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Quantum beats in two-color photoionization to the spin-orbit split continuum of Ar
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We report a study of the quantum beats in two-color photoionization of argon. An attosecond extreme
ultraviolet pulse train prepares an electronic wave packet of definite odd parity, with total angular momentum
J = 1, targeting the states between 14.0 and 14.5 eV from the ground state. Two-photon ionization of this
wave packet with a tunable infrared probe pulse makes the constituent states interfere in both continuum
channels, corresponding to the core angular momenta jc = 1/2 and 3/2, respectively. We analyze photoelectron
spectrograms as a function of the time delay of the probe pulse and identify oscillations due to several pairs
of states through Fourier decomposition. We observe phase differences between the corresponding beat signals
in the two spin-orbit split continua. Comparison of theoretical simulations with the experimental measurements
allows us to interpret the amplitudes and phases of ionization signals. We express the observed phase differences
in terms of the off-diagonal elements of the short-range scattering matrix and the dipole matrix elements to the
continuum eigenchannels.
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I. INTRODUCTION

Time-resolved photoelectron interferometry has been
proven to be an effective tool to measure the quantum beats of
electronic wave packets in atoms [1–4] and molecules [5–7].
The energy dependence of beat signals in the continuum
has been used to characterize the amplitudes and phases of
ionization pathways in a variety of systems, involving mul-
ticolor ionization pathways, strong-field modification of the
electronic structure, and correlated electron dynamics [8–15].
An interesting case arises when considering the ejection of the
photoelectron into the spin-orbit split continua, which corre-
sponds to the situation where ionization is accompanied by
electronic rearrangement in one of the channels. Differential
analysis of two spin-orbit split channels has led to interest-
ing insights into photoemission delays [16], autoionization
dynamics [17], and high-harmonic generation [18].

Our work is motivated by the desire to understand how
short-range interactions between the outgoing electron and
the ion core manifest in the phase of the quantum beats in
two different continua. We apply this method to investigate
a wave packet composed of the excited states of argon, as
illustrated in Fig. 1(a). The argon ion features a spin-orbit
splitting of 180 meV, with the ion’s jc = 3/2 ground state and
the jc = 1/2 excited state lying 15.76 eV and 15.94 above
the neutral ground state, respectively [19]. A bound electronic
wave packet can be prepared by exciting the system with
an extreme ultraviolet (XUV) attosecond pump pulse train,
followed by a two-photon ionization with a delayed infrared
(IR) probe light pulse which makes the various components of
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the wave packet interfere in the two continua. The interference
pattern can be resolved in kinetic energy, and its evolution
exhibits quantum beating in the probe time delay with fre-
quencies determined by pairs of constituent state energies.
We observe that there is a phase difference between beating
in the jc = 1/2 and 3/2 channels. We conduct a systematic
experimental study and compare it with detailed theoretical
calculations employing multichannel quantum-defect theory,
involving an explicit propagation of the wave function, to
understand the dependence of the phases on the various pa-
rameters of the probe light field. We find that the observed
beating pattern reveals the complex resonant structure of the
intermediate highly excited Rydberg states, which leads to
a nontrivial dependence on the intensity and frequency of
the probe. By analyzing the phase difference in the yield of
electrons between ion thresholds and how it depends on fun-
damental atomic quantities, it is possible to probe indirectly
off-diagonal elements of the scattering matrix describing the
collisions of the electrons with the ion core in the close range
as well as the dipole matrix elements to wave functions corre-
sponding to the eigenstates of the scattering matrix.

II. EXPERIMENT

Our pump-probe scheme [Fig. 1(a)] involves an XUV
pump pulse (14 eV) which excites an electronic wave packet
in the neutral argon atom, followed by an IR probe pulse
(1 eV) that ionizes the system after a variable time delay t0.
To generate the pump and probe pulses, a Ti:sapphire 780-nm
laser amplifier with 2 mJ pulse energy, 40 fs, and linearly
polarized pulse is split on a beam splitter into two arms.
One arm is directed to an optical parametric amplifier (OPA)
tuned for down-conversion to a 1200-nm probe pulse with
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FIG. 1. (a) Schematic of our experimental apparatus. A 40-fs,
2-mJ, 780-nm, linearly polarized beam is split into two arms. One
arm generates a 1-eV probe pulse with controllable time delay while
the other arm drives high harmonic generation in a Xe-filled gas cell
generating an XUV pump pulse. The beams combine on a mirror
with a hole and focus into an argon-effusive gas jet. (b) Energy
levels relevant to our pump-probe experiment: The ninth harmonic
of the XUV pump pulse prepares a wave packet encompassing both
(3d, 5s) and (3d ′, 5s′) pairs of states, which correspond to a Rydberg
electron attached to the jc = 1/2 and 3/2 ion cores, respectively.
After a time delay τ , the 1-eV probe pulse causes two-photon ion-
ization of each state to the continua corresponding to both ion core
thresholds. As an example, the expected kinetic energies of the 5s′

and 3d ′ photoelectrons with respect to both spin-orbit split thresholds
are listed.

approximately 65-fs pulse duration while the second arm is
focused into a Xe gas cell for high harmonic generation. By
tuning the spatial profile of the driving pulse, the pressure
of Xe gas, and the location of the focus within the gas cell,
we tune the phase-matching condition to produce odd har-
monics 9–15 of the fundamental driving frequency, henceforth
referred to as the XUV pump pulse. Using a toroidal mirror at
grazing incidence, this XUV pulse is focused onto an effusive
gas jet of argon emanating from a 75-µm hole in the repeller
plate of a velocity map imaging (VMI) spectrometer inside
the vacuum chamber. The probe pulse is focused to the same
location using a 50-cm lens to reach an intensity of approx-
imately 1 TW/cm2 and made collinear with the XUV pulse
using a flat mirror with a hole.

Figure 1(b) depicts an energy-level diagram relevant to our
pump-probe scheme. Due to the large bandwidth, the ninth
harmonic in the XUV pulse excites a wave packet composed

of (2P3/2)5s2[3/2]◦1, (2P3/2)3d2[3/2]◦1, (2P1/2)5s2[1/2]◦1, and
(2P1/2)3d2[3/2]◦1 states. The term in parentheses indicates the
ionic state, next is the orbital of the outermost electron, and
the term in square brackets is the K quantum number corre-
sponding to the eigenvalue associated with the square of the
vector operator �K = �jc + ��. The subindex at the end indicates
total angular momentum and the upper index the parity. This
notation is known as the jK notation. For brevity, and when
the full spectroscopic notation is not essential, we will refer
to the four aforementioned initial states as 5s, 3d , 5s′, and
3d ′, respectively. The central energy of the ninth harmonic
overlaps strongly with the 5s′ and 3d ′ states; therefore, the
relative amplitudes of the wave-packet constituents are not
equal. The wave packet evolves for a time t0, after which
the IR probe pulse couples the wave packet to the continuum
in the jc = 1/2 and 3/2 ion core channels via two-photon
absorption. We collect the photoelectrons in a VMI spectrom-
eter [10,20], and the resulting two-dimensional distribution is
numerically Abel inverted using pBASEX to reconstruct the
three-dimensional transverse photoelectron momentum distri-
bution [21]. Angular integration produces electron yield as a
function of photoelectron kinetic energy. The amplitude error
bars in the experimental results stem from detector inhomo-
geneities, and they are estimated by subdividing the detector
into quadrants. We used autoionizing lines of argon between
the two spin-orbit split ionization thresholds to calibrate pho-
toelectron energy and obtain energy error bars.

