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Simulations of a frequency-chirped magneto-optical trap of MgF
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We simulate the capture process of MgF molecules into a frequency-chirped molecular magneto-optical trap
(MOT). Our calculations show that by chirping the frequency, the MOT capture velocity is increased by about a
factor of 4 to 80 m/s, allowing for direct loading from a two-stage cryogenic buffer gas beam source. Moreover,
we simulate the effect of this frequency chirp for molecules already present in the MOT. We find that the MOT
should be stable with little to no molecule loss. The chirped MOT should thus allow loading of multiple molecule
pulses to increase the number of trapped molecules
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I. INTRODUCTION

All molecular magneto-optical traps (MOTs) produced to
date [1–8] have been loaded from a laser-slowed cryogenic
buffer gas beam (CBGB). Laser slowing is necessitated by the
mismatch in velocity scales: the single-stage CBGB source
typically produces molecular beams with peak velocities of
over 100 m/s [9,10], while the typical capture velocity of
the MOT is of the order of 10 m/s [6,11]. Two-stage CBGB
sources are capable of producing slower beams with mean
velocities approaching 60 m/s, which is still larger than the
typical capture velocity of molecular MOTs [9,12–14].

In principle, direct loading of molecular MOTs is possible
if the MOT laser beam is larger than the stopping distance
for an incident molecule. Consider a laser-cooling scheme
with ng ground states and ne excited states. The maximum
possible deceleration is amax = h�ne/[(ne + ng)mλ] [3,15],
so large deceleration is possible in molecules with low mass
m, fast radiative decay rate �, and short wavelength λ. In
order to maintain a large deceleration, direct MOT loading
further requires that within the spatial extent of the MOT
laser beams, the trapping laser frequency is nearly resonant
with the range of Doppler shifts corresponding to velocities
between the initial molecular beam velocity and rest. Typ-
ically, this requirement is fulfilled by the MOT’s spherical
quadrupole magnetic field, which provides a range of Zeeman
shifts spanning the requisite range of Doppler shifts. However,
as we shall show, the small g factor of the A2�1/2 excited
state typically used for laser-cooling alkaline-earth fluoride
molecules provides insufficient variation in the Zeeman shift
to maintain a resonant interaction over the entire stopping
distance. Therefore, molecular structure, not MOT geometry,
generally limits the capture velocity to around 10 m/s.
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Absent a substantial excited-state g factor, it is possible
to engineer a temporally varying laser frequency such that
resonant deceleration is maintained as molecules are slowed
to a stop. In this work, we simulate such a “chirped MOT”
and show that capture velocities up to roughly 100 m/s are
possible with realistic experimental parameters. We focus
on MgF, which has been extensively studied in single-stage
CBGBs as a candidate laser-coolable molecule [16–18] but
has not yet been slowed or trapped. MgF is a good test case
because of its relatively large recoil velocity (2.6 cm/s) and
large radiative decay rate [� = 131.6(1.4) s−1] [18]. The large
capture velocity of the MgF chirped MOT is sufficient to cap-
ture nearly all molecules from a two-stage CBGB source (or
from a one-stage CBGB source with modest laser slowing).
Moreover, we show that trapped molecules in the MOT are
retained during a subsequent frequency chirp, thus allowing
multiple successive molecular beam pulses to be captured by
the MOT. This result contrasts with typical chirped slowing
techniques, which use a single slowing beam that intersects
the MOT and causes molecule loss during its frequency chirp.

The concept of chirped laser slowing was proposed in
Ref. [19] and utilized in some of the earliest atomic laser-
cooling experiments [20–23]. Frequency-chirped MOTs are
a common feature in alkaline-earth laser-cooling experiments
because of the similar mismatch between the capture velocity
and velocity of the source [24–26]. In the case of Sr, the
source is typically a “blue” MOT, operating on the 1S0 → 1P1

transition at 461 nm. Sr atoms are generally cooled to root-
mean-square velocities on the order of 1 m/s, well above
the 5-mm/s molasses capture velocity of the Sr “red” MOT,
which operates on the 1S0 → 3P1 intercombination transition
[24,27–29]. To increase the capture velocity, the frequency
of the red MOT light is modulated from �/� ≈ −200 to
�/� ≈ −10 [24,30,31]. This extends the capture velocity to
on the order of 1 m/s.

Our discussion is organized as follows: Sec. II describes
our MOT geometry, level structure and molecular Hamilto-
nian, and the details of the calculations. Section III details
the properties of static MOTs and their respective capture
processes, using a MOT of 87Rb as a prototypical example.
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FIG. 1. Level diagram and laser-cooling scheme for a MgF
chirped MOT. The |X 2�+, N = 1〉 → |A2�1/2, J ′ = 1/2〉 transition
spin-rotation and hyperfine levels are shown with energy spacing
E/h. Four laser frequencies labeled 1–4 address the transitions with
polarizations σ±. The respective detunings � are shown schemat-
ically to vary with time t . Once frequency components 1–3 reach
their final value, frequency 4 is added.

