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Theory of ionization in a crystal with a linear and a circular laser polarization:
Influence of the laser wavelength
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We consider the theoretical formalism presented by Otobe et al. [J. Phys. Soc. Jpn, 88, 024706 (2019)] to write
the photoionization rate of a crystal irradiated by a linearly and a circularly polarized laser beam valid in low-
and high-intensity regimes. We expand these analytical expressions in the multiphoton regime corresponding to
the low laser intensity domain. This provides a theoretical formulation for the photoionization cross section valid
for a linear and a circular laser polarization. Whereas the quartz crystal produces a larger charge density when
it is irradiated with an 800-nm linearly polarized laser beam than a circularly polarized one, no difference in
ionization rate is noticeable when the laser wavelength is equal to 351 nm.
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I. INTRODUCTION

The ionization of solids by a laser field is a fundamental
process occurring in the laser-matter interaction topic [1,2].
It is involved in a large domain of applications ranging from
femtosecond laser ablation [3] to laser damage [4,5] and glass
laser cutting [6]. The photoionization is a key process in the
laser damage as it occurs over the first interaction instants,
when the laser intensity is sufficiently high to generate a
microplasma. Ionization processes of optical components are
mostly studied by considering a linearly polarized laser beam.
Very little research exists on the use of a circularly polarized
laser beam in the ionization of dielectric bulks.

From a theoretical point of view, the photoionization of
solids used to be modeled with the well-known Keldysh the-
ory for crystal [7,8]. This theory computes the probability
to promote an electron from the valence to the conduction
band in a two-band system by neglecting the intraband cou-
pling terms. It presents the advantage to provide an analytical
expression for the ionization rate valid in both multiphoton
(low-intensity domain) and tunnel (high-intensity domain)
regimes. However, this theory is only valid for a linearly
polarized laser beam, and should not be applied to different
laser polarizations, such as, for example, circular polarization.
Indeed, by irradiating sapphire and fused silica crystals with
an 800-nm laser field, Temnov et al. [9] have experimentally
measured that the produced charge density is higher for a
linear polarization than for a circular polarization.

Few theories have been developed for the ionization of
a crystal with a circularly polarized laser beam [10–12].
Jones and Reiss [11] have considered Volkov-type functions
to model the electronic wave function in the valence and
the conduction bands. They provide a theoretical expression
for the ionization rate depending on the dipole matrix ele-
ment such that no analytical formula is available. The most
advanced photoionization theory of a crystal irradiated by a
circularly polarized laser beam has been developed by Otobe
et al. in [12]. Their formalism is similar to the one used by
Keldysh [7], which means they consider Houston functions

[13] to model the electronic wave functions. In contrast to
the Keldysh work, they use a parabolic two-band system to
model the solid band structure. The Otobe’s theory confirms
the experimental measurements made by Temnov et al. [9],
which is a higher ionization rate for linear polarization than
for circular polarization for a quartz crystal irradiated by an
800-nm laser field. However, they do not provide a theoretical
formula for the photo-ionization cross section, a simplified
expression of the photoionization rate usually considered in
the low-intensity regime.

In this work, we consider the Otobe’s formalism [12] to
compute the ionization rate of a crystal irradiated by a linearly
or a circularly polarized laser beam. Our analytical expres-
sions for the ionization probabilities slightly differ from the
Otobe’s formula [12]. We are interested in the crystal ion-
ization in the multiphoton regime (MPI regime), where the
ionization rate is proportional to a power of the laser intensity,
In, where n is the number of photons needed to make electron
transit from the valence to the conduction band and I is the
laser beam intensity. This regime is reached for a Keldysh pa-
rameter [7] much larger than 1. By performing a development
of the ionization rate formula in the multiphoton regime, we
provide an analytical expression for the photoionization cross
section valid for linear or circular polarization. This formula
is a useful simplified expression of the photoionization rate
for the solid ionization studies. By computing the ionization
rate of a quartz crystal irradiated by an 800-nm laser field,
we note that circular polarization shows a different behav-
ior in the multiphoton regime than the linear polarization.
Nonetheless, we retrieve for this laser wavelength, a higher
ionization probability for the linearly polarized laser beam, as
was presented in [9,12]. We also evaluate the photoionization
probability of a quartz irradiated by an ultraviolet (UV) laser
beam (λ = 351 nm), where this wavelength corresponds to the
third harmonic of the Laser MegaJoule (LMJ) facility [14].
For this case, where only three photons are needed to ionize
the crystal, no difference is noticeable in the ionization rate
between the two laser polarizations. Finally, we apply our
theoretical development to the experimental measurements
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of free-carrier density reported by Temnov et al. in [9]. The
theory reproduces the experimental observation, which is a
higher free-carrier density for a bulk irradiated by a linearly
polarized laser beam than by a circularly polarized one.

