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Phase sensitivity of the pair-creation process in colliding laser pulses
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We examine the electron-positron pair-creation process from the quantum vacuum triggered by two colliding
laser beams in the presence of a nuclear binding potential. Once the two pulses overlap, they form a standing-
wave pattern with nodes or antinodes in the region where the nucleus is placed. As the resulting spatial intensity
pattern depends on the phase between both fields, it can be used to control the pair-creation yield. It turns out that
the ground-state capture of the created electrons can actually be largest for those laser phases that lead to nodes
(dark intensity regions) where the nucleus is located and not for those that lead to antinodes (bright intensity
regions). Furthermore, this phase can be used to control selectively into which excited state the created electrons
are predominately captured.
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I. INTRODUCTION

The quantum vacuum state is a fundamental concept in
quantum field theory referring to the lowest energy state
[1,2]. This state is actually highly dynamic and has numer-
ous interesting features, such as, vacuum fluctuations where
particle-antiparticle pairs continuously pop in and out of exis-
tence due to the inherent uncertainty of quantum mechanics.
The concept of the vacuum plays a crucial role in the renor-
malization process of quantum field theory [3], which is a
technique used to handle infinite or divergent quantities in
calculations of quantum field theories. It is also central to
the Casimir effect [4–7], where quantum vacuum fluctuations
between closely spaced conductive plates lead to attractive
or even repulsive force between the plates. The most rel-
evant feature in the present work is the phenomenon that
excitations of the quantum vacuum can lead to particle cre-
ation and annihilation processes, especially in high-energy
or intense electromagnetic fields [8,9]. These processes play
a significant role in various physical phenomena, such as
pair production in strong electric fields or Hawking radiation
near black holes [10]. An understanding of the properties
and behavior of the quantum vacuum is essential in many
areas of theoretical and experimental physics, ranging from
quantum electrodynamics to the study of particle physics and
cosmology [11].

Traditionally, there have been at least two major ways of
probing the vacuum’s properties. In the first one, the strong
external field was generated by the superposition of two
Coulombic fields as characteristic of ultrarelativistic collision
of two highly charged nuclei [12–16]. Here during the short
crossing time of the two nuclei, the sum of the nuclear charge
numbers can exceed 173, which for an extended nucleus with
a finite radius leads to a supercritical field (137 for a point
nucleus). This supercritical field can then break down the
vacuum state, leading to the creation of an electron-positron
pair. The theoretical as well as experimental interest in these

processes was spurred in the past few decades by the
relativistic heavy-ion facilities AGS (Alternating Gradient
Synchrotron) and RHIC (Relativistic Heavy Ion Collider) at
Brookhaven, and SPS (Super Proton Synchrotron) and LHC
(Large Hadron Collider) at CERN. Of central importance
to all of these investigations is the Sauter-Schwinger effect
[17–19], where a spatially homogeneous static electric field
generates electron-positron pairs from the vacuum state.
Many theoretical and computational studies have focused on
the electrostatic situation in which a supercritical field (such
as that provided by highly charged nuclei) can create particles
pairs [20–22].

In the second way of probing the vacuum’s properties, the
excitations were provided by electromagnetic fields [23–26].
While it is well known that independent of its strength,
a single plane-wave field itself is not capable of break-
ing down the vacuum, there are several electromagnetic or
even electrostatic field configurations under which the pair-
creation process can become possible. Due to the promising
development of new laser systems with very high power,
several theoretical studies have focused on examining the
vacuum’s breakdown process triggered by two or several
mutually colliding laser beams. Since the early pioneering
multiphoton-induced pair-creation experiments at the Stan-
ford Linear Accelerator Center (SLAC) in 1994 [27], several
worldwide laboratories, such as the Extreme-Light Infrastruc-
ture [28], the Center for Relativistic Laser Science [29], the
SLAC [30], the Rutherford Appleton Laboratory [31], and
the European X-Ray Free-Electron Laser [32], have been ex-
ploring new means to probe the quantum vacuum with very
intense electromagnetic radiation fields. In most theoretical
studies, the spatial dependence of the laser beams was often
neglected, and the fields were approximated by periodically
oscillatory electric field pulses [33]. Early perturbative an-
alytical studies of this simplified geometry go back to the
1970s [34–38]. There have also been many interesting stud-
ies in which the space-time structures of the optimum field
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configuration that maximizes the created particle yield were
explored [39–43].

In addition to probing the vacuum state solely with either
static Coulomb fields or electromagnetic radiation, effective
combinations of both environments have also been explored
[44,45]. In fact, laser-assisted electron-positron pair genera-
tion using a nucleus provides numerous additional parameters
to control the dynamics, including the possibility of exploiting
resonances. Therefore, resonant processes are excellent can-
didates for probing the predictions of QED in the presence of
a strong external field. Although there have been several in-
vestigations [46–51] that were devoted to these laser-nucleus
configurations, a complete description of this problem is still
a challenge, and the resonant situation in particular is far from
complete. The resonant laser-assisted Bethe-Heitler process
[52] for the case of a weak monochromatic [53,54] and pulsed
[55,56] plane-wave field was also examined.

In the present work, we explore a simple model system
to probe the quantum vacuum state using both the presence
of a highly charged nucleus as well as two colliding electro-
magnetic fields. We examine an interesting regime in which
neither the nucleus by itself nor the two colliding laser fields
are sufficient to create electron-positron pairs. In a recent
study [57], the impact of a highly charged nucleus in the
focal region of two mutually colliding laser pulses was studied
computationally for a simple model system. Here the possi-
bility of the subsequent capture of the created electrons by
the nucleus dynamically enhanced the final particle yield. It
was predicted that the mutual phase relationship between the
two laser beams can have a pivotal impact on the pair-creation
process.

In this work, we examine these spatiotemporal effects from
a broader perspective by focusing on the relationship between
the length scales provided by the spatial inhomogeneity of the
laser, and the extension of the lowest-lying bound states of the
nucleus. For situations in which the nucleus is centered in a
node of the two lasers’ standing-wave pattern, it is counterin-
tuitively predicted that the pair creation can be larger than for
a configuration where the nucleus is placed at a low-intensity
node instead of the high-intensity antinode. The dynamics
is also modeled phenomenologically to allow us to vary its
characteristic parameters.