III. RESULTS

At each time delay we calculate the difference spec-
trum (XUV pump + IR probe) − (XUV pump). The differ-
ence spectra at each time delay are stitched together to create a
difference spectrogram, as seen in Fig. 2(a), which shows the
change in electron yield due to the probe pulse as a function
of probe pulse time delay and continuum kinetic energy of the
photoelectron. In our previous study in [22], the difference
spectrum revealed the interruption of the autoionization pro-
cess on the autoionizing wave packet created by the XUV;
in this case, the subtraction is done solely to increase the
signal-to-noise ratio, since the XUV only spectrogram has
very little signal in a 600-meV-wide region between 0.2 and
0.8 eV. Therefore, choosing an ideal OPA setting, i.e., the IR
probe wavelength, positions the photoionization signal in the
middle of this region separating the signal of interest from
other processes.

In Fig. 2(a) we observe strong quantum beat signals with
two dominant features visible around the photoelectron ki-
netic energies of 0.37 and 0.55 eV. From Fig. 1(b) we can
loosely associate these features with 3d ′ ionizing to the jc =
1/2 and 3/2 ion core channels, respectively. With the the-
oretical methods that we will describe in the next section,
we obtain the calculated spectrogram in Fig. 2(b), which
shows remarkable agreement with the experimental result in
Fig. 2(a). Both show oscillations in time which, as we describe
later, oscillate with a frequency corresponding to the 3d ′-5s′
energy separation. From now on, we denote the energy sepa-
ration among the four initial states by using parentheses, i.e.,
the beating frequency is (3d ′, 5s′). Importantly, we note the
phase difference between the beat signal at 0.37 and 0.55 eV,
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FIG. 2. (a) Photoelectron yield observed experimentally resolved
in time delay. (b) Photoionization probability simulated by direct
time propagation. Both (a) and (b) show strong quantum beats corre-
sponding to the interference of the 3d ′ and 5s′ states. The signal has
been normalized by the maximum value of the time-delay average.
To further highlight the beating, the time-averaged value has been
subtracted from the signal, as shown for delays greater than 1.5 ps.

making them almost out of phase; as we will explain in the
coming section, this phase difference points to the role of
short-range interaction between the outgoing electron and the
ion core. Taking the average of the experimental and theoret-
ical difference spectrograms in Figs. 2(a) and 2(b) along the
time delay axis produces time-delay-averaged photoelectron
spectra, as seen in Fig. 3(a). The vertical markers indicate the
kinetic energy of photoelectrons from each of the constituent
states relative to the jc = 1/2 and 3/2 ion states, as noted
on the graph insets. The first two markers on each line refer
to the 5s and 3d states, while the second two refer to the
5s′ and 3d ′ states. Both experimental and theoretical spectra
confirm the strong ionization signal from 3d ′ and 5s′ states.
To separately identify the contributions from each ionization
channel, we obtained the dotted and dashed spectral curves in
Fig. 3(b), which are calculated time-delay-integrated photo-
electron spectra to the jc = 3/2 and 1/2 cores, respectively.
These plots again confirm the strong contributions from the
3d ′ and 5s′ states in both core channels.

To make the oscillatory signal more evident in Fig. 2 we
have split the time-delay axis in two. For delays less than
1.5 ps, in both theory and experiment, we show the absolute
photoionization measurement normalized to the maximum
time-delay-averaged value. This highlights the two different
ionization channels at distinct kinetic energies and shows
the dominance of the jc = 1/2 channel observed in both ex-
periment and theory, as we will discuss below. For delays
greater than 1.5 ps we subtract the time-delay-averaged signal

FIG. 3. (a) Time-delay-averaged photoelectron signal normal-
ized to have unit maximum in both experiment (blue dashed line)
and theory (red solid line). The horizontal lines and the ticks show
the position of the expected energy from two-photon ionization from
each J = 1 state. (b) Theoretical threshold resolved components of
the ionization probability showing the signal dominated by jc = 1/2
ionization of the 3d ′ and 5s′ states.

for every kinetic energy and so we have positive and nega-
tive values. We do this in order to show the magnitude of
the oscillations relative to the mean, allowing them to be more
easily distinguished and for the phase difference to be more
conspicuous.

Taking a fast Fourier transform (FFT) of the experimental
difference spectrograms in Fig. 2(a) with respect to the probe
time-delay axis produces Fig. 4(a). The probe pulse delay
increases in 6-fs steps from −294 fs to 5568 fs, which means
the FFT frequency resolution is about 0.7 meV. Similarly,
from Fig. 2(b) we obtain the theoretical FFT results shown
in Fig. 4(b). Quantum beat frequencies are determined by
the energetic separation between pairs of beating states in
the wave packet. In this panel we indicate the locations of
all possible quantum beats from the four initial states. These
spectrograms reinforce the strong contribution to the total sig-
nal from the (3d ′, 5s′) pair in both core channels. In Fig. 4(b)
the amplitude shown at remaining beat frequencies shows the
weaker contributions from other pairs of states which are not
as evident in Fig. 4(a).

In both theory and experimental panels, taking a line out
at the frequency corresponding (3d ′, 5s′), around 0.45 eV,
results in Fig. 5. Since the result of the FFT is a complex num-
ber, Fig. 5(a) shows the amplitude of the signal and Fig. 5(c)
shows the phase of the complex signal, denoted by φ3d ′,5s′ .
Notice that in both theory and experiment the phase difference
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FIG. 4. (a) Amplitude of the fast Fourier transformed difference
spectrogram of the experimental data and (b) amplitude of the fast
Fourier transformed spectrogram of the theoretical data. They are
both normalized to the maximum value of the time-delay mean. In
(b) observe the label at the tail of an arrow pointing to the frequency
for each one of the pairs of J = 1 states.

between the two main peaks is around π radians; we denote
this phase difference by �φ3d ′,5s′ . Figure 5(b) shows the in-
dividual contributions from jc = 1/2 and 3/2, showing that
there is a single dominant peak on each channel.

IV. THEORY

To describe the process, we need to include the full com-
plexity of the atom in the wave functions. We must describe
the atomic states in such a way that they include their com-
ponents bound to each one of the spin-orbit split ion states
and include all possible combinations of angular momentum
to account for allowed symmetries. Considering that the two-
photon process will mostly be composed of highly excited
states, linear combinations of Coulomb functions accurately
describe the involved highly excited states. Therefore, we
use multichannel quantum defect theory (MQDT) [23–25]
to determine the appropriate linear combinations and wave
functions for all involved states, except for the neutral argon
ground state.