II. THEORETICAL EXPRESSION FOR THE CRYSTAL
IONIZATION RATE

Otobe et al. [12] have detailed the theoretical development
of the ionization rates for a crystal irradiated by a linearly or
a circularly polarized laser beam. Their formalism lies on the
following hypothesis:

(1) The Houston functions [13] model the electronic wave
functions in the valence and conduction bands. Note that these
functions were also considered by Keldysh in [7].

(2) The band structure of the crystal is modeled with a
parabolic two-band system widely used for description of the
central part of the Brillouin zone and considered as a standard
approximation in many problems of solid-state physics [15].

(3) The laser beam is modeled with a plane wave.
This theoretical development is detailed in Appendix A

where our formula slightly differs from the Otobe’s formula.
We express the photoionization rates as a function of the

Keldysh parameter [7], γ = ω
√

μr Bg
eE0

, with μr the reduced
electron-hole mass, Bg the band gap of the crystal, e the
electron charge, ω the photon angular frequency, and E0 the
laser electric field amplitude. Thus, the photoionization rate
for linear polarization expressed per time and volume units
writes as
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where Jn(u, v) are the generalized Bessel functions [16]. The
photoionization rate formula sums the l-photon processes al-
lowing electrons to transit from the valence to the conduction
band. The l sum starts from l0 corresponding to the minimum
number of photons needed to make electrons transit to the
conduction band. Under the influence of a linearly polarized
laser beam, the band gap is broadened by the ponderomotive
energy equal to Bg

4γ 2 .
For a circular laser polarization, the photoionization rate

writes as

Wcir = 1
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FIG. 1. Ionization rate versus the laser intensity for linear po-
larization (LP) computed from the Keldysh theory (triangles), the
Otobe’s theory (empty circles), and Eq. (1) (filled circles), and for
circular polarization (CP) computed from the Otobe’s theory (empty
squares) and Eq. (2) (filled squares).

η = −
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Bg
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)
, (2)

where Jl (x) denotes the Bessel functions of the first kind [17].
In this case, the ponderomotive energy is larger than in the
linear case; it is equal to Bg

2γ 2 . To illustrate our theoretical
formalism, we apply it to a quartz crystal characterized by
a band gap Bg = 9 eV and a reduced hole-electron mass
μr = 0.3me, with me the electron mass. We set the laser
wavelength equal to 800 nm resulting in a linear refractive
index equal to n0 = 1.4533 [18]. Figure 1 illustrates the quartz
photoionization rate for a linear (triangles and circles) and
a circular (squares) laser beam polarization as a function of
the laser intensity. Our formalism (filled circles and squares)
is compared to the Otobe’s formalism [12] (empty circles
and squares) and the Keldsyh’s formalism [7] (triangles). As
explained in Appendix A, our results are lower than Otobe’s
results by a factor equal to 34, originating from the ( h̄ω

Bg
)2

factor. Nonetheless, we observe for this laser wavelength, a
higher ionization probability for the linear polarization than
for the circular polarization; four orders of magnitude separate
the two ionization rates in the low laser intensity regime. We
retrieve the well-known behavior of the ionization probability
in this regime, which is W = σ (n)In, where σ (n) is the pho-
toionization cross section, and n is the number of photons
needed to ionize the quartz crystal.

For a linear polarization, we retrieve the well-known be-
havior of the intensity-dependent ionization rate: a slope break
near I ∼ 1012 W/cm2, originating from a transition between
the six-photon regime to the seven-photon regime resulting
from the band gap broadened by the ponderomotive energy
(∼ Bg

4γ 2 ). This slope break is not present for a circular polariza-
tion displaying a homogeneous curve. This feature is detailed
in the next section.

The analytical development presented in Appendix A
shows that the ionization rate for a crystal depends on the
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FIG. 2. Ionization rate versus the electric field for linear po-
larization (WLP) computed from Eq. (1) (filled circles), and for
circular polarization (WCP) computed from Eq. (2) (filled squares).
W ∗

CP (crosses) is obtained from Eq. (2) by considering UP = Bg

4γ 2 .
λ = 800 nm.

electric field amplitude of the laser beam. Because the relation
between the laser intensity and the electric field changes with
the laser polarization (see Appendix B), it is meaningful to
draw in Fig. 2 the ionization rate versus the electric field for
linear (black circle) and circular (blue square) polarization.
Blue crosses display the ionization rate for circular polariza-
tion computed by considering that the ponderomotive energy
experienced by the electron is equal to that evaluated for
linear polarization, which is UP = Bg

4γ 2 . This substitution in
Eq. (2) ensures a similar broadened band gap for both laser
polarizations. The electric field values presented in this fig-
ure correspond to laser intensity values ranging from 1010 to
1014 W/cm2.