The manuscript is structured as follows. In Sec. II we
review our methodology of computational quantum field the-
ory and introduce the model system for the nucleus with
its energy level structure. In the absence of the nucleus,
the laser-vacuum interaction is characterized by a reversible
single-beam Volkov-like mechanism as well as a two-beam
dressing mechanism. In Sec. III we show how the pair-
creation process can be controlled by the phase between both
beams. Here the relationship between the nuclear extension
and the lasers’ wavelength leads to qualitatively different re-
sponses of the vacuum. In Sec. IV we track the origin of the
counterintuitive phase dependence of the ground-state capture
rate to the behavior of a single transition matrix element. In
Sec. V we derive an analytical expression for the interlaser
phase dependence of the pair-creation rate. In Sec. VI our
main findings are generalized to the multiphoton pair-creation
process. We complete this article with an outlook on further
challenges in Sec. VII.

II. MODEL SYSTEM FOR THE NUCLEUS AND
THE FIELD CONFIGURATION

In Sec. II A, we will briefly review first our particular ap-
proach based on computational quantum field theory to model
the pair-creation process. In Sec. II B we describe the model
of the two colliding laser beams, and in Sec. II C we show the
difference between the fully reversible single- and two-beam
dressing of the vacuum state. In Sec. II D we discuss the
energy level structure introduced to the dynamics by a model
nuclear field.

A. Numerical quantum field theory

In the framework of computational quantum field theory
(CQFT) [58], all dynamical features of the pair-creation pro-
cess are provided by the electron-positron field operator �,
whose space-time evolution is governed by the Dirac equation
ih̄∂�/∂t = H�. Here the usual Hamiltonian in one spatial
dimension is given by

H = cσ1[p − e A(z, t )/c] + m c2σ3 + e V (z), (2.1)

where A(z, t ) models the external electromagnetic fields, V (z)
is the binding potential of the nucleus, σ1 and σ3 are the two
2 × 2 Pauli matrices, e is the positive amount of the electron’s
charge, m is the electron’s mass, and c is the speed of light.
The (single-particle) energy eigenstates of the Hamiltonian
H0 ≡ cσ1 p + mc2σ3 + eV (z) in the absence of the space-
time-dependent field A(z, t ), defined by H0|α〉 = Eα|α〉, can
be partitioned according to their energy into three groups. If
Eα � mc2, we denote these positive continuum energy states
as |p〉; if their energy is inside the mass gap, −mc2 < Eα <

mc2, we denote these discrete electronic bound states as |i〉;
and if their energy Eα � –mc2 is part of the negative energy
continuum, we denote these states as |n〉. If we introduce the
sets of (anticommuting) creation operators (B†

p, B†
i , D†

n) and
corresponding annihilation operators (Bp, Bi, Dn) associated
with these particular states, the mode expansion of the quan-
tum field operator is given by

�(t ) = �pBp(t )|p〉 + �iBi(t )|i〉 + �nD†
n(t )|n〉

= �pBp|p(t )〉 + �iBi|i(t )〉 + �nD†
n|n(t )〉, (2.2)

where |α(t )〉 is the single-particle solution to ih̄∂|α(t )〉/∂t =
H |α(t )〉 with the initial state |α(t = 0)〉 = |α〉.

We note that this particular mode expansion is different
from the traditional CQFT approach [13,58], where one usu-
ally uses field-free eigenstates of H0 with V = 0, labeled by
their (conserved) momentum. In this easier case, the corre-
sponding observables can be interpreted as the true quantities
after both A and V are turned off abruptly in time [59–66]. If
we use the orthogonality among the dressed eigenstates |α〉,
we can derive the time evolution of the operators as

Bp(t ) = �p′Bp′ 〈p|p′(t )〉 + �iBi〈p|i(t )〉 + �nD†
n〈p|n(t )〉,

(2.3a)

Bi(t ) = �p′Bp′ 〈i|p′(t )〉+�i′Bi′ 〈i|i′(t )〉 + �nD†
n〈i|n(t )〉,

(2.3b)

D†
n(t ) = �p′Bp′ 〈n|p′(t )〉 + �iBi〈n|i(t )〉 + �n′D†

n′ 〈n|n′(t )〉.
(2.3c)
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The set of all matrix elements Uα′,α (t ) ≡ 〈α′|α(t )〉 of the
unitary time evolution operator are the basic building blocks
of computational quantum field theory.

The initial quantum field theoretical state is given here
by the vacuum |�(t = 0)〉 = |VAC〉. Here |VAC〉 denotes
the vacuum state in the presence of the nucleus, defined as
Bp|VAC〉 = Bi|VAC〉 = Dn|VAC〉 = 0.

As a side remark, we note that traditionally, the vacuum
is described in the Dirac sea picture with a completely filled
continuum of states with negative energy. If an external field
is capable of transferring this population through the band
gap of energy 2mc2, this is interpreted as the creation of
electron-positron pairs. In our situation, due to the presence
of the potential, there are also electronic bound states within
this gap, which can also help the depletion process from the
lower continuum.

The total number of electrons N (e−, t ) and positrons
N (e+, t ) follow from the quantum field theoretical expectation
values

N (e−, t ) ≡ 〈�(t = 0)|�pB†
p(t )Bp(t )

+�iB
†
i (t )Bi(t )|�(t = 0)〉, (2.4a)

N (e+, t ) ≡ 〈�(t = 0)|�nD†
n(t )Dn(t )|�(t = 0)〉, (2.4b)

where we consistently have N (e−, t ) = N (e+, t ) ≡ N (t ) as
the result of the total charge conservation. If we insert the
specific initial state |�(t = 0)〉 = |VAC〉 into these expres-
sions and use the solutions Eqs. (2.3), we obtain N (e−, t ) =
�p�n|Up,n(t )|2 + �i�n|Ui,n(t )|2. This shows that for compu-
tational purposes, only the set of negative energy continuum
states |n〉 needs to be evolved. This set is the generalization of
the usual Dirac sea, but it includes here the important impact
of the nuclear field on these states. In fact, several of the
phase-based effects discussed below occur only as a result
of these crucial modifications to the usual Dirac sea by the
potential V (z).

The introduction of a time-dependent particle number dur-
ing the interaction is certainly a nontrivial issue, and numerous
very recent [64–66] and also older works [59–63] have been
devoted to this important topic. In the context of our com-
putational quantum field theory, the electron-positron field
operator is the central quantity. To obtain the true observable
density of physical positrons (electrons) at a given time t , one
must project this operator onto the corresponding submanifold
of instantaneous energy eigenstates associated with positrons
(electrons) at that moment in time. This is challenging due to
the inherent energy degeneracy of supercritical systems.