Section IV discusses our proposed frequency-chirped MOT
and shows that it can increase the capture velocity by almost a
factor of 4. The results in Sec. V reveal that our MOT should
be stable against the chirp, enabling multipulse loading.
Finally, we conclude in Sec. VI.

II. MODEL

We model a six-beam molecular MOT, incorporating the
relevant MgF level structure, multiple frequency components
in the MOT beams, and changing laser detuning and intensity
with time. Molecules enter the MOT along the x axis with a
longitudinal velocity v and a much smaller transverse velocity.
The magnetic field gradient B = B′(−xx̂/2 − yŷ/2 + zẑ) has
its strong axial gradient along z. Six laser beams propagate
along the ±x′, ±y′, and ±z directions, where the x′ and y′ axes
are rotated from the x and y axes about z by 45◦. Because the
MOT beams enter at 45◦ with respect to the molecular beam,
longitudinal slowing in a chirped MOT should not be substan-
tially different for molecules with a small transverse-velocity
component. Hence, we simulate motion only along the x̂ axis.
In our simulations, we use both infinite plane-wave beams and
elliptical Gaussian beams, depending on the situation. For the
latter, the beams with k in the x-y plane of the MOT have
a 1/e2 radius parallel to the x-y plane of wxy and a 1/e2

radius along ẑ of wz. Likewise, the beams with k̂ along the
z axis have a 1/e2 radius of wxy along x and a 1/e2 radius
of wz along y. All six beams are assumed to have equal peak
intensity.

Our model molecular Hamiltonian is computed us-
ing parameters of the MgF |X 2�+, v = 0; N = 1〉 →
|A2�1/2, v

′ = 0; J ′ = 1/2〉 laser-cooling transition [17,32]
(with the relevant parameters shown in Fig. 2). For this transi-

tion, � = 2π × [20.9(2) MHz] [18], ω ≈ 2π × (834.3 THz),
and the effective two-level saturation intensity is Isat =
h̄ω3�/(12πc2) ≈ 60 mW/cm2. Higher vibrational levels v �
1 are ignored in our model; assuming v = 1 is repumped on
the |X 2�+, v = 1; N = 1〉 → |B2�+, v′ = 0; N ′ = 0〉 tran-
sition, this approximation should affect only the com-
puted capture velocity at the percent level because decays
to v � 1 occur with roughly 3% probability [18]. The
|X 2�+, v = 0; N = 1〉 ground state is split into a manifold of
four levels by the combination of spin-rotation and hyperfine
interactions.

The effective Hamiltonian is computed in a basis composed
of the 16 Zeeman sublevels of the |X 2�+, v = 0; N = 1〉 and
|A2�1/2, v

′ = 0; J ′ = 1/2〉 states. This Hamiltonian accounts
for the ground-state spin-rotation and dipolar hyperfine inter-
actions, all relevant Zeeman interactions, and the coupling
between the states due to the laser fields. Because we are
considering only transitions between the Zeeman sublevels
of the single N = 1 rotational level of the X 2�+ state and
a single 
-doublet component of the J ′ = 1/2 level of the
A2�1/2 state, the effects of the rotational and 
-doubling
interactions are neglected. Additionally, mixing with states
outside of this manifold due to the Zeeman interaction is
negligible. The relevant spectroscopic parameters of MgF can
be found in Refs. [17,33]

The g factor of the |A2�1/2, v
′ = 0; J ′ = 1/2〉 state is

nearly zero. The effective Zeeman Hamiltonian of a 2�1/2

state can be modeled by six distinct magnetic interactions
H1, . . . , H6 plus a nuclear spin Hamiltonian H (i)

7 for each
nucleus i possessing a spin (here, the subscripts correspond to
terms of Eq. (17) in Ref. [34]). Typically, the Zeeman interac-
tions are dominated by the electron spin Zeeman Hamiltonian
H1 = gSμBB · S and the electron orbital angular momentum
Zeeman Hamiltonian H2 = g′

LμBB · L, so that g is propor-
tional to g′

L
 + gS�. Here, gS ≈ 2.002 is the electron g factor
corrected for relativistic effects, g′

L ≈ 1 is the orbital g factor
corrected for relativistic effects, and the prime indicates a
small additional correction to account for adiabatic effects
[34,35]. In 2�1/2 states, these terms nearly cancel: g′

L
 +
gS� ≈ 0.002. In heavier systems which are isoelectronic to
MgF (e.g., CaF, SrF, and YO), the effective A 2�1/2 g factor
is still of the order of |g| ∼ 0.1 [11]. This is because the
Zeeman interaction in these systems is dominated by two
parity-dependent Zeeman interactions H5 and H6 which arise
from spin-orbit mixing and rotation mixing, respectively, with
2� and 2� states. For MgF this mixing is substantially smaller
(using parameters from Ref. [17], the parity-dependent g fac-
tor for the J ′ = 1/2 state is (g′

l − ge′
r )/3 ≈ p/6B = 2 × 10−4).