In the low laser intensity regime, we still observe an ion-
ization rate for linear polarization higher than for the circular
polarization. We could think that the polarization-dependent
ponderomotive energy experienced by the electron has an im-
pact on this difference. However, no difference exists between
the crosses (UP = Bg

4γ 2 ) and the squares (UP = Bg

2γ 2 ), meaning
that the dominance of LP on the ionization rate does not result
for the lower value of its associated ponderomotive energy.
This polarization-dependent ionization rate dynamics is sim-
ilar to the theoretical results presented for atom ionization in
the multiphoton regime [19]. In this case, the higher ionization
rate for linear polarization originates from the difference in the
selection rule for the quantum magnetic number �m, that is,
�m = 0 for the linear polarization and �m = +1(�m = −1)
for the left (right) circular polarization. This last selection rule
reduces the number of allowed electronic transition channels

for circular polarization resulting in a lower ionization rate.
Similar dynamics may be applied for solids ionization in
the low intensity regime; this requires additional theoretical
developments. When the ionization rate slope breaks for linear
polarization, we observe in Fig. 2 a higher ionization rate for
circular polarization, in a similar fashion as for the ionization
rate for atomic systems in the tunnel regime [20,21]. Once
again, this difference does not originate from the polarization-
dependent ponderomotive energy.

These results show that the domination of the linear po-
larization over the circular polarization in the photoionization
process mainly originates from the difference in the laser
intensity computation (see Appendix B).

III. MULTIPHOTON REGIME

Because we are interested by the low laser intensity regime,
we theoretically compute the ionization cross section σ (n).
This regime, usually called the multiphoton ionization regime
(MPI), is reached when the Keldysh parameter is larger than
1 (γ � 1).

A. Linear polarization

We compute the ionization rate in the l0 regime:
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For |x| � 1, the Bessel function is approximated by Jn(x) =
1
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2 )n where �(x) is the gamma function [17]. As γ � 1,

we have α̃ � 1 and β � 1, such that the generalized Bessel
function could be approximated by
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(4)

By considering the intensity formula for the linearly polarized
laser beam, I0 = 1

2ε0cn0|E0|2 (see Appendix B), we obtain
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FIG. 3. Quartz ionization rate versus the laser intensity for an
800-nm linearly polarized (LP) laser beam: full formula (black solid
curve), six-photon (blue solid curve), seven-photon (green solid
curve), and eight-photon (red solid curve) regimes; MPI formula for
six-photon (blue crosses), seven-photon (green crosses), and eight-
photon (red crosses) regimes.

These computations are illustrated in Fig. 3 drawing the
ionization rate of a quartz crystal with an 800-nm linearly
polarized laser beam. The full formula [Eq. (1), black solid
curve] is compared with the six-photon (W (6)

LP , blue solid
curve), the seven-photon (W (7)

LP , green solid curve), and the
eight-photon (W (8)

LP , red solid curve) regimes. Note that the
W (n)

LP term, corresponding to the ionization probability of the
n-photon transition, is extracted from Eq. (1).

For a laser intensity lower than 1012 W/cm2, the ion-
ization probability is dominated by the six-photon regime.
At these intensity values, the seven-photon and eight-photon
processes display a much weaker ionization probability; the
W (6)

LP term is the dominant term in the ionization rate. As
the laser intensity value increases, the ponderomotive energy
broadens the crystal band gap resulting in a six-photon regime
saturation near a laser intensity equal to 1012 W/cm2. For
an intensity equal to 2 × 1012 W/cm2, W (6)

LP is zero: the
ponderomotive energy is so strong that the broadened band
gap no longer allows a six-photon process to make the elec-
tron transit from the valence to the conduction bands. For
a laser intensity higher than 2 × 1012 W/cm2, the seven-
photon process becomes the dominant process in the quartz
ionization. This regime transition leads to a slope break in
the ionization rate curve. Similar behavior is observed with
higher laser intensities for the seven- to eight-photon regime
transition.

