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Comparing real-time coupled-cluster methods through simulation of collective Rabi oscillations

Andreas S. Skeidsvoll
Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway

Henrik Koch *

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
and Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway

(Received 13 January 2023; revised 19 May 2023; accepted 6 September 2023; published 28 September 2023)

The time-dependent equation-of-motion coupled-cluster singles and doubles (TD-EOM-CCSD) and time-
dependent coupled-cluster singles and doubles (TDCCSD) methods are compared by simulating Rabi
oscillations for distant atoms in a classical electromagnetic field. While the TD-EOM-CCSD simulations are
numerically stable, the oscillating time-dependent energy expectation value displays an incorrect scaling with
the number of atoms resonant with the field. On the other hand, the TDCCSD simulations exhibit the correct
scaling in the initial stages of the Rabi cycle but break down when the multiatom system approaches complete
population inversion. The numerical stability of the TDCCSD simulations is shown to be very sensitive to any
interactions between the atoms and to left amplitudes that do not participate in the expression for time-dependent
expectation values for noninteracting atoms. Moreover, we introduce a general theoretical framework for
describing the two methods, where the cluster amplitude time derivatives serve as auxiliary conditions related to
a shift of the time-dependent Hamiltonian matrix. In this framework, time-dependent coupled-cluster methods
exhibit a shifted Hamiltonian matrix with a block upper triangular structure in terms of the number of excited
noninteracting subsystems, explaining the correct scaling properties of the TDCCSD method.
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I. INTRODUCTION

With recent developments in the shaping and amplification
of laser pulses, the production of short and strong pulses
can now be realized in several frequency domains [1–3]. The
progress has sparked further interest in the dynamical and
nonlinear response of molecules to strong fields, which can
involve a high number of quantum states [4], since many of the
states that are inaccessible by a single-photon transition, either
energetically or by symmetry selection rules, can be accessed
by a multiphoton transition [5,6].

The ultrafast nonlinear response of molecules to strong
fields can give an extended degree of dynamic control of
chemical reactions [7–9]. It can also reveal information about
the system that is inaccessible in weaker fields, which can be
used for improving the imaging of different reaction stages
[5,8]. Nevertheless, the involved coupling between the nu-
merous affected states can lead to an intricate relationship
between the shape and strength of laser pulses and the molec-
ular response, which calls for the interpretation by appropriate
quantum chemistry methods [10].

Both the accuracy and computational complexity of quan-
tum chemistry methods often increase with the order of
approximation of the particle correlations in the system
[10,11] and the size of the finite basis set [12], but the accuracy
also depends heavily on the mathematical structure of the
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method. Considerable effort is spent on constructing optimal
methods for a given order of computational complexity, with
respect to both numerical stability and correspondence to
experimental results for various systems. Real-time variants
of quantum chemistry methods are convenient for modeling
multiphoton transitions in systems [13], as expressions for the
high-order frequency response can be difficult to both derive
and solve numerically.

The well-established single-reference coupled-cluster
(CC) hierarchy of methods often gives accurate and rapidly
converging molecular properties [14] for states with weak
multireference character [15]. An important reason for this
accuracy is the physically reasonable scaling properties of
the methods, even when the cluster operator is truncated.
For instance, the energy of the ground state is size extensive,
meaning it scales linearly with the number of noninteracting
identical subsystems [16]. In the equation-of-motion
(EOM)–CC framework, the excitation energies are size
intensive, meaning they do not scale with the number
of noninteracting subsystems [17]. In the linear-response
framework, which is based on time-dependent coupled-cluster
theory, ground-state–excited-state transition moments are
also size intensive [18]. Truncated configuration-interaction
methods, on the other hand, do not possess these properties
and errors generally increase with the size of the simulated
system [19].

Traditionally, coupled-cluster methods have almost exclu-
sively been treated in the frequency domain, but the past
decade has witnessed an increased exploration into their
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real-time behavior [13]. As demonstrated by Pedersen and
Kvaal [20] and further investigated by Kristiansen et al.
[21], the exponential parametrization makes the standard
time-dependent coupled-cluster (TDCC) method inherently
unstable whenever the reference determinant weight is de-
pleted by a strong field. These instabilities can require the use
of exceedingly small time steps in numerical solutions and
can at times also lead to breakdowns that cannot be solved by
decreasing the time-step size.

The orbital adaptive time-dependent coupled-cluster
method, which requires the solution of an additional set of
linear equations at each time step, has been shown to be more
stable than TDCC. Nonetheless, the method can still fail at
higher field strengths, where the reference determinant weight
can become greater than one [21].

Variants of the TD-EOM-CC method have also been used
for modeling laser-molecule interactions, but only a hand-
ful of applications have included the full nonlinear real-time
propagation of the laser-driven electron dynamics [13,22–24].
In these cases, the TD-EOM-CC equations were expressed in
the basis obtained by diagonalizing the field-free equation-of-
motion coupled-cluster Hamiltonian. We instead express the
equations in the elementary basis, leading to equations that
are simple to implement and have computational and memory
requirements that scale more favorably with respect to system
size than the full diagonal basis equations. This makes the
formulation particularly useful for assessing the short-time
and nonlinear behavior of the TD-EOM-CC method.

The paper is organized as follows. In Sec. II the TD-EOM-
CC and TDCC methods are described in a general theoretical
framework and it is shown how the time derivative of the
cluster amplitudes affects the analytical scaling properties of
the truncated variants of the methods. Section III outlines
the computational methods used to simulate distant atoms
undergoing semiclassical Rabi oscillations in a resonant elec-
tromagnetic field. In Sec. IV the results of the simulations are
presented and discussed, including a demonstration of how the
time-dependent energy expectation value scales with respect
to system size in the TD-EOM-CCSD and TDCCSD methods.
The key findings are summarized in Sec. V.

II. THEORY

A. System

The time-dependent system of the molecule and the elec-
tromagnetic field is described by the Hamiltonian

H (t ) = H (0) + V (t ). (1)

The field-free molecular system is described by the Hamilto-
nian H (0) and the interaction between the molecular system
and the electromagnetic field is described by V (t ). We
describe the interaction semiclassically, in the dipole approxi-
mation and length gauge. This gives V (t ) = −μ · E (t ), where
μ is the electric dipole moment vector and E (t ) the classi-
cal time-dependent electric-field vector. The system is also
treated within the Born-Oppenheimer approximation, with
fixed nuclei.

