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Quantum tracking control of the orientation of symmetric-top molecules
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The goal of quantum tracking control is to identify shaped fields to steer observable expectation values
along designated time-dependent tracks. The fields are determined via an iteration-free procedure, which is
based on inverting the underlying dynamical equations governing the controlled observables. In this paper, we
generalize the ideas in [Phys. Rev. A 98, 043429 (2018)] to the task of orienting symmetric top molecules in
three dimensions. To this end, we derive equations for the control fields capable of directly tracking the expected
value of the three-dimensional dipole orientation vector along a desired path in time. We show this framework
can be utilized for tracking the orientation of linear molecules as well, and present numerical illustrations of
these principles for symmetric-top tracking control problems.
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I. INTRODUCTION

The desire to selectively manipulate molecular dynamics
using external fields is a decades-old dream that has moti-
vated a broad range of research pursuits [1–3], including the
development of quantum optimal control (QOC) theory [4].
The goal of QOC is to identify fields to control the dynamics
of a quantum system, such that the system achieves a desired
control objective at a designated target time t = T . The task of
identifying an optimal field is typically accomplished by itera-
tive optimization methods [5–7]. Although these methods can
be computationally demanding, QOC has nonetheless found
broad applications, ranging from quantum computing [8–14]
to chemical reactions [15–19].

In this paper, we focus on another formulation, quantum
tracking control (QTC) [20–22], for designing control fields to
accurately track the temporal path of an observable of interest.
The origins of QTC are in engineering control theory, which
has explored tracking control in a range of settings including
linear [23], nonlinear [24], and bilinear [25] systems. For
quantum-mechanical applications, tracking control principles
have been applied towards the numerical study of systems in-
cluding a qubit [26], a single atom [27], and various molecular
[20–22,28,29] and solid-state systems [30–32].

The aim of QTC is to find tracking control field(s) ε(t ) that
drive one or multiple observable expectation values 〈O〉(t ) ≡
〈ψ (t )|O|ψ (t )〉 along desired time-dependent tracks 〈O〉d (t )
for a chosen time interval t ∈ [0, T ]. This is carried out by
directly inverting the underlying dynamical equation govern-
ing 〈O〉(t ) in order to solve for ε(t ) [20–22]. We remark that
QTC possesses similarities to reverse engineering [33–35],
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which aims to obtain an analytical form for ε(t ) that achieves
desired trajectories of the state. However, reverse engineering
is typically restricted to very small or simple systems. Be-
cause it does not require any iterative optimization, QTC can
be computationally advantageous compared with usual QOC
schemes.

A challenge facing QTC is the potential presence of singu-
larities in the corresponding direct inversion procedure [36].
That is, attempts to exactly track arbitrary time-dependent ob-
servable paths can produce unphysical, discontinuous control
fields [37] and deviations from the desired tracks. However,
if singularities can be avoided, QTC offers an appealing,
iteration-free approach for designing fields to control quantum
systems.

Here, we consider applications of QTC to rotational con-
trol, for the purpose of orienting symmetric-top molecules.
Quantum control of rotational dynamics has been explored
in the context of numerous applications [38]. In particular,
quantum control of molecular orientation has been explored
for applications spanning high harmonic generation [39] and
chemical reaction enhancement [40–42], and has been the
subject of numerous experimental [43–45] and theoretical
[46–52] studies. In particular, QTC of molecular rotor ori-
entation in two dimensions has been explored [28]. In this
work, we extend this prior work to linear and symmetric-top
molecules in three dimensions, as depicted in Fig. 1. We note
that although the controllability of linear and symmetric top
molecules has been the subject of other studies [53,54], to the
best of our knowledge, the suitability of symmetric tops for
QTC has thus far not been explored.

The remainder of the paper is organized as follows. We
begin by outlining the symmetric-top rotor model and derive
QTC equations for the control fields to track its orientation.
We go on to describe computational methods for solving the
QTC equations by expanding the wave function in terms of
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FIG. 1. In this paper, we formulate QTC for controlling the three-
dimensional (3D) orientation of symmetric top molecules, such as
fluoromethane, shown here. The control procedure involves design-
ing three orthogonal fields (black) in order to drive the molecule’s 3D
dipole vector along a desired time-dependent track (red). The three
fields can be determined by solving an inverse equation, without the
need for optimization.

angular momentum eigenfunctions of the symmetric top and
address the QTC singularity issue. We then show how the
formulation of QTC for symmetric-top molecules can be re-
duced to the case of a linear rotor. We conclude with numerical
illustrations and an outlook.