At this level of accuracy, the totality of all seven Zeeman
interactions must be considered. The remaining g factors have
magnitudes of 10−3 to 10−4. Some of these g factors can be
estimated from other spectroscopic parameters in the pure pre-
cession limit, but such estimates are suspect for MgF because
the pure precession hypothesis does not accurately predict the
observed 
 doubling of the MgF A2�1/2 state [17]. Without
precision Zeeman spectroscopy, we cannot, at the present
time, definitively say much about the MgF A2�1/2 g factor
beyond |g| � 10−3. The sign of the g factor is currently not
known but will be determined experimentally by the laser
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polarizations which successfully trap molecules. For our sim-
ulations, we use g = 0.001 as a representative value.

To address each of the ground-state hyperfine levels, we
simulate each laser beam as having three or four frequency
components, denoted as 1–4 in Fig. 1. Frequency compo-
nents 1–3 are all red detuned by an equal amount � from
their respective F = 1 → F ′, F = 0 → F ′, and F = 2 → F ′
transitions. Frequency component 4 is blue detuned by 2�

from the upper F = 1 → F ′ transition. The blue-detuned fre-
quency component provides additional spatial confinement
at the cost of less damping for faster-moving molecules
[11]. Each of the six MOT beams has the same frequency
components.

Experimentally, the four frequencies will be generated by
acousto-optic modulators and subsequently recombined with
polarizing and nonpolarizing beam splitters. As such, it is
technically easiest to have two of the four beams have the
same polarization. The chosen polarizations for the beams
along ±z are shown in Fig. 1. We use Ref. [11] as a guide
for choosing the optimal polarization configuration.

We model the equations of motion and the population in
each level using a rate-equation model [36] implemented in
PYLCP [37], a PYTHON package capable of simulating laser
cooling with complicated geometries and level structures.
Rate equations are used to compute the population of all
16 Zeeman sublevels, indexed by i, of either the ground
X 2�+(N = 1) or excited A2�1/2(J ′ = 1/2) manifold NX,A

i in
the presence of lasers indexed by l , through

ṄX
i =

∑
j,l

Ri j,ln
(
NA

j − NX
i

) +
∑

j

� jir jiN
A
j , (1)

ṄA
i =

∑
j,l

R ji,ln
(
NX

j − NA
i

) − �NA
i , (2)

where � is the total decay rate of A2�1/2(J ′ = 1/2) and � ji is
the decay rate from state j to state i. Here, Ri j,ln is the optical
pumping rate of frequency component n of laser l , defined by

Ri j,lm = �2
i j,lm/�

1 + 4{ωlm(t ) − [ω j (r) − ωi(r)] − kl · v}2/�2
,

(3)

where ωln(t ) is the time-dependent frequency of component
n of laser l , h̄ω j (r) is the position-dependent, Zeeman-shifted
energy of state j in the A manifold, h̄ωi(r) is the energy of
state i in the X manifold, kl is the wave vector of laser l , v is
the velocity of the molecule,

�i j,ln = �

2
(di j · ε′

l )
√

2sln(r, t ) (4)

is the Rabi rate, di j is the transition dipole moment between
states i and j, ε′

l is the polarization of laser l , sln(r, t ) =
Iln(r, t )/Isat is the saturation parameter of frequency compo-
nent m of laser l at position r and time t , and Iln is the intensity
of frequency component n of laser l . The average force on the
molecule is given by

f =
∑

l

h̄kl

2

∑
i, j

Ri j,l
(
NA

j − NX
i

)
. (5)

The equilibrium force is determined by setting ṄX,A
i = 0,

solving for the populations, and inserting the result into
Eq. (5). Because this rate equation approximates optical
coherences as having constant values, various sub-Doppler
heating and cooling effects will be missing from the simu-
lation. For the loading process at large r, the Zeeman shift is
sufficient to force the optical coherences to oscillate rapidly,
and the rate-equation approximation will be valid. For simu-
lations near the center of the MOT, the rate equation will most
likely underestimate the temperature and size of the molecular
cloud because it neglects sub-Doppler heating.