The blue, green, and red crosses draw the ionization
rate computed from the MPI formula [Eq. (5)] for the
six-, seven- and eight-photon processes, respectively. From
a numerical point of view, the k sum in the MPI formula
converges for k = 2 for the six-photon regime and k = 3 for
the seven- and eight-photon regimes. The MPI photoioniza-
tion formula reproduces perfectly the n-photon processes up
to its zero value. The MPI formula could then be used to
model the quartz photoionization process in the low-intensity
regime.

FIG. 4. Quartz ionization rate versus the laser intensity for an
800-nm circularly polarized laser beam (CP): full formula (black
solid curve), six-photon (blue solid curve), seven-photon (green solid
curve), and eight-photon (red solid curve) regimes; MPI formula for
six-photon (blue crosses), seven-photon (green crosses), and eight-
photon (red crosses) regimes.

B. Circular polarization

As previously, we assume that the multiphoton regime
(γ � 1) is dominated by the l0 regime:
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As γ � 1, η̃ � 1 such that we consider the zero limit of
the Bessel function: Jn(x) = 1
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2 )n. The MPI limit then

reduces to
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By considering the Wallis formula
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for a circularly polarized laser beam (see Appendix B), we
obtain
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Figure 4 computes the photoionization rates of crystal with
an 800-nm circularly polarized laser beam with different
formula. As previously, we note that in the low-intensity
regime, the ionization rate is dominated by the six-photon
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FIG. 5. Quartz ionization rate with a linear (solid curve) and
circular (crosses) polarization for three values of laser wavelength:
λ = 351 nm (black), λ = 526.5 nm (blue), and λ = 1053 nm (red).

process. Whereas the six-photon process domination occurs
up to an intensity equal to 1012 W/cm2 in the case of linear
polarization, we observe that for circular polarization, it only
dominates up to an intensity equal to 1010 W/cm2. Moreover,
in contrast to the linear case, we observe that the seven-photon
process dominates the ionization rate whereas the six-photon
process still enables an electron transition from the valence
to the conduction bands. The photoionization dynamics with
a circularly polarized laser beam differs from the linear one
as it allows the coexistence of two n-photon processes in
the low laser intensity regime. Thus, the MPI formula for
the circular polarization should be carefully used: for some
laser intensity values, the MPI formula, σ (n)In, does not fit the
photoionization rate with n equal to the minimum number of
photons required to make electrons transit to the conduction
band, but with a higher order process.

IV. WAVELENGTH DEPENDENCY

Ionization is considered to be one of the key effects re-
sponsible for the laser damage [5]. Over the first instants of
the interaction, the laser beam ionizes the optical component
making electron transit from the valence band to the conduc-
tion band. These conduction-band electrons are then heated
by the incident radiation and lately transfer their energy to the
lattice through collisional processes. Damage occurs when the
deposited laser energy is sufficient to melt, boil, or fracture
the optical components. On the high-power laser facilities,
such as, for example, the LMJ [14] and the NIF laser [22],
we are interested by three laser wavelengths: 1053, 526.5,
and 351 nm. The end of the beamline, characterized with a
high-energy UV laser beam, is responsible for most of the
laser damage on the optical components.

Figure 5 draws the quartz photoionization rates for linear
(solid curve) and circular (crosses) polarization for these three
laser wavelengths: 351 nm (black), 526.5 nm (blue), and
1053 nm (red). We observe that the two highest values of the
laser wavelengths display a photoionization rate weaker for
circular polarization than for linear polarization. The discrep-
ancies between the two laser polarizations mainly originate
from the weaker value of the electric field amplitude for the

TABLE I. Photoionization cross sections of the fused silica bulk
for three laser wavelengths.

λ0 (nm) 351 526.5 1053

Refractive index, n0 1.476724 1.460965 1.449763
Photon number, n 3 4 8
σ

(n)
lin (s−1 cm2n−3/Wn) 9.21 × 10−8 2.72 × 10−21 3.85 × 10−73

σ
(n)
cir (s−1 cm2n−3/Wn) 8.95 × 10−8 3.56 × 10−23 4.0 ×10−78

circular polarization (see Appendix B). The UV wavelength
displays a different behavior, as no difference in the photoion-
ization rate is observed between both laser polarizations.

Table I summarizes the photoionization cross sections of
the fused silica bulk for the three laser wavelengths. These
numerical values are computed with Eqs. (5)–(8). These the-
oretical results show that circularly and linearly polarized
laser beams display equal ionization rates when the photons
number needed to ionize the crystal is low.