II. SYMMETRIC-TOP MOLECULES
IN THREE DIMENSIONS

We consider a symmetric-top molecule with dynamics gov-
erned by the time-dependent Schrödinger equation,

i
∂

∂t
|ψ (t )〉 = H (t )|ψ (t )〉, (1)

where h̄ = 1 and the time-dependent Hamiltonian is

H (t ) = H0 − μ · ε(t ) (2)

in terms of (i) the field-free Hamiltonian H0, (ii) three or-
thogonal control fields εX (t ), εY (t ), and εZ (t ), i.e., where
ε(t ) = X̂εX (t ) + Ŷ εY (t ) + ẐεZ (t ), and (iii) the components
of the dipole moment μ = X̂μX + Ŷ μY + ẐμZ , where X̂ , Ŷ ,
and Ẑ denote the three Cartesian unit vectors in the laboratory,
space-fixed frame of reference.

Given the symmetry of the molecule, the dipole moment
is along the principal, molecular, body-fixed ẑ axis, such that
μ = ẑμz, where μz = μz, μ is the magnitude of the dipole
moment, and z is the body-fixed position operator. Noting that
vectors represented in body-fixed coordinates x̂, ŷ, and ẑ and
space-fixed coordinates X̂ , Ŷ , and Ẑ can be related via Euler
angles θ ∈ [0, π ], φ ∈ [0, 2π ], and χ ∈ [0, 2π ], as per Fig. 2,
the components of the dipole moment in the space-fixed frame
are then given by

μX = μX = μ sin θ cos φ,

μY = μY = μ sin θ sin φ,

μZ = μZ = μ cos θ,

(3)

where X,Y, Z denote the space-fixed position operators, ex-
pressed using Euler angles θ, φ.

FIG. 2. Diagram showing (θ, φ, χ ) Euler angle relations be-
tween laboratory space-fixed X̂ , Ŷ , and Ẑ coordinates (black) and
molecular body-fixed x̂, ŷ, and ẑ coordinates (red).

The molecule is assumed to be a rigid rotor, and the field-
free symmetric-top Hamiltonian is given by [55]

H0 = B
(
J2

x + J2
y

) + CJ2
z , (4)

where B and C are rotational constants and Jx, Jy, and Jz,
respectively, denote angular momentum projection operators
in the molecular frame, given by the relations

Jx = −i cos χ

(
cot θ

∂

∂χ
− 1

sin θ

∂

∂φ

)
− i sin χ

∂

∂θ
,

Jy = i sin χ

(
cot θ

∂

∂χ
− 1

sin θ

∂

∂φ

)
− i cos χ

∂

∂θ
, (5)

and

Jz = −i
∂

∂χ
. (6)

As a result, the total angular momentum can be written as

J2 = −
(

∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

(
∂2

∂φ2
+ ∂2

∂χ2

− 2 cos θ
∂2

∂φ∂χ

))
(7)

and the field-free Hamiltonian becomes

H0 = −B

(
∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2 θ

∂2

∂χ2

− 2
cot θ

sin θ

∂2

∂χ∂φ
+ 1

sin2 θ

∂2

∂φ2

)
− C

∂2

∂χ2
. (8)

III. QUANTUM TRACKING CONTROL EQUATIONS
FOR SYMMETRIC-TOP ORIENTATION

Here, we apply the QTC framework [20–22,28] to track-
ing a symmetric-top molecule’s 3D orientation using three
orthogonal QTC fields. The time-dependent symmetric-top
orientation is defined as

〈R〉(t ) = X̂ 〈X 〉(t ) + Ŷ 〈Y 〉(t ) + Ẑ〈Z〉(t ), (9)

which is the instantaneous expectation value, at time t , of the
position vector operator R ≡ X̂X + ŶY + ẐZ . By differenti-
ating 〈R〉(t ) with respect to t once we obtain

d〈R〉(t )

dt
= i〈[H0, R]〉(t ), (10)
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which has no explicit dependence on ε(t ). By further differ-
entiating Eq. (10) with respect to t we obtain

d2〈R〉(t )

dt2
= 〈[μ · ε(t ), [H0, R]]〉(t ) − 〈[H0, [H0, R]]〉(t ).