A few notational comments are in order. Because the six
MOT beams have identical intensities and frequency com-
ponents, we drop the superfluous l index unless necessary.
We specify ωm in Eq. (3) in terms of the detuning �m =
ωm(t ) − [ωF − ωF ′] relative to the zero-field energies h̄ωF

and h̄ωF ′ that the frequency component m is intended to
drive. Here, h̄ωF ′ is always the unperturbed energy of the
|A2�1/2, J ′ = 1/2〉 state. For frequency components m = 1
and m = 2, h̄ωF is the energy of the lower F = 1 and F = 0,
respectively. For frequency components m = 3 and m = 4,
h̄ωF is the energy of the F = 2 and upper F = 1 states,
respectively. Finally, we denote the saturation parameters of
the four frequency components as a vector s = (s1, s2, s3, s4).
For Gaussian beams, s denotes the maximum saturation
parameters at r = 0.

For the results in Sec. III, we first determine the equilib-
rium force as a function of v and x and then evolve the motion
of the molecule using that force. We have verified that, to
much better than the expected accuracy of the simulations, our
approach agrees with the result if the time evolutions of both
the motion and the internal-state populations are calculated
using the full rate-equation model. This simplification greatly
reduces the computational complexity, reducing the number
of differential equations from 18 (16 internal states, 1 velocity,
and 1 position) to 2 (1 velocity and 1 position), albeit through
a complicated force versus position and velocity profile.

For the results in Sec. IV, we calculate the equilibrium
force not just as a function of v and x but also as a func-
tion of the common detuning �. We evolve the population
of internal states and motion of the molecule through this
three-dimensional force profile, given a function �(t ).

For Sec. V, we include spontaneous emission effects by
including random momentum kicks with a probability that is
proportional to the excited-state populations. For more details,
see Ref. [37]. Effects of momentum diffusion due to stimu-
lated emission are neglected.

III. CAPTURE INTO A STATIC MOT

Consider the properties and capture process of a static
MOT, which has constant �(t ) = �0. While this process has
been discussed in the literature before [37,38], it is, nonethe-
less, illustrative and will help motivate our choices for MgF.
For this discussion, let us first consider the capture process for
a 87Rb type-I MOT with infinite plane-wave beams arranged
in the geometry described above [39]. We use “natural” units
of the MOT, where velocities are measured in terms of �/k
and positions are measured in terms h̄�/μBB′; that is, velocity
and position are measured by the number of natural linewidths
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FIG. 2. Calculated normalized force f /(h̄k�) vs Zeeman-detuning normalized position x/(h̄�/μBB′) and normalized velocity v/(�/k),
where k is the wave vector of the light, � is the excited-state decay rate, μB is the Bohr magneton, and B′ is the magnetic field gradient, in
a MOT with infinite plane-wave beams for (a) 87Rb using two frequency components, both with �0 = −�, (b) MgF using three frequency
components with �m = −� (indicated by “[3]”), and (c) MgF using three frequency components with �m = −� and a fourth with �4 = +2�

(indicated by “[3+1]”; see Fig. 1). Note the differences in the color scales between the panels. The white curves overlaid on the plots show the
calculated trajectories using B′ = 20 G/cm.

which equal the Doppler and Zeeman shifts, respectively.
For 87Rb with a B′ = 2 mT/cm B-field gradient, h̄�/μBB′ ≈
2 mm, and �/k ≈ 46 m/s.

The calculated force profile driven by a single frequency
component labeled m = 0 with s0 = I0/Isat = 2.5 and �0 =
−� is shown in Fig 2(a). The force profile consists of three
“bands” of both positive and negative force, which correspond
to when one or more polarization components of the lasers
are Doppler and/or Zeeman shifted into resonance. According
to Eq. (3) and using |k · v| = √

2kv for our geometry, these
resonances occur when

�0

�
± kv√

2
+ εi

μBB′

2h̄�
x = 0,

where εi = −1, 0, 1 for the σ−, π , and σ+ components of the
light projected onto the x axis. Here, we have inserted the ap-
proximate differential Zeeman shift for an alkali of ωi − ω j =
μBB′x/2h̄. The + (−) sign occurs when the beams are mostly
counterpropagating (copropagating) to the incoming atoms.
The dominant σ+ from the predominantly counterpropagating
beams and dominant σ− from the predominantly copropa-
gating beams form the −1/

√
2 slope positive and negative

forces, respectively. Likewise, the weak σ− component from
the predominantly counterpropagating beams and the weak
σ+ from the predominantly copropagating beams form the
+1/

√
2 slope positive and negative forces, respectively. Fi-

nally, the π components from the beams form the zero-slope
force curves.

The calculated trajectories through the force profile, shown
in Fig. 2(a), reveal the capture process in a 87Rb MOT. Atoms
enter the MOT with x < 0 and v > 0. For 0 < v � 3�/k,
atoms are slowed and stopped by the π component. While
these slowest atoms do not reach the origin after the 20-
ms integration time, a small off-resonant spatial force from
the predominantly counterpropagating beams will eventually
push these atoms to x = 0. Faster atoms with 3�/k � v �
8�/k initially experience a boost from the predominantly

copropagating beams but then fall onto a nearly common
trajectory of being slowed and trapped by the Zeeman- and
Doppler-shifted predominantly counterpropagating beams.
These trajectories terminate at v = 0 and x = 0, indicat-
ing successful capture. For v � 8�/k, the boost from the
predominantly copropagating beams is too large to be over-
come by the counterpropagating beams, and the atoms evade
capture.