In several works, the force-free energy eigenstates of the
Dirac Hamiltonian are used as a basis to expand the field
operator [analogous to our Eq. (2.2)]. In this case, the resulting
time-dependent number of created particles has the following
meaning. It corresponds precisely to the true physical number
of particles only if all external fields were turned off simulta-
neously at that time. As the (unavoidable) time dependence of
(even an abrupt) turn-off shape of the potential triggers addi-
tional pair annihilation and creation processes, this particular
quantity describes (contains) both the true particles during the
interaction as well as the particles that would be created or

annihilated associated solely with a sudden turn-off process
of the field to zero.

As we take the static potential fully into account in our
expansion Eq. (2.2), we have to interpret the N (e−, t ) and
N (e+, t ) [defined in Eqs. (2.4)] as the true particle number
if the laser field is turned off abruptly at that time. As the
fields themselves are turned off smoothly in our dynamics [see
Eqs. (2.5)], N (e−, t ) and N (e+, t ) naturally become the true
particle after the interaction.

B. Electromagnetic field configuration and the vacuum’s
dynamical response

In general, the characteristic spatial and temporal scales for
the electron-positron dynamics are naturally provided by the
fermions’ Compton wavelength λ ≡ h̄/(mc) = 3.8 × 10−13

m and the time T ≡ h̄/(mc2) = 1.3 × 10−21 s. The corre-
sponding scales associated with the laser are its wavelength
λL = 2π/k and its optical period TL ≡ 2π/ω, which are
related to the speed of light c = λL/TL. To simulate the space-
time profile of the two ultrashort laser fields, we chose for the
left and right traveling vector potentials the form

Ar (z, t ) ≡ f (t )A0S(z − ct + z0) sin(ωt − kz + α),

(2.5a)

Al (z, t ) ≡ f (t )A0S(z + ct − z0) sin(ωt + kz). (2.5b)

As a consequence of the (1+1)-dimensional nature of our
model quantum field theory, the polarization direction is in
the z-direction. To approximately characterize the basic space-
time features of each laser beam, we chose its spatial shape
as S(z) ≡ {tanh[(z + dL )/wL] − tanh[(z − dL )/wL]}/2 with a
total extension of about 2dL. As the spatial ramp up and
down distance wL is chosen much less than dL, this pulse
resembles almost a rectangular profile, which simplifies the
interpretation of the pair creation and also the laser dressing
data computed below. The two beams are initially centered at
±z0. As their initial spacing 2z0 was chosen much larger than
their extension 2dL, initially the two pulses do not overlap in
space.

Similar to the spatial profile, the temporal shape is also
characterized by three temporal domains. Its turn-on for 0 �
t/TL � 5 is given as f (t ) = sin2[πt/(10TL )], which is then
followed by a constant plateau region 5 � t/TL � 20 with
f (t ) = 1. Finally, for 20 � t/TL � 25, the field is turned off,
f (t ) = cos2[π (t − 20TL )/(10TL )]. As the beams enter and
leave the interaction zone close to z = 0 due to their prop-
agation properties, there is no immediate computational or
physical necessity for having our beams turned on and off
in time. However, the inclusion of f (t ) helps us to better
understand the occurrence of the field-induced dressing of the
vacuum, as discussed below.

We choose for our total electromagnetic field configuration
the superposition A(z, t ; α) ≡ Ar (z, t ) + Al (z, t ).

As is customary in many theoretical investigations, this
field configuration with a plateau region was chosen for inter-
pretational convenience. Due to the purely temporal turn-on
represented by f (t ), it does not satisfy the (vacuum) Maxwell
equations. Also, the transverse nature of a true electromag-
netic field in three dimensions cannot be represented due to
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FIG. 1. Space-time resolved contour plot of the total electric
field associated with the two colliding field pulses of frequency ω =
0.5 mc2/h̄. The spatial parameters in units of the wavelength λL =
4πλ = 12.56λ are z0 = 12λL , dL = 4λL = 50.24λ, wL = 0.1λ =
0.007 962λL , and α = 0, leading to an antinode at z = 0 when both
pulses cross. Initially, the pulses are centered at z0 = ±12λL and
turned on and off over 5TL .

the spatial constraint of the dynamics, and there is no magnetic
field.

To better visualize the total field, we have displayed its
contour plot in Fig. 1 inside our numerical box of total length
L = 32λL extending from z = –16λL to 16λL. The particu-
lar choice for our field configuration leads to five different
temporal regions. The first and last regimes (I and V) are
characterized by the sine-squared-like temporal turn-on and
-off over five cycles. In region II (5 � t/TL � 8) the two fully
established pulses propagate shape invariant towards each
other. At a time approximately equal to t = (z0–dL )/c = 8TL,
the two wave fronts of the beams meet at z = 0, which en-
ter the overlap region III. Here they form a standing-wave
pattern with an antinode A(z, t ) ∼ sin(ωt ) cos(kz) for the in-
terpulse phase difference α = 0 and with a node A(z, t ) ∼
cos(ωt ) sin(kz) for α = π . During this dynamically most im-
portant region, the spatial overlap grows from zero [for time
(z0–dL )/c = 8TL] to a maximum of time t = (z0 + dL )/c =
12TL and then decreases back to zero at time (z0 + 2dL )/c =
16TL. In region IV (16 � t/TL � 20), the two pulses no longer
overlap and move away from each other until they are turned
off in region V (20 � t/TL � 25).

C. Single-beam Volkov dressing and two-beam
dressing of the vacuum

For a better comparison with the dynamical role of the
nucleus, we study here first the pair-creation process in the
absence of any nuclear field, V = 0. This will help us to esti-
mate the role and the characteristics of a temporary dressing
due to the sole laser-vacuum interaction for our parameters.

In Fig. 2 we graph the number of electron-positron
pairs N (t ) = �i〈B†

i (t )Bi(t )〉 + �p〈B†
p(t )Bp(t )〉 as a function

of time. N (t ) grows during the temporal turn-on region I

FIG. 2. The time dependence number of electron-positron pairs
N (e−, t ) during the interaction of the two colliding laser pulses
graphed in Fig. 1. The parameters in our numerical simulations are
the same as in Fig. 1.

(0 < t < 5TL ). As the match with the superimposed open
circles [proportional to f (t )2] in the figure shows, N (t ) is
proportional to the square of the instantaneous envelope of
A(t ). It is characterized first by the adiabatic transition into the
single-beam Volkov regime II, where N (t ) becomes constant
after t = 5TL.