(11)

Equation (11) can be expressed as a single matrix equa-
tion b(t ) = A(t )ε(t ), where ε(t ) = (εX (t ), εY (t ), εZ (t ))T , the
components of the matrix A(t ) are given by

AX,X (t ) = 〈[μX , [H0, X ]]〉(t ) = 2μB〈Y 2 + Z2〉(t )

AY,Y (t ) = 〈[μY , [H0,Y ]]〉(t ) = 2μB〈Z2 + X 2〉(t )

AZ,Z (t ) = 〈[μZ , [H0, Z]]〉(t ) = 2μB〈X 2 + Y 2〉(t )

AX,Y (t ) = AY,X (t ) = 〈[μY , [H0, X ]]〉(t )

= −2μB〈XY 〉(t )

AY,Z (t ) = AZ,Y (t ) = 〈[μZ , [H0,Y ]]〉(t )

= −2μB〈Y Z〉(t )

AZ,X (t ) = AX,Z (t ) = 〈[μX , [H0, Z]]〉(t )

= −2μB〈ZX 〉(t ),

(12)

and the components of the vector b(t ) read

b(t ) = d2〈R〉d (t )

dt2
〈+〈[H0, [H0, R]]〉(t ). (13)

Here the subscript d denotes the predefined or designated path
in time to be tracked, 〈R〉d (t ).

The QTC fields can be found by inverting A(t ), i.e., as-
suming the inverse of A(t ) exists at all times t , and solving
the resultant QTC equations,

ε(t ) = A−1(t )b(t ), (14)

as follows. First, the initial field values ε(0) are computed at
time t = 0, by evaluating (14) for an initial state |ψ (0)〉. The
next step is to evolve the system forward in time by integrating
the Schrödinger equation (1) over a small time step 	t , where
this evolution depends on ε(0). Then, the state that results
from this forward propagation, |ψ (	t )〉, can be substituted
into Eq. (14) to compute ε(	t ) associated with time t = 	t .
This procedure is then repeated for all remaining time steps,
where each forward step k − 1 → k involves the following
two computational steps (i) and (ii):

(i) |ψ (k	t )〉 = e−iH(ε((k−1)	t ))	t |ψ ((k − 1)	t )〉
(ii) ε(k	t ) = A−1(|ψ (k	t )〉)b(|ψ (k	t )〉).
The computational details associated with steps (i) and (ii)

are given in Sec. IV. As mentioned above, this procedure
requires that A(t ) is invertible at all times. A singularity is ob-
tained when A(t ) is not invertible, implying that det[A(t )] =
0. We proceed by investigating this case in more detail below.

From Eq. (12) it can be readily shown that the determinant
of the matrix A, suppressing the t dependence, can be written
as

det(A) = (2μB)3((〈X 2〉 + 〈Y 2〉)(〈Y 2〉〈X 2〉 − 〈XY 〉2)

+ (〈Y 2〉 + 〈Z2〉)(〈Y 2〉〈Z2〉 − 〈Y Z〉2)

+ (〈Z2〉 + 〈X 2〉)(〈X 2〉〈Z2〉 − 〈XZ〉2)

+ 2(〈X 2〉〈Y 2〉〈Z2〉 − 〈XY 〉〈Y Z〉〈XZ〉)) � 0. (15)

The Cauchy-Schwarz inequalities between the state vectors
X |ψ (t )〉, Y |ψ (t )〉, and Z|ψ (t )〉, which can be expressed in
general as

〈ϕ1|ϕ1〉〈ϕ2|ϕ2〉 � |〈ϕ1|ϕ2〉|2 (16)

for any two state vectors |ϕ1〉 and |ϕ2〉, implies that Eq. (15)
is positive semidefinite, as indicated. To see that this holds for
the final line in Eq. (15), we begin with the following relations
from Cauchy-Schwarz:

〈X 2〉〈Y 2〉 � 〈XY 〉2

〈Y 2〉〈Z2〉 � 〈Y Z〉2 (17)

