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Universal tetramer limit cycle at the unitarity limit
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We investigate the appearance of a four-boson limit cycle in Hamiltonian systems at the unitarity limit. The
model interaction incorporates two-, three-, and four-body short-range potentials, which allow us to disentangle
the interwoven dynamics of three- and four-boson energy levels. Through numerical evidence, we observe a
correlation between the energies of two successive universal tetramer levels for a fixed weakly bound trimer,
which is found to be largely model independent. Interestingly, this correlation cycle is consistent with the findings
of Hadizadeh et al. [Phys. Rev. Lett. 107, 135304 (2011)] using a zero-range model.
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I. INTRODUCTION

It is fascinating how bosonic quantum systems behave in
the limit of zero-range forces, also known as the scaling limit.
Thomas in 1935 [1] gave the first hint of its nontrivial proper-
ties showing the collapse of the three-boson system, meaning
the Hamiltonian spectrum is not bounded from below. Later,
Skorniakov and Ter-Matirosyan (STM) in 1956 [2] formu-
lated the three-body integral equations with the zero-range
interaction to be solved, which inspired Faddeev to formulate
his famous coupled set of three-body integral equations [3]
that overcame the nonuniqueness problem of the Lippman-
Schwinger equations.

However, the solution of the STM equations was plagued
by the Thomas collapse, which was tamed by Danilov in
1961 [4], who found the log-periodic solutions in the ultra-
violet (UV) limit of those equations, as a consequence of its
continuous scale invariance. He recognized the need to intro-
duce a boundary condition to have a unique solution of the
scattering by giving the three-body binding energy as input.
Soon after that, Minlos and Faddeev [5] showed how the route
to the Thomas collapse of the bound state proceeds to the “fall
to center” [6] by solving the homogeneous form of the STM
equation for three bosons in the UV limit, finding an infinite
discrete spectrum of the equation that extends to −∞, with
levels geometrically separated by the factor exp(2π/s0) ≈
515. This was the first clear observation of the continuous
scale symmetry breaking to a discrete one.

Efimov in 1970 [7,8] discovered the presence of those
infinite number of geometrically spaced levels when a
three-boson system interacts resonantly with any short-range
potential, which has an infinite scattering length. Nowadays
this is called the unitarity limit in the context of effective
field theory (EFT) [9] (see also Ref. [10]). Furthermore, the
existence of this infinite number of states can be linked to
the presence of a renormalization-group limit cycle within

the space of coupling constants, particularly in the space of
three-body couplings, as a function of a momentum cutoff.
For a comprehensive discussion, refer to Ref. [9] and the
references therein.

The first experimental evidence of Efimov states came
from the Innsbruck experiment, which used an ultracold gas of
cesium atoms [11] near a Feshbach resonance. This discovery
made Efimov states a reality, and since then, many other
experiments have observed their presence. Efimov states have
also been observed in mass-imbalanced atomic systems (see,
e.g., Ref. [12]).

The Efimov cycle manifests, in practice, through corre-
lations between observables [13]. It is associated with the
three-boson limit cycle found in the context of EFT [14], as
well as in other works [15]. Moreover, the existence of such
correlations is not restricted to zero-range interactions, but
persists in finite-range systems too [16,17].

However, a question arises: How do new cycles in addition
to the Efimov one manifest themselves for a larger number
of bosons in the unitarity limit, or in other words, for s-wave
interactions in the zero-range limit?

The first nontrivial step is the four-boson system. It was
proposed in Ref. [18], that a new limit cycle beyond the Efi-
mov one can appear in the four-boson system at the unitarity
limit. Such a result, expressed by a correlation between the en-
ergies of consecutive tetramers for a fixed trimer energy, was
obtained by solving a regularized set of Faddeev-Yakubovsky
(FY) equations in the limit of a zero-range interaction. The
new cycles were revealed when a four-boson scale was forced
to move independently of the three-body one.

In Ref. [19] it was shown, by an approximate analytic solu-
tion of the FY equations, how the continuous scale symmetry
is broken to a discrete one, which is associated with a log peri-
odicity different from the Efimov one. Such a qualitative view
was confirmed within a Born-Oppenheimer approximation
of the heavy-heavy-light-light system, where it was shown
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explicitly that the Efimov periodicity of the heavy-heavy-light
system is distinct from the four-body case [20], indicating that
new limit cycles for more than three particles are different
from the Efimov cycle at the unitarity limit.