This amount is directly proportional to the spatial ex-
tension of the laser pulse. This nonoscillatory regime II,
which can be modeled by the exact Volkov solution for
a single plane-wave field [67–70] associated with H =
cσ1[p − eAr (z, t )/c] + mc2σ3, is then followed by a qualita-
tively different oscillatory dressing regime III, associated with
the standing-wave region (8TL < t < 16TL ), when both fields
overlap. The nearly triangular envelope with maximum N (t )
at t = 12TL is characteristic of the resulting overlap area of
two nearly rectangular pulses that are moving through each
other. It also suggests that this particular two-beam dressing
is fully reversible. After the interaction, the final populations
N (t = 25TL ) = 6.45 × 10−6 for the antinode (α = 0) config-
uration, and N (t = 25TL ) = 6.03 × 10−6 for node (α = π ),
are both very small, which suggests that the chosen field
strengths A0 = 0.1 mc2/e were too small to generate any per-
manent particle pairs.

We note that in this case the two negligible final yields dis-
play also a very weak dependence on the phase α. To further
investigate, we conducted additional simulations for signifi-
cantly stronger fields, where the pair-creation process is no
longer negligible. Upon increasing the original field strength
A0 = 0.1 mc2/e by a factor of 10, the final yield increased by
almost six orders of magnitude. This is consistent with the
expected increase of the continuum-continuum transitions and
the irreversible creation of real particles beyond just dressing.
On the other hand, the disparity between the two configura-
tions for α = 0 and α = π remained consistently less than
3%, suggesting that in this case any nodal or antinodal pattern
at z = 0 is indeed irrelevant.

In contrast, below we will see that once the potential V (z)
is included, these fully reversible single- (Volkov-like) and
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FIG. 3. The spatial structure (in units of the Compton wavelength λ) of the spinor components of the ground state |E1〉, the first excited
state |E2〉, and two dressed negative continuum states |E〉 with negative and positive parity for energy close to −1.1 mc2. For comparison,
to indicate the spatial scale relevant for the laser interaction, we also graph the scaled and uplifted shape of the nuclear potential modeled
as V (z) = V0{tanh((z + d )/w) − tanh((z − d )/w)}/2, with V0 = −1.85 mc2, d = 1.95λ, and w = 0.3λ. The states |E〉 were obtained by
numerical diagonalization of the Dirac Hamiltonian c σ1 p + mc2 σ3 + eV (z) in a box of size L = 32λL = 401.92λ.

double-beam dressing structures [71] will be superimposed by
the irreversible creation of real particles.

D. Nuclear model potential and its energy structure

To simulate the dynamical impact of a binding field,
we introduce the spatially localized scalar potential V(z)
in the Dirac Eq. (2.1). It is characterized by an exten-
sion d , and its spatial dependence is modeled as V (z) =
V0{tanh((z + d )/w) − tanh((z − d )/w)}/2, as sketched by
the dashed line in Fig. 3. For the specific parameters, given
by the strength V0 = −1.85 mc2, spatial extension 2d =
3.9λ, and ramp width w = 0.3λ, it supports four electronic
bound states of energies E1 = −0.6 mc2, E2 = −0.1 mc2,
E3 = 0.45 mc2, and E4 = 0.92 mc2.

As the potential was chosen spatially symmetric, i.e.,
V (z) = V (−z), the Dirac Hamiltonian H0 commutes with
a generalized (relativistic) parity operator P, given by the
product of the spatial inversion and complex conjugation op-
erators. This symmetry has its manifestation for the spatial de-
pendence of the upper and lower spinors {�up

E (z), �down
E (z)}

of all energy eigenstates of H0. This means that for parity (+),
all corresponding energy eigenstates |E (+)〉 can be chosen
with an upper spinor component that is even in space and real

{�up
E (z) = �

up
E (−z) and �

up
E (z) = �

up
E (z)∗}, while the lower

spin component is imaginary and odd. Similarly, the (–) parity
states |E (−)〉 can be chosen with an odd and real upper compo-
nent and an imaginary and even lower spinor component. This
is illustrated in Fig. 3, where we show the spatial dependence
of the two spinor components of the ground-state and first
excited-state wave functions.

For a laser frequency of ω = 0.5 mc2/h̄, the lower Dirac
state with energy Ec = E1 − h̄ω = −1.1 mc2 can couple res-
onantly to the ground state via the absorption of a single
photon. As the spatial profile of the (initially populated) con-
tinuum state is crucially important for our analysis below,
we also show two neighboring energy states with even and
odd parity in the figure. These wave functions with energies
E = −1.0996 and −1.1029 mc2 were obtained by numerical
diagonalization of the Hamiltonian in its discretized spatial
representation in a finite box.

As might be expected, the continuum states |E (±)〉 outside
the nuclear region (|z| > 2d ) are periodic. However, we note
that the state has a characteristic “hole” close to the origin z =
0, where the nucleus is located. For comparison, the undressed
states |e(±)〉 [associated with the Hamiltonian cσ1 p + mc2σ3,
but not shown in the figure] are entirely periodic in z [28]. In
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FIG. 4. The time dependence of the total number of created
electrons and positrons N (t ). The nonoscillatory black curve is due
to the interaction with a single pulse. The other two graphs are for
the two crossing laser pulses with mutual phase difference α = 0,
leading to an antinode at z = 0, and α = π , leading to a node at
z = 0. The parameters of the two pulses [Eq. (1)] (with amplitude
A0 = 0.1 mc2/e, h̄ω = 0.5 mc2) are the same as in Fig. 1. The param-
eters of the potential (V0 = −1.85 mc2, d = 1.95λ, and w = 0.3λ)
are the same as in Fig. 3. We have included by the two straight dashed
lines the predicted slopes obtained from Sec. V.

fact, the dressing due to the nucleus acts in two ways. First, the
probability density close to z = 0 is suppressed leading to the
hole, and second, the waves outside the potential regions are
shifted inwards or outwards depending on the parity (required
by wave-function continuity around the edges of the nuclear
potential). This local dressing due to the nucleus is quite
relevant for the interaction with the two laser fields, as we will
show in Sec. V below.

III. PAIR-CREATION PROCESS INDUCED BY TWO
COLLIDING LASER FIELDS

In this section, we will examine the effect of the laser phase
α, the relationship between the lasers’ wavelength, and the
spatial extension of the nucleus with regard to the final pair-
creation yield. We will see that its phase dependence can be
completely reversed, depending on these spatial scales.

A. Smaller laser frequency ω and small nuclear
potential extension d

To determine the dynamical role of the nuclear potential
V (z) on the pair creation, we have graphed in Fig. 4 the
time dependence of the number of electron-positron pairs
Nsingle(t ) created solely by the single right-traveling field
A(z, t ) = Ar (z, t ). In addition to the temporary dressing na-
ture already discussed in Fig. 2, the shape of region III is
now characterized by a nonreversible quasilinear growth. As
a result, we have a nonzero number of permanently created
pairs N (t = 25TL ) = 0.0664 after the interaction. The nu-
merically obtained pair-creation rate (slope) of Nsingle(t ) in
this quasilinear growth regime III amounts in atomic units
to dNsingle/dt = 12.3. We have repeated the simulation for

different laser phases α and found no significant impact as
one might have expected as the second field Al (z, t ) was not
present in this simulation.