Figure 6 draws the quartz ionization rate as a function of
the laser wavelength for a linear (solid curve) and a circular
polarization (crosses) by considering a laser beam intensity
equal to 1010 W/cm2. The red circles denote the minimum
number of photons (n) needed to make electron transit from
the valence to the conduction bands. We observe that each
n-process transition is characterized by a decrease in the
ionization rate value for both laser polarizations: it is more
noticeable for linear polarization. As expected, the ionization
rate decreases as the laser wavelength increases due to the
higher number of photons needed to ionize the crystal. But
this decrease is more pronounced for the circular polarization
such that the difference between the linear and the circular
polarization induced ionization rate increases with the laser
wavelength.

V. COMPARISON WITH EXPERIMENTAL DATA

We now apply our theoretical development of the crys-
tal photoionization rates to the experimental measurements

FIG. 6. Ionization rate versus the laser wavelength for a laser
intensity equal to 1010 W/cm2 with a linear (solid curve) and a
circular (crosses) polarization. The red circles (associated with the
right y axis) display the number of photons (n) needed to make
electron transit from the valence to the conduction band. Vertical
dashed lines highlight laser wavelengths equal to 351 and 800 nm.
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FIG. 7. Free-carrier density in fused silica measured experimen-
tally (red circles and crosses) and computed theoretically (dashed
curve) with a linearly (a) and circularly (b) polarized laser beam.

performed by Temnov et al. in [9]. The authors reported
time-resolved measurements of the concentration of free car-
riers in fused silica and sapphire generated by 50-fs, 800-nm,
linearly and circularly polarized laser pulses. To evaluate
the free-carrier density, they considered two diagnostics: the
transmission of a time-delayed probe beam through the pump-
irradiated sample (T ) and the phase shift (�φ) of a reflected
probe beam focused on the sample rear surface. These experi-
mental data are reported in Figs. 7 and 8 with red crosses and
circles, respectively. First, Fig. 7 reports free-carrier density
for a fused silica sample irradiated by a linearly [Fig. 7(a)]
and a circularly [Fig. 7(b)] polarized laser beam. The sample
characteristics are estimated to Bg = 9 eV and n0 = 1.4533.
The theoretical charge density (dashed curve) is computed
with ρ = Wlin × Tp, where Tp = 50 fs and Wlin is given in
Eq. (1). A good agreement with experimental measurements
is obtained by choosing a reduced mass equal to μr = 0.1me.
This value will be kept constant in the following. Then, the
laser beam polarization is changed from linear to circular in
Fig. 7(b) where the ionization rate is computed with Eq. (2).
The theoretical computations still fit the intensity-dependent
charge density, and reproduce the experimental measurements
that is a free-carrier density lower than in the linear case.
Table II summarizes the values of the photoionization cross
sections for the fused silica sample. The theoretical values are
computed with Eq. (5) for the linear polarization and with

FIG. 8. Free-carrier density in sapphire measured experimentally
(red circles and crosses) and computed theoretically (dashed curve)
with a linearly (a) and circularly (b) polarized laser beam.

TABLE II. Comparison of the experimental and theoretical val-
ues of the fused silica photoionization cross sections for a linear and
a circular polarization.

σ
(6)
lin (s−1 cm9/W6) σ

(6)
cir (s−1 cm9/W6)

Experimental values 7.5 × 10−47±0.5 2.0 × 10−47±0.5

Theoretical values 1.3169 × 10−45 1.38507 × 10−47

Eq. (8) for the circular polarization. Their associated free-
carrier densities are drawn in Fig. 7 with dotted curves. The
free-carrier density computed with the multiphoton formula
largely overestimates the experimental and the theoretical
values for the linear polarization. This shows that for these
laser intensity values, the ionization process does not fully
evolve in the multiphoton regime. In contrast to the linear
case, circular polarization data display a better agreement
between the multiphoton formula and the experimental and
theoretical values for the free-carrier density. The theoreti-
cal value for the photoionization cross section, 1.385 07 ×
10−47 s−1 cm9/W6, is close to that evaluated by Temnov in
[9], 2.0 × 10−47±0.5 s−1 cm9/W6. Then, Fig. 8 compares the
free-carrier density for a sapphire sample. Without any accu-
rate description of the sapphire bulk in [9], its characteristics
are estimated from [23]: Bg = 8.8 eV and n0 = 1.7601. Note
that μr = 0.1me. The theoretical values (dashed curves) for
the free-carrier density present a relative agreement with the
experimental measurements. However, the theory fails to re-
produce the ionization saturation experimentally observed for
laser intensity larger than 30–40 TW/cm2. The theoretical and
experimental values for the photoionization cross sections are
summarized in Table III. Whereas the linear polarization dis-
plays a good agreement between theory and experiments, two
orders of magnitude are observed for the circular polarization.
This relative agreement between the photoionization theory
and the work of Temnov et al. [9] is encouraging. It makes
this theory reliable for studying the ionization of solid material
with a circularly polarized laser beam.

