the equilibrium density ρeq (rows
2 and 5).

θ Ch/r0 ρc/eq · r2
0 �eele (%)

1.08 0.33 0.2023 0.01
1.16 0.33 0.6489 0.93
1.14 0.30 1.00 2.94
1.19 0.28 1.9245 9.31
1.21 0.27 2.4742 13.95
1.21 0.26 2.9948 20.68

regime also triplet correlations to the wave function are ex-
pected to play a significant role and should be included as
well. Both triples and elementaries have been investigated for
4He in the past [46].

APPENDIX D: UNIVERSALITY OF THE PHASE DIAGRAM

The majority of our calculations are based on the inter-
action (2) where the short-range repulsion is modeled with
a (Ch/r)12 potential. We checked how sensitive the phase
diagram (Fig. 7) is to the choice of the repulsion model
and compared to results obtained with a (C̃h/r)6 potential.
For a given point (θ,Ch) in the phase diagram of Fig. 7,
we chose C̃h such that the scattering lengths a0 of the total
potential, consisting of dipole-dipole interaction and repul-
sion, coincided with the corresponding a0 of the (Ch/r)12

repulsion model. We are particularly interested in the bound-
ary between the homogeneous liquid phase and the striped
liquid phase, indicated by solid circles and solid diamonds,
respectively.

The comparison in shown in Fig. 10. For θ = 1.10 the
phase boundaries obtained for the two repulsion models agree.
As θ increases, the phase boundaries deviate from each other.
We conclude that the phase boundary between the two liq-
uid phases tends towards a universal boundary if we are
close to the gas phase (crosses). Note that this is where the

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

1.00 1.05 1.10 1.15 1.20

C
h
/r

0

θ

gas

liquid homogen. (1/r
12

)

liquid striped (1/r
12

)

liquid homogen. (1/r
6
)

liquid striped (1/r
6
)

FIG. 10. Phase diagram as a function of the tilting angle θ

and the short-range repulsion Ch for the (Ch/r)12 repulsion model.
Crosses, solid circles, and solid diamonds correspond to the gas
phase, the homogeneous liquid phase, and the striped liquid phase,
respectively. The open circles and diamonds indicate the same liquid
phases, but for calculations based on the (C̃h/r)6 repulsion model,
with C̃6 adjusted such that the scattering lengths a0 are the same. The
black line indicates the boundary for two-body bound states.

critical density ρc for stripe formation and also the equilibrium
density ρeq in the case of the homogeneous liquid phase are
small (see Fig. 9). In the other direction (larger θ and smaller
Ch), these densities are on the order of unity, and the interpar-
ticle distances are on the order of Ch or C̃h. In such a case, we
cannot expect universal behavior, and indeed this is what we
observe.

The black line in Fig. 10 indicates a0 = ∞; below this line
the interaction supports a two-body bound state. It is evident
that the boundary between the gas phase and the liquid phases
is identical to the boundary for a two-body bound state, within
numerical uncertainties; hence, it is universally determined by
the scattering length. Note that, for all values of θ and Ch for
which we studied the phase diagram, the scattering length a0

is larger than the average particle distance ρ0a2
0 > 1.
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