We now contrast the capture process of a Rb atom with
that of MgF. Let us first consider a static MOT with infi-
nite plane-wave beams containing frequency components 1–3
from Fig. 1: the transitions F = 1 → F ′, F = 0 → F ′, and
F = 1, 2 → F ′ are all addressed by a frequency component
with � = −�, labeled 1–3 in Fig. 1. Here, the saturation
parameters of the frequency components are chosen to be s =
(1.45, 1.45, 2.89, 0). This s corresponds to having relative sat-
uration parameters s̃ = s/(

∑
n sn) = (0.25, 0.25, 0.50, 0) in a

“prototypical” 1-W Gaussian beam with waists wxy and wz

equal to 17.5 and 10 mm respectively. For MgF, the natu-
ral length and velocity scales for the MOT are h̄�/μBB′ =
7.48(8) mm, with B′ = 2 mT/cm and �/k = 7.53(8) m/s.

Compared to 87Rb, there are three significant differences.
First, the maximum force is much lower in the MgF MOT
because the type-II level structure requires constant repump-
ing of states which are not coupled to laser beams which
provide a restoring force. With ng = 12 ground states and
ne = 4 excited states, our anticipated maximum scattering
rate is no greater than Rmax = �/4. Indeed, the maximum
scattering rate (not shown) in Figs. 2(b) and 2(c) is approx-
imately Rmax/2 at v = ±√

2(�/k) and x = 0 because sn ≈ 1
for all transitions. Assuming that all the scattering is due to
counterpropagating beams, one might expect the maximum
force to be Rmax h̄k/

√
2, where the factor of

√
2 comes from

the projection of the counterpropagating MOT beams onto the
axis. We instead observe that the force is reduced to approxi-
mately Rmax h̄k/2 ≈ 0.05 × h̄k� because roughly 30% of the
photon scatters are from the ±ẑ beams and 10% are from the
copropagating beams at v = √

2(�/k) and x = 0.
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FIG. 3. Force profiles of a MgF MOT using three frequency components, elliptical lasers beams with wxy = 17.5 mm and wz = 10 mm,
and a total laser power of 1 W. Equilibrium force profiles are shown at select detunings to illustrate the time-varying force profile in a chirped
MOT. The detunings from (a) to (d) are � = −8�, � = −6�, � = −4�, and � = −2�, respectively. As the detuning becomes less negative,
the force maximizes at progressively slower velocities, while the magnitude of the force remains roughly constant.

Second, because of the small excited-state g factor and the
presence of dark states on the type-II transitions, the MgF
MOT has no appreciable force outside of |x| > 5(h̄�/μBB′)
and virtually no slope to the force. This greatly reduces the
capture velocity from v � 10(�/k) for Rb to vc ≈ 4(�/k) for
MgF.

Third, MgF molecules with initial velocities v � 4(�/k)
failed to arrive at x = 0 within the maximum integration time
of 20 ms. This is due to the reduced trapping force in a
type-II MOT. This reduction in spatial trapping force is fur-
ther compounded by the fact that the unresolved F = 1 and
F = 2 states are driven by the same laser, which has the cor-
rect polarization to trap F = 2 but, necessarily, the incorrect
polarization to trap F = 1 [36].

In Fig. 2(c), we attempt to increase the spatial con-
finement by adding frequency component 4 in Fig. 1,
which is blue detuned from the unresolved F = 1, 2 →
F ′ transition [4,36,40]. The saturation parameters are cho-
sen to be s = (1.45, 1.45, 2.17, 0.72), corresponding to s̃ =
(0.25, 0.25, 0.375, 0.125) for our prototypical beam pa-
rameters. Frequency component 4 again has the correct
polarization to trap F = 2 but the incorrect polarization to
trap F = 1. Nonetheless, with the additional trapping force,
molecules entering the MOT with v � 4(�/k) reach the origin
within 20 ms. The presence of this component adds a slight
acceleration at large, negative x that causes v = 4.2(�/k) to
just barely be trapped.

We now consider the effect of overall detuning on the force
profiles for MgF given more experimentally realistic elliptical
Gaussian beam profiles, as described in Sec. II. Figure 3 show
the force profiles, without trajectories, for four detunings
�n/� for the three-frequency-component configuration with
s = (1.45, 1.45, 2.89, 0).