While the correlation between consecutive tetramers was
supported by the just mentioned calculations, it remains
an open question whether or not a four-boson Hamiltonian
system, with short-range forces at the unitarity limit, could ex-
hibit a typical four-boson correlation cycle independent of the
three-boson one. The four-boson cycle was not seen before in
Hamiltonian systems when using two- and three-body forces,
which exhibited for each Efimov state two tetramers [21–28].
However, an indication that this independent correlation cycle
could exist in Hamiltonian systems comes from the accurate
calculations provided in Ref. [29], which also suggests that
the property of the Efimov cycle being interwoven with the
four-boson one is verified as pointed out in Ref. [18] and
confirmed in Ref. [20] for heavy-heavy-light-light bosonic
systems and beyond, within the Born-Oppenheimer treatment.

A crucial property associated with the independent three-
and four-boson cycles is the necessity of the introduction of
a four-boson scale unrelated to the three-boson one. Such a
possibility introduced in Ref. [30] confronted previous find-
ings within EFT [21] and further explored in Ref. [22], which
by now was understood that at next-to-leading order a four-
boson scale has to be introduced in the EFT approach of the
universal system [31]. The appearance of a four-body scale
was also confirmed in calculations up to five bosons with
van der Waals interactions [32]. Therefore, it is appealing to
study the eigenvalues of a four-boson Hamiltonian for short-
range interactions at the unitarity limit, with two-, three-, and
four-body potentials to disentangle the three- and four-boson
cycles [33] by manipulating the three- and four-boson short-
range scales in an independent way, to follow the path of
the recognized two universal tetramer levels attached to an
Efimov state found in Hamiltonian models [21,22,24,25].

Evidence of induced multiboson interactions [30,34] may
be already found in cold atomic gases, where the positions of
three-atom resonances for narrow Feshbach resonances [35]
and also for intermediate ones [36,37] deviate significantly
from the predictions based on the van der Waals universality
(see, e.g., Refs. [38,39]).

In this paper, we demonstrate correlations between suc-
cessive energies of universal tetramers, which are calculated
within a Hamiltonian system while keeping the trimer en-
ergy fixed at unitarity. These correlations, when accounting
for range corrections, align with the predictions presented
in Ref. [18]. The aforementioned reference relies on the
solution of the regularized four-boson Faddeev-Yakubovsky
equations to identify a four-body limit cycle that is inde-
pendent of the three-body limit cycle underlying the Efimov
effect.

The Hamiltonian employed in our investigation incor-
porates two-, three-, and four-body short-range potentials.
Specifically, the two-body potential is utilized to adjust the
energy of two bosons at the unitarity point. On the other
hand, the three- and four-body potentials are employed to
disentangle the intertwined three-boson cycle and the elusive
four-boson cycle, the existence of which has been a topic of
debate within the field [18,21,22,30,31].

II. THE HAMILTONIAN MODEL

We solve variationally the Schrödinger equation for a sys-
tem of three and four bosons finding the ground state and
several excited states. We develop the states using a set of cor-
related Gaussian functions, which were previously optimized
using the stochastic variational method (SVM) [40,41]. SVM
is essential in adapting the basis functions to different scales,
which is a crucial factor in the calculation of multiple excited
states.

As we want to study the behavior of systems interacting
via a short-range interaction at the unitarty limit, we choose
the Gaussian potential as a representative of such interactions.
It has been extensively shown that close to the unitarity limit
the Gaussian potential gives a universal representation of the
class of short-range potentials [42,43]. The potential we use
has two-, three-, and four-particle Gaussian terms. The two-
body term reads

V2b(r) = V2 e−(r/r2 )2
, (1)

and depends on the relative distance r between two particles.
The range of the force is fixed to r2 = 1, which is used as
the unit of length; in this way the energy unit is h̄2/mr2

2 . The
two-body strength is set to V2 = −2.684 005h̄2/mr2

2 to tune
the two-body system as close to the unitarity limit as possible.