VI. CONCLUSION

By following the formalism presented in [12], we have
derived the ionization rate of a parabolic two-band modeled
crystal irradiated by a linearly and a circularly polarized laser
beam. We observe some differences between our formula and
those computed by Otobe et al. [12]. Nonetheless, we find that
the ionization of a quartz crystal irradiated by an 800-nm laser
beam is much more efficient (four orders of magnitude) for a
linear polarization than for a circular polarization in the low
laser intensity regime. This difference mainly originates from

TABLE III. Comparison of the experimental and theoretical val-
ues of the sapphire photoionization cross sections for a linear and a
circular polarization.

σ
(6)
lin (s−1 cm9/W6) σ

(6)
cir (s−1 cm9/W6)

Experimental values 2.0 ×10−46±0.5 3.0 ×10−47±0.5

Theoretical values 5.7074 × 10−46 7.52 × 10−49
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the dependence of the laser intensity computation with the
laser polarization. However, we observe that this difference
is no more valid for a UV laser beam characterized with
λ = 351 nm. In this case, the dependence of the ionization
rates with the laser intensity is similar for both laser polariza-
tions. By varying the laser wavelength in the MPI regime, we
show that the difference between the linear and the circular
polarization induced ionization rates increases with the laser
wavelength.

We have developed the ionization rate formula in the mul-
tiphoton regime and expressed it as a power of the laser
intensity. This formulation provides an analytical expression
for the photoionization rates in the linear and circular laser
polarization. These expressions are thus easily implementable
in numerical code modeling laser propagation.

By applying the theory to the experimental data reported
in [9], we observe good agreement for a fused silica sample
irradiated by a 50-fs, 800-nm, linearly and circularly polar-
ized laser beam. The theory reproduces the lowering of the
ionization process for a circular polarization and fits with
the intensity-dependent free-carrier density. This makes the
theory reliable for studying the bulk ionization under circu-
lar polarization. However, the agreement between theory and
experiment is more questionable for the sapphire sample, as
the theory fails to reproduce the ionization saturation around
a laser intensity equal to 30–40 TW/cm2. New experimental
measurements of dielectric bulks ionization are required to
validate or refute the theory.
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APPENDIX A: THEORETICAL DEVELOPMENT
FOR THE IONIZATION RATE

W denotes the ionization probability of a solid irradiated
by a monochromatic plane wave. Expressed in s−1 m−3, it is
equal to

W = 1

(2π )3

∫
d	k lim

T →∞
dP|v〉→|c〉(T )

dT
, (A1)

where 	k is the Bloch wave vector, T refers to the time, and
P|v〉→|c〉(T ) is the probability for an electron to transit from
the valence (|v〉) to the conduction (|c〉) band. In the dipole
approximation, the electron excitation probability writes as

P|v〉→|c〉(T ) = 1

h̄2

∣∣∣∣
∫ T

0

〈
�

(v)
k (	r, t )| 	d 	E |� (c)

k (	r, t )
〉∣∣∣∣

2

, (A2)

where 	E (	r, t ) = − d 	A(	r,t )
dt models the laser electric field with

	A(	r, t ) the potential vector, 	d = −e	r is the dipole term with
e the electron charge, and �

(n)
k (	r, t ) is the electronic wave

function for the conduction (n = c) and the valence (n = v)
bands, respectively. In analogy with the photoionization the-
ory in solids developed by Keldysh [7] and Otobe et al. [12],
the wave functions �

(n)
k (	r, t ) for the valence and conduction

bands are described with the Houston function [13]:

�
(n)
k (	r, t ) = u(n)

	k+[e 	A(t )/h̄]
(	r)ei{	k+[e 	A(t )/h̄]}	r

× e−(i/h̄)
∫ t

0 En(	k+[e 	A(t )/h̄])dt ′
, (A3)

where u(n)
	k (	r) are the lattice periodic functions and En(	k) is

the associated band energy. The Houston functions satisfy the
Schrödinger equation:

[
[ 	p + h̄	k + e 	A(t )]2

2me
+ V (	r)

]
�

(n)
k (	r, t )