The force profiles reveal well-separated positive- and
negative-force regions, with extrema at x = 0 and v =
±√

2(|�|/k). Each region resembles a “boat”—a two-
dimensional Gaussian with a rough 1/e2 half-width of �/k ≈
7.5 m/s in v and

√
2wxy ≈ 25 mm—floating in a sea of zero

force. The shape in the x direction is a convolution of the
Gaussian beam profile and the shape seen in Fig. 2(b) caused
by Zeeman dark states. Thus, increasing the beam size beyond

√
2wxy � 4(μBB′/h̄�), or, equivalently, wxy � 21 mm, will

generally not result in a larger spatial extent of the force.
Trajectories through the force profiles (not shown) are

generally not trapped. Consider Fig. 3(a). A molecule en-
tering from the left with velocity v < 50 m/s (6.7 × �/k)
or v > 120 m/s (6.7 × �/k) will not be affected by the iso-
lated negative force centered at v = √

2 × 8�/k and will fly
straight through the MOT. Likewise, molecules with 50 <

v < 120 m/s will be slowed but will not be trapped in the
MOT. Thus, we see that static-detuning force profiles lack a
smoothly connected decelerating force from high velocity to
zero velocity, an essential feature of an alkali MOT.

IV. CAPTURE IN A FREQUENCY-CHIRPED MOT

To engineer a smoothly connected force from large v to
small v, we ramp � from large to small negative values over a
duration τ . Note that the maximum force and therefore max-
imum deceleration are roughly constant with � (see Fig. 3).
Under constant deceleration, the velocity decreases linearly
with time, which requires a linear ramp of � to maintain
Doppler-shifted resonance, i.e.,

�m(t ) =
{
�I + �F−�I

τ
t 0 < t < τ,

�F t > τ,
(6)

for m = 1, 2, 3. Choosing the parameters �I, �F, and τ is of
utmost importance.

To make an initial estimate of �I, �F, and τ , let us consider
a simple model where a constant force f is applied over a
distance d . The maximum velocity that can be stopped across
that distance is vc = √

2 f d/m, which will occur in a time τ =
vc/( f /m), where m is the mass of the molecule. Using roughly
f ≈ 0.03 × h̄k� from Fig. 3 and d ≈ 30 mm, we find vc ≈
80 m/s and τ = 0.8 ms.

We simulate capture into such a frequency-chirped MOT.
Our chirped MOT begins in the three-frequency-component
configuration with a common detuning of �I = −8� and
s = (1.45, 1.45, 2.89, 0), which could potentially address all
velocity classes up to

√
2 × 8�/k ≈ 84 m/s. At t = τ =

1 ms, the frequency chirp ends at �F = −�. We then
instantaneously switch to the four-frequency-component con-
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FIG. 4. (a) Classical phase-space trajectories of MgF molecules
with various initial velocities in a frequency-chirped MOT with 1/e2

beam radii of wxy = 17.5 mm and wz = 10 mm and axial magnetic
field gradient B′ = 2 mT/cm, using the frequency chirp in Eq. (6)
with �0 = −8�, �1 = −�, τ = 1 ms, and total laser power of 1 W.
The thick black curve shows the trajectory with the largest initial
velocity that is captured. (b) Capture velocity vc for a frequency-
chirped MOT vs beam waist wxy for various total powers. Other
parameters are the same as in (a).

figuration with s = (1.45, 1.45, 2.17, 0.72) to enhance our
spatial confinement, as observed in Sec. III. These two sets
of saturation parameters correspond to the peak saturation
parameters of a 1 W in a Gaussian beam with wxy and
wz equal to 17.5 and 10 mm, respectively, and relative s̃ =
(0.25, 0.25, 0.5, 0) for the three-frequency-component case
and s̃ = (0.25, 0.25, 0.375, 0.125) for the four-frequency-
component case. These choices are the same as in Sec. III.

Figure 4(a) shows the resulting trajectories of molecules
through classical phase space. The initial position of the
molecules is x0 = −50 mm, such that they start far from the
position of maximum force (see Fig. 3). In this configura-
tion, the maximum velocity class captured is vc = 7.5(�/k) ≈
57 m/s. This vc is about double that of vc observed in the
static MOT in Fig. 2(c) and approaches the velocity observed
in two-stage CBGB sources [9,12–14].

We also study the dependence of the capture velocity on
both laser power and wxy. Figure 4(b) shows the results. The

maximum capture velocity observed in our simulations, with
2 W of laser power and s̃ identical to those above, is 80 m/s, or
10.5 × (�/k). We observe two regimes: one with vc < 45 m/s
and a second with vc > 45 m/s. Given that the static MOT
with similar parameters in Fig. 2(b) showed a capture velocity
of vc ≈ 4�/k ≈ 32 m/s, we conclude that these two regimes
denote ineffective and effective chirped slowing.

