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Motional effects in dynamics of fluorescence of cold atomic
ensembles excited by resonance pulse radiation
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We report the investigation of the influence of atomic motion on the fluorescence dynamics of a dilute atomic
ensemble driven by resonance pulse radiation. We show that even for sub-Doppler temperatures, the motion of
atoms can significantly affect the nature of both superradiation and subradiation. We also demonstrate that, in
the case of an ensemble of moving scatterers, it is possible to observe the nonmonotonic time dependence of
the fluorescence rate. This leads to the fact that, in certain time intervals, increasing temperature causes not an
decrease but an increase of the fluorescence intensity in the cone of coherent scattering. We analyze the role
of the frequency diffusion of secondary radiation as a result of multiple light scattering in an optically dense
medium. It is shown that spectrum broadening is the main factor which determines radiation trapping upon
resonant excitation. Along with broadening, we found a shift and distortion of the shape of the spectrum over
time. At later time, after the trapping stage, the dynamics is dominated by close pairs of atoms (dimers). The
dynamics of the excited states of these dimers has been studied in detail. It is shown that the change in the lifetime
of the given adiabatic term of the diatomic quasimolecule induced by the change in the interatomic distance as
well as possible nonadiabatic transitions between sub- and superradiant states caused by atomic motion can lead
not to the anticipated weakening of subradiation effect, but to its enhancement.
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I. INTRODUCTION

Atomic ensembles cooled to sub-Doppler temperatures in
special traps are currently of great interest both because of
their number of unique physical properties and because of the
wide range of their possible practical applications in problems
of quantum metrology, frequency standardization, and quan-
tum information applications [1–3].

Almost all proposed schemes for the use of cold atomic
ensembles as well as most diagnostic methods are based on
the interaction of these ensembles with electromagnetic ra-
diation. This interaction has a number of features associated
with collective polyatomic effects. These effects are due, first,
to the large resonant cross sections for light scattering by
each separate atom and, consequently, to the large optical
depth of the ensembles even at low atomic densities. The
second reason is random spatial disorder, in which the for-
mation of atomic clusters, or quasimolecules, consisting of
several atoms randomly located at distances of the order of the
resonance radiation wavelength from each other is possible.
Dipole-dipole interatomic interaction causes the formation of
collective sub- and superradiant states, which can essentially
affect the optical properties of cold gases.

Nowadays, the main approach to the description of col-
lective effects is the so-called method of coupled oscillators.
To date, several variants of this method have been developed
[4–21]. The main difficulty in using this method is accounting
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for the motion of atoms in real physical systems. Therefore,
in the overwhelming majority of works, the approximation of
fixed scatterers is used. The displacement of atoms is taken
into account by averaging the observables over a random
spatial distribution of atoms. In Refs. [22–24] an attempt
was made to refine the immobile atom approximation. In the
refined model, the Doppler shift was modeled by introducing
a random shift in the frequencies of atomic transitions, which
is different for different atoms.

The effect of continuous displacement of atoms in di-
lute media was considered in the framework of the scalar
approximation in [25]. A more detailed experimental and
theoretical analysis was given in [26]. The main result of that
work was the assertion that subradiative states are sufficiently
resistant to thermal decoherence at the temperatures of the
magneto-optical trap (MOT). Similar stability is predicted up
to temperatures on the order of millikelvin. We came to a dif-
ferent conclusion in our group when considering dense atomic
ensembles with a strong dipole-dipole interatomic interaction
[27]. For clouds in which the average interatomic distance
is comparable with the wavelength of resonant radiation, we
observed the destruction of subradiative states even at temper-
atures several times lower than the typical MOT temperatures.

The essential influence of motion on another collective
effect, the effect of single-photon superradiance, was discov-
ered in the framework of the study of the flash effect in
Refs. [28–30]. There, in particular, it was shown that the sub-
radiation rate in the direction of the exciting pulse increases
upon heating. For a flat layer of atoms for an infinitesimal time
interval after the end of the excitation pulse, it was even possi-
ble to obtain analytical expressions confirming this growth. At
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the same time, theoretical studies of superradiance outside the
cone of coherent forward scattering, carried out in [31], led
to opposite conclusions. Heating manifests itself in a negative
way, weakening the superradiance in these directions.

Thus, the available data indicate the complex nature of
the influence of atomic motion on collective optical effects.
This influence depends both on the nature of the effect and
on the conditions of observation. The main goal of this work
is a detailed study of dilute atomic ensembles cooled to
sub-Doppler temperatures and excited by resonance pulsed
radiation. Previously, the influence of motion on the character
of radiative transfer, as well as the effects of sub- and superra-
diation under such conditions, was studied using the diagram
technique (see the review in [32] and references therein) or
using the transport equations [33] obtained on the basis of
the generalized Bethe-Salpeter equations. In this work, we
use a consistent microscopic approach that allows us to take
into account many aspects that were not taken into account
earlier and at the same time noticeably affect the phenomena
under study. In particular, this approach makes it possible
to account for the interatomic dipole-dipole interaction, as
well as coherent effects such as interference and diffraction,
which lead to a deviation from the Bouguer-Beer-Lambert law
and cause weak localization effects. Within the framework of
this unified approach, we will describe atomic fluorescence at
various temperatures and over a wide time interval, including
subradiance, light trapping, and single-photon superradiance.
We will show that even when the characteristic Doppler fre-
quency shifts are smaller than the natural width of atomic
transitions, motion can significantly affect the fluorescence
dynamics.

II. BASIC ASSUMPTIONS AND APPROACH

In our theoretical description of time-dependent fluores-
cence we use the coupled-dipole model, which is traditional
for this class of problems [4–20].

We consider a disordered atomic ensemble of N identical
two-level atoms. All atoms have a ground state |g〉 with total
angular momentum Jg = 0, an excited state |e〉 with Je = 1,
and a transition frequency ω0, and the natural lifetime of all
excited Zeeman sublevels (m = −1, 0, 1) is τ0 = 1/γ .

Our specific calculations are based on an approach de-
veloped earlier in [12,27]. In accordance with this approach
we study the properties of a closed system consisting of
all atoms and an electromagnetic field, including a vacuum
reservoir. We seek the wave function ψ of this system as an
expansion over the eigenfunctions ψl of the Hamiltonian of
noninteracting atoms and light ψ = ∑

l βlψl . Assuming that
the exciting radiation is weak, which is typical in experiments
[21,34,35], we take into account only states with no more than
one photon in the field. In such a case for the amplitudes βe of
onefold excited atomic states ψe = |g · · · e · · · g〉 we have the
following differential equation:

∂βe

∂t
=

(
iδ − γ

2

)
βe − i	e

2
+ iγ

2

∑
e′ �=e

Vee′βe′ . (1)

Here, the index e shows both the number of the atom which
is excited in state ψe = |g · · · e · · · g〉 and the specific Zeeman

sublevel populated in this state; 	e is the Rabi frequency of
the external laser field at the point where atom e locates,
and δ is the detuning of the field from the resonance atomic
frequency.

The last term in Eq. (1) corresponds to dipole-dipole inter-
atomic interaction and is responsible for collective effects in
the considered atomic ensemble. The matrix Vee′ is

Vee′ = − 2

γ

∑
μ,ν

dμ
egdν

ge′
eik0ri j

h̄r3
i j

×
{

δμν[1 − ik0ri j − (k0ri j )
2]

− rμ
i jr

ν
i j

r2
i j

[3 − 3ik0ri j − (k0ri j )
2]

}
. (2)

Here, we assume that in the e state atom i is excited and in
the e′ state atom j is excited; deg is the matrix element of
the dipole moment operator for the transition g → e, ri j =
ri − r j , ri j = |ri − r j |, and k0 = ω0/c is the wave number
associated with the transition, with c being the vacuum speed
of light. The indexes μ and ν denote projections of vectors on
the axes of the reference frame.

Note that, despite the fact that system (1) was formally
obtained in the single-excitation approximation, it has been
repeatedly verified that it describes well the results of experi-
ments with real atomic ensembles if nonlinear optical effects
can be neglected. It is sufficient to require that the saturation
parameter for the pump radiation be much less than unity.
In real experiments devoted to studying such linear optics
collective effects as super- and subradiance, this parameter
usually does not exceed 0.04 (see, for example, the review
in [21] and references therein)

From the values of βe(t ) computed on the basis of Eq. (1)
we can find the amplitudes of all other states which determine
the wave function ψ (for more details, see [12]), which, in
turn, gives us information about the properties of the sec-
ondary radiation as well as about the properties of the atomic
ensemble. In particular, the intensity Iα (�, t ) of the light-
polarization component α that the atoms scatter in a unit solid
angle around the direction of the wave vector k determined by
radius vector r (� = θ, ϕ) reads

Iα (�, t ) = c

4π
〈ψ |E (−)

α (r)E (+)
α (r)|ψ〉r2

= c

4π

∣∣∣∣∣k2
0

∑
e

(u∗
αdge)βe(t ) exp(−ikri )

∣∣∣∣∣
2

. (3)

Here, E (±)
α (r) are the positive- and negative-frequency parts

of the electric-field operator; uα is the unit polarization vector
of the scattered light.

In this paper, while analyzing the role of atomic motion, we
will not conduct a detailed study of the angular distribution
of fluorescence. The main focus will be on the study of the
influence of temperature on the dynamics of the total radiation
of the ensemble. This value can be obtained by integrating
expression (3) over the total solid angle and summing the con-
tributions of the various polarization components. It can also
be calculated on the basis of the law of energy conservation,
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taking into account that the total radiation energy is equal to
the decrease in the excitation energy of the atomic system; that
is, it can be determined from the rate of decrease in the total
population Pex(t ) of the excited states of all atoms. The latter
can be found as follows:

Pex(t ) =
∑

e

|βe(t )|2. (4)

In the next section, based on relations (1)–(4), we will
calculate the rate of decay of the total radiation intensity of
an ensemble of moving atoms at different temperatures. We
will look for a nonstationary solution to Eq. (1), taking into
account the displacement of atoms with time explicitly. We
will consider the temperature ranges typical for MOTs and
higher, at which the momenta of atoms are much greater than
the momenta of a photon. For this reason and also taking into
account the weakness of the excitation, we will not take into
account the recoil effects and will describe the motion as a
classical uniform and rectilinear motion, ri = ri0 + vi(t − t0).
In order not to take into account the departure of atoms
from the considered volume and associated change in their
densities, we will assume that the volume of the cloud is
surrounded by imaginary surfaces which scatter the atoms
elastically without modification of their internal states. To
simplify we consider an ensemble having the shape of a cube
with the edge equal to L.

The distribution of atoms at initial time t = t0 is considered
random, but spatially homogeneous on average. The atomic
medium is optically dense but dilute. The density of atoms n in
all calculations will be the same, nk−3

0 = 0.005. The average
distance between atoms in this case exceeds the wavelength
of quasiresonant radiation.

The velocities of the atoms at t = t0 are also considered as
random variables. All their projections vμ are assumed to have
a Maxwell distribution corresponding to temperature T ,

f (vμ) = 1/

√
πv2

0 exp
( − v2

μ

/
v2

0

)
. (5)

Here v0 = √
2kT/m is the most probable velocity and m is

the mass of the atom. This velocity and the wave number
k0 determine the Doppler broadening of the line (FWHM)
�D = 2

√
ln 2k0v0. All fluorescence parameters calculated in

this paper will be obtained by averaging over random vari-
ables ri0 and vi.

The radiation pulse that excites fluorescence will be con-
sidered rectangular; its carrier frequency is resonant with the
transition in a free atom δ = 0. For definiteness, we choose it
to be right-circularly polarized.

III. RESULTS

As the main quantity characterizing the dynamics of the
fluorescence, we will use the current (instantaneous) radiation
delay time τ (t ) = 1/�(t ), where �(t ) = 1

I (t )
dI (t )

dt and I (t ) is
the total intensity of the secondary radiation of the atomic
ensemble, i.e., intensity summed over all directions and all
polarizations. Note that in the linear optics regime, the quan-
tities τ (t ) and �(t ) do not depend on the Rabi frequency of
the pump radiation. The dependence τ (t ) after the end of
the excitation pulse at different temperatures for the ensem-
ble containing N = 625 atoms (resonance optical depth for

FIG. 1. Dynamics of instantaneous fluorescence delay time at
various k0v0 (temperatures). The number of atoms is N = 625; the
resonance optical depth for motionless atoms is b0 	 4.71. The
excitation pulse duration is γ Tp = 50. The time reference t = 0 cor-
responds to the end of the excitation pulse. Averaging is performed
over at least 40 000 independent atomic configurations for each
curve.

motionless atoms is b0 	 4.71) is shown in Fig. 1. The pulse
duration γ Tp = 50 was chosen from the condition that by the
end of the pulse, the equilibrium population of the excited
state in the atomic ensemble must be established.

As for immobile atoms [36,37], several characteristic
stages of fluorescence can be distinguished. First, at times t <

1/γ after the end of the excitation pulse, the superradiance
effect is observed. The dependence τ (t ) at this stage is shown
on an enlarged scale in the inset in Fig. 1. The decay rate �(t )
here is greater than the natural width γ , and γ τ (t ) < 1.

Then comes the stage of radiation trapping, which is
caused by the diffusion of photons in an optically dense
medium. It can be divided into two parts. Initially, the decay
rate decreases, and the trapping time increases. Here, radiation
diffusion is described by multimode dynamics. Further, the
diffusion regime becomes single mode when the afterglow de-
cay is described with good accuracy by a exponential law. This
regime corresponds to rectilinear, almost horizontal segments
on the τ (t ) curves.

Finally, after this exponential phase, a noticeable increase
in the trapping time τ (t ) and a decrease in the decay rate
are observed. Here, we are dealing with the radiation of clus-
ters randomly formed in the considered disordered ensemble.
These clusters have long-lived states that are responsible for
the “classical” subradiation process predicted by Dicke [38].

Next, we consider in more detail those features of the
fluorescence dynamics that result from taking into account the
motion of atoms at each of these main stages.

A. Influence of motion on the nature of single-photon
superradiance

As already mentioned, the effect of single-photon superra-
diance has been studied in sufficient detail. The dynamics of
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FIG. 2. Time dependence of the fluorescence rate in the forward
direction �(t ) at different temperatures (k0v0).

fluorescence in the cone of coherent forward scattering has es-
pecially been studied in detail. In particular, in an experiment
[28] it was found that the rate of superradiance in this direction
increases with heating. This unexpected effect was explained
as the result of the dephasing effect from the motion of the
atoms [30].

In the theoretical description of the flash effect, the most
attention was paid to infinitesimal time intervals after the
end of the excitation of atomic clouds having the form of a
flat layer. This is the simplest case that admits an analytical
description. In particular, for this case in [30] an explicit ana-
lytical expression for the superradiance velocity was obtained.
For resonant excitation it reads as follows:

�(0+) = b0γ

2{1 − exp[−b(v0)/2]} . (6)

Here, b(v0) and b0 are the optical thicknesses of the medium
at a given temperature and