Since both lasers are linearly polarized and parallel, the
magnetic quantum number MJ of the total angular momentum
is conserved and equal to 0 for all states involved in the
process. In the experiment, the spin of the photoelectron is
not observed, so we have freedom in choosing the angular
momentum coupling scheme for our calculations. We choose
the Jcs coupling scheme, which couples the total angular mo-
mentum of the ion ( jc) with the spin of the electron to form the
Jcs quantum number, which then couples to the orbital angular

FIG. 5. (a) Fast Fourier transform amplitude of the photoelectron
at the (3d ′, 5s′) beat frequency normalized to have unit maximum for
the experiment (blue dashed line) and the theory (red solid line). The
vertical markers indicate the position of a two-IR-photon ionization
from each one of the J = 1 states, with respect to each ionic thresh-
old. (b) Amplitude of the individual threshold components for the
(3d ′, 5s′) beat. The solid signal of (a) is the coherent sum of these two
curves. (c) Phase of the fast Fourier transform of the photoelectron
signal for experiment (blue dashed line) and theory (red solid line).
Note that the phase makes a jump of nearly π when transitioning
from the jc = 1/2 peak to the jc = 3/2 peak.

momentum of the photoelectron to form the total angular
momentum J . This simplifies the analysis of the photoelectron
signal as it represents an incoherent sum over the Jcs values
of 0, 1, or 2, constrained by the dipole selection rules. We
extend this coupling scheme for all the bound states in our
calculations.

We find that the large magnitude of the dipole coupling
between the initial 5s, 3d , 5s′, and 3d ′ states and intermediate
states makes this process highly nonperturbative. Therefore,
we must use a time propagator to describe the dynamics
properly. In the following section we describe the MQDT
parameters that are necessary to describe the involved sym-
metries of the atom, as well as the way states at different
energies are obtained from these parameters. Next we describe
the method used for time propagation.
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A. Multichannel quantum-defect theory

To use MQDT, we first have to identify the symmetries
involved. From the ground state, the absorption of a single
XUV photon can only excite the Jπ = 1o symmetry, with
five channels for which the MQDT parameters are known
[26]. From these states, two symmetries are accessible with
one-photon IR probe absorption, Jπ = 0e, and 2e with two and
six available channels, respectively. For the former, we carry
out numerical fits for the energy regions of interest, and for
the latter, we use the parameters fitted to experiment in [27].

Finally, following absorption of another IR probe photon
causes photoionization to the Jπ = 1o and 3o symmetries. In
the continuum, the MQDT parameters are known for both
symmetries [26,28]. In particular, for J = 3, Ref. [28] pro-
vides fits for the three outer d electron channels, and we
assume that the remaining three g channels have negligible
quantum defects. These make up one part of the continuum,
11 channels in total. Similarly to what was observed in [22],
taking into consideration the Raman transitions is fundamen-
tal for describing the full dynamics of the atom. From the
intermediate Jπ = 2e states, the emission of a single IR probe
photon is nearly resonant with Jπ = 3o states, which would
then require us to add Jπ = 4e intermediate states and an
additional Jπ = 5o symmetry to the continuum, which adds
six more channels. Given the large angular momentum of the
channels for the latter two symmetries, we assume a zero
quantum defect.

Numerical experiments have shown that excluding these
additional symmetries has an impact on the spectrograms.
It alters the relative photoionization of each threshold, mak-
ing jc = 3/2 more dominant. This can be attributed to the
coupling between the intermediate unprimed states and these
deep J = 3 states, reducing photoionization. This effects
highlight the importance of the physics incorporated by in-
cluding these states in the calculation. Furthermore, symmetry
considerations indicate that if the observed photoionization
were a result of absorbing two IR probe photons, the de-
gree of the anisotropy coefficients found in the photoelectron
angular distribution would be 6. However, preliminary ob-
servations of the experimental results seem to suggest that
they could be noninsignificant to order 8. This certainly
agrees with the possible pathways allowed by including
these intermediate J = 3 states, but this would imply the
existence of a tenth degree coefficient, which seems to be
small enough to be indistinguishable from the noise. We
leave the precise measurement of angle-resolved effects and
the analysis of partial cross sections as topics for future
investigations.

In summary, to account for all the dynamics of the pro-
cesses we consider deep bound states, energies around 13.86
and 14.26 eV above the ground state, of angular momentum
and parities 1o and 3o with five and six channels, respectively.
The intermediate states will have total angular momentum and
parities 0e, 2e, and 4e, with two, six, and six channels. Finally,
the continuum states will have total angular momentum and
parities 1o, 3o, and 5o with five, six, and six channels. This
states were chosen in order to fulfill the dipole selection rules
imposed by the alignment of the two lasers. All the states will
have MJ = 0, which is conserved throughout.

For the ionization channels [25], we use the Jcs angular
momentum coupling scheme, and for the radial wave function,
we use the MQDT functions beyond the reaction zone. They
are extended to the whole radial domain by using the Seaton-
Burgess regularization [29].

In the formulas below, i denotes the ionization channel
index and functions �i encompass the wave functions of the
core degrees of freedom and the coupled angular momentum
states in the ionization channel coupling scheme. The func-
tions fi and gi are the regular and irregular Coulomb functions
evaluated at the channel kinetic energy, measured from the
threshold energy Ii, and the angular momentum corresponding
to the outermost electron. Some essential auxiliary functions
[25] include the incoming or outgoing wave solutions f ± ≡
(−g ± i f )/

√
2 and the energy normalized Whittaker function

W = cos[π (ν − �)] f + sin[π (ν − �)]g, where ν is defined in
terms of the total energy E for each ionization channel through
E = Ii − 1/2ν2

i , in atomic units. In the MQDT eigenchannel
parametrization, α denotes the eigenchannel index, and the
matrix Uiα is the frame transformation matrix that changes
the basis between the inner eigenchannels and the ionization
channels. Here the eigenchannels are very close to the LS-
coupled channels, so this matrix is a small modification of
the analytically known angular momentum recoupling matrix.
(For more details, see [24–26].) Finally, a channel is desig-
nated as closed if the electron’s asymptotic kinetic energy is
negative; a channel is open if the electron’s kinetic energy is
positive at infinity.

Below both thresholds, the purely bound states exist only
for discrete energies and are given by∣∣
J

n

〉 = Ar−1
∑

α

AJ
n,α

∑
i

�i[ fi(r)Uiα cos(πμα )

− gi(r)Uiα sin(πμα )]. (1)

Here A denotes the antisymmetrization operator which has no
significant effect since the electrons are in different regions
of space. We determine the energy of the state and the value
of the coefficients A by solving a determinantal equation that
requires the wave function to vanish as r → ∞ [25].