To include the dynamical impact of the second counter-
propagating field, we have repeated our simulation using both
beams, A(z, t ) = Ar (z, t ) + Al (z, t ). In the two Volkov dress-
ing regions I and II, we find that the monotonous growth is
exactly twice that of the single field, N (t ) = 2Nsingle(t ), which
is expected as both pulses do not overlap yet and dress the
vacuum at different locations in space, as discussed above in
Fig. 2.

However, once we enter the two-pulse overlap region
III, the vacuum’s response to the two pulses is qualitatively
different due to the presence of the nucleus (compared to
Fig. 2). Here the oscillatory two-beam dressing is superim-
posed by a linear growth, whose slope clearly depends on
α. For a phase α = 0, leading to an antinode of the standing
waves at z = 0, the effective slope dN/dt = 10.2 is actually
about 17% less than the single-field slope dNsingle/dt , which
reads off the graph as 12.3. As a result of this rather un-
expected reduction, the final population amounts here only
to N (t = 25TL ) = 0.0545. This means that the introduction
of the second (counterpropagating) field Al (z, t ) surprisingly
decreases the pair-creation yield.

Even more remarkable, for the other extreme choice of the
phase α = π , for which the two fields form a (low-intensity)
node around z = 0, the pair-creation yield is actually en-
hanced. Here the effective slope in region III amounts to
the slope dN/dt = 35.06, which exceeds single-field slope
dNsingle/dt by 185.07%. The resulting final number of created
pairs is N (t = 25TL ) = 0.1905.

This observed phase dependence of the final yield (at
time T) is completely counterintuitive and opposite to what
one would have expected. It surprisingly predicts that for
the configuration (α = π ), where the two crossing fields
form a node close to the nucleus, i.e., a region of basi-
cally vanishing electrical field intensity, the particle yield
Ntot (T, α = π ) is almost four times larger compared to the
(antinode) field configuration for α = 0, where the laser in-
tensity close to z = 0 is maximum. By analyzing the coupling
elements in Sec. IV, we will suggest that this surprise is
actually a direct manifestation of the nucleus-induced defor-
mation (hole) of the negative energy states, as we showed
in Fig. 3.

B. Using the phase α to control the electron capture
into selected bound states

To examine this unexpected observation, we have repeated
our simulations for the entire range of phase α between 0
and π . In Fig. 5 we show the final number of created par-
ticle pairs N (T ) at the final time T = 25TL as a function of
the phase α, allowing us to scan systematically and contin-
uously through the node/antinode regimes. We find that the
total number of created pairs is indeed largest if the two
fields form a node (α = π ) at z = 0, and it is unexpectedly
smallest for α = 0 when the intensity is largest at the region
around z = 0.

To examine the dynamical role of each individual bound
state into which the created electrons can be captured, we have
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FIG. 5. The final number of created electrons (at T = 25TL) as
a function of the interlaser beams’ phase α. The curve N (T ) is
the total number of pairs, whereas Ni(T ) is the captured portion in
the bound state |Ei〉. The red curve �4

i=1Ni(T ) is the total number of
those electrons that were captured by the nucleus. The arrows mark
the optimal phases to maximize the yield in a particular bound state.
The other parameters for the nucleus and the laser beams are the
same as in Fig. 4.

graphed in the figure the final occupation number Ni(T ) in
the lowest three bound states. We find that the ground-state
population N1(T ) qualitatively mirrors the final total yield
with larger differences for smaller angle α. As one might ex-
pect based on the energetic considerations, the single-photon
coupled ground state’s capture yield is largest, N1(T ) = 0.184
(α = π ) and 0.0123(α = 0), amounting to nearly 22.5% and
96.7% of all created electrons for α = 0 and α = π , respec-
tively.

Quite interestingly, the captured occupation in the first
excited state N2(T ) is qualitatively different. In Fig. 3 we
have shown the double-peaked structure of its spatial prob-
ability |�up

E2
(z)|2 + |�down

E2
(z)|2. The yield N2(T ) takes its

maximum at an intermediate value of the phase αmax = 0.7π ,
where the field forms neither a node nor an antinode at
z = 0. In fact, here the node (antinode) is located at z =
0.07λL(−0.18λL, 0.32λL ), respectively.

Similarly, if we want to maximize the capture rate into
the second excited state N3(T ), we have to choose a smaller
phase αmax = 0.6π . This shows that the phase α can be used
as an externally controllable means not only to maximize
the overall total yield, but even to determine selectively into
which excited state the created electrons are predominately
captured.

We have also included in the figure the sum of all four
bound-state probabilities �4

i=1Ni(T ). This shows that for
phases close to α = π , most of the created electrons are
indeed captured by the potential V (z). More interesting, how-
ever, is the observation that for small phases α, the sum
�4

i=1Ni(T ) is less than the total number of created pairs. This
points to an interesting dual role that is played by the nuclear
field. On the one hand, its presence enhances the pair creation
rate by providing bound states into which the created electrons

can be captured. This seems to be the predominant mechanism
for the antinode region of α close to π . On the other hand, for
small α, there is a certain fraction of created electrons that are
apparently not captured and therefore excite the upper energy
continuum states.

Comparing to the data of Fig. 2, which revealed almost no
pair-creation in the absence of any nucleus, this suggests a
kind of catalytic pair-creation enhancement mechanism. As
the interaction with the model nucleus is approximated by
a static external force field, there is no backreaction onto
the nucleus. The presence of the nucleus can help the cre-
ated electrons to reach the upper energy continuum states.
This mechanism might be similar to the fact that (in the
nonrelativistic limit) an electron cannot absorb energy from
a plane-wave field, but the presence of a nucleus modifies
momentum conservation and therefore “catalyzes” these tran-
sitions. In another analogy, if one were to compare the positive
and negative energy gap with the energy band gap in a semi-
conductor, the addition of intermediate levels in the band gap
(due to doping) usually increases the change of transition
across the band gap as well.

Alternatively, one could also view the bound state as a
resonant pathway for the created electrons to reach the upper
continuum via some secondary excitation mechanism. Ob-
viously, more detailed studies would be helpful to examine
this small α region where the standing waves are forming a
high-intensity antinode close to z = 0.

C. Variations in the laser frequency ω and in the nuclear size d

While in the prior sequence of simulations the lasers’
wavelength λL = 2πc/ωL = 4πλ (associated with ω =
0.5 mc2/h̄) and the corresponding node-antinode spacing
λL/2 was larger than the spatial extension of the bound states
(2d < λL/2; see Fig. 3), we might expect that the anomalous
α-scaling of the final yield (due the vacuum state dressing)
might be reversed if this relationship is changed such that
several nodes and antinodes would “fit” inside the bound
states. The two ways to achieve the intuitive behavior �(α =
0) > �(α = π ) are by either increasing ω or by increasing the
nuclear spatial range d .

To examine a possible reversed α-dependence of the final
yield, we have repeated the numerical simulations leading
to Fig. 2 above, however, with a larger laser frequency ω =
2.5 mc2/h̄. In Fig. 6(a) we find that now the behavior is
indeed reversed, i.e., for the phase α = 0 (corresponding to
an antinode close to z = 0), this time we actually measure the
largest pair creation. This behavior is much more intuitive, as
the brighter the intensity pattern close to the nucleus is, the
larger should be the pair creation.

Alternatively, one can also examine the relationship be-
tween the fields’ and nucleus’ relevant spatial scales by
keeping the original laser frequency unchanged at ω =
0.5 mc2/h̄, but increasing the nucleus spatial range from d =
1.95λ (as in Fig. 4) to d = 6λ. In Fig. 6(b), we show that
we observe again the same intuitive behavior as for ω =
2.5 mc2/h̄. Here the effective pair-creation rate (determined
from the average slope in the standing-wave region III) is
�(α = 0) = 5.68 and only �(α = π ) = 0.22.
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FIG. 6. The time dependence of the total number of created electrons and positrons N (t ) for the two phases α = 0 and α = π . (a) High-
frequency case with photon energy h̄ω = 2.5 mc2 and A0 = 0.1 mc2/e and a narrow potential width d = 1.95λ (with V0 = −1.85 mc2 to keep
the ground-state energy unchanged at E1 = −0.6 mc2). (b) Low-frequency case, h̄ω = 0.5 mc2 with A0 = 0.1 mc2/e but a wider potential
width d = 6λ (with V0 = −1.63 mc2 to keep the ground-state energy unchanged at E1 = −0.6 mc2). All other parameters as in Figs. 1 and 3.
We have included by the straight dashed lines the predicted slopes obtained from Sec. V.

IV. ORIGIN OF THE COUNTERINTUITIVE PHASE
DEPENDENCE OF THE GROUND-STATE CAPTURE RATE

In this section, we will suggest that the single-photon cou-
pling matrix element between the relevant initial continuum
state |E〉 and the ground state of the nucleus |E1〉 can predict
the dependence of the final number of creation particles on the
laser phase α and the nucleus spatial range d remarkably well.

As the relatively good match of the total final yield N (T )
with N (T ) = �iNi(T ) (red curve in Fig. 5) suggests, most of
the created electrons are captured by the lowest-lying bound
states. Therefore, we can neglect the coupling to the posi-
tive energy continuum states, i.e., N (t ) = �p�n|Up,n(t )|2 +
�i�n|Ui,n(t )|2 ≈ �i�n|Ui,n(t )|2. Furthermore, as we have
seen above, the major contribution is from the ground-state
capture, i.e., we can further roughly approximate N (e−, t ) ≈
�n|U1,n(t )|2. As at early times, the population of the ground
state |U1,n(t )|2 is proportional to the magnitude of the tran-
sition matrix element κ (α = 0) ≡ 〈E1| cos(kz)σ1|E〉 for α =
0, and to κ (α = π ) ≡ 〈E1| sin(kz)σ1|E〉 for α = π , reflect-
ing the standing-wave pattern with an antinode A(z, t ) ∼
sin(ωt ) cos(kz) for the interpulse phase difference α = 0 and
with a node A(z, t ) ∼ cos(ωt ) sin(kz) for α = π . This means
that the origin of the counterintuitive observation N (T, α =
π ) > N (T, α = 0) (Fig. 4) can be possibly tracked back to
the α-dependence of the coupling strengths κ(α) itself.

In Fig. 7, we have graphed |κ (α, E )|2 as a function of
the energy E for α = 0 and α = π . The required energy
eigenstates to determine κ (α, E ) were obtained from a numer-
ical diagonalization of the Dirac Hamiltonian H0 ≡ cσ1 p +
mc2σ3 + eV (z) in a discretized spatial representation.

We see that for photon energy h̄ω = 0.5 mc2, the anoma-
lous relationship |κ (α = π, E )|2 > |κ (α = 0, E )|2 is ob-
served quite universally for the entire energy range E >

−1.4 mc2, while the expected (reversed) inequality is valid
only for continuum states much further below the mass gap.
It is not immediately clear how the node-based coupling

strength |κ (α = π )| = |〈E1| sin(kz)σ1|E〉|, where the electric
field sin(kz) is rather small close to the ground state |E1〉,
can actually exceed |〈E1| cos(kz)σ1|E〉|, where the field takes
its largest value (antinode) at z = 0. This anomaly is cer-
tainly not observed for the corresponding coupling to the
undressed continuum states |e〉 to the ground state. Here we

FIG. 7. The scaled part of the transition matrix element to the
ground state |κ (α, E )|2 as a function of the energy E for the laser
phases α = 0 (antinode at z = 0) and α = π (node at z = 0). As the
eigenstates were obtained by diagonalization of the Dirac Hamil-
tonian inside a numerical box of L = 32λL , the usual degeneracy
among the continuum states is lifted, leading to an energy spacing for
Ec = −1.1 mc2 of E = 3.3 × 10−3 mc2. For photon energy h̄ω =
0.5 mc2, we have |κ (α, Ec )|2 = 6.5 × 10−5 (for α = 0) and for α =
π , we have |κ (α, Ec )|2 = 2.3 × 10−4, leading with A0 = 0.1 mc2 to
�(α = 0) = 11.7 and �(α = π ) = 43.9. All four curves are for a po-
tential width and d = 1.95/c. The arrows denote the relevant central
energies Ec = −1.1 mc2 (for h̄ω = 0.5 mc2) and Ec = −3.1 mc2 (for
h̄ω = 2.5 mc2).
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find consistently for all energies the more intuitive scaling
|〈E1| cos(kz)σ1|e〉| � |〈E1| sin(kz)σ1|e〉|.

The mathematical reason for the anomalous α-scaling
is directly related to the nucleus-induced deformation
at z = 0 and the resulting shifts of the 2-spinor wave
functions as shown in Fig. 3. A closer inspection of the
integrand in the spatial integrals κ (α = 0) ∼
〈E1| cos(kz)σ1|E〉 = ∫ dz cos(kz)R(z) and κ (α = π ) ∼
∫ dz sin(kz)R(z), where R(z) ≡ �

up
E (z)∗�down

1 (z) +
�down

E (z)∗�up
1 (z) elucidates this. As the state |E1〉 has (+)

parity, i.e., it has an even upper and odd lower spin component,
κ (α = 0) is nonzero only for |E (−)〉. Likewise, κ(α = π ) is
nonzero only for the |E (+)〉 states. For any force-free state |e〉,
the area under the integrand cos(kz) R(z) is larger than under
sin(kz)R(z), as sin(kz)R(z) vanishes at z = 0 where φ

up
1 (z)

takes its largest value, leading to |κ (α = 0)| > |κ (α = π )|.
However, this advantage is entirely canceled in the deformed
state |E〉 due to the formation of the “hole” for R(z) at z = 0,
as was shown in Fig. 3. In other words, the reduction of the
integrand due to the cofactor sin(kz) [compared to cos(kz)]
becomes less important. In fact, the different contributions
to R(z) of |E (+)〉 and |E (−)〉 in the spatial regions outside
z = 0 can lead to |κ (α = 0)| < |κ (α = π )|. The second set
of data (photon energy h̄ω = 2.5 mc2) shows the reversed
behavior. Here the two coupling strengths are comparable for
the central energy Ec = −3.1 mc2.

V. ANALYTICAL PAIR-CREATION RATE �(α) BASED
ON AN ESSENTIAL STATE MODEL

The qualitative analysis in Sec. IV and the key relevance of
the single parameter κ suggests that, despite the complicated
space-time structure of the laser-nucleus interaction zone, the
entire pair-creation dynamics can be reduced to a remarkably
simple quantum-mechanical-like essential state model, where
the initially populated continuum states are coupled to a single
bound state. Using several approximations below, we can even
derive a semianalytic expression for the total pair-creation
rate, which matches well the true observed phase-dependent
vacuum decay rate �(α) obtained from the full quantum field
theoretical simulation.

The model considers only the lowest-order single-photon
coupling of the continuum state |E〉 to the ground state |E1〉
based on the transition matrix elements 〈E1|Hint|E〉 of the
interaction Hamiltonian Hint ≡ −eA(z, t ; α)σ1. The resulting
equations of motion for the two amplitudes of the state
CE (t )|E〉 + C1,E (t )|E1〉 are

ih̄dCE/dt = ECE + 〈E1|Hint|E〉C1,E , (5.1a)

ih̄dC1,E/dt = E1C1,E + 〈E1|Hint|E〉∗CE , (5.1b)

which we need to solve for the ground-state amplitude C1,E (t )
with the initial condition C1,E (t = 0) = 0 and CE (t = 0) = 1.
The total number of created electrons is obtained by summing
the contributions to the state |E1〉 from all initially occupied
continuum states �E |C1,E (t )|2. In contrast to the usual es-
sential state formalism often employed for ionization from
the ground state in atomic physics, here the state |E1〉 is
coupled dynamically to only a single continuum state |E〉.
Therefore, the total decay rate of the vacuum state can then

be approximated by the time derivative of this sum �(α) =
−d/dt[�E |C1,E (t )|2]. This rate �(α) is rather independent of
subsequent higher photon transitions to other bound states.
Applying the single-pole, rotating-wave, and Fermi-golden-
rule-like approximations, the vacuum’s decay rate can be
obtained analytically as

�(α) = (π/h̄)A2
0|k(α, Ec)|2ρ(Ec). (5.2)

Here κ (α, E ) ≡ 〈E1| cos(kz − α/2)σ1|E〉 is the (scaled)
time-independent part of 〈E1|Hint|E〉, and ρ(E ) ≡ 1/E is
the inverse mode spacing evaluated at the specific “resonant”
continuum energy Ec ≡ E1 − h̄ω.

To test the accuracy of the analytical prediction of
Eq. (5.2), we have approximated the growth regions III in the
exact data presented in Figs. 4 and 6 by straight lines Ntot (t ) =
�(α)t + b(α). We have read off the numerical values of the
effective slopes and found �(α = 0) = 10.2 [11.3] and �(α =
π ) = 35.06 [44.3] for the data in Fig. 4, �(α = 0) = 111.5
[83.2] and �(α = π ) = 100.5 [81.1] for Fig. 6(a), and finally
�(α = 0) = 5.68 [3.56] and �(α = π ) = 0.22 [0.187] for the
simulations in Fig. 6(b). For comparison with the approximate
theory, we have included in the square brackets after each
numerical rate the corresponding analytical rates according to
Eq. (5.2).

For better visibility, we have also included in Figs. 4 and
6 the predicted slopes according Eq. (5.2) by the straight
lines. To have a single quality estimator for the accuracy
of the predicted analytical rates, we have also computed the
percentage error for each of the six rates shown above, defined
as |�approximate(α) − �exact (α)|/�exact (α). The average error
amounted to about 22%. The qualitative match of the phase-
dependent vacuum decay rate �(α) with the numerical data
suggests that, despite the remarkable simplicity of the model
description and its approximations, it can indeed capture the
main qualitative features of the irreversible growth part of
the electron yield. It can predict both the anomalous behavior
�(α = 0) < �(α = π ) as well as the intuitive behavior �(α =
0) > �(α = π ) correctly depending on the laser phase α.

VI. GENERALIZATION TO MULTIPHOTON
TRANSITIONS AND EXPERIMENTAL CONSIDERATIONS

Although neither the fields of the laser nor that of the
nucleus are required to be of supercritical strength, a direct
experimental verification of this effect might still be outside
the presently available parameters in the laboratories [72,73].
For example, in order to be sufficiently close to the mass
gap energy, we chose a ground-state energy of –0.6 mc2

(0.3 MeV above the negative energy continuum), which might
be difficult to realize with a stable nucleus with an atomic
number Z close to the inverse of the fine-structure constant.
For simplicity, we also examined only the one-photon cou-
pling from the vacuum associated with a photon energy of
0.5 mc2 (0.25 MeV). If we consider, for example, the current
energy range of an x-ray free-electron laser such as the one at
SLAC’s Linear Coherent Light Source, which emits photons
in the range 200 eV–11 keV (with a possible future upgrade to
25 keV), then our model would need to be extended to allow
for 10-photon transitions.
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FIG. 8. The time dependence of the total number of created electrons and positrons N (t ) for the two phases α = 0 and α = π in the low-
frequency multiphoton regime. (a) Two-photon regime with h̄ω = 0.25 mc2 (with A0 = 0.1 mc2/e, z0 = 6λL , dL = 2λL , wL = 0.1λ), leading
to N (T ) = 0.000 31 for α = 0 and N (T ) = 0.003 04 for α = π . Other parameters are as follows: L = 16λL , V0 = −1.63c2, w = 0.3λ, and
d = 6λ, with λL = 25.12λ. (b) Three-photon regime with h̄ω = 0.167 mc2 (with A0 = 0.1 mc2/e, z0 = 6λL , dL = 2λL , wL = 0.1λ) leading
to N (T ) = 0.000 14 for α = 0 and N (T ) = 0.000 23 for α = π . Other parameters are as follows: L = 16λL , V0 = −1.63c2, w = 0.3λ, and
d = 6λ, with λL = 37.60λ.

The key question that therefore naturally arises is whether
the nucleus-induced dressing of the continuum state and the
resulting counterintuitive scaling behavior of the pair-creation
yield as a function of the phase α can also be observed in the
lower-frequency limit, where the absorption of more than one
photon is required for pair creation and the resulting electron
capture. The answer to this important question is encouraging,
as can be shown by simple arguments based on standard
perturbation theory in the interaction picture.

For the one-photon coupling, the lowest-order
nonvanishing term of the Dyson expansion of the
time-evolution operator is usually given by U1 ≡ 〈E1|

∫ t
0 dτ

exp[−i(E − E1)τ ]Hint (τ )|E〉, whose magnitude for
Hint = −e A(z, t ; α)σ1 is, of course, directly proportional
to |κ (α, E )|, as discussed above. Here the temporal
integration leads to the well-known resonant energy
denominators E − E1 − h̄ω. However, the leading term
for the two-photon resonance is proportional to the
more complicated expression U2 ≡ 〈E1|

∫ t
0 dτ [iE1τ ]Hint

(τ ) exp[−iH0τ ]
∫ τ

0 dν exp[iH0ν]Hint (ν) exp[−iEν]|E〉. Here
the relevant resonant energy denominator is E − E1–2h̄ω. If
we insert the unit operator, given by |E1〉〈E1| + ∫

dE ′|E ′〉〈E ′|,
we find that U2 can be decomposed into products of factors,
where one factor is again proportional to U1. This suggests
that the functional form of the transition element κ (α, E )
might also be relevant for two- and even higher photon
pair-creation processes.

To test this conjecture, we have repeated our simulations in
Fig. 8 for the smaller frequency ω = 0.25 mc2/h̄ (two-photon
absorption required) and ω = 0.167 mc2/h̄ (three-photon ab-
sorption required).

We find for the two-photon case again the anomalous
behavior due to the modifications of the vacuum state by
the binding potential. However, while the anomalous be-
havior is still present for the three-photon case, it is much
weaker. On the one hand, the corresponding larger wave-

length for ω = 0.167 mc2/h̄ leads to a larger spacing between
the nodes and antinodes, which by itself would predict
a larger contrast between the impacts of the phases α =
0 and α = π . On the other hand, other processes seem
to dominate and wash out these differences. Obviously,
more systematic studies are required to be able to make
quantitative predictions for our present experimentally avail-
able laser parameters.

VII. SUMMARY AND OUTLOOK

By examining the pair-creation process triggered by two
colliding fields in the presence of a nuclear binding potential
that can capture the created electrons, we have found that
the phase relationship between the two fields can be used to
control not only the total yield of the created electron positron
pairs, but also which specific bound states of the nuclear force
field can capture the created electrons. Using a remarkably
simple essential state model based on only two coupled states,
it is possible to derive approximate but semianalytical expres-
sions for the phase dependence of the vacuum decay rate.

To make our simulations computationally feasible required
numerous approximations, which unfortunately make a quan-
titative and reliable experimental prediction quite challenging.
Naturally, there are many questions that motivate important
further studies. For example, the restriction to only one spatial
dimension cannot represent the transverse character of a true
electromagnetic field or its magnetic field component. As
we critically examined in Sec. VI, our choice of the nuclear
potential was also chosen for numerical and interpretational
convenience. However, on the more optimistic side, the very
fact that the analytical essential state theory matched the ac-
tual numerical data is encouraging. One can be hopeful that a
similarly constructed quasianalytical theory based on only the
essential states could be equally valuable when derived for
a real nuclear field in a fully three-dimensional environment.
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For example, there is no reason why the set of our approx-
imations (rotating-wave approximation, single-pole approx-
imation, and Fermi-golden-rule-like restrictions to integral
kernels) might not be equally valid when applied to a more
real system. At the moment we certainly do not see any prin-
cipal obstacle, except that the accuracy of these new theories
could not be so easily compared directly with ab initio model
simulations, as was possible for our simplified model system.

Another direction of future research work is motivated by
the need for a better understanding of the purely electronic
capture dynamics associated with the superposition of the
excited states. Here it might be of interest to examine the inter-
action and coherence properties of already captured electrons
with those that are created later.

For conceptual simplicity, we focused on identical laser
frequencies for both beams of identical temporal and spa-
tial profiles. Recently, fascinating new phenomena such as
novel electron and positron momentum shift mechanisms
were predicted [65] for temporally overlapping but spatially
homogeneous electric fields of different frequencies even in
the absence of any nuclear field. We expect that similarly new
effects could be discovered if more parameters are varied in
our geometry.

A three-dimensional setting would also permit us to
weaken our constraint of two perfectly collinear fields as the
scattering angle of both beams and their mutual polarization
directions could be varied. While in our simulations we have

focused exclusively on the electronic features, it might also
be interesting to examine the impact of the choice for the
two-beam phase on the momentum distribution of the simulta-
neously created positrons. In our studies, we have focused on
the total particle yield as a main diagnostic of the pair-creation
process, but examining also the properties of the electronic
and positronic spatial distributions can provide further insight
into the detailed mechanisms. For recent progress in space-
time-resolved studies of the birth process of electron positron
pairs inside a very simple temporally homogeneous field, see
[74,75].

Due to computational simplicity, we have focused on ul-
trashort pulses such that the maximum occupation number of
the bound states stayed less than 15%. However, for longer
interaction times we would expect interesting new multistate
Rabi oscillations, once the bound states get fully occupied
and also possibly depleted again. The possibility of these Rabi
oscillations was examined in recent studies [76], however here
the external field was assumed to be spatially homogeneous.
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