〈Z2〉〈X 2〉 � 〈ZX 〉2,

which may be rearranged by taking products as,

〈X 2〉2〈Y 2〉2〈Z2〉2 � 〈XY 〉2〈Y Z〉2〈ZX 〉2. (18)

Taking the square root of both sides then yields the desired
result that

〈X 2〉〈Y 2〉〈Z2〉 � 〈XY 〉〈Y Z〉〈ZX 〉. (19)

The equality sign (i.e., a singularity) in Eq. (15) can arise
if and only if X |ψ (t )〉, Y |ψ (t )〉, and Z|ψ (t )〉 are all linearly
dependent. The QTC singularity issue will be addressed in
Sec. IV below where we describe our computational methods
for solving Eq. (14).

IV. COMPUTATIONAL METHODS

The numerical computation of the QTC fields according to
Eq. (14) requires evaluations of the expectation values for the
associated operators. Here, we study QTC of symmetric top
molecules in the |JKM〉 eigenbasis of the drift Hamiltonian,
which is given in Eq. (8) and can be rearranged as

H0 = BJ2 + (C − B)J2
z (20)

leading to the eigenvalue equation

H0 |JKM〉 = (
BJ (J + 1) + (C − B)K2

)|JKM〉 (21)

where J = 0, 1, 2, . . . is the total rotational angular momen-
tum quantum number, K = 0,±1,±2, . . . ,±J is the projec-
tion of the angular momentum onto the molecule-fixed z axis,
and M = 0,±1,±2, . . . ,±J is the projection of the angular
momentum onto the laboratory frame Z axis. Equation (21)
can be obtained in a straightforward manner from Eq. (20)
using the standard angular momentum matrix element
relations Jz|JKM〉 = K|JKM〉 and J2|JKM〉 = J (J + 1)
|JKM〉. In this section, we obtain matrix element relations in
this basis in order to carry out the two computational steps
outlined in Sec. III that must be taken at each forward time
step, i.e., (i) solving the time-dependent Schrödinger equation,
Eq. (1) and (ii) solving the QTC equations, Eq. (14).

(i) Solving Eq. (1)
We begin by expanding the state of a symmetric top as

|ψ (t )〉 =
∑
JKM

〈JKM|ψ (t )〉|JKM〉, (22)
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The expansion coefficients are governed by the equation

i
d

dt
〈JKM|ψ (t )〉 =

∑
J ′K ′M ′

〈JKM|H0|J ′K ′M ′〉〈J ′K ′M ′|ψ (t )〉 −
∑

J ′K ′M ′
μ〈JKM|X |J ′K ′M ′〉〈J ′K ′M ′|ψ (t )〉εX (t )

−
∑

J ′K ′M ′
μ〈JKM|Y |J ′K ′M ′〉〈J ′K ′M ′|ψ (t )〉εY (t ) −

∑
J ′K ′M ′

μ〈JKM|Z|J ′K ′M ′〉〈J ′K ′M ′|ψ (t )〉εZ (t ), (23)

where

〈JKM|H0|J ′K ′M ′〉 = BJ (J + 1) + (C − B)K2 (24)

for J ′ = J , K ′ = K , and M ′ = M, and

〈JKM|X |J ′K ′M ′〉 = −N
√

2(−1)2+2J ′+M ′−K ′+2M

2

∑
m=−1,1

m

(
J 1 J ′
M m −M ′

)(
J 1 J ′
K 0 −K ′

)
,

〈JKM|Y |J ′K ′M ′〉 = N
√

2(−1)2+2J ′+M ′−K ′+2M

2i

∑
m=−1,1

(
J 1 J ′
M m −M ′

)(
J 1 J ′
K 0 −K ′

)
, (25)

with J ′ = J ± 1, K ′ = K , and M ′ = M ± 1, and

〈JKM|Z|J ′K ′M ′〉 = N (−1)2+2J ′+M ′−K ′+2M

(
J 1 J ′
M 0 −M ′

)(
J 1 J ′
K 0 −K ′

)
, (26)

with J ′ = J ± 1, K ′ = K , and M ′ = M, in terms of 3 j sym-
bols, where N = √

(2J + 1)(2J ′ + 1) [56–58]. The selection
rules associated with Eqs. (25) and (26) can be used to accel-
erate the computation of the associated matrix elements. The
selection rules also imply that fields coupling to the system via
X,Y, Z can only be used to drive transitions in the quantum
numbers J, M, while K is conserved.