Between thresholds, there is an independent solution for
any energy and every available open channel. These solutions
have a rich resonance structure that stems from the necessity
of imposing the appropriate boundary conditions in the closed
channels. For an incoming-wave boundary condition state
producing outgoing waves only in open ionization channel i′,
the wave function has the form

ψ
(−)
i′ = A

∑
i∈o

1

r
�i(ω)

[
f +
i (r)δii′ − f −

i (r)S† phys
ii′

]

+
∑
i∈c

1

r
�i(ω)Wi(r, νi, li )Zii′ . (2)

We have introduced the so-called physical S matrix that de-
scribes scattering among the open channels. This matrix and
the density of states in the closed channels, the Z coefficients,
are obtained by imposing vanishing boundary conditions on
the closed channels. This is explained in more detail in [25].

Finally, when the energy is above both thresholds, there is
an incoming-wave boundary condition state solution for every
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open channel

ψ
(−)
i′ = A

∑
i

1

r
�i(ω)[ f +

i (r)δii′ − f −
i (r)S†

ii′ ]. (3)

B. Time propagation

To perform the time integration, we construct a constrained
Hilbert space composed of seven deep bound states that are
reachable by the ninth harmonic of the driver laser from
the ground state. We include the four (5s, 3d , 5s′, and 3d ′)
Jπ = 1o states, which are coupled to the ground state with the
dipole elements obtained from their experimentally measured
lifetimes [19], and three Jπ = 3o states, populated by Raman
transition with the IR probe. In addition, we include 54 Jπ =
2e, 17 Jπ = 0e, and 26 Jπ = 4e intermediate states within
reach of single-photon absorption. For these three symmetries,
we include 36 states per open channel for states in between
thresholds. In this energy region, there is a solution for every
energy, but we include only the resonant energies, given that
these will have the largest excitation probability. We refer
to [22] for the dynamics associated with these states when
interacting with the probe. Finally, we include 300 continuum
states per channel sampled uniformly in the energy range
between 0.5 and 1.5 eV above the highest threshold.

We assume a Gaussian laser pulse with time dependence

V (t ) = E0e−[(t−t0 )/γ ]2
cos(ωt )ε̂ · �r ≡ F (t, t0)ε̂ · �r (4)

as the time-dependent perturbation, with time propagation
handled using the split-operator formula as proposed in [30].
In summary, every time step is divided into three sections: a
propagation for half a step of the unperturbed Hamiltonian,
which is diagonal in the current basis, a propagation for a
complete time step through the perturbation, and then another
propagation for half a step through the unperturbed Hamilto-
nian. The second propagation uses the propagator matrix

Tn,n′ (t, t + δt ) =
∑

k

Rnk exp[−iF (t, t0)λk]RT
kn′ , (5)

where F (t, t0) = ∫ t+δt
t dt ′F (t ′, t0) and R and λk are the eigen-

vector matrix and eigenvalues of the dipole operator ε̂ · �r,
respectively, which, since this problem only deals with lin-
early polarized lasers, reduces to the z operator throughout.

Since we aim to propagate the wave function for a wide
range of time delays, it is imperative to implement a fast
way to perform many calculations and achieve an acceptable
resolution in a manageable timescale. To achieve this, we
exploit the linearity of Schrödinger’s equation and divide the
propagation into two parts.

First, the initial propagation acts on the wave function
initialized as the atomic ground state. It evolves through the
pump pulse, and the final amplitudes are stored in memory.
Since the seven deep bound states are nearly resonant, these
are the ones that obtain the highest amplitude in the propaga-
tion. Second, we perform a propagation over the probe pulse
at zero time delay, initializing the wave function on each of
the seven deep bound states and storing the final coefficients
in memory.

We compute the final amplitudes for a time delay where
the pulses do not overlap. This involves making a linear
combination of the states obtained in the propagation of each

one of the bound states, phase shifted by the time delay using
the corresponding unperturbed energy and of course weighted
by the amplitudes obtained with the propagation over the
pump.

As a final measure, to ensure an adequate comparison
with the experiment, the calculation uses the experimental
value for the energies from [19] of the seven deep bound
states. This approximation is justified, given that the energies
predicted by the MQDT model are, on average, separated
from their experimental value by only 4.79 meV. We also
convolve the obtained theoretical signal over a Gaussian with
energy-dependent width to account for the reconstruction of
the spectrograms from the VMI.

V. DISCUSSION

We perform simulations using the following parameters
that closely follow the experimental conditions: the pump
consisting of all odd harmonics of a 1.59-eV driver (up to the
ninth), with 12-fs duration and peak intensity of 1 MW/cm2,
while the 1-eV IR probe intensity is set to 1 TW/cm2,
with 65.5-fs duration. Our simulations show good agreement
with the experimental observations. First, a comparison of
Figs. 2(a) and 2(b) qualitatively shows the agreement between
the two signals in terms of the relative strength of the beats, as
well as the frequency content and the relative phase across the
entire energy range observed. One aspect where we observe
a significant difference is the contrast in the oscillations for
ionization with respect to the jc = 3/2 threshold. This is con-
firmed quantitatively by observing the line outs in Fig. 3(a);
the theoretical model accurately captures the width of the
features as well as the relative strength between the two peaks.
With the help of Fig. 3(b) we can identify that indeed the
two dominant components of the observed signal correspond
to photoionization of the primed states with respect to both
ionic thresholds. Also, we notice that there is a contribution
coming from the unprimed states and that there is an overlap
of unprimed ionization to the jc = 3/2 threshold and primed
ionization to the jc = 1/2 threshold.

A more quantitative analysis of the frequency content, ap-
plying the discrete Fourier transform to the data, corroborates
that indeed the main signal observed experimentally is also
dominant in the theory even if in the theoretical signal more
beat frequencies are distinguishable [see Figs. 4(a) and 4(b)].
Although in principle there are 21 possible combinations of
beats, including all J = 1 and 3 pairs, we observe that in
theory and experiment the dominant frequency is the (3d ′, 5s′)
beat, even if theoretically there is some additional structure
owing to the non-negligible amplitude in the 3d-3d ′ beat.

The preceding observations can be explained by noticing
that the ninth harmonic is nearly resonant with the energy of
the 3d ′ state and that the observed bandwidth of the harmonic
is wide enough to excite the 5s′ state. On top of the fact that
the 3d ′ state has nearly resonant excitation, the 3d ′ state also
has the largest dipole coupling to the ground state, increasing
the likelihood of excitation.

The model can also replicate the phase difference between
the two ionization peaks [see Fig. 5(c)]. Both experiment and
theory show a phase difference close to π between the ener-
gies that correspond to ionization to each one of the atomic
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thresholds. The existence of this phase difference is tied to
the structure of the dipole elements coupling the intermediate
states to the J = 1 and 3 states and to the open continuum,
which in turn is expressible in terms of fundamental atomic
quantities, such as the eigenphase shifts. Also, notice that the
model captures the dependence of the phase of this beat on
energy remarkably well.