The three-body term is

V3b(r) = V3 e−(ρ3/r3 )2
, (2)

where ρ2
3 = r2

12 + r2
13 + r2

23 is proportional to the three-body
hyper-radius, and r3 is the potential range in units of r2. In the
unitarity limit, as mentioned in the Introduction, a fascinating
phenomenon known as the Efimov effect arises, resulting in
an infinite tower of three-body states [7,8]. For our purposes,
we focus solely on the ground-state trimer, as our objective
is to compute bound four-body states rather than resonances.
The three-body force Eq. (2) is employed to modify the value
of the ground-state energy for the three-body system.

To accomplish our goal, we introduce a four-body potential

V4b(r) = V4 e−(ρ4/r4 )2
, (3)

where ρ2
4 = ∑4

i< j=1 r2
i j is proportional to the four-body hyper-

radius, and r4 is the potential range in units of r2. We use
this four-body force to change the energy of the four-body
states below the three-body threshold. Moreover, it is also
used to change the number of four-body states below the
threshold. With the ensemble of these forces, we can address
individuality at the two-, three-, and four-body energy levels.

III. RESULTS

Our Hamiltonian model with Gaussian potentials provides
compelling evidence of correlations between the energies of
consecutive tetramers. These finite-range correlations are con-
sistent with the ones obtained in Ref. [18] using a zero-range
model. We place emphasis on the significance of recogniz-
ing the universal tetramers, which are constructed through a
complex avoided-crossing energy-level structure. This struc-
ture arises from the interplay between the local Gaussian
interaction utilized to reveal the underlying dynamics and a
long-range effective potential that gives rise to the universal
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FIG. 1. Top panel: Evolution of the first ten four-boson energy
levels as a function of the strength of the four-body force V4. The
three-boson bound-state energy is B3 = 0.238 451h̄2/mr2

2 , while the
two-body system is at the unitarity limit. The four-body poten-
tial range is r4 = r2. Middle panel: Zoomed-in view of the region
inside the rectangle shown in the top panel. Bottom panel: The
correlation cycles for the four-boson successive universal levels. We
have four cycles that have been obtained by following the universal
states through the avoided crossing. The solid points correspond to
the universal prediction of Ref. [18], and the solid squares to the
separable-potential calculations of Ref. [29].

correlations, similar to the dynamics observed in the three-
body sector. In the subsequent sections and figures, we present
our findings.

The first set of calculations are shown in Fig. 1, where
we set the two-body strength to V2 = −2.684 005h̄2/mr2

2 to
ensure B2 = 0, and set the three-body force to zero (V3 = 0).
Using these parameter values, the binding energy of the three-
boson bound state is B3 = 0.238 451h̄2/mr2

2 .

After fixing the two- and three-body sectors, we utilize
the four-body force to manipulate the four-body spectrum,
aiming to identify the universal levels and examine correla-
tions among these states. Specifically, we vary the parameter
V4 while keeping the range of the four-body force fixed at
r4 = r2. We calculate the four-body bound states with zero
total angular momentum and observe the resulting spectrum.
In the top panel of Fig. 1, we plot the ratio B3/B(N )

4 against V4.
As we increase the strength of V4, more states gradually

appear in the spectrum, emerging from the three-body thresh-
old. Interestingly, we observe two types of states: The first-
(N = 1) and second-excited states (N = 2) smoothly move to
deeper values after emerging from the threshold. However,
there are states such as the third-excited state (N = 3) that
also emerge smoothly from the threshold, but at a certain
point, such as at V4 ≈ −323h̄2/mr2

2 in this case, they exhibit
a strong avoided crossing with other states, for instance, with
N = 4, and N = 5. The state that emerges from the threshold
as N = 5 evolves in a much narrower range of the four-body
interaction, first interacting with the N = 4 and N = 6 states
and then with N = 3 and N = 4. During this interaction, there
is a role exchange, and we can still trace the smooth trajec-
tory of the N = 3 state, but now as N = 5. This is just one
example of the avoided-crossing structure of the spectrum,
which becomes more evident as we increase the strength of
the four-body force.

The avoided-crossing structure arises due to the interplay
between the long-range effective (hyperradial) potential, sim-
ilar to the three-body system [7], and the short-range nature of
the four-body force used to reveal the universal states and their
underlying correlations. This competition between the short-
and long-range interactions results in the avoided-crossing
structure of the spectrum.

The phenomenon of this nature was first observed in a two-
body system by Zel’dovich in 1960. In that study, a variable
local potential was added to fixed long-range potential. As
the strength of the local interaction was varied, the spectrum
underwent a significant rearrangement, resembling that of the
long-range potential. This phenomenon is commonly referred
to as the Zel’dovich phenomenon and has been extensively
reviewed and expanded upon in Ref. [44] in the case of exotic
atomes.