(ii) Solving Eq. (14)
Equations (25) and (26) provide the matrix element rela-

tions needed for obtaining the elements of A(t ) in the QTC
Eq. (14) [i.e., see Eq. (12)] in the |JKM〉 eigenbasis. The

computation of b(t ) requires matrix element relations for the
triple commutators of the form [H0, [H0, R]], i.e.,

〈JKM|[H0, [H0, R]]|J ′K ′M ′〉
= (B(J (J + 1) − J ′(J ′ + 1)))2〈JKM|R|J ′K ′M ′〉. (27)

The issue of det[A(t )] = 0 in Eq. (15) can be clarified
as follows.1 We will show that the state vectors X |ψ (t )〉,
Y |ψ (t )〉, and Z|ψ (t )〉 are linearly independent of each other.
Specifically, X |ψ (t )〉, Y |ψ (t )〉, and Z|ψ (t )〉 can be, respec-
tively, further written in terms of the basis |JKM〉, as

X |ψ (t )〉 =
∑
JKM

[ ∑
J ′K ′M ′

〈JKM|X |J ′K ′M ′〉〈J ′K ′M ′|ψ (t )〉
]
|JKM〉,

Y |ψ (t )〉 =
∑
JKM

[ ∑
J ′K ′M ′

〈JKM|Y |J ′K ′M ′〉〈J ′K ′M ′|ψ (t )〉
]
|JKM〉, (28)

and

Z|ψ (t )〉 =
∑
JKM

[ ∑
J ′K ′M ′

〈JKM|Z|J ′K ′M ′〉〈J ′K ′M ′|ψ (t )〉
]
|JKM〉, (29)

which, from Eqs. (25) and (26), can be seen to be linearly
independent, since the expansion coefficients for X |ψ (t )〉,
Y |ψ (t )〉, and Z|ψ (t )〉 in the |JKM〉 basis are all distinct for
bases truncated at some finite, albeit sufficiently large, value
Jmax (which is set to 30 in all of our calculations in Sec. VI).

1The following analysis is missing in our preceding paper [28], but
analogous arguments hold. We also note that the coefficient prefactor
in Eq. (12) of Ref. [28] should read 1

D(ϕ,t )
h̄2

2μB .

As a result, we conclude that det(A(t )) > 0 and that singular-
ities will not appear when solving the QTC Eqs. (14).

V. REDUCTION TO THE CASE OF LINEAR MOLECULES

Linear molecules possess only one axis of rotation and
their Hamiltonian is given by,

H0 = BL2 (30)
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FIG. 3. Diagram showing (θ, φ) relation between laboratory
frame fixed (X̂ , Ŷ , Ẑ ) coordinates (black) and molecular orientation
vector (red).

where

L2 = −
(

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

)
(31)

and has no explicit χ dependence, as depicted in Fig. 3. This
yields an expression for det(A) that is equal to Eq. (15). The
matrix elements required to study QTC of linear molecules
in their eigenbasis can be found using the matrix element
relations obtained for symmetric tops and setting K = 0.

VI. NUMERICAL ILLUSTRATIONS

We have derived the QTC equations, Eq. (14), for con-
trolling symmetric-top orientation, and we now present
numerical illustrations of this approach. For our illus-
trations, we consider the symmetric-top molecule fluo-
romethane, with principal rotational constant B = 5.182 cm−1

and second rotational constant C = 0.852 cm−1 [59]. The
magnitude of the dipole moment is given by μ = 1.847
Debye [60]. The system is represented in the |JKM〉
basis, with basis elements |000〉, . . . , |30,±30,±30〉. We
consider designated tracks 〈X 〉d (t ), 〈Y 〉d (t ), and 〈Z〉d (t )
given by

〈X 〉d (t ) ≡ 0.2e−( t−0.8T
T/8 )2

sin(8Bt )

〈Y 〉d (t ) ≡ 0.2e−( t−0.8T
T/8 )2

cos(8Bt )