= En

(
	k + e 	A(t )

h̄

)
�

(n)
k (	r, t ) (A4)

with V (	r) the periodic lattice potential. In analogy with
Otobe’s work [12], we define the dipole matrix element:

Ccv (T ) = e

h̄

∫ T

0
dt

〈
�

(v)
k (	r, t )|	r 	E |� (c)

k (	r, t )
〉

(A5)

such that

W = 2

(2π )3

∫
d	k lim

T →∞
Re

[
dC∗

cv (T )

dT
Ccv (T )

]
, (A6)

where the Re(x) function refers to the real part of x. By
inserting Eq. (A3) into Eq. (A5), we obtain

Ccv (T ) = e

h̄

∫ T

0
dt

〈
u(v)

	k+[e 	A(t )/h̄]
|	r|u(c)

	k′+[e 	A(t )/h̄]
〉 	Eei( 	k′−	k)·	r

× e−(i/h̄)
∫ t

0 dt ′[Ec ( 	k′+[e 	A(t ′ )/h̄])−Ev (	k+[e 	A(t ′ )/h̄])]. (A7)

The dipole matrix element coupling the lattice periodic
functions writes [24] as〈

u(v)
	k+[e 	A(t )/h̄]

|	r|u(c)
	k′+[e 	A(t )/h̄]

〉 = iδ(	k − 	k′)
〈
u(v)

	k | 	∇	k|u(c)
	k

〉
. (A8)

We thus have

Ccv (T ) = −i
e

h̄

∫ T

0
dt

d 	A(t )

dt

〈
u(v)

	k | 	∇	k|u(c)
	k

〉
× e−(i/h̄)

∫ t
0 dt ′�E (	k+[e 	A(t ′ )/h̄]), (A9)

where we consider a parabolic two-band system:

�E (	k) = Ec(	k) − Ev (	k) (A10)

= Bg + h̄2k2

2μr
, (A11)

where Bg denotes the band gap and μr is the electron-hole
reduced mass [12,25].

1. Linearly polarized beam

We consider a laser beam with a linear polarization:

	A(t ) = A0 cos (ωt )	ez (A12)
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leading to

�E

(
	k + e 	A(t )

h̄

)
= Bg + h̄2k2

2μr
+ e2A2

0 cos2 (ωt )

2μr

+eh̄kA0 cos (ωt )

μr
cos θ (A13)

with θ the angle between the 	k vector and the 	ez axis.
By inserting Eq. (A13) into Eq. (A9) and by considering
eim sin (ωt ) = ∑+∞

l=−∞ Jl (m)eilωt , where Jl (x) are the Bessel
functions of the first kind [17], we obtain

Ccv (T ) = i
eA0ω

h̄

∫ T

0
dt sin (ωt )X (z)

v,c

×
+∞∑

l,m=−∞
Jl (α)Jm(β )e−(i/h̄)[Ek−(l+2m)h̄ω]t , (A14)

X (z)
v,c = 〈

u(v)
	k

∣∣ ∂

∂kz

∣∣u(c)
	k

〉
, (A15)

α = −eA0k cos θ

μrω
, (A16)

β = − e2A2
0

8μr h̄ω
, (A17)

Ek = Bg + h̄2k2

2μr
+ (eA0)2

4μr
. (A18)

This results in

Ccv (T ) = i
eA0ω

2
X (z)

v,c

+∞∑
l=−∞

[Jl−1(α, β ) − Jl+1(α, β )]

× e−(i/h̄)[Ek−l h̄ω]t − 1

Ek − l h̄ω
, (A19)

where Jn(u, v) are the generalized Bessel functions [16]. By

defining wk = 2 limT →+∞ Re[ dC∗
cv (T )
dT Ccv (T )] and considering

the limT →+∞ sin (xT ) = πxδ(x) formula, we obtain

wk = π (eA0ω)2

2h̄

∣∣X (z)
cv

∣∣2
+∞∑

l=−∞
[Jl−1(α, β ) − Jl+1(α, β )]2

× δ(Ek − l h̄ω). (A20)

The crystal is assumed to be isotropic. Thus the dipole matrix
element writes [25] as

∣∣X (z)
cv

∣∣2 = h̄2

4μrBg
. (A21)

By inserting Eq. (A21) into Eq. (A20), integrating Eq. (A20)
over 	k, and considering

∫ b
a f (x)δ(x − x0) = f (x0) if x ∈

[a, b], we obtain the following photoionization rate for the
linear-polarized laser beam:

Wlin = 1

16
√

2π

(eA0ω)2

h̄2

μ1/2
r

Bg

∫ π

0
sin θ dθ

×
∑
l�l0

√
ul [Jl−1(α, β ) − Jl+1(α, β )]2, (A22)

where ul = l h̄ω − Bg − (eA0 )2

4μr
, l0 = minl (ul > 0) and α is

transformed to α = − eA0
h̄ω

√
2
μr

√
ul cos θ . This equation differs

from Eq. (21) in [12] by a factor 1
2 ( h̄ω

Bg )2. The factor 1
2 orig-

inates from a misprint in Eq. (21) because it is not present
in the associated figure, denoted Fig. 2 in [12]. Thus, only a
factor ( h̄ω

Bg )2 differs between our result and the Otobe’s result.
It results from two oversights in [12]:

(1) The factor 1
Bg

is forgotten in the Eq. (6) to Eq. (7)
transition.

(2) The factor ω is forgotten in the Eq. (11) to Eq. (12)
transition.

2. Circularly polarized beam

We consider a laser beam with a circular polarization:

	A(t ) = A0[cos (ωt )	ex + sin (ωt )	ey]. (A23)

Calculations perfectly similar to Eqs. (A13)–(A19) lead to

Ccv (T ) = eA0ω

2h̄

∫ T

0
dt

+∞∑
l=−∞

e−(i/h̄)[Ek−l h̄ω]t e−ilφ

× [M−
vcJl−1(η)eiφ − M+

vcJl+1(η)e−iφ], (A24)

M±
vc = [

X (x)
vc ± iX (y)

vc

]
, (A25)

η = − eA0

μrω
k sin θ, (A26)

Ek = Bg + h̄2k2

2μr
+ (eA0)2

2μr
. (A27)

The crystal is assumed to be isotropic, such that X (x)
vc = X (y)

vc =
X (z)

vc . Thus M±
vc = Xvc[1 ± i] where Xvc is given by Eq. (A21).

We have

wk = π (eA0ω)2

h̄
|Xcv|2

+∞∑
l=−∞

[
J2

l−1(η) + J2
l+1(η)

]
× δ(Ek − l h̄ω), (A28)

where the Bessel crossed terms are neglected. By integrating
over the 	k vector, we obtain the ionization rate for a circularly
polarized beam:

Wcir = 1

8
√

2π

(eA0ω)2

h̄2

μ1/2
r

Bg

∫ π

0
sin θ dθ

×
∑
l�l0

√
ul

[
J2

l−1(η) + J2
l+1(η)

]
(A29)

with ul = l h̄ω − Bg − (eA0 )2

2μr
, l0 = minl (ul > 0) and η is trans-

formed to η = − eA0
h̄ω

√
2
μr

√
ul sin θ . In a similar way as the

linear polarization, our result differs from Eq. (16) in [12] by
a ( h̄ω

Bg )2 factor.
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APPENDIX B: LASER INTENSITY
AND ELECTRIC FIELD AMPLITUDE

The potential vector modeling the z-propagating linearly or
circularly polarized laser beam writes as

	A(t ) = A0[cos (ωt − kz)	ex + χ sin (ωt − kz)	ey], (B1)

where χ = 0, 1 for linear and circular polarization, respec-
tively. Note that the electric field amplitude is equal to
E0 = ωA0.

Averaged over one optical period, the laser energy density
ρ(v) = 1

2 [ε| 	E |2 + 1
μ0

| 	B|2] writes as

ρ(v) = 1
2ε0n2

0E2
0 [1 + χ2] (B2)

with ε0 the vacuum permittivity and n0 the linear refractive
index. The laser intensity, defined by I = ρ(v) c

n0
, with c the

light speed in vacuum, is equal to

I = 1
2ε0cn0E2

0 [1 + χ2]. (B3)

We retrieve the well-known feature concerning a circularly
polarized laser beam: for a defined laser intensity, the electric
field amplitude of a circularly polarized laser beam is lower
than the linearly polarized one by a factor

√
2.

APPENDIX C: DISPERSION LAW
FOR A QUARTZ CRYSTAL

Throughout the document, we compute the linear refractive
index of the crystal with the following dispersion law [18]:

n2
0 − 1 = 0.696 166 3 × λ2

μm

λ2
μm − 0.068 404 32

+ 0.407 942 6 × λ2
μm

λ2
μm − 0.116 241 42

+ 0.897 479 4 × λ2
μm

λ2
μm − 9.896 1612

, (C1)

where λμm is the laser wavelength expressed in micrometers.
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