In the middle panel of Fig. 1, we present a zoomed-in view
of the region inside the rectangle shown in the top panel.
This zoomed-in view allows the reader to better discern the
avoided-crossing structure of the energy levels, which might
be less evident in the overall top panel.

In terms of studying correlations, we only consider the
energy levels resulting from the long-range interaction and
therefore having universal scaling properties. We use their
energy, denoted as T (N ), to construct the correlation, as shown
in the bottom panel of Fig. 1. To clarify, in the case of Fig. 1,
we have T (0) = B(0)

4 , T (1) = B(1)
4 , and T (2) = B(2)

4 . However,
for T (3), it is equal to B(3)

4 only up to V4 ≈ −323h̄2/mr2
2 , after

which it becomes equal to B(5)
4 . In the top panel of Fig. 1, these

states have been highlighted.
The correlation function between the energies of two con-

secutive universal tetramers is plotted in the bottom panel of
Fig. 1 using the T (N ) levels. This function is constructed as
suggested in Ref. [18] by plotting

√
(T (N+1) − B3)/T (N ) as
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a function of
√

B3/T (N ). The resulting plot demonstrates the
correlation cycle consistently. We display four such cycles,
and we observe that they exhibit a convergence pattern as a
function of N , even if it is not possible to extrapolate the limit.
While the difference between the cycles is more pronounced
for

√
B3/T (N ) ≈ 0.25, they collapse to the same curve for√

B3/T (N ) ≈ 0.45, which corresponds to the point where a
new tetramer emerges from the three-body threshold, and the
state with energy T (N ) is sufficiently shallow.

For the sake of comparison, in the same plot, we report the
zero-range calculation of Hadizadeh et al. [18], and also the
results from Deltuva [29] obtained with separable potentials
for tetramers associated with different trimers at the unitarity
limit. The general trend of the limit cycle obtained with the
Gaussian potentials reproduces both the zero-range model and
the separable-potential calculations, which are placed close to
the point where one of the tetramers hits the trimer threshold.
We believe that the difference between the zero-range cycle
and the present results is possibly due to range corrections,
even in the region where

√
B3/T (N ) ≈ 0.45 because the N th

tetramer is still compact enough to be influenced by the
potential.

Moreover, we observe another noticeable discrepancy be-
tween the zero-range and finite-range calculations when
examining values lower than

√
B3/T (N ) ≈ 0.12. Instead of

continuing to decrease, the correlation cycles begin to grow in
this region, which is covered by the shadow box. As a result,
the T (N ) state transitions from the universal window into a
very tight four-body state. The same gray region is depicted in
the top panel of Fig. 1. In Fig. 2, we investigate the influence
of the trimer energy on the correlation cycle, which is one
of the components contributing to finite-range effects. To ma-
nipulate the trimer energy, we introduce a nonzero three-body
force with a strength of V3 = 30h̄2/mr2

2 and a range of r3 = r2.
This modification shifts the trimer to a weakly bound state
with an energy of B3 = 0.040 01h̄2/mr2

2 . The four-body range
is now r4 = 2r2.

In the top panel of Fig. 2, we display the energy levels,
which exhibit the same avoided-crossing pattern observed
in the previous case. Additionally, we identify the universal
tetramers T (N ), highlighted within the same panel, which dis-
play avoided crossings starting from the third-excited level
N = 3.

On the bottom panel of Fig. 2, we illustrate the correlation
cycles, alongside the results from previous studies, specifi-
cally Refs. [18,29]. Although the correlations are similar to
the case with the tighter trimer, there are differences, such
as a lower maximum value, which can be attributed to the
finite-range nature of the interaction. However, the trend of
the correlation cycle obtained with the Gaussian potentials
for the universal tetramer levels is closer to both the zero-
range model and the separable-potential calculations, which
are located near the point where one of the tetramers hits the
trimer threshold. The better agreement with the zero-range
results is evident in the interval where

√
(B3/T (N ) ) � 0.3,

although range corrections are still present. The gray region
in the top and bottom panels of Fig. 2 represents the strongly
bound tetramers, which are outside the “window” where the
universal states are.