B. Time dependence in coupled-cluster methods

The TD-EOM-CC and TDCC methods can be written
in a general theoretical framework by expressing the time-
dependent ket and bra vectors as

|�(t )〉 = eT (t )R(t )|HF〉eiε(t ), (2)

〈�̃(t )| = e−iε(t )〈HF|L(t )e−T (t ), (3)

where the cluster operator

T (t ) =
∑
μ>0

τμtμ(t ) (4)

and the right and left operators

R(t ) =
∑
κ�0

τκrκ (t ), L(t ) =
∑
κ�0

lκ (t )τ̃ †
κ . (5)

The function ε(t ) represents a time-dependent global phase,
which does not enter into expressions for physical observables
but can impact the performance of numerical implementa-
tions. The elementary operators τ0 and τ̃

†
0 are the unit operator

τ0 = τ̃
†
0 = 1 (6)

and the elementary operators τμ and τ̃ †
μ, where μ > 0,

excite and deexcite electrons between occupied and virtual
Hartree-Fock molecular orbitals, respectively,

τμ|HF〉 = |μ〉, 〈HF|τ̃ †
μ = 〈μ̃|, (7)

τ̃ †
μ|HF〉 = 0, 〈HF|τμ = 0. (8)

These operators are chosen so that the resulting elementary
kets and bras are biorthonormal,

〈κ̃|λ〉 = δκλ, κ � 0, λ � 0, (9)

where δκλ is the Kronecker delta. The sums over excitation
levels in Eqs. (4) and (5) can be truncated in order to
reduce computational scaling, yielding the coupled-cluster
singles method when only single excitations are included,
coupled-cluster singles and doubles (CCSD) when both single
and double excitations are included, and so on.

The equations for the time dependence of the parameters of
Eq. (5) can be derived from the right and left time-dependent
Schrödinger equations (TDSEs)

i
d

dt
|�(t )〉 = H (t )|�(t )〉, (10)

−i
d

dt
〈�̃(t )| = 〈�̃(t )|H (t ). (11)

Inserting Eq. (2) into Eq. (10) before projecting onto
e−iε(t )〈κ̃|e−T (t ) and likewise inserting Eq. (3) into Eq. (11)
before projecting onto eT (t )|λ〉eiε(t ), the elementary-basis
matrix-vector TDSEs are obtained as

i
drκ (t )

dt
=

∑
λ�0

H̃κλ(t )rλ(t ), (12)

−i
dlλ(t )

dt
=

∑
κ�0

lκ (t )H̃κλ(t ), (13)

where the shifted Hamiltonian

H̃ (t ) = H (t ) + dε(t )

dt
− i

dT (t )

dt
. (14)
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The elements of the elementary-basis coupled-cluster matrix
O(t ) of operator O(t ) are given by

Oκλ(t ) = 〈κ̃|Ō(t )|λ〉, (15)

where an overbar is used to denote the similarity transforma-
tion by the exponentiated time-dependent cluster operator,

Ō(t ) = e−T (t )O(t )eT (t ). (16)

By invoking the resolution of identity 1 = |HF〉〈HF| +∑
μ>0 |μ〉〈μ̃|, the matrix elements of the shifted Hamiltonian

in Eq. (14) can be expressed as

H̃κλ(t ) = 〈κ̃|H̄ (t )|λ〉

+ 〈κ̃|
(

dε(t )

dt
− i

∑
μ>0

τμ

dtμ(t )

dt

)
|λ〉

= 〈κ̃|[H̄ (t ), τλ]|HF〉

+ 〈κ̃|τλ

(
|HF〉〈HF|+

∑
μ>0

|μ〉〈μ̃|
)

H̄ (t )|HF〉

+ 〈κ̃|
(

dε(t )

dt
− i

∑
μ>0

τμ

dtμ(t )

dt

)
|λ〉

= Uκλ(t ) + D̃κλ(t ) + L̃κλ(t ), (17)

where

Uκλ(t ) = 〈κ̃|[H̄ (t ), τλ]|HF〉, (18)

D̃κλ(t ) = δκλ

(
〈HF|H̄ (t )|HF〉 + dε(t )

dt

)
, (19)

L̃κλ(t ) =
∑
μ>0

〈κ̃|τμ|λ〉
(

〈μ̃|H̄ (t )|HF〉 − i
dtμ(t )

dt

)
. (20)

To explain the choices of the names of the three terms in
Eq. (17) in anticipation of the discussion in Sec. II C, we
remark that the commutator [H̄ (t ), τλ] in Eq. (18) implies
that the U (t ) term of the shifted Hamiltonian matrix for two
noninteracting subsystems is block upper triangular in terms
of the number of excited subsystems. Furthermore, the ex-
citation operator τμ in Eq. (20) implies that the L(t ) term
is block lower triangular, and the Kronecker delta δκλ in
Eq. (19) implies that the D(t ) term is (block) diagonal. Once
all time-dependent amplitudes have been found at a given
point in time t , the time-dependent expectation values of the
time-dependent operator O(t ) can be obtained through

〈O(t )〉 = 〈�̃(t )|O(t )|�(t )〉 =
∑

κ,λ�0

lκ (t )Oκλ(t )rλ(t )

= lT (t )O(t )r(t ). (21)

The indeterminate matrix-vector equations in Eqs. (12)
and (13) give a unified representation of the TD-EOM-
CC and TDCC methods, since the two methods can be
recovered by imposing constraints on the cluster am-
plitude time derivatives and assuming that the propaga-
tion starts from the time-independent field-free ground
state. This state can be defined by the operators T (0),
R(0)

0 , and L(0)
0 by setting the right and left amplitudes

r (0)
μ0 = 0 and r (0)

00 = l (0)
00 = 1 and letting the ground-state

cluster amplitudes t (0)
μ and left amplitudes l (0)

0μ be determined
as solutions of the field-free ground-state equations

〈μ̃|e−T (0)
H (0)eT (0) |HF〉 = 0, (22)

(
〈HF| +

∑
μ>0

l (0)
0μ 〈μ̃|

)
[e−T (0)

H (0)eT (0)
, τν]|HF〉 = 0. (23)

Thus, the ground state is defined, with an inherent ambiguity
related to the time-dependent global phase.

The TD-EOM-CC method is usually derived without the
time-dependent phase factor and without consideration for
the time dependence of the cluster amplitudes [22–24]. How-
ever, the cluster amplitude time dependence can equivalently
be removed after the derivation of Eqs. (12) and (13) by
setting

i
dtμ(t )

dt
= 0. (24)

Since we also assume that the propagation starts from the
ground state, Eq. (24) implies that T (t ) = T (0), and Eq. (17)
can thus be expressed as

H̃κλ(t ) = Uκλ(t ) + D̃κλ(t ) + L̃κλ(t ), (25)

where

Uκλ(t ) = 〈κ̃|[e−T (0)
H (t )eT (0)

, τλ]|HF〉, (26)

D̃κλ(t ) = δκλ

(
〈HF|e−T (0)

H (t )eT (0) |HF〉 + dε(t )

dt

)
, (27)

L̃κλ(t ) =
∑
μ>0

〈κ̃|τμ|λ〉〈μ̃|e−T (0)
V (t )eT (0) |HF〉, (28)

and the H (0) term of L̃κλ(t ) is zero because of Eq. (22).
In the TDCC method, the time derivatives of the cluster

amplitudes are given by [25]

i
dtμ(t )

dt
= 〈μ̃|H̄ (t )|HF〉. (29)

From this expression, Eq. (20) can be seen to reduce to

L̃κλ(t ) = 0, (30)

implying that

H̃κλ(t ) = Uκλ(t ) + D̃κλ(t ), (31)

where Uκλ(t ) and D̃κλ(t ) are given by Eqs. (18) and (19),
respectively. In Ref. [25] the time derivative of the phase is
furthermore constrained by

dε(t )

dt
= −〈HF|H̄ (t )|HF〉, (32)

which leads to D̃κλ(t ) = 0. Nonetheless, other constraints lead
to equivalent formulations of the TDCC method, owing to the
flexibility with respect to the time-dependent global phase.

The ket and bra vectors used in standard derivations of the
TDCC method [25] do not include the right operator R(t ) in
Eq. (2) nor the time dependence of the reference component
of L(t ) in Eq. (3). To demonstrate that the TDCC method is
still retrieved when the propagation starts from the ground
state, we start by noting that Eqs. (12), (31), and (32) imply
that the time derivatives of all rκ (t ) are zero whenever all
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rμ(t ) are zero for μ > 0. Furthermore, Eqs. (13), (31), and
(32) imply that the time derivative of l0(t ) is zero. There-
fore, when the propagation starts from the coupled-cluster
ground state, rμ(t ) = 0 and l0(t ) = r0(t ) = 1 at all times t .
For κ > 0, Eq. (13) is hence equivalent to the expression for
the left amplitude time derivatives in Ref. [25], and the TDCC
method is retrieved despite the additional flexibility in the
parametrization of Eqs. (2) and (3).

The choice of cluster amplitude time derivatives has major
implications for the properties of the resulting method. In
the TD-EOM-CC method, Eq. (24) implies that the cluster
amplitudes do not change with time, and real arithmetic can
be used to reduce the cost of TD-EOM-CC propagation pro-
vided the cluster amplitudes of the ground state are real. In
the TDCC method, on the one hand, Eq. (29) implies that
the time-dependent cluster amplitudes are complex, requiring
the use of complex arithmetic. The TDCC time derivatives
also imply that Eqs. (12) and (13) are nonlinear in the time-
dependent parameters, and the expression and interpretation
of the time-dependent state in terms of EOM-CC states is
thus nontrivial [26]. For the TD-EOM-CC method, on the
other hand, Eqs. (12) and (13) are linear in the time-dependent
parameters, and the time independence of the cluster operator
allows the method to be expressed in the basis of the field-free
EOM-CC states. This can be shown by operating with the
resolution of identity

1 =
∑
i�0

∣∣ψ (0)
i

〉〈
ψ̃

(0)
i

∣∣ (33)

on both Eqs. (2) and (3), where the ket and bra of the field-free
EOM-CC state i can be expressed as∣∣ψ (0)

i

〉 = R(0)
i eT (0) |HF〉, 〈

ψ̃
(0)
i

∣∣ = 〈HF|e−T (0)
L(0)

i (34)

and the amplitudes of the operators R(0)
i = ∑

κ�0 τκR(0)
κi

and L(0)
i = ∑

κ�0 L(0)
iκ τ̃ †

κ are the right and left eigenvec-
tors of the field-free coupled-cluster Hamiltonian matrix
H (0)

κλ = 〈κ̃|e−T (0)
H (0)eT (0) |λ〉. By letting 〈ψ̃ (0)

i |�(t )〉 = si(t )
and 〈�̃(t )|ψ (0)

i 〉 = ki(t ), the elementary basis formulation of
the TD-EOM-CC method presented here can be seen to be
equivalent to the diagonal basis formulation of Ref. [24],
up to the factor containing the time-dependent global phase.
As demonstrated in that reference, field-free EOM-CC states
that do not participate in the dynamics can be removed from
the diagonal basis in order to reduce computational costs.
However, the full elementary basis formulation of the TD-
EOM-CC method, as given by Eqs. (12), (13), and (25),
straightforwardly ensures the inclusion of all transitions with-
out requiring the calculation of all field-free EOM-CC states
and transition moments.

C. Scaling properties of real-time coupled-cluster methods

In order to investigate theoretically the scaling properties
of methods based on the parametrization in Eqs. (2) and
(3), we assume that the system is composed of multiple
noninteracting subsystems. We let τλI denote an elementary
excitation operator and τ̃ †

κI
an elementary deexcitation opera-

tor of subsystem I . The elementary excitation and deexcitation
operators of the composite system can be constructed as

tensor products of corresponding operators of the different
subsystems. Untruncated TD-EOM-CC and TDCC methods
can represent all these tensor products, since the excitation
and deexcitation levels of the methods are not limited. In
truncated methods, however, all elementary excitation and
deexcitation operators that exceed the truncation level specific
to the method are excluded, which can lead to errors related
to the scaling from one to multiple subsystems.

For two subsystems I ∈ {A, B}, the elementary excitation
and deexcitation operators of the composite system can be
constructed as the tensor products τλA ⊗ τλB and τ̃ †

κA
⊗ τ̃ †

κB
. We

split the sets of these operators into four partitions, which we
label 0, A, B, and AB. The 0 partition includes the operators
that do not change the excitation level of the subsystems,
τ0A ⊗ τ0B and τ̃

†
0A

⊗ τ̃
†
0B

. The A partition includes the oper-
ators that change the excitation level of subsystem A only,
τμA ⊗ τ0B and τ̃ †

μA
⊗ τ̃

†
0B

, and the B partition the operators that
change the excitation level of subsystem B only, τ0A ⊗ τμB

and τ
†
0A

⊗ τ †
μB

, where μ > 0. The AB partition includes the
operators that change the excitation level of both subsystems,
τνA ⊗ τνB and τ̃ †

μA
⊗ τ̃ †

μB
, where μ > 0 and ν > 0. Truncation

can affect the AB partition, since the tensor products of the
truncated subsystem operators can include excitations and de-
excitations that in combination go beyond the truncation level
of the method. In the following, we assess the general impact
of this truncation on the TD-EOM-CC and TDCC methods,
without limiting the discussion to any particular truncation
level.

We start by assuming that the cluster amplitudes corre-
sponding to the operators τμA ⊗ τμB are zero at a given time
t . The cluster operator T (t ) can then be written as the tensor
sum

T (t ) = TA(t ) ⊗ IB + IA ⊗ TB(t ), (35)

where TI (t ) is the cluster operator for subsystem I . Since
operators on noninteracting subsystems commute, we have
that

e±[TA(t )⊗IB+IA⊗TB (t )] = e±TA(t ) ⊗ e±TB (t ). (36)

We furthermore let O(t ) be any operator that does not involve
any interaction between the two subsystems and thus can be
written as the tensor sum

O(t ) = OA(t ) ⊗ IB + IA ⊗ OB(t ), (37)

where OA(t ) and OB(t ) are subsystem operators. Equa-
tion (36) then implies that the similarity transformed operator
in Eq. (16) can be written as the tensor sum

Ō(t ) = e−TA(t )OA(t )eTA(t ) ⊗ IB + IA ⊗ e−TB (t )OB(t )eTB (t )

= ŌA(t ) ⊗ IB + IA ⊗ ŌB(t ), (38)

which does not contain terms where both subsystems are
excited simultaneously.

We furthermore assume that the time-dependent Hamilto-
nian H (t ) does not involve any interaction between the two
subsystems, implying that it can be written in the form of
Eq. (37). In the TDCC method, the time derivative of the
cluster amplitudes in Eq. (29) can, for the AB partition, then
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be written as

i
dtμAμB (t )

dt
= (〈μ̃A| ⊗ 〈μ̃B|)[H̄A(t ) ⊗ IB + IA ⊗ H̄B(t )]

× (|HFA〉 ⊗ |HFB〉) = 0. (39)

If Eq. (35) is true at the initial time, it will therefore re-
main true for later times in the TDCC method provided the
Hamiltonian still separates as HA(t ) ⊗ IB + IA ⊗ HB(t ). In the
TD-EOM-CC method, the time derivatives of the AB partition
cluster amplitudes are also zero, as seen by Eq. (24).

We use the subscript ‖ to denote that all amplitudes and
matrix elements corresponding to the excitation and deexci-
tation operators that are not represented in truncated methods
have been set to zero. This is used to formulate the truncated
methods in the untruncated product basis, for a more straight-
forward comparison to untruncated methods. Accordingly, the
truncated right and transposed left amplitude vectors r‖ and lT

‖
are obtained by eliminating components from the untruncated
r and lT and can, in the partitioned product bases, be written
as

r‖ =

⎛
⎜⎜⎝

r0

rA

rB

(rAB)‖

⎞
⎟⎟⎠, lT

‖ = (l0 lA lB (lAB)‖), (40)

where only the AB partitions are affected by the truncation.
Moreover, the truncated operator matrix O‖ is obtained from
O, which is the projection of Eq. (38) onto the kets τλA |HFA〉 ⊗
τλB |HFB〉 and bras 〈HFA|τ̃ †

κA
⊗ 〈HFB|τ̃ †

κB
. In the partitioned

product bases, this matrix can be written as

O‖ =

⎛
⎜⎜⎝

O0 0 O0 A O0 B 0
OA 0 OA A 0 (OA AB)‖
OB 0 0 OB B (OB AB)‖

0 (OAB A)‖ (OAB B)‖ (OAB AB)‖

⎞
⎟⎟⎠, (41)

where only the AB partition row and column are affected by
the truncation.

We proceed to investigate whether time-dependent expec-
tation values in truncated methods, given by

〈O(t )〉‖ = lT
‖ (t )O‖(t )r‖(t ), (42)

have any dependence on the truncated AB partition, as this
would imply that the general scaling properties of the method
are incorrect. Assuming that the state of the system is known
at t = t0, the time-dependent right and transposed left am-
plitude vectors of truncated methods can be given as exact
solutions of the truncated right and left matrix TDSEs (12)
and (13),

r‖(t ) = U‖(t, t0)r‖(t0), lT
‖ (t ) = lT

‖ (t0)U‖(t0, t ), (43)

where

U‖(t, t0) = I‖ +
∞∑

n=0

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2

· · ·
∫ tn−1

t0

dtnH̃‖(t1) · · · H̃‖(tn)

(44)

and I is the identity matrix. Inserting Eq. (43) into Eq. (42),
we get that

〈O(t )〉‖ = lT
‖ (t0)U‖(t0, t )O‖(t )U‖(t, t0)r‖(t0). (45)

In general, the truncated shifted Hamiltonian matrices taking
part in this equation have the same block structure as Eq. (41),
namely,

H̃‖(t )

=

⎛
⎜⎜⎝

H̃0 0(t ) H̃0 A(t ) H̃0 B(t ) 0
H̃A 0(t ) H̃A A(t ) 0 [H̃A AB(t )]‖
H̃B 0(t ) 0 H̃B B(t ) [H̃B AB(t )]‖

0 [H̃AB A(t )]‖ [H̃AB B(t )]‖ [H̃AB AB(t )]‖

⎞
⎟⎟⎠.

(46)

In the TD-EOM-CC method, truncated shifted Hamiltonian
matrices generally exhibit this block structure. This is because
the U (t ) term given by Eq. (18) contributes to all upper trian-
gular blocks of Eq. (46) except H̃0 0(t ), the D̃(t ) term given
by Eq. (27) contributes to all diagonal blocks of the matrix,
and the L̃(t ) term given by Eq. (28) contributes to all lower
triangular blocks of the matrix except H̃0 0(t ).

If no further assumptions can be made regarding the block
structure of H̃‖(t ) in Eq. (46), we cannot assume the correct-
ness of the scaling properties of the method. This becomes
apparent when considering that the block matrices in both
Eqs. (41) and (46) can map partitions of right and trans-
posed left amplitude vectors to partitions where the numbers
of excited subsystems have both increased and decreased
by one. Consequently, the products of two or more such
matrices participating in U‖(t0, t )O‖(t )U‖(t, t0) in Eq. (45)
can result in a mapping between the nonzero 0 partition of
r‖(t0) and the truncated AB partition of lT

‖ (t0). This implies
that time-dependent expectation values for two noninteracting
subsystems, given by Eq. (42), are generally affected by the
truncation of the product bases, that is,

〈O(t )〉‖ �= lT (t )O(t )r(t ). (47)

Thus, the scaling properties of the truncated TD-EOM-CC
method are generally incorrect.

In the TDCC method, the L̃(t ) term of the shifted Hamil-
tonian matrix H̃ (t ) is always zero, as seen from Eq. (30). In
the TD-EOM-CC method, the L̃(t ) term is zero whenever the
interaction term V (t ) is zero, as seen from Eq. (28). In both
these cases, the blocks below the diagonal of H̃‖(t ) are equal
to zero and Eq. (46) can be written as

H̃‖(t ) =

⎛
⎜⎜⎝

H̃0 0(t ) H̃0 A(t ) H̃0 B(t ) 0
0 H̃A A(t ) 0 [H̃A AB(t )]‖
0 0 H̃B B(t ) [H̃B AB(t )]‖
0 0 0 [H̃AB AB(t )]‖

⎞
⎟⎟⎠.

(48)
The element H̃00(t ) can also be eliminated in both methods by
letting the time-dependent phase evolve according to Eq. (32).
In the following discussion, however, we let the element be
nonzero in order to demonstrate that the time dependence
of the global phase does not have any impact on the scaling
properties of the truncated methods.

We now examine how the vectors of the initial state are af-
fected by the repeated transformation by shifted Hamiltonian
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matrices with the block structure of Eq. (48). These matrices
do not map partitions of right amplitude vectors to partitions
with a higher number of excited subsystems. Consequently,
assuming r(t0) = r(0)

0 = (1, 0, 0, 0)T ,

H̃‖(t1) · · · H̃‖(tn)r‖(t0) =

⎛
⎜⎜⎝

[H̃ (t1) · · · H̃ (tn)r(t0)]0

0
0
0

⎞
⎟⎟⎠, (49)

where the right-hand side is described purely in terms of
untruncated matrices and vectors, which is valid since the
AB partition does not contribute to any of the matrix-vector
transformations. Furthermore, the same matrices do not map
partitions of transposed left amplitude vectors to partitions
with a lower number of excited subsystems. Consequently,

lT
‖ (t0)H̃‖(tn) · · · H̃‖(t1) =

⎛
⎜⎜⎜⎜⎜⎝

[lT (t0)H̃ (tn) · · · H̃ (t1)]0

[lT (t0)H̃ (tn) · · · H̃ (t1)]A

[lT (t0)H̃ (tn) · · · H̃ (t1)]B

[lT
‖ (t0)H̃‖(tn) · · · H̃‖(t1)]AB

⎞
⎟⎟⎟⎟⎟⎠

T

,

(50)

where the 0, A, and B partitions on the right-hand side are
described purely in terms of untruncated matrices and vectors,
which is valid since the AB partition does not contribute to any
of the corresponding matrix-vector transformations. Under the
conditions that the matrix H̃ (t ) has the block upper triangular
structure of Eq. (48) for all times t and that the right ampli-
tude vector starts out as the ground-state vector r(t0) = r(0)

0 ,
Eqs. (49) and (50) imply that

r‖(t ) =

⎛
⎜⎜⎝

[U (t, t0)r(t0)]0

0
0
0

⎞
⎟⎟⎠, (51)

lT
‖ (t ) =

⎛
⎜⎜⎜⎜⎜⎝

[lT (t0)U (t0, t )]0

[lT (t0)U (t0, t )]A

[lT (t0)U (t0, t )]B

[lT
‖ (t0)U‖(t0, t )]AB

⎞
⎟⎟⎟⎟⎟⎠

T

, (52)

where U (t, t0) is the untruncated counterpart of the time
evolution operator in Eq. (44), containing the untruncated
time-dependent Hamiltonian matrices H̃ (t ) evaluated at dif-
ferent times t .

To assess the effect of truncation on time-dependent ex-
pectation values in the TDCC and field-free TD-EOM-CC
methods, we note that the matrix O‖(t ) does not map between
the 0 partition of right amplitude vectors and the AB partition
of transposed left amplitude vectors. Hence, time-dependent
expectation values for systems with two noninteracting sub-
systems, given by Eq. (45), are unaffected by the truncation
of the product bases,

〈O(t )〉‖ = lT
‖ (t0)U‖(t0, t )O‖(t )U‖(t, t0)r‖(t0)

= [lT (t0)U (t0, t )]0O0 0(t )[U (t, t0)r(t0)]0

+ [lT (t0)U (t0, t )]AOA 0(t )[U (t, t0)r(t0)]0

+ [lT (t0)U (t0, t )]BOB 0(t )[U (t, t0)r(t0)]0

= lT (t )O(t )r(t ). (53)

Furthermore, time-dependent expectation values can be
shown to be unaffected by the truncation of the product bases
for any number of noninteracting subsystems, by sequentially
dividing one of the remaining composite subsystems into two
subsystems and reapplying the aforementioned arguments.
This implies that truncated TDCC and truncated field-free
TD-EOM-CC methods have the correct scaling properties
when the system starts out in the ground state.

III. COMPUTATIONAL DETAILS

In order to investigate the properties of the methods de-
scribed in Sec. II B numerically, we truncate the methods at
the CCSD level, giving the TD-EOM-CCSD and TDCCSD
methods. The TD-EOM-CCSD method is implemented in the
spin-adapted elementary basis in a development version of
the eT program [27], employing the time derivative of the
global phase given by Eq. (32), which leads to D̃κλ(t ) = 0 in
Eq. (25). Furthermore, we use the existing implementations
of the spin-adapted ground-state and TDCCSD methods in
eT (version 1.0) [27,28], which also employs Eq. (32). The
methods are used to calculate the interaction of atoms with
the electromagnetic field represented by the electric field

E (t ) = E0 cos[ω0(t − t0) + φ] f (t )ê, (54)

where E0 is the peak field strength, ω0 the carrier frequency, φ

the carrier-envelope phase, f (t ) the envelope, and ê the unit
vector in the linear polarization direction of the field. The
envelope is given the functional form

f (t ) =
⎧⎨
⎩

0, t < a
sin2

( 2π (t−a)
4(b−a)

)
, a � t � b

1, t > b,
(55)

which increases from zero to one in the interval from a to b.
The aug-cc-pVDZ basis set is used for the helium and

beryllium atoms in the simulations. The field is given a car-
rier frequency of 1.005 749 62 a.u., which corresponds to
the transition between the ground 0 1S0 state and the first
dipole-allowed excited 2 1P1 state of helium calculated with
the EOM-CCSD method and the aug-cc-pVDZ basis set.
By adopting this carrier frequency, the field is in resonance
with the same transition for a single helium atom in both
the TD-EOM-CCSD and TDCCSD simulations. The field is
furthermore given a peak field strength of 3 × 10−2 a.u., a
polarization in the z direction, and a carrier-envelope phase of
φ = −π/2. The envelope of the field is set to increase from
a = 0 until b = 15 optical cycles (approximately 93.709 a.u.).
The envelope gives the field a narrow bandwidth, centered
around the 0 1S0 − 2 1P1 resonance, which ensures that the
time-dependent state of single-helium simulations is kept in
a superposition dominated by the two states.

The integration of the time-dependent differential equa-
tions is performed with the Dormand-Prince 8(5, 3) method
[29]. This method is an embedded explicit Runge-Kutta
method that incorporates a primary solution accurate to the
eighth order in the time-step size. Moreover, the method gives
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FIG. 1. Real part of the time-dependent energy expectation value
Re[〈H (t )〉] and 2-norms of the A partitions of the cluster, right,
and left amplitudes ‖tA(t )‖, ‖rA(t )‖, and ‖lA(t )‖, respectively, from
TD-EOM-CCSD and TDCCSD simulations of a single helium atom
in an external field.

an estimate of the local integration error by using a combina-
tion of solutions with eighth-, fifth-, and third-order accuracy.
The error estimate is used to adapt the time steps according to
the procedure described in Appendix B of Ref. [24]. The ini-
tial time step size is set to 1 × 10−2 a.u. and the maximum and
minimum values of the error estimate are set to 1 × 10−9 and
1 × 10−13 a.u., respectively. The integration is stopped when
the size of the adaptive time step is smaller than 1 × 10−10.

IV. RESULTS AND DISCUSSION

A. Simulating single-subsystem Rabi oscillations with the
TD-EOM-CCSD and TDCCSD methods

For a single helium atom, both the TD-EOM-CCSD and
TDCCSD methods can describe all possible excitations of the
reference determinant, and the time-dependent observables
are thus analytically equal for the two methods. In the top
panel of Fig. 1, we show that this is also the case numerically
for the real part of the time-dependent energy expectation
value, as the two methods give indistinguishable results. The
value is initially equal to the ground-state energy and periodi-
cally increases and decreases as a function of time, illustrating
that the system undergoes Rabi oscillation between the 0 1S0

and 2 1P1 states of the helium atom. The maximum abso-
lute value of the imaginary part of the expectation value is
approximately 6 × 10−14Eh for the TD-EOM-CCSD method
and 4 × 10−12Eh for the TDCCSD method, indicating that
any unphysical imaginary energy components arising from the
non-Hermitian nature of these methods can be disregarded
in these cases. The time-dependent 2-norms of the A parti-
tions of the cluster, right, and left amplitudes are also shown

in Fig. 1. In contrast to the right and left amplitude norms
of both methods, the norm of the cluster amplitudes in the
TDCCSD simulations displays narrow peaks which coincide
with the maxima of the time-dependent energy expectation
value. The TDCCSD method is known to be numerically
unstable when the weight of the reference determinant ap-
proaches zero [20,21], but we observe that the method can still
be used for simulating Rabi oscillations between the 0 1S0 and
2 1P1 states of a single helium atom.

B. Simulating two-subsystem Rabi oscillations with the
TD-EOM-CCSD method

To numerically investigate the scaling properties of the TD-
EOM-CCSD method, we simulate the interaction between
two helium atoms and the external field, where one of the
atoms is located at the origin and the other at 1 × 107a0

along the x axis. The large interatomic separation is chosen in
order to minimize any interaction between the atoms, without
requiring any modifications to the integral code. At this sep-
aration, the only nonzero two-center two-electron repulsion
integrals (ERIs) are the ones of Coulomb type,

gμAνAρBσB =
∫

dr1

∫
dr2

ρμAνA (r1)ρρBσB (r2)

|r1 − r2| , (56)

which asymptotically decay as the inverse distance between
the electrons on the two centers due to the independence of the
one-center orbital-pair densities ρμAνA (r1) = χμA (r1)χνA (r1)
and ρρBσB (r2) = χρB (r2)χσB (r2) on the interatomic separation.
The other two-center ERIs of exchange type,

gμAσBρBνA =
∫

dr1

∫
dr2

ρμAσB (r1)ρρBνA (r2)

|r1 − r2| , (57)

are smaller than the default integral cutoffs of eT and
thus eliminated, due to their dependence on the two-center
orbital-pair densities ρμAσB (r1) = χμA (r1)χσB (r1) and ρρBνA =
χρB (r2)χνA (r2) which decay rapidly with increasing inter-
atomic separation [30]. The two-center ERIs of Coulomb type
have magnitudes of less than 1 × 10−6Eh in the simulations,
implying that H (t ) ≈ HA(t ) ⊗ IB + IA ⊗ HB(t ).

The simulation is successfully completed and the real part
of the time-dependent energy expectation value and 2-norms
of various amplitude partitions are shown together with the
single-helium results of Sec. IV A in Fig. 2. The single-helium
energy expectation value has been multiplied by a factor of
two, since the correct scaling properties would require the
two-helium energy expectation value to be equal to two times
the single-helium one. The frequency of the oscillations in the
scaled energy expectation value and single-subsystem norms
increases, and their magnitude decreases, as the number of he-
lium atoms increases from one to two. The maximum absolute
value of the imaginary part of the energy expectation value is
still small, at approximately 2 × 10−6Eh.

A separate TD-EOM-CCSD simulation is performed
where the two-center ERIs are eliminated. The results are
shown in Fig. 2, demonstrating that the elimination of the
integrals does not have any significant impact on the results.
It further demonstrates that the incorrect scaling properties of
the TD-EOM-CCSD method is not due to the weak interaction
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FIG. 2. TD-EOM-CCSD simulations of one (1He) and two dis-
tant (2He) helium atoms in an external field. Results from two
different two-helium simulations are shown, one performed with
the regular TD-EOM-CCSD method (gAB ≈ 0) and one where the
two-center ERIs have been set to zero (gAB = 0). The single-helium
results in Fig. 1 are shown for comparison. In the top panel, the real
part of the time-dependent energy expectation value Re[〈H (t )〉] is
shown, where the single-helium result has been multiplied a factor
of two to better assess the scaling properties of the method. In the
left column below the top panel, the 2-norms of the A partitions
of the right and left amplitudes ‖rA(t )‖ and ‖lA(t )‖, respectively,
are shown. In the right column, the 2-norms of the AB partitions of
the right and left amplitudes ‖rAB(t )‖ and ‖lAB(t )‖, respectively, are
shown.

between the distant electrons but rather a problem caused the
insufficient flexibility of the parametrization of the method.

C. Simulating two-subsystem Rabi oscillations with the
TDCCSD method

To numerically investigate the scaling properties of the
TDCCSD method, we start by comparing the results from
the single-helium simulation in Sec. IV A with results from
simulations of two helium atoms, where one of the atoms is
located at the origin and the other at 1 × 107a0 along the x
axis. The large interatomic separation implies that Eq. (39) is
approximately satisfied at the start of the simulation.

In Fig. 3 the real part of the time-dependent energy expec-
tation value and 2-norms of various amplitude partitions are
shown, for different two-helium TDCCSD simulations, and

compared to the results from the single-helium calculation in
Sec. IV A. From the start of the simulation and up to 170 a.u.

of time, the regular TDCCSD method gives an energy expec-
tation value that is equal to two times the expectation value
from the single-helium simulation, since the absolute differ-
ence between these quantities is on the order of 1 × 10−14

and less. This agrees with the theory in Sec. II C and implies
that the TDCCSD method essentially treats the correlation
exactly in this time interval, even though the system has four
electrons and the operators in Eqs. (2) and (3) are truncated
at the doubles level. The two-helium single-subsystem norms
are also essentially equal to the single-helium norms in the
same interval, as illustrated by the small absolute differences
between these quantities. After around 170 a.u. of time, how-
ever, the regular TDCCSD simulation fails, and the integration
stops as adaptive time steps smaller than 1 × 10−10 are needed
to proceed. Toward the end of the simulation, the absolute
differences between the two-helium and scaled single-helium
results blow up by increasing several orders of magnitude,
implying that the simulation does not behave according to the
description in Sec. II C. Moreover, the norms of the AB par-
titions of both the cluster and left amplitudes rise throughout
the simulation and also increase dramatically at the end. In
the following, we argue that the blowup of the AB partitions
of the amplitudes is the reason for the failure of the regular
TDCCSD simulation.

The observed increase in the norm of the AB partition of the
cluster amplitudes indicates that the conditions for Eq. (39)
are not met exactly. To enforce this equation, a separate TD-
CCSD simulation is conducted where the two-center ERIs are
eliminated, which indeed results in the norm for the AB parti-
tion of the cluster amplitudes being equal to zero for all times
t . However, the simulation still fails after around 170 a.u.,
and the 2-norm of the AB partition of the left amplitudes AB
increases dramatically toward the end of the simulation, as
shown in Fig. 3. The real part of the energy expectation value
and single-subsystem 2-norms are also shown and compared
to the scaled single-helium results in the figure. In contrast to
the regular TDCCSD simulation, there are no visible instabil-
ities in the absolute differences between the two-helium and
scaled single-helium results, although the absolute difference
in the energy expectation value has increased to a constant on
the order of 1 × 10−6Eh. This difference is larger than the one
seen in the initial stages of the regular TDCCSD simulation
and can be explained by the disruption of the equilibrium
between the two-center electronic repulsion and nuclear at-
traction caused by the omission of the two-center ERIs. The
difference can be expected to be smaller if all two-center
interactions are removed from the integral code. Overall, the
results support the correctness of the scaling properties of
the TDCC method in the limit of no subsystem interaction
but also highlight the sensitivity of the cluster amplitudes to
interactions between the two subsystems in simulations of
collective Rabi oscillations.

Provided the AB partition of the cluster amplitudes is zero
in the TDCC method, Eq. (53) predicts that time-dependent
expectation values should not depend on the AB partition of
the left amplitudes. To verify this prediction and evaluate the
impact of eliminating the AB partition of both vectors on the
numerical stability, a separate simulation is conducted where
the two-center ERIs and the initial values and time derivatives
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FIG. 3. TDCCSD simulations of one (1He) and two distant (2He) helium atoms in an external field. Results from three different two-helium
simulations are shown, one performed with the regular TDCCSD method [gAB ≈ 0 and lAB(t ) �= 0], one where the two-center ERIs have been
set to zero [gAB = 0 and lAB(t ) �= 0], and one where both the two-center ERIs and the AB partition of the left amplitudes have been set to zero
[gAB = 0 and lAB(t ) = 0]. The first column of panels shows the real part of the time-dependent energy expectation value Re[〈H (t )〉2He] and
the absolute difference � Re[〈H (t )〉] = |Re[〈H (t )〉2He] − 2 Re[〈H (t )〉1He]| with the single-helium result multiplied by a factor of two. In the
second column, the 2-norms of the A partitions of the cluster and left amplitudes ‖t2He

A (t )‖ and ‖l2He
A (t )‖ are shown. In the third column the

absolute differences �‖tA(t )‖ = |‖t2He
A (t )‖ − ‖t1He

A (t )‖| and �‖lA(t )‖ = |‖l2He
A (t )‖ − ‖l1He

A (t )‖| with the single-helium norms are shown. In
the last column, the 2-norms of the AB partitions of the cluster and left amplitudes ‖t2He

AB (t )‖ and ‖l2He
AB (t )‖, respectively, are shown.

of the AB partition of the left amplitudes are set to zero. This
simulation is successfully completed, demonstrating that the
failure of the previous simulation is caused by the AB partition
of the left amplitudes. In Fig. 3 the resulting real part of the
energy expectation value and 2-norms of single-subsystem
amplitude partitions are shown and compared to the scaled
single-helium results. The absolute differences between the
two-helium and scaled single-helium results are consistently
below 1 × 10−6 and there is no visible difference in the energy
expectation value caused by the removal of the AB partition of
the left amplitudes, in agreement with the theoretical observa-
tions made in Sec. II C. Furthermore, the maximum absolute
value of the imaginary part of the energy expectation value is
negligible, at approximately 4 × 10−12Eh.

D. Scaling of collective Rabi oscillations with
the number of subsystems

To further investigate the scaling properties of the TD-
EOM-CCSD and TDCCSD methods, the interaction with the
field is also calculated for three to five helium atoms and for
one helium atom together with one to two beryllium atoms.
The first helium atom is located at the origin and the following
atoms at increments of 1 × 107a0 along the x axis. In all
simulations, the two-center ERIs are eliminated to avoid the
blowup of the AB partition of the cluster amplitudes in the
TDCCSD simulation and to treat the two methods on an equal
footing. Furthermore, the initial values and time derivatives of

the AB partition of the left amplitudes are also set to zero in all
TDCCSD simulations. All simulations complete successfully,
and for both methods the maximum absolute value of the
imaginary parts of the energy expectation value comes from
the simulations with one helium and two beryllium atoms, at
approximately 3 × 10−5Eh for the TD-EOM-CCSD method
and 2 × 10−8Eh for the TDCCSD method.

To estimate the Rabi frequencies � from the simula-
tion results, the sinusoidal function A sin(�t + ϕ) + C is
least-squares fitted to the real part of the oscillating time-
dependent energy expectation value between t = 100 and
500 a.u. The resulting frequencies are displayed in Fig. 4.
From the figure we can see that the Rabi frequencies from
the TD-EOM-CCSD simulations increase with the number
of helium atoms. The function A

√
nHe + C is least-squares

fitted to these frequencies to evaluate their scaling properties,
where nHe represents the number of helium atoms. The fitted
curve, also illustrated in Fig. 4, demonstrates that the Rabi
frequency increases as the square root of the total number of
helium atoms. As the number of subsystems in resonance with
the field increases, the frequency can therefore erroneously
appear to approach infinity, meaning the TD-EOM-CCSD
method gives a qualitatively incorrect representation of tran-
sitions occurring in multiple subsystems simultaneously. This
scaling behavior is similar to the physical square-root scaling
that can be observed when a single excitation is symmetri-
cally shared among N atoms experiencing effectively uniform
coupling and interaction, such as when multiatom Rydberg
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FIG. 4. TD-EOM-CCSD and TDCCSD simulations of distant
helium and beryllium atoms in an external field, with the two-center
ERIs and the AB partition of the TDCC left amplitudes set to zero.
The left panel shows results for one to five helium atoms and the
right panel results for one helium atom and zero to two beryllium
atoms. The Rabi frequencies � are obtained by least-squares fitting
the function A sin(�t + ϕ) + C to the real part of the time-dependent
energy expectation value. The function (2.34

√
nHe + 0.09) × 10−2

is obtained by least-squares fitting the function A
√

nHe + C to the
TD-EOM-CCSD Rabi frequencies shown in the left panel.

excitations are blocked by van der Waals interactions [31]. In
our simulations, however, the scaling effect is caused by the
limited flexibility of the TD-EOM-CCSD parametrization, as
removing the two-center ERIs has no discernible impact on
the results in Sec. IV B.

For all TDCCSD simulations, the Rabi frequencies shown
in Fig. 4 remain constant regardless of the number of helium
or beryllium atoms, as predicted in Sec. II C. In addition,
the Rabi frequencies also remain constant in TD-EOM-CCSD
simulations involving a helium atom and up to two beryllium
atoms, suggesting that Rabi frequencies in the TD-EOM-CC
simulation are insensitive to the number of off-resonant sub-
systems. Therefore, TD-EOM-CC simulations may provide
an accurate portrayal of a solitary Rabi oscillation in an ex-
tended quantum system while maintaining superior numerical
stability compared to TDCCSD simulations.

V. CONCLUSION

In this work a general theoretical framework for represent-
ing both the TD-EOM-CC and TDCC methods was presented,

incorporating the time derivatives of the cluster amplitudes as
auxiliary conditions. Through this framework, it was demon-
strated that the scaling properties of truncated TD-EOM-CC
methods are incorrect in general, while the scaling properties
are correct for truncated TDCC and field-free TD-EOM-CC
methods.

The TD-EOM-CCSD method was implemented in the ele-
mentary basis and used to numerically compare the scaling
properties of the TD-EOM-CCSD and TDCCSD methods
through simulations of collective Rabi oscillations. The sim-
ulations revealed that the TD-EOM-CCSD method gives a
qualitatively incorrect representation of collective Rabi oscil-
lations, since the Rabi frequency increases with the number of
subsystems in resonance with the external field. Nevertheless,
the results also indicate that truncated TD-EOM-CC methods
can be suitable for simulating solitary Rabi oscillations in
extended quantum systems.

All TD-EOM-CCSD simulations were successfully com-
pleted, while the regular TDCC simulations of collective
Rabi oscillations in distant subsystems failed due to the clus-
ter and left amplitudes blowing up. Despite this, the initial
stages of the TDCCSD simulations displayed the correct
scaling properties, as predicted by Sec. II C, suggesting that
the TDCC method can be suitable for simulating collec-
tive transitions in extended systems, as long as complete
population inversion is avoided. Furthermore, it was demon-
strated that the numerical stability of the TDCC simulations
can be enhanced by ensuring that all two-center ERIs are
precisely zero and eliminating the two-subsystem deexcited
partition of the left amplitudes. However, this approach is
not suitable when simulating collective Rabi oscillations in
systems that necessitate the description of interaction between
subsystems.

In conclusion, we propose that further research should be
dedicated to the development of approximate methods that can
provide a qualitatively correct description of collective Rabi
oscillations, even when the interaction between the subsys-
tems is nonzero.
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