To understand the ineffective chirped slowing regime, ob-
serve that for a given starting position, molecules require some
initial evolution time to encounter the small-extent spatial
force of the MOT. For example, a molecule moving at 50
m/s is unperturbed for at least 0.8 ms before encountering
a force from a wxy � 10 mm MOT beam. By this time, the
velocity at which the slowing force is maximal is at v =
2.7 × (�/k) ≈ 20 m/s, well below the 50-m/s initial velocity.
These molecules simply missed the boat. Likewise, while we
calculate the capture velocity for molecules starting at the
same position, in reality, there will be a distribution of starting
positions, and some of the molecules near the ends of that
distribution may also miss the boat. These complications high-
light the well-known problem of optimizing frequency-chirp
slowing for both the starting position and velocity [41].

With a total beam power of 0.5 W and chirp duration τ = 1
ms, chirped slowing is predicted to be ineffective for any wxy.
The slowing force exerted by the chirped beams at 0.5 W is
somewhat weaker at roughly f ≈ 0.015 × h̄k�, consequently
requiring a longer chirp of at least τ = 1.6 ms to effectively
decelerate the molecules compared with the τ = 1 ms rate
simulated in Fig. 4. In keeping with our analogy, while these
molecules may have caught the boat, the boat was moving too
fast for the molecules to remain on.

In the second effective chirped slowing regime, the MOT
beams are both sufficiently large and powerful. The capture
velocity in this regime initially increases with increasing wxy,
reaches a maximum, and subsequently slowly decreases. To
understand this shape, let us approximate vc ≈ √

2 f d/m,
where f is a constant force applied over an effective distance
d . If the transitions were unsaturated and the force at large dis-
tances were not attenuated by Zeeman substates being tuned
out of resonance, vc would be independent of wxy because
f ∝ I ∝ 1/wxy and d ∝ wxy. At small wxy, the transitions
are somewhat saturated, and f decreases more slowly than
1/wxy with increasing wxy. Coupled with d ∝ wxy, this mod-
ified dependence of f implies increasing vc with increasing
wxy. At large wxy, d no longer scales directly with wxy but
instead is set by a convolution of the Gaussian beam shape
and the attenuation of the force at x � 4(h̄�/μBB′) due to
Zeeman sublevels being shifted out of resonance, as seen
in Figs. 2(b) and 2(c). Note that, for B′ = 2 mT/cm, this
convolution means that d no longer grows linearly with wxy

for wxy � 20 mm. At these large wxy, d increases slower than
linearly with wxy while f ∝ 1/wxy, and thus, vc decreases
with increasing wxy. This could potentially be improved by
reducing B′.

V. STABILITY OF THE MOT DURING CHIRP

We now turn to the stability of the MOT during the fre-
quency chirp. In order to load multiple molecular pulses from
a CBGB source into a chirped MOT, we need to verify the
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stability of any previously loaded molecules in the MOT when
a subsequent frequency chirp occurs. Of greatest concern
during the frequency chirp is the heating that may occur. In
particular, as illustrated in Fig. 1, as the detuning is changed
according to Eq. (6), frequency components 1 and 2, which are
intended to address the lower F = 1 → F ′ and F = 0 → F ′
transitions of the moving molecules, respectively, will inci-
dentally sweep through resonance with the F = 0 → F ′ and
F = 1, 2 → F ′ transitions of molecules already in the MOT,
respectively. The first of these resonances occurs at �m ≈
−6�; the second occurs at �m ≈ −5.5�. Thus, we anticipate
that the MOT will heat during the frequency chirp.

We simulate the heating by solving for the motion of 320
molecules in a chirped MOT using Eq. (6) with the same
parameters as in Sec. IV. In these simulations, we use plane
waves for computational simplicity. The plane waves have
three frequency components with s = (1.45, 1.45, 2.89, 0)
during the chirp and four frequency components with s =
(1.45, 1.45, 0.72, 2.17) before and after the chirp. As in
Secs. III and IV, these saturation parameters correspond to
the peak saturation parameters of our prototypical 1 W in a
Gaussian beam with wxy and wz equal to 17.5 and 10 mm,
respectively, and relative s̃ = (0.25, 0.25, 0.5, 0) for the three-
frequency-component case and s̃ = (0.25, 0.25, 0.375, 0.125)
for the four-frequency-component case. The simulated MOT
is spatially compact, with typical size σr < 1 mm; thus, using
Gaussian beams with a 1/e2 radius >10 mm induces at most
a small error. Unlike simulations of the capture process, we
compute motion along all three spatial dimensions and include
momentum diffusion due to spontaneous emission.

We initialize the particles at t = −10 ms with v = 0 and
r = 0. This initial condition is chosen for two reasons: (1) we
do not know a priori the size and temperature of the simulated
MOT, and (2) by observing evolution of the MOT toward
equilibrium, we can extract relaxation times independent of
the frequency chirp. The frequency chirp begins at t = 0 ms
and lasts until t = 1 ms. The simulation continues with four
fixed frequencies until t = 11 ms to understand the trends
back toward equilibrium. The state population, position, and
velocity of each molecule are recorded at 2.1-µs intervals.
Temperatures at each time are assigned using the relation
σ 2

vi
= kBT/m, where kB is the Boltzmann constant and σvi is

the standard deviation of the velocity vi along i = x, y, z.
The size and temperature of the simulated MOT are shown

in Fig. 5. Before the chirp, the MOT temperature settles to
about 1.7TD, where TD = h̄�/2kB is the Doppler tempera-
ture. This temperature is lower than those typically observed
in molecular MOTs [3,5,6] because our rate-equation model
lacks both momentum diffusion caused by stimulated emis-
sion and sub-Doppler heating. As anticipated, we see a rapid
increase in the temperature of the MOT during the frequency
chirp, rising from 1.7TD to about 14TD. After the chirp, how-
ever, the MOT returns to its equilibrium temperature within
100 µs. The mean velocity (not shown) remains zero for all t .

The measured size of the MOT is more complicated. Be-
fore the chirp, the MOT trends slowly towards its equilibrium
size of roughly 0.4-mm e−1/2 radius. After the chirp, the
MOT expands to roughly 0.7 mm in size due to heating
but slowly contracts back toward equilibrium, faster along z
with the stronger magnetic field gradient and slower along

FIG. 5. (a) Simulated temperature T , independently calculated
across spatial dimensions x (blue), y (orange), and z (green) and
normalized to the Doppler temperature TD, of a MOT before, during,
and after the frequency chirp (gray band) of 320 simulated molecule
trajectories. (b) Size σ (r) of the MOT.

x and y. The mean position (not shown) remains zero for
all t .

Critically, no molecule in our simulation appears to be
lost, that is, gains a velocity that could not be subsequently
damped. Experimentally, the MOT will most likely have an
initial T/TD ≈ 4 and σ ≈ 1 mm. Yet, assuming proportional
heating to T/TD ≈ 28, the MOT would expand to only σz ≈
3 mm. While approaching wz = 10 mm, the distance at which
the spatial component of the force is seriously diminished,
it is still comfortably below that limit. Likewise, based on
Fig. 2(c), damping forces exist for |v| ≈ (�/k), which should
effectively cool a molecular cloud with a temperature as high
as T/TD ≈ 600. Thus, we anticipate that most molecules re-
main trapped in the MOT even under this pessimistic scenario.

VI. CONCLUSION

We have proposed and theoretically investigated a
frequency-chirped MOT for laser-coolable lightweight
molecules like MgF. The frequency-chirped MOT has a
maximum capture velocity for MgF of about 80 m/s, which
is commensurate with typical molecular beam velocities
observed using a two-stage cryogenic buffer gas beam
source [9,12,13]. Compared to standard frequency-chirped
slowing, our frequency-chirped MOT has advantages and
disadvantages.

The biggest disadvantage is that the force is reduced by
a factor of cos θ , where θ is the projection of the laser
beam’s k vector on the molecular beam axis. Thus, each
photon scattered is less effective in slowing than in standard
frequency-chirped slowing.
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The biggest advantage is the potential for loading multiple
molecular pulses from a CBGB source, which could greatly
increase the number of captured molecules. We have shown
that the molecules in the MOT should not be lost during
the frequency chirp. This is in contrast to traditional chirped
slowing, where a single slowing beam intersects the MOT,
causing a resonant, directed force during the frequency chirp
that ejects molecules from the MOT. In this limit, the equilib-
rium population in the MOT will be determined by the number
of molecules captured per CBGB pulse, the frequency of the
pulses, and the lifetime of the MOT. We note that the lifetime
of the MOT must be comparable to or longer than the duration
between CBGB pulses in order to realize this gain and likely
requires tuning of the MOT beam parameters during the time
between the capture of one pulse and the start of the next
[5,6] beyond the simple parameters simulated here. Further
optimization of such parameters will be the subject of future
theoretical and experimental work.

The proposed technique will likely work for light
molecules such as MgF, BeF, BeH, BH, and AlF. For heavier
molecules like CaF, SrF, YbO, and YbF, the stopping dis-
tances are much larger than typical MOT beam sizes. One

intriguing possibility for such heavy molecules is to com-
bine the chirped-MOT with the chirped [41] or white-light
[42] slowing typically used to load fixed-frequency MOTs. In
such a configuration, laser slowing could enable loading of a
chirped-MOT while being sufficiently far from resonance to
not perturb trapped molecules. Such a hybrid technique may
then enable loading multiple pulses of heavier molecules into
a MOT but requires further investigation.
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