FIG. 2. Top panel: Evolution of the first 12 energy levels as a
function of the strength V4, obtained fixing the two-body system
at the unitarity point, B2 = 0. In this case, a three-body force has
been introduced so that the three-body bound-state energy is B3 =
0.040 01h̄2/mr2

2 and the four-body potential range is r4 = 2r2. We
observe that starting from the third-excited four-boson state, N = 3,
there is the appearance of the avoided crossing, and the evolution
of the universal levels is evidenced by the shadow line. Bottom
panel: The correlation cycles for the four-boson successive universal
levels. We have four cycles that have been obtained by following
the universal states through the avoided crossing. The solid points
correspond to the universal prediction of Ref. [18], and the solid
squares to the separable-potential calculations of Ref. [29].

In Fig. 3, we investigate the impact of changing the range
of the four-body force r4 on the finite-range effects. To
maintain a consistent trimer energy, we employ the same
three-body force as in the case of Fig. 2, ensuring that the
trimer energy remains fixed at B3 = 0.040 01h̄2/mr2

2 .
In the top panel of Fig. 3, we observe that the details

of the spectrum change, particularly the structure of the
avoided-crossing levels. However, in the bottom panel, we
can see that the first correlation cycle remains consistent with
the cycles observed in Fig. 2. This suggests that the role of
the four-body range is not significantly strong, as it does not
significantly alter the observed correlations.

In the middle panel of Fig. 3, we present the variation of
the mean radius 〈r〉 of the four-body states as a function of
V4. We specifically aim to highlight the different behavior of
states that undergo significant changes compared to those that
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FIG. 3. Top panel: Evolution of the first eight energy levels as
a function of the strength V4, obtained by fixing the two-body sys-
tem at the unitarity point, B2 = 0. In this case, a three-body force
has been introduced so that the three-body bound-state energy is
B3 = 0.040 01h̄2/mr2

2 and the four-body potential range is r4 = 3r2.
Middle panel: The average radius 〈r〉 for specific states within a
region of V4 where avoided crossings occur. Notably, we observe
that the states exhibiting significant variations in response to the
strength V4 emerge from the continuum with relatively small radii.
Bottom panel: The first correlation cycle (solid line) compared with
the cycles of Fig. 2 for the case r4 = 2r2 (dashed lines). The solid
points correspond to the universal prediction of Ref. [18], and the
solid squares to the separable-potential calculations of Ref. [29].

exhibit more gradual changes in response to variations in the
four-body strength.

States that undergo rapid changes in the middle panel are
characterized by a local nature, as evidenced by their smaller
radii when emerging from the threshold. This observation sug-
gests that the interplay between the local Gaussian potential

and the emerging long-range hyperradial potential gener-
ates small wells from which these local states emerge. The
presence of these small wells is likely responsible for the sen-
sitivity of these states to variations in the four-body strength.

Despite these finite-range details, we have successfully
proven the existence of a universal tetramer correlation cycle
independent of the trimer, which can be related to the univer-
sal four-body limit cycle predicted in Ref. [18]. We leave for
future research more refined Hamiltonian calculations that can
control finite-range effects.

IV. SUMMARY

We have revealed the unexpected presence of a universal
correlation cycle in Hamiltonian systems, which is compatible
with the one predicted in Ref. [18] within a zero-range model.
The observed cycle is independent of the one appearing in
the three-boson system and related to Efimov physics. Our
Hamiltonian system consists of two-, three-, and four-body
short-range interactions, tuned to the unitarity limit. We have
identified a series of universal tetramer states that maintain
their model-independent properties, including the correlation
between the energies of successive levels that converge to-
ward the cycle. Our results suggest that the use of Gaussian
interactions does not restrict the exploration of these cycles,
as different parametrizations demonstrate the persistence of
the universal levels and the associated energy correlation.

Our work opens the surprising perspective to search for
interwoven correlation cycles in the N � 5 boson systems, by
exploring the rich pattern arising when moving the universal
levels through the control of many-body potentials. How this
can be done in practice, for instance in cold-atom experiments,
is an open question. Recently, the possibility of many-body
forces manifesting themselves near relatively narrow Fesh-
bach resonances has been suggested, which is attributed to
the coupling between the open and closed channels when
the atom-atom interaction is magnetically tuned in cold traps.
However, further research is needed to explore this possibility,
as highlighted in recent studies such as Refs. [34,45].
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