A way to determine the source of this phase difference is to
analyze the process in perturbation theory. For simplicity, we
will only consider the two-photon process. To determine this

phase, we need to determine the amplitude of the (3d ′, 5s′)
beat in the photoionization amplitude for each ion channel;
then we obtain the amplitude at the peak energy in the contin-
uum. The phase we are trying to explain equals the argument
of the complex number given by the ratio between these two
amplitudes. We are interested in the phase difference between
the peaks of the signals; therefore, we evaluate these ampli-
tudes at the average energy of the 3d ′ and 5s′ states plus the
energy of two photons at the central frequency of the pulse.
The explicit expression for the phase difference is

φ3d ′,5s′ = arg

(∑
i=2,3,5 Z1

3d ′,i(E )Z1∗
5s′,i(E ) + ∑

i=1,2,4,5 Z3
3d ′,i(E )Z3∗

5s′,i(E )∑
i=1,4 Z1

3d ′,i(E )Z1∗
5s′,i(E ) + ∑

i=3,6 Z3
3d ′,i(E )Z3∗

5s′,i(E )

)∣∣∣∣∣
E=(E3d ′+E5s′ )/2+2ω

, (6)

with the details of its derivation and the expression for the
Z terms given in Appendix B. It suffices to say that the
superscripts on the Z quantities refer to the two different J
channels and the subscript i (over which we sum incoherently)
refers to the independent channels. Starting from the 3d ′ and
5s′ pair, the numerator captures the amplitude for ionization to
the jc = 3/2 threshold, while the denominator represents the
amplitude for ionization to the jc = 1/2 threshold.

Even though the parameters that describe the experiment
go well beyond perturbation theory, we notice that the phase
difference persists as the intensity of the laser is increased,
suggesting that this effect is indeed tied to the structure of
the dipoles and that it depends on fundamental quantities of
the atom that vary slowly with energy and are thus not very
sensitive to shifts in the spectrum. Perturbation theory predicts
that the phase difference between the oscillations at the same
frequency between the two ionization thresholds should be
independent of intensity, outside of the effects coming from
Stark shifts not considered in perturbation theory. It also pre-
dicts that the phase is independent of the initial amplitude of
the states, so it is independent of the pump.

The numerical simulations certainly agree far beyond the
perturbative regime, suggesting that the reasoning described
above explains the main mechanism behind the phase. Of
course, the perturbative prediction for the phase difference
does not exactly coincide with the observed value given that it
ignores important effects such as the ponderomotive shift and
the Stark effect. Nonetheless, refer to Fig. 6 and note that there
are large regions of the parameter space for which the phase
is near π , suggesting that due to the Stark shifts certain states
could be driven into resonance and shift this to accommodate
such a phase difference value for the present parameters.

This effect is prevalent. We found this phase difference in
the aforementioned cases where a different energy difference
acts as the dominant beat. Remarkably, we found a similar
shift in the case of single-photon photoionization, where the
probe frequency is doubled.

The fact that we observed this in the single-photon case
was particularly illustrative as we can make some approxi-
mations that allows us to derive a more explicit expression
for the phase difference. Suppose we were only interested in
the single Jπ = 0+ symmetry of the continuum. This is the
simplest case as this symmetry is composed of just one pair

of channels, one on each ionic state. The final expression is
given by

φ3d ′5s′ = π arctan(α0|S12|), (7)

where the factor α0 is a real factor involving the difference
between eigenquantum defects [25] and mixing angles of the
continuum channels. We show the derivation of this formula
in Appendix A and give an explicit expression for the leading
coefficient. The S matrix involved in the formula is the short-
range matrix describing the short-range inelastic electron-ion
scattering (see [25]).

FIG. 6. Obtained phase difference between the two peaks, for
the (5s′, 3d ′) states, predicted from perturbation theory as a function
of laser duration, which is the full width at half maximum of the
intensity of the probe laser and the probe frequency. The strongest
dependence comes from the variation on frequency, due to the com-
plicated interplay of resonances. Noticeable is a large plateau around
the values near π , which shows evidence that the obtained phase
from the time propagation comes from the structure of the dipoles.
The plus sign marks the point in the graph of the parameters used in
the simulation.
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Then each total J partial wave will have a different phase
value which then combines to give the one observed in the
spectrogram. In this case the alignment of the laser changes
and different MJ values are involved and the actual value of
the phase difference might change, since the intermediate and
final states involved have changed.

Even though we show this only for the single-photon case,
it is important to highlight that the structure for the two-
photon case is the same and that since the dipole elements
between bound states are purely real, the only source for a
phase in the final signal comes necessarily from the difference
of these eigenphases. Extracting a phase expression beyond
perturbation theory is left for future investigation.

Although the phase difference could be explained by per-
turbation theory, the multiple peaks in the beat amplitude
most definitely are not [refer to the structure of the signal in
Figs. 5(a) and 5(b)]. The perturbative approach predicts that
independent of the intensity of the probe, the profile of the
beat amplitude should have only two peaks, one correspond-
ing to each threshold, with the same width. In contrast, we
find that the signals show multiple peaks of varied widths.
The theory shows a dominant sharp peak with a spread second
peak at higher energies. The experiment shows three peaks.

We observe that if the probe intensity or duration changes,
multiple peaks in the beat amplitude emerge. This is the con-
sequence of more intermediate energies sustaining interfering
pathways. The fact that this depends on the intensity and
duration of the laser suggests that it is a consequence of the
energy shift in the intermediate states.

Given the large number of states in the propagation and
the fact that the energy shift depends on both intensity and
frequency, there is no clear method to determine exactly which
ones are responsible for the additional peaks. Nonetheless,
theoretically, it was found that the amplitude of the beats on
each one of the thresholds has two peaks and that the higher
peak in the jc = 1/2 channel overlaps with the lower peak of
the jc = 3/2 channel [see Fig. 5(b)] and that in the latter the
two peaks are overlapping. This, accompanied by the strong
dependence on probe duration and intensity, suggests that
there are two dominant interfering pathways generating the
multipeaked structure for the oscillations at this frequency.

We are able to find a set of parameters that gives rise to the
observed peak at around 0.7 eV. This required changing the
probe intensity to 2.5 TW/cm2 and the frequency to 0.972 eV
and it induced the 3d-3d ′ beat to become more predominant.
Performing a partial-wave analysis, it was found that this peak
is predominantly composed of J = 3 and 5, indicating that
the signal comes from the two-photon ionization of the J = 3
states, which are excited by a two-photon Raman transition
from the J = 1 states. The fact that the structure of these peaks
depends so strongly on the probe provides more evidence that
their existence is tied to the Raman process and makes it very
challenging to find a unique set of parameters that captures all
features simultaneously. Since the origin of this signal is the
fourth-order process it is weak enough not to be observable
in the averaged signal over time delay, which is completely
dominated by the two-photon signal with symmetry between
J = 1 and J = 3.

All the characteristics observed in the spectrogram of
course depend on the pump frequency and we have found that

FIG. 7. Spectrograms for two different sets of harmonic fre-
quency. (a) Time-delay spectrogram with harmonic frequency tuned
to excite the unprimed states. (b) Time-delay spectrogram with har-
monic frequency tuned to excite the primed states. (c) Fast Fourier
transform of the spectrogram with the unprimed tuned harmonic.
(d) Fast Fourier transform of the spectrogram with the primed tuned
harmonic.

manipulating it allows us to make different pairs become the
most predominant beat. Making it nearly resonant with the
3d state makes the 3d-5s frequency the most dominant, as in
Fig. 7. Similarly, setting the driver frequency so that the ninth
harmonic matches the average of the four states makes the
3d-3d ′ beat the dominant one since these are the states that
couple the strongest with the ground state.

The dependence on the probe parameters comes from vari-
ability of the intermediate states as the intensity and frequency
of the probe are changed. For example, see Fig. 8(a), which
shows the amplitudes obtained for each one of the thresholds.
In this case, we see that for a fixed frequency of 1.029 eV the
yield to each threshold increases at a different rate. In Fig. 8(b)
observe that the phase is not very sensitive to the changing
intensity, just as perturbation theory in Appendix B suggests.
Finally, in Fig. 8(c) we can observe the obtained spectrograms
that qualitatively show the shift in the peak ionization on each
threshold induced by the shifts of the intermediate states.

Similarly, in Fig. 9(a) we show the case with a probe
intensity of 1 TWcm−2 and a probe frequency changing from
0.95 to 1.05 eV. A frequency increase results in a consid-
erable change in the ratio between the time-delay average
of ionization on each threshold. In Fig. 9(b) observe that
the phase is more sensitive to a change in frequency, as the
expression in Appendix B can suggest. Qualitatively, one can
observe in Fig. 9(c) the shift in the dominant threshold and
how the kinetic energy of the obtained electrons increases
with increasing probe frequency.
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FIG. 8. Intensity dependence of the estimated yield of electrons
leaving the ionic core in each of the spin-orbit split states. (a) Am-
plitudes of the two largest peaks of the time-delay average of the
photoionization probability amplitude. (b) Phase difference between
(3d ′, 5s′) beat peaks. (c) Spectrogram for each probe intensity plotted
in (a), with a horizontal line at which the mean amplitude was
obtained for each threshold with dashed lines for jc = 1/2 and dotted
lines for jc = 3/2.

VI. CONCLUSION

Our experimental study highlights several interesting as-
pects of two-color ionization in the spin-orbit split continuum.
The extended theoretical approach introduced here employs
MQDT to describe pump-probe spectroscopy experiments.
We accurately described the energy distribution of photoelec-
trons from the argon atom, capturing the dynamics of quantum
beat signals as the delay between the pump and the probe
is changed. Theory results replicated the frequency content
found in the experiment that, even if many pairs of states
can interfere, only one pair of states dominates. Our model
also captured the variation of the phase of quantum beats on
the continuum channel in which the photoelectrons emerge.
The remarkable agreement between experiment and theory
highlights the importance of accounting for the full structure
of the involved bound states, which we achieved by employing
the MQDT ideas.

Exploration of the dependence of the observed phase
with the system parameters showed that it depends on the
off-diagonal elements of the close-range S matrix. To cap-
ture this in its simplest form, we explicitly showed the

FIG. 9. Frequency dependence of the estimated yield of elec-
trons leaving the ionic core in each of the spin-orbit split states.
(a) Amplitude of the dominant peaks on the time-delay average of the
photoionization probability. (b) Phase difference between (3d ′, 5s′)
beat peaks. (c) Spectrogram for each probe frequency plotted in (a),
with a horizontal line at which the mean amplitude was obtained for
each threshold with dashed lines for jc = 1/2 and dotted lines for
jc = 3/2.

dependence of phase on these parameters in the single-photon
photoionization case. Therefore, by measuring these phases
we learned about the electronic interactions in the close range.
The formulation of a more general form for this phase out-
side of perturbation theory is an interesting topic for future
research.

Since our theoretical method utilizes a full-time propa-
gation of Schrödinger’s equation, it was possible to explore
the dependence on different light field parameters. It was
found that both the relative amplitude depends consider-
ably on the probe parameters, but the phase between the
peaks in the oscillating signals does not have a consider-
able variation with the intensity and frequency of the probe.
Noteworthy is the fact that by varying the frequency of the
probe it was possible to change the dominant ionic state
from jc = 1/2 to jc = 3/2. It was also possible to explore
different values for the harmonic frequency of the pump,
showing that by tuning this frequency it was possible to
change the value of the dominant beat frequency of the
signal.

Our work opens the door for the exploration of dif-
ferent systems of interest since what is required for its
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application are the MQDT parameters for the involved sym-
metries, information that is available with high accuracy for
many atoms. Of interest is the neon atom for which re-
cent work [3,31] has shown an interesting dependence of
the photoelectron angular distribution on the probe intensity
and frequency. Preliminary calculations have shown that our
approach can replicate some of the observed results in neon.
We leave a detailed study of angular distributions for future
investigation.
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APPENDIX A: SINGLE-PHOTON CASE IN A TWO-CHANNEL CONTINUUM

1. Phase in terms of eigenphase shift

To illustrate the source of the observed phase from fundamental atomic quantities, we present a simplified model for the
process that considers only a single symmetry for the continuum with two channels (as in the case of the Jπ = 0+ symmetry).
Each one of the channels has a different ion state; therefore, we are interested in the phase difference between oscillating
probabilities for each channel. Let the bound states that make up the initial wave packet be denoted by {ψn}N

1 .
Now, to determine the wave function in the continuum we will do so in a more explicit way in order to track the source

of the phase. Instead of directly calculating the dipole elements of the incoming-wave boundary condition states, we compute
the dipoles of standing-wave states and then make a linear combination of the experimentally relevant states [32,33]. In the
two-channel case, we will have two independent standing-wave eigenchannel solutions, indexed by ρ.

These states are of the type stressed by Fano [24] and by Lee and Lu [26], which are distinguished by the collision eigenphase
shift πτρ and are real. For atomic energy E , above both ionization thresholds, the functional form of this state is

ψρ (E ) = A
(

�1

r
[ f1(r) cos πτρ − g1(r) sin πτρ] + �2

r
[ f2(r) cos πτρ − g2(r) sin πτρ]

)
(A1)

and the experimentally relevant incoming-wave boundary condition state, which contains only outgoing waves in channel j, is
given by the complex superposition

ψ−
j =

∑
ρ

ψρTjρ exp[−i(πτρ + η j )], (A2)

where η j is the long-range phase shift of a long-range attractive Coulomb potential and Tjρ is some unitary matrix. In our
two-channel case above the two thresholds, we take for this matrix to be orthogonal and parametrized by a single mixing angle

Tjρ =
(

cos θ − sin θ

sin θ cos θ

)
. (A3)

The initial wave packet, formed by the pump, is given by

ψ (t ) =
N∑

n=1

An(t ) exp(−iEnt )ψn +
∫

dE AE ,1(t ) exp(−iEt )ψ−
1 (E ) +

∫
dE AE ,2(t ) exp(−iEt )ψ−

2 (E ), (A4)

where the sum is over the bound states and we integrate over the continuum energies above both thresholds and sum over the
two distinguishable channels. In the following calculation, we determine the amplitude of the continuum states long after the
probe pulse has passed.

As in the main text, we will use the perturbation in Eq. (4). We will assume that at time t = 0, the amplitudes in the continuum
are zero, while the bound wave packet has nonzero amplitudes, and that the laser has a negligible amplitude. Using time-
dependent perturbation theory, we find that for these long times (t = ∞) the amplitudes in the continuum under the rotating-wave
approximation are

AE , j (∞) = −i

2

∑
n

An(0)F̃ (En + ω − E , t0)〈ψ−
j |ε̂ · �r |ψn〉, (A5)

where the function F̃ (ω, t0) = ∫ ∞
−∞ dt F (t, t0)e−iωt . We can explicitly extract the complex component of this amplitude by

writing the dipole element in terms of the dipoles with the standing-wave states

AE , j (∞) = −i

2

∑
n

An(0)F̃ (En + ω − E , t0)
∑

ρ

DρnTjρ exp[i(η j + πτρ )], (A6)

033107-10



QUANTUM BEATS IN TWO-COLOR PHOTOIONIZATION TO … PHYSICAL REVIEW A 108, 033107 (2023)

where we define the real dipole elements Dρn = 〈ψρ |ε̂ · �r |ψn〉. Inserting the explicit expression for the Gaussian pulse and the
matrix elements of the T matrix, the expression for the probability is

|AE , j (∞)|2 = E2
0 γ 2π

8

N∑
n,n′=1

AnA∗
n′P (E , En, En′) exp[i(En − En′ )t0]

∑
ρρ′

DρnDρ′n′TjρTjρ′eiπ (τρ−τρ′ ), (A7)

with P (E , En, En′) = exp{− γ 2

8 (En − En′ )2 − γ 2

2 [E − ω − (En + En′ )/2]2}. In this sum, n and n′ are indices summing over the
bound states and hold no relation to the notation in the main text.

In this two-channel case, the probability is given by the sum of four terms, which may be factorized into two. Then the
probability for each channel is given by

|AE ,1(∞)|2 = E2
0 γ 2π

8

N∑
n,n′=1

AnA∗
n′P (E , En, En′)(D1n cos θ − D2n sin θeiπ (τ2−τ1 ) )(D1n′ cos θ − D2n′ cos θeiπ (τ1−τ2 ) )ei(En−En′ )t0 (A8)

and

|AE ,2(∞)|2 = E2
0 γ 2π

8

N∑
n,n′=1

AnA∗
n′P (E , En, En′)(D2n cos θ + D1n sin θeiπ (τ2−τ1 ) )(D2n′ cos θ + D1n′ cos θeiπ (τ1−τ2 ) )ei(En−En′ )t0 . (A9)

For the oscillation at frequency En − En′, the phase is given by the sum of the phases of the bracketed terms. Since the
experiment cannot determine absolute phases, what is measured is the phase difference between the two continuum channels at
the energy where the amplitude is maximum, P (E , En, En′) = 1. This is given by

φnn′ = π arctan

(
a0 sin � sin 2θ

a1 + a2 cos 4θ + a3 cos 2θ sin2 2θ + a4 cos � sin 4θ

)
:= arctan(α0|S12|),

a0 = 4(D2nD1n′ − D1nD2n′)(D1nD1n′ + D2nD2n′),

a1 = (
D2

2n − D2
1n

)(
D2

2n′ − D2
1n′

) − 6D1nD1n′D2nD2n′,

a2 = (
D2

2n′ − D2
1n′

)(
D2

2n − D2
1n

) − 2D1nD2nD1n′D2n′,

a3 = 4(D2nD1n′ + D1nD2′)(D2nD2n′ − D1nD1n′), (A10)

where this equation is valid only modulo π and � = π (τ2 − τ1). Note that these phase differences vanish in the limit that the
inelastic electron-ion scattering probability vanishes, which is equal to |S12|2 = sin2 2θ sin2 �.

2. Phase in terms of Wigner time delay

This discussion can be translated in terms of time delays, which is of interest to the community given how insightful these
delays are when understanding the complex atomic structure and dynamics [16], but the expressions obtained are less transparent.
In this case it is more beneficial to work in terms of the dipole transition amplitudes to states that obey the complex incoming-
wave boundary condition. Let

〈ψ−
j |ε̂ · �r|ψn〉 = Djneiγ jn+iη j =

∑
ρ

DρnTjρ exp[i(η j + πτρ )], (A11)

where

Djn =
√∑

ρρ′
DρnDρ′nTjρTjρ′(cos πτρ cos πτρ ′ + sin πτρ sin πτρ ′ ),

γ jn = arctan

( ∑
ρ DρnTjρ sin πτρ∑
ρ DρnTjρ cos πτρ

)
. (A12)

In term of these phases one can quickly check that

φnn′ = (γ1n − γ2n) − (γ1n′ − γ2n′), (A13)

evaluated at the atomic energy E = 1
2 (En + En′) + ω.

Nonetheless, in order to relate this to the time delays, we must return to the expression for the probability amplitude and for
each term in the sum Taylor expand the energy-dependent phases around E = En + ω. The time dependence on the continuum
states is

AE , j (t → ∞) exp(−iEt ) = − i

2

∑
n

An(0)F̃ (En + ω − E , t0)Djn exp
{
iη j + iγ (0)

jn + iγ (1)
jn [E − (En + ω)] − iEt

}
, (A14)
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where the terms γ
(0)
jn indicate evaluating γ jn at energy En + ω and γ

(1)
jn is the first derivative of γ jn evaluated at this same energy.

We interpret this probability amplitude as the sum of terms with different time delays coming from each bound state. The
delays correspond to the Wigner time delay t jn = γ

(1)
jn of the photoionization of each one of the bound states. This delay is

interpreted as the time difference between an electron ionized from state n into channel j with a photon of frequency ω when the
interchannel interactions are included and when they are not. Expanding the probability, we obtain a sum of oscillatory terms

|AE , j (∞)|2 = E2
0 γ 2π

8

∑
n,n′

AnA∗
n′P (E , En, En′)DjnDjn′ exp

[
i
(
γ

(0)
jn − γ

(0)
jn′

) − i(t jnEn − t jn′En′) + i(t jn − t jn′)(E − ω)
]
ei(En−En′ )t0 .

(A15)
Evaluating the amplitude of the En − En′ term at the energy of the P peak, we obtain

|AE , j (∞)|2nn′ = E2
0 γ 2π

8
AnA∗

n′ exp

(
−γ 2

8
(En − En′)2

)
DjnDjn′ exp

{
i
(
γ

(0)
jn − γ

(0)
jn′

) + i(En − En′)[t0 − 1/2(t jn + t jn′)]
}
. (A16)

Here the phase added to the beat comes from two different terms. One is the difference of the phase of the complex dipole
elements evaluated at the energy of the single-photon absorption. The second term shifts the laser delay t0 by the average time
delay between the two continuum electron waves. This essentially is an adjustment to account for the delay to reach the detector
for electrons being ionized from each bound state.

Then the phase difference between the beats is given by

φnn′ = (
γ

(0)
1n − γ

(0)
2n

) − (
γ

(0)
1n′ − γ

(0)
2n′

) − 1
2 (En − En′)(t1n − t2n + t1n′ − t2n′), (A17)

which is just the first-order Taylor expansion of Eq. (20). However, there is a caveat: The terms related to each one of the bound
states are expanded with respect to different energies, which means that this expression is meaningful only if the beat frequency
En − En′ is not too large compared to the variation of the phases.

The zeroth-order term here mimics the phase difference obtained in the previous derivation in terms of the eigenchannel
quantities, although care must be taken as the energy at which incoming-wave boundary condition dipole phases are being
evaluated are different.

For the two-channel continuum the expression for the time delays in terms of fundamental quantities is given by

t1n = sin �(b0 sin 2θ − b1θ̇ ) + 2π [τ̇1 cos θD1n(D1n cos θ − D2n sin θ cos �) + τ̇2 sin θD2n(D2n sin θ − D1n cos θ cos �)]

2
(

cos2 θD2
1n + sin2 θD2

2n − cos � sin 2θD1nD2n
) ,

t2n = sin �(−b0 sin 2θ − b1θ̇ ) + 2π [τ̇1 sin θD1n(D1n sin θ + D2n cos θ cos �) + τ̇2 cos θD2n(D2n cos θ + D1n sin θ cos �)]

2
(

sin2 θD2
1n + cos2 θD2

2n + cos � sin 2θD1nD2n
) ,

b0 = D2nḊ1n − Ḋ2nD1n,

b1 = 2D1nD2n. (A18)

In the limit of constant maximum mixing between channels, θ = π/4, the time-delay difference is given by

t1n − t2n = −2 sin �
(
D2

1n + D2
2n

)
b0 + πb1 cos �

(
D2

1n − D2
2n

)
�̇

D4
1n + D4

2n − 2 cos 2�D2
1nD2

2n

. (A19)

APPENDIX B: TWO-PHOTON IONIZATION FOR ARGON

Similarly to the single-photon case, the calculation starts from a wave packet formed after the pump laser and we want the
amplitudes for times long after the probe pulse has passed. In this case we include all the symmetries of the continuum and
consider the dipoles directly to the incoming-wave boundary condition states. The wave packet is composed of seven complex
amplitudes An for each one of the Jπ = 1o and 3o states. We again use Eq. (4) as the time-dependent perturbation and use
second-order time dependent perturbation to find the amplitudes in the continuum.

To simplify the calculation, only the two-photon process is treated. The time-dependent unperturbed state is then given by

ψ (t ) =
∑

n

An(t ) exp(−iEnt )ψn +
∑

j=1,...,5

∫
dE A1o

E , j (t ) exp(−iEt )ψ1o−
j (E )

+
∑

j=1,...,6

∫
dE A3o

E , j (t ) exp(−iEt )ψ3o−
j (E ). (B1)
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As in Appendix A we are interested on the amplitude of the continuum states long after the probe laser has passed. We use the
second-order expression for the matrix element of the transition matrix, as presented in [34], to obtain

AJπ

E ,i(t → ∞) = −
∑

n

An

∫
dτ1

∫
dτ2

∑∫
ξ

dEξ

〈
ψJπ

i (E )(−1)|V (τ1)|�Eξ

〉〈
�Eξ

|V (τ2)|ψn
〉
ei(E−Eξ )τ1 ei(Eξ −En )τ2

= −E2
0 γ 2π

8

∑
n

An exp[i(E − En)t0] exp

(
−γ 2

8
(En + 2ω − E )2

)

×
∑∫

dEξ

〈
ψJπ

i (E )(−1)|ε̂ · �r |�Eξ

〉〈
�Eξ

|ε̂ · �r |ψn
〉
W

[
γ√

2

(
Eξ − En − ω + En + 2ω − E

4

)]
, (B2)

where the function W (z) ≡ e−z2
[1 − i erfi(z)]. The goal of this derivation is to determine the phase difference in the signal

between the electrons that leave the core in each of the different spin-orbit split states. To simplify our notation, we define the
symbol ZJπ

n,i (E ) as including all the terms involved in the integral sum over intermediate states and their dipole matrix elements.
This Z will encompass all the complex phase information to the continuum as well as the complex resonant structure of the
intermediate states.

With this, the total probability density for a defined kinetic energy is an incoherent sum of the probabilities over the
distinguishable channels,

P(ε) = E4
0 γ 4π2

64

∑
n,n′

AnA∗
n′ exp

(
i(En′ − En)t0 − γ 2

16
(En − En′)2

){
exp

[
−γ 2

4

(
E3/2 + ε − En + En′

2
− 2ω

)2
]

×
⎛
⎝ ∑

i=2,3,5

Z1
n,i(E3/2 + ε)Z1∗

n′,i(E3/2 + ε) +
∑

i=1,2,4,5

Z3
n,i(E3/2 + ε)Z3∗

n′,i(E3/2 + ε)

⎞
⎠

+ exp

[
−γ 2

4

(
E1/2 + ε − En + En′

2
− 2ω

)2
]

×
⎛
⎝∑

i=1,4

Z1
n,i(E1/2 + ε)Z1∗

n′,i(E1/2 + ε) +
∑
i=3,6

Z3
n,i(E1/2 + ε)Z3∗

n′,i(E1/2 + ε)

⎞
⎠

⎫⎬
⎭. (B3)

This expression clarifies what defines the amplitude and phase in the beating signal. First, notice that, similarly to what was
found in [22] and in the previous derivation for the single-photon case, the interaction term has a Gaussian factor in the difference
between the bound-state energies. Second, note that the contributions to each threshold peak at different kinetic energies. To find
the phase difference we just take the argument of the ratio between the complex amplitudes of the terms going to each separate
threshold at the energy where they peak, E = (En + En′)/2 + 2ω:

φn,n′ = arg

(∑
i=2,3,5 Z1

n,i(E )Z1∗
n′,i(E ) + ∑

i=1,2,4,5 Z3
n,i(E )Z3∗

n′,i(E )∑
i=1,4 Z1

n,i(E )Z1∗
n′,i(E ) + ∑

i=3,6 Z3
n,i(E )Z3∗

n′,i(E )

)∣∣∣∣∣
E=(En+En′ )/2+2ω

. (B4)

Notably, this phase difference does not depend on the intensity of the probe laser and so it is entirely determined from the
central frequency and the bandwidth of the laser. For the values utilized in the spectrogram shown in Fig. 2 and using the
intermediate bound states sampled in the sum, we obtain a value of 0.8354π , which is considerably lower than what is observed
experimentally. Nevertheless, the phase difference obtained using the perturbative model has a considerable dependence on the
frequency of the probe, reaching a value close to π for parameters close to those used experimentally. Even if the perturbative
model does not match exactly the phase difference obtained in the experiment, the ac Stark shift due to the probe laser takes
the appropriate states in resonance so that the phase obtained agrees reasonably well with that predicted for slightly different
parameters.
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