〈Z〉d (t ) ≡ 0.2e−( t−T
T/8 )2

cos(8Bt ),

(32)

where T = 5/B is the terminal time and 30000 time points
are used for the calculations. Figure 4 shows a 3D plot
comparing these designated 〈X 〉d (t ), 〈Y 〉d (t ), and 〈Z〉d (t ) tra-
jectories with the actual tracks 〈X 〉(t ), 〈Y 〉(t ), and 〈Z〉(t ) that
are followed when the molecule is initialized in |ψ (0)〉 =
|000〉, |100〉, |110〉, |200〉. We see that the curves in Fig. 4 are
all superimposed, indicating that QTC is successful. Mean-
while, Fig. 5 shows the QTC fields determined via Eq. (14)
that are found to drive 〈X 〉(t ), 〈Y 〉(t ), and 〈Z〉(t ) along these
designated trajectories for the four initial conditions we con-
sider, noting that the dominant frequency present (≈9B) is
slightly higher than the dominant frequency in the associated
tracks (8B). As per Sec. V, the fields εX (t ), εY (t ), and εZ (t )
and the tracks associated with |ψ (0)〉 = |000〉, |100〉, |200〉
are the same fields and tracks for a 3D linear rotor with
rotational constant B, initialized as |ψ (0)〉 = |00〉, |10〉, |20〉.
We remark that in settings where it is desirable to obtain
QTC fields that satisfy a zero-area constraint [61], the QTC

FIG. 4. The designated tracks 〈X 〉d (t ), 〈Y 〉d (t ), and 〈Z〉d (t ) given
in Eq. (32) are plotted as a black curve inside of the 〈X 〉2(t ) +
〈Y 〉2(t ) + 〈Z〉2(t ) = 1 unit sphere. Then, the QTC tracks 〈X 〉(t ),
〈Y 〉(t ), and 〈Z〉(t ) followed by the system are plotted in color. The
different colors correspond to different initial conditions |ψ (0)〉 =
|000〉, |100〉, |110〉, |200〉.

fields for tracking an observable over some time interval
t ∈ [0, T ] can be extended in time arbitrarily past t = T to
obtain a zero area pulse as desired (e.g., by mirroring the QTC
field for time t ∈ (T, 2T ]). However, when using such tech-
niques, tracking control is only achieved over the original time
interval t ∈ [0, T ].

VII. CONCLUSIONS

In this paper, we have explored how QTC can be ap-
plied to design fields to orient symmetric-top molecules, and
have derived expressions for the QTC fields for driving the
molecular orientation along time-dependent tracks. We also
obtained matrix element relations to facilitate studying QTC
of symmetric tops in the |JKM〉 symmetric-top eigenbasis,
and presented numerical illustrations of the QTC procedure
for driving orientation dynamics in these systems. In order
to realize associated experimental demonstrations, molecular
rotors could be investigated using, e.g., laser and evapora-
tive cooling methods to create ultracold molecules, and then
trapping them in an optical lattice [62]. Then, the creation
of shaped microwave fields needed for QTC could be ex-
plored using arbitrary waveform generators [63,64]. In these
settings, noise in the fields that are generated will cause
some deviation from the desired QTC field shapes. While
previous work has found that QTC can be robust to control
noise [27], carrying out careful analyses of the robustness
of QTC fields for rotational control in the presence of re-
alistic control noise would be a valuable direction of future
research.

Looking ahead, this QTC formulation could be ex-
tended towards studying the control of so-called molecular
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(a)

(b)

(c)

FIG. 5. The QTC fields εX (τ ), εY (τ ), and εZ (τ ) are plotted as a
function of the nondimensionalized time τ ≡ Bt in (a)–(c), respec-
tively. The different colors correspond to different initial conditions
|ψ (0)〉 = |000〉, |100〉, |110〉, |200〉.

super-rotors [65], e.g., by selecting tracks to create very rapid
rotational dynamics. Furthermore, the prospects of applying
QTC towards the control of arrays of coupled molecular ro-
tors, e.g., for applications in quantum information science
[66–68], could be studied as well. For the latter, the study
of coupled molecules will likely require high-dimensional
modeling to represent the system dynamics, given that the
model dimension scales exponentially in the number of de-
grees of freedom. As such, numerically exact simulations of
coupled molecular rotors may not be computationally feasi-
ble. However, such challenges may be addressable through
the use of suitable approximation frameworks for the quantum
dynamics, e.g., Refs. [69–72].
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