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By numerically solving the time-dependent Schrödinger equation, we investigate the harmonic emission of
H2

+ with a large internuclear distance in the midinfrared laser field. We find that multiple minima are observed in
the high-order harmonic spectra. As the laser wavelength and intensity increase, the harmonic minima gradually
shift to the high-energy region, which is different from the position of the minima predicted by the originally
studied two-center interference. We modify the formula so that the position of the minimum yield of high-
order harmonics generated at large internuclear distances can be accurately interpreted by our modified formula.
Consequently, by using the harmonic minimum, it is feasible to determine the parameters of the driving laser and
the bond length of the molecule. Additionally, we discuss the impact of nuclear motion and laser pulse duration
on the position of harmonic minimum.
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I. INTRODUCTION

A high-order harmonic will be generated when atoms,
molecules, and solid materials are irradiated by a strong laser
pulse [1–7]. As the harmonic energy increases, the intensity
of the harmonic spectrum shows a plateau structure. There-
fore, high-order harmonics are desktop coherent light sources
whose wavelengths range from extreme ultraviolet to soft x
rays [8–11]. Due to a plateau that appears in a wide frequency
range with roughly the same intensity, high-order harmon-
ics are used to generate ultrashort attosecond laser pulses
[12–14], which could be one of the most powerful tools to
detect ultrafast electronic dynamics [15–20].

The semiclassical three-step model [21] provides a clear
explanation for how high-order harmonic generation works:
Through tunnel ionization, the intense laser field rips a valence
electron off an atom or molecule. The ionized electron is
accelerated in the laser field, which soon reverses its sign and
returns to the parent ion, then emits a harmonic photon. From
the perspective of the emission mechanism, one can find that
the instantaneous structural characteristics of the atoms and
molecules are encoded in the harmonic spectra. The recollid-
ing electron acts as a probe pulse, and the photons that are
released serve as the signal that communicates information
about the molecule. Therefore, the electronic orbitals of the
molecule are imaged by a tomography scheme using high-
order harmonics [17,22].

One important application of harmonics in molecular struc-
ture parameter detection is probing the internuclear distance
using the harmonic minimum. The local minimum features
in harmonic spectra have been widely investigated [23–29].
Higuet et al. [25] investigated the Cooper-like minimum of the
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harmonic spectra from an argon atom irradiated by a strong
laser field. They found that the harmonic minimum is unaf-
fected by the laser parameters. For the molecular harmonic,
Smirnova et al. [26] found the harmonic minimum is gener-
ated from the interference of multiple electronic orbitals. The
generation of this minimum is not sensitive to the alignment of
the molecules. The parameters of the driving laser pulse play
an important role in the position of the harmonic minimum.

Another kind of harmonic minimum is generated from
the interference of the two centers in a diatomic molecule
[30–35]. When the ionized wave packet returns to the molec-
ular ion, two harmonic sources are generated due to the
rescattering with different nuclei. The accumulated phase dif-
ference between the two central harmonics is pR cos θ . Here,
p = 2π h̄/λ [35] is the amplitude of the electron momentum,
R is the distance between two nuclei, and θ is the angle be-
tween the molecular axis and the laser polarization direction.
h̄ is the reduced Planck constant, and λ is the de Broglie wave-
length. The minima appear in the harmonic spectrum when the
equation is satisfied. There is a clear correspondence between
the position of the harmonic minimum and the bond length of
the molecules. Since the energy of the harmonic minimum is
not sensitive to the laser parameters, it is possible to probe the
molecular bond length with the harmonic minimum.

Since this phenomenon was first observed by Lein et al.
[34–36], it has been studied theoretically and experimentally.
Recently, it was found that the cutoff energy of the harmonic
emission plateau can be greatly expanded for long-range
molecular ions. Therefore, research on high-order harmonic
generation from long-range molecular ions is increasing. Cui
et al. investigated high-order harmonic generation of H2

+
and HeH2+ [37] (see also the work by Han and Madsen
[38]). They found that excited states play an important role
in high-order harmonic generation, especially in the case of
large bond lengths. Theoretical investigations of H2

+ at large
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internuclear distances provide a comprehensive approach to
explore the strong-field ionization and high-order harmonic
generation mechanisms in atoms and molecules [39–46].
Bandrauk and colleagues [39,40] discussed the impact of
internuclear distance on strong-field ionization in H2

+. It is
worth noting that recently, Silva et al. [44] discussed the influ-
ence of the laser electric field on the dissociation of diatomic
molecules. They showed that light induced the generation of
permanent dipoles to produce even harmonics. Our research
focuses on the influence of the laser field on the minimum po-
sition of the H2

+ harmonic spectrum with a large internuclear
distance. In this work, the harmonic minima of long-range
molecular ions are systematically investigated. As the laser’s
wavelength and intensity increase, the harmonic minimum
progressively moves toward the high-energy region. With the
different local area analyses and the time-frequency analysis
of the harmonic, we explain the reasons for the variation of
these minima with the laser parameters. Our updated two-
center interference formula accurately predicts the position
of minimum at a large internuclear distance. This paper is
organized as follows: Sec. II discusses the numerical methods
used in this paper, Sec. III presents the harmonic emission
spectra and the mechanism analysis of the minimum shift,
and the last section summarizes the paper’s content. (Unless
otherwise stated, atomic units are used throughout this paper.)

II. SCHEME AND THEORETICAL METHOD

In the electric dipole approximation and the velocity gauge,
the time-dependent Schrödinger equation for H2

+ is [47,48]

i
∂

∂t
ψ (x, t ) = H (x, t )ψ (x, t ). (1)

In the case of fixed nuclei, the Hamiltonian operator of the
system is

H (x, t ) = p2

2
+ V (x) + pA(t )

= p2

2
+ −1√

(x − R/2)2 + a

+ −1√
(x + R/2)2 + a

+ pA(t ). (2)

In the case of nuclear motion, the Hamiltonian operator of
the system is [49]

H ′(x, t ) = p2

2
+ V ′(x) + pA(t )

= p2

2
+ −1√

(x + R1(t ))2 + a′

+ −1√
(x + R2(t ))2 + a′

+ pA(t ). (3)

It should be pointed out that the solution given by Eq. (3)
is an approximation considering the motion of the nuclei.
Corso et al. verified the effectiveness of harmonic calcula-
tions by comparing the method using the three-dimensional
Schrödinger equation with this scheme [49]. For higher in-
tensity and longer pulses, harmonic emission becomes more

FIG. 1. (a) The effect of different laser-field amplitudes on har-
monic energy and intensity for a given laser frequency. (b) Variation
of harmonic intensity with driving laser amplitude from 0.04 to
0.048.

complex [50,51] due to factors such as increased ionization
and the complexity of nuclear dynamics. Therefore, further
improvement of this scheme [49] is needed. However, the
driving laser pulse used in our study is short, and the intensity
is not high, so we adopt Eq. (3) to study the change in the
minimum position in the case of nuclear motion.

Here, R(t ) = R + �R sin(ωNt ), R1(t ) = −R2(t ) =
R(t )/2, the soft-core parameter a = 2.1, a′ = 2, ωN is
the oscillation frequency, and internuclear distance R = 9,
and the nuclei displacement from the nuclear position is
�R = 0.15 [49]. The corresponding ground-state energy of
the system is − 16.66 eV [52].

The vector potential is A(t ) = − ∫
E(t )dt , where E(t )

is the linearly polarized laser electric field: E(t ) =
eE0 f (t ) sin(ω0t ). Here, E0 and ω0 are the peak amplitude and
angular frequency of the laser electric field, and e is a unit
vector along the x axis. The envelope of the laser pulse is
f (t ) = sin2(ω0t/2N ), where N is the period number of the
laser pulse.

The time-dependent wave function is obtained with the
numerical solution by using the split-operator scheme [48].
By using the time-dependent wave function, the dipole in
acceleration form can be calculated as

a(t ) = d2

dt2
〈ψ (x, t )|x|ψ (x, t )〉

= 〈ψ (x, t )| − dV (x)

dx
− E(t )|ψ (x, t )〉. (4)

The harmonic spectra are obtained with Fourier transform
of the time-dependent dipole:

P(ω) ∝
∣∣∣∣ 1

ω2(t f − ti )

∫ t f

ti

a(t ) exp(−iωt )dt

∣∣∣∣2 (5)

III. RESULTS AND DISCUSSION

The harmonic spectra generated by H2
+ are presented in

Fig. 1(a). The frequency of the driving laser is 0.019, N = 2,
and the peak amplitudes of the laser fields are 0.04, 0.045,
0.05, 0.055, and 0.06. For harmonic spectra generated from
a driving laser with different intensities, one can clearly ob-
serve the minima. It is worth noting that, as the driving laser
amplitude increases, the harmonic minima shift continuously.
In order to observe the significance of variations in harmonic
minima, we calculated the harmonic spectra by changing the
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FIG. 2. (a) The harmonic intensity versus harmonic energy for
various laser frequencies at a given laser intensity for N = 2.
(b) Variation of harmonic intensity with laser frequency from 0.018
to 0.026 for N = 2.

electric-field peak amplitude from E0 = 0.04 to 0.048 with
a step size of 0.0002, as shown in Fig. 1(b). We discovered
that the harmonic minimum gradually advances towards the
high-energy area as the laser intensity rises.

Furthermore, we investigate the role of the driving laser
frequency in the harmonic minimum. Figure 2(a) presents
the harmonic emission spectra with the same laser intensity
and different frequencies. The peak amplitude of the laser
pulse is 0.05. The frequencies of the laser field are 0.018,
0.021, 0.024, 0.027, and 0.030. For a laser with different fre-
quencies, the minima are also found in the harmonic spectra.
Moreover, the position of the harmonic minimum is vastly dif-
ferent. As the driving laser frequency increases, the number of
harmonic minima decreases. We further systematically inves-
tigate the variation of the harmonic intensity with the driving
laser frequency in the range of 0.018 to 0.026. Our research
demonstrates that as laser frequency increases, the harmonic
minimum steadily moves into the low-energy region.

According to the aforementioned research, as laser in-
tensity increases or driving laser frequency decreases, the
harmonic minimum position moves into the high-energy zone.
This behavior is similar to the ponderomotive energy of
electrons for given driving laser parameters: Up = E2

0 /(4ω2
0 ).

Consequently, the behavior of the harmonic emission spec-
trum with the same Up as the laser pulse is investigated.
The corresponding results are presented in Fig. 3. The laser
frequencies are 0.019, 0.021, 0.023, 0.025, and 0.028. Since
equal Up is selected, the cutoff frequency of the plateau ap-
pears at the same position. More importantly, the position
of the minimum of the harmonic spectrum is the same. The
positions of the harmonic minima are around 31 and 68 eV.
We examined these minima from a time-domain perspective
to observe the minima’s properties more thoroughly. The peak
amplitude of the laser electric field is 0.045, N = 2, and
the frequency of the driving laser is 0.019. The harmonic
spectrum of H2

+ irradiated by a laser pulse is presented in
Fig. 4(a). Two minima exist in the harmonic emission spec-
trum, and their energies are 47 and 87 eV. Moreover, the
photon energy distribution of the minimum in the high-energy
region (87 eV) is much wider. Furthermore, using time-
frequency analysis [Fig. 4(b)], three minima are observed. The
energies of the minima are 47, 87, and 86.6 eV. In particular,
in the high-energy region, there is a minimum for each of the
long and short trajectories, which causes this minimum to be
wider. This harmonic feature is significantly different from

FIG. 3. Harmonic spectra of H2
+ when Up = 1.12 a.u. and N =

2, with an internuclear distance of 9. The laser frequency and field
intensity are adjusted so that the value of Up is the same. The hori-
zontal axis is the photon energy, and the vertical axis is the harmonic
intensity. (a)–(e) represent laser frequencies of 0.019, 0.021, 0.023,
0.025, and 0.028 respectively. The blue dashed line represents the
position of the minima.

the commonly observed minimum (red dashed line), which is
calculated with the original two-center interference equation.

For the sake of gaining insight into the mechanism of the
variation of harmonic minima with laser pulse parameters,
we analyze the amplitude as well as phase of the two cen-
ters of the interference. The wave functions of the ground
state ψ1(x) and the first excited state ψ2(x) are presented
in Fig. 5(a). According to the multichannel dynamic model,
we can obtain the localized states’ wave functions of the
two centers by linearly combining the ground state and the
first excited state [37,38]: ψR(x) = (1/

√
2)[ψ1(x) − ψ2(x)],

ψL(x) = (1/
√

2)[ψ1(x) + ψ2(x)]. Simultaneously, the total

FIG. 4. Harmonic spectrum and time-frequency analysis of a
driving laser with E0 = 0.045, ω0 = 0.019, and N = 2 when the
driving laser illuminates H2

+ with an internuclear distance of 9.
(a) The harmonic spectrum between 30 and 115 eV is shown; the
horizontal axis is the harmonic intensity, and the vertical axis is the
photon energy. (b) The corresponding time-frequency analysis of (a).
The red dashed line represents the position of the minima obtained
from the original two-center interference model [35]. The red solid
circle, double circle, and semisolid circle correspond to the positions
of the minima obtained with our modified two-center interference
formula.
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FIG. 5. Results for dividing H2
+ into two localized states at a

laser-field amplitude of 0.045, a frequency of 0.019, and N = 2.
(a) The wave functions of the ground state (black dot-dashed line)
as well as the first excited state (red dotted line). The inset shows
the localized state on the left ψL (x) and the localized state on the
right ψR(x). (b) The harmonic spectra of the right-hand part (IR), the
left-hand part (IL), and the two localized states together (I). The red
solid circle, double circle, and semisolid circle represent the positions
of the minima. (c) The time-dependent population of ψL (x) (black
solid line) and ψR(x) (red dotted line). (d) The phase of the left
nuclei φL (black triangles) and the phase of the right nuclei φR (red
triangles).

wave function can be expressed as

ψ (x, t ) = CLψL(x) + CRψR(x) + ψres (x, t ), (6)

where CR(t ) = 〈ψR(x)|ψ (x, t )〉, CL(t ) = 〈ψL(x)|ψ (x, t )〉, and
ψres (x, t ) is the residual part of ψ (x, t ), whose value is small
enough to be roughly disregarded.

According to Eq. (6), the local wave functions for the
two centers of H2

+ are presented in the inset of Fig. 5(a).
With a large internuclear distance, the two centers of H2

+
can be well separated by taking advantage of this scheme. By
using the wave-function expansion scheme, one can obtain
the harmonic emission spectra of two localized states. The
corresponding spectra are presented in Fig. 5(b). Moreover,
it can be seen that the harmonic spectra generated by the
two localized states have nearly the same intensity, and no
minimum is observed. However, the obvious minima at 47,
87, and 86.6 eV can be observed in the harmonics generated
by the coherence of the two localized states. The interference
of the high-order harmonics is related to the population and
phase in each localized state. Therefore, we further calculate
the time-dependent evolution of the population and phase of
these two parts. The time-dependent populations of the two
parts are presented in Fig. 5(c). In addition, we find that
the populations of these two localized states oscillate around
0.5. Accordingly, the harmonic intensities generated by these
two localized states are close. However, the phases of two
localized states are unequal, as shown by Fig. 5(d).

To illustrate the physical mechanism of change in the posi-
tion of the minimum, we further calculate the time-dependent

FIG. 6. The relationship between the phase difference between
two local states and the vector potential when E0 = 0.045, ω0 =
0.019, N = 2, and the internuclear distance R = 9. (a) The phase
difference between the two parts and the vector potential of the
laser pulse. The moments of the red solid circle, double circle,
and semisolid circle correspond to the moments at the position of
the minima in Fig. 4(b). (b) The phase difference between the two
localized states and the result calculated using A(t )R, R = 9.

evolution, as shown by the red solid line in Fig. 6(a). It is
seen that the phase difference oscillates with time. The phase
difference reaches the maximum at an instant of 328 a.u.
The effect of this phase difference causes the interference
minima to shift. The conventional two-centered minima po-
sition is obtained with the equation R cos θ/λ = (n − 1/2)
(n = 1, 2, 3, . . .). In this model, the phase differences be-
tween the two localized states are not considered. In this
condition, the obtained minimum’s position is not consis-
tent with numerical simulation. Therefore, we modify the
formula for the harmonic minimum to R/λ + �
(t )/2π =
(n − 1/2) (n = 1, 2, 3, . . .). Inserting the phase differences
of the respective three moments in Fig. 6(a) into the modi-
fied equation, the positions of the three minima in Fig. 5(b)
can be obtained separately. Here, R = 9, and Ip = −0.612.
Specifically, when time is 404 a.u., Fig. 6(a) indicates that the
phase is �
(t ) = φL − φR = 11.28π . Here, φL and φR can
be written as φi = atan ( imag(ai ), real(ai )) (i = L, R), where
ai(t ) = d2

dt2 〈ψi(x, t )|x|ψi(x, t )〉 (i = L, R). Adding the phase
difference to the modified formula, where n = 4, according to
formulas p = 2π h̄/λ and E = p2/2 + Ip, we can get the min-
imum position at 47 eV. Here, Ip is the ground-state energy.
Similarly, when time is 447 a.u., according to the red double
circle in Fig. 6(a) with phase difference �
(t ) = −1.517π ,
which is carried into the modified equation, where n = 3,
we can obtain the minimum position at 87 eV. When time is
525 a.u., according to the red semisolid circle in Fig. 6(a) with
phase difference �
(t ) = −5.5π and n = 1 in the formula,
we can obtain the minimum at 86.6 eV. As elaborated above,
the position of the minimum calculated according to the mod-
ified equation can be well matched with the position of the
harmonic spectrum minima.

The above analysis indicates that this phase difference
�
(t ) is related to the laser parameters. For the field-free con-
dition, the phase difference between the two localized states
is zero. With the action of the driving laser, a new potential
energy is induced, and this potential energy can be expressed
for both localized states as

∫ t ′

−∞ −E (t )Rdt , where t ′ is the

instant of emitting light. Since A(t ′) = − ∫ t ′

−∞ E (t )dt , this

potential energy can be expressed as
∫ t ′

−∞ E (t )Rdt = A(t ′)R.
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FIG. 7. The minimum energy variation at different internuclear
distances when E0 = 0.045, ω0 = 0.019, and N = 2. The red dashed
circles represent the minima calculated using the modified formula.
The black arrows calculate the minima of energy according to the
original two-center interference formula. (a) R = 1.4 (Ip = −1.28),
(b) R = 7 (Ip = −0.64), and (c) R = 9 (Ip = −0.612).

The laser electric field induces a potential-energy difference
between the two localized states, resulting in a nonzero
phase difference between these two parts, and this phase
difference can be expressed as �
(t ) = A(t )R. In Fig. 6(b),
we give the phase difference �
(t ) = φL − φR and the nu-
merical calculation A(t )R, from which we can confirm they
are consistent. Thus, the energy of the harmonic minima for
molecular ions with large internuclear distance is tightly re-
lated to the laser parameters and can be explained by applying
our modified equation:

R/λ + [A(t )R]/2π = (n − 1/2) (n = 1, 2, 3, ...). (7)

To verify the accuracy of the modified formula further, we
calculate the harmonic emission spectra for R = 1.4, R = 7,
and R = 9, where Ip with different internuclear distances is
give in Ref. [52]. The harmonic emission spectra with dif-
ferent internuclear distances are represented in Fig. 7. It can
be observed that the cutoff energy changes because of the
different Ip. More importantly, the position of the minima in
the harmonic spectrum can be calculated using the modified
two-center interference formula. At R = 1.4 [Fig. 7(a)], the
minimum’s position obtained from the original two-center
interference is at 95 eV (n = 1), while the modified energy is
at 93 eV (n = 1), which are nearly coincident results. When
R = 7 [Fig. 7(b)], the original equation calculates the minima
at 20 eV (n = 1), 42 eV (n = 2), and 86 eV (n = 3), while
the modified equation calculates the minima at 28 eV (n =
5), 42 eV (n = 4), and 77 eV (n = 3), respectively. When
R = 9 [Fig. 7(c)], the minima calculated are 18 eV (n = 1),
32 eV (n = 2), and 58 eV (n = 3) using the original equation,
whereas the minima’s positions calculated using the modified
formula are 47 eV (n = 4), 87 eV (n = 3), and 86.6 eV (n =
1), respectively. The above results suggest that the minima
of the harmonic spectrum and the results calculated using the
modified two-center interference formula are in good agree-
ment with each other. It is therefore concluded that the effect

FIG. 8. (a) and (c) Harmonic spectra and (b) and (d) time-
frequency analysis for N = 6 and N = 12, respectively. The red
dashed lines represent the harmonic energy positions (58, 98 eV) ob-
tained in Ref. [35]. The red circles represent the minimum positions
calculated using Eq. (7).

of �
(t ) on the position of the minima can be approximately
neglected in the case of small internuclear distance, whereas it
cannot be neglected in the case of large internuclear distance.

Through our analysis, we clearly observe the dependence
of the H2

+ harmonic minimum position on the laser pa-
rameters. Furthermore, we study the influence of laser-pulse
duration on the harmonic minimum. For E0 = 0.045 and
ω0 = 0.019, a laser field with a duration of six optical cycles
(N = 6) interacts with H2

+ at R = 9. The resulting harmonic
spectrum [Fig. 8(a)] does not present the minimum position.
However, time-frequency analysis [Fig. 8(b)] reveals multiple
minima at different emission times. The calculated minimum
positions from Ref. [35] at 58 and 98 eV do not fully match
the observed minima in the time-frequency analysis. Using
Eq. (7), the emission time can be calculated as 928.70, 948.53,
958.44, 1150.14, 1265.81, 1312.09, 1421.15, and 1490.56 a.u.
The corresponding harmonic energies are 111, 58, 141, 138.3,
77.13, 101.2, 50, and 64.45 eV, respectively [shown by the
red circles in Fig. 8(b)]. This result corresponds well with the
positions of minima in the time-frequency analysis. When the
duration of the laser field is extended to 12 optical cycles (N =
12), the position of the minimum in the harmonic emission
spectrum is not observed [Fig. 8(c)]. However, through time-
frequency analysis, the minimum position of the emission
trajectory [Fig. 8(d)] can still be identified. The red dashed
lines in Fig. 8(d) are the minimum positions calculated in
Ref. [35] (58 and 98 eV). Therefore, neglecting the laser-field
effect leads to incomplete agreement between the minimum
positions calculated and the minima observed in the time-
frequency analysis. However, our Eq. (7), which considers the
laser-field effect, shows good agreement with the minimum
positions in the time-frequency analysis. It should be noted
that the time dependence of [A(t )R]/2π in Eq. (7) leads to
variations in the positions of the minima during the harmonic
emission. Therefore, the contribution from different optical
periods makes the minimum positions of the harmonic spectra
more complicated.
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FIG. 9. (a) High-order harmonic generation (HHG) at a fixed
internuclear distance for laser parameters N = 2, E0 = 0.045, and
ω0 = 0.019. (b)–(e) In the case of nuclear motions, the high har-
monic spectra, the time-frequency analysis, the time-dependent inter-
nuclear distance, and the time-dependent (A(t )R)/2π , respectively.

The above analysis is carried out at a fixed internuclear
distance; however, for molecular high-order harmonic gener-
ation, nuclear motion during the ionization and recombination
steps plays an important role. The importance of nuclear mo-
tion in understanding the dynamics of H2

+ driven by strong
laser pulses is represented in [45,49,53–59]. We further dis-
cuss the effect of the field with a frequency of 0.019, an
amplitude of 0.045, and N = 2 on H2

+ with an initial in-
ternuclear distance of 9 considering the nuclear motion. The
method employed is based on Eq. (3). Figure 9(a) shows the
harmonic spectrum under the same laser parameters with a
fixed internuclear distance. Notably, the harmonic spectrum
exhibits minima near 47 and 87 eV, which differ from 58
and 98 eV [indicated by the red dashed lines in Fig. 9(a)].
According to Eq. (3), the harmonic spectrum in the case of
nuclear motion is obtained, as shown in Fig. 9(b). It can be
observed that the three minimum positions are 22.01, 50.99,
and 92.01 eV. However, these minimum positions differ from
those obtained with a fixed internuclear distance. This is be-
cause, when accounting for nuclear motion, the positions of
the two nuclei themselves change, resulting in an accumula-
tion of an additional phase. Therefore, in the case of nuclear
motion, Eq. (7) is rewritten as

R(ti )/λ +
[∫ ti

−∞
−R(t )E (t )dt

]
/2π

= (n − 1/2) (n = 1, 2, 3, . . .), (8)

where ti represents the recollision time. To confirm this,
we conducted a time-frequency analysis and found that the
minima position at 22.01 eV [red circle in Fig. 9(c)] cor-
responds to a time of 362, R(t = 362) = 9.02 [red circle in
Fig. 9(d)]. After combining the red circle position in Fig. 9(e)
([

∫ ti
−∞ −R(t )E (t )dt]/2π = 22.7), using n = 5, and substi-

tuting those into Eq. (8), we obtain λ = 10.19. According
to p = 2π h̄/λ and ε = p2/2 + Ip, the minimum position is
21.98 eV, which is consistent with the observed minimum
position. When the emission time is 413 [red box in Fig. 9(c)],
[
∫ ti
−∞ −R(t )E (t )dt]/2π = 7.8 [red box in Fig. 9(e)], and

R(t = 413) = 8.95 [red box in Fig. 9(d)], for n = 4, the mini-
mum position is 50.99 eV. When the emission time is 438 [red
star in Fig. 9(c)], [

∫ ti
−∞ −R(t )E (t )dt]/2π = 0.99 [red star in

Fig. 9(e)], and R(t = 438) = 8.93 [red star in Fig. 9(d)], for
n = 4, the minimum position is 92.01 eV. Those values corre-
spond well with the positions of the minima. From the above
analysis, it can be seen that in the case of nuclear motion, after
the field action, it is necessary to include the additional accu-
mulated phase due to the change in the distance between the
two nuclei during the nuclear motion. The minimum position
calculated with Eq. (8) is in good agreement with that from
the harmonic spectrum. In conclusion, when nuclear motion
is considered, the positions of the minima in the harmonic
spectrum do not match the positions at 58 and 98 eV [indi-
cated by the red dashed line in Fig. 9(c)] obtained without
considering nuclear motion. Therefore, while the minima may
change when considering the nuclear motion, accounting for
the laser-field effect and internuclear distance with Eq. (8)
enables accurate determination of the minimum positions.

Through the above analysis, we found that both the pulse
duration and the nuclear motion affect the observation of the
minimum position of the harmonic spectrum. Therefore, in
order to observe the phenomenon discovered in our work, it
is necessary to apply an ultrashort pulse to the alignment H2

+
experimentally and add a prepulse to make it dissociate into a
state with a large internuclear distance.

IV. CONCLUSIONS

In conclusion, we theoretically studied the harmonic min-
ima of H2

+ with a large internuclear distance under the action
of the midinfrared driving laser. For the same intensity of laser
pulse, the position of the H2

+ harmonic minimum decreases
with the increase of the driving laser frequency. At the same
laser frequency, the energy of the harmonic minimum de-
creases with the increase of the peak amplitude of the driving
laser electric field. With the analysis of the amplitude and
phase of the localized states, we found that the wavelength of
the harmonic minimum is determined by R/λ + �
(t )/2π =
(n − 1/2), where n = 1, 2, 3, . . .. In particular, the effect of
�
(t ) on the position of the minimum cannot be ignored
in the case of a large internuclear distance. More in-depth
results showed that when nuclear motion is taken into account,
the position of the minimum driven by low-intensity and ul-
trashort pulses satisfies R(ti )/λ + [

∫ ti
−∞ −R(t )E (t )dt]/2π =

(n − 1/2), n = 1, 2, 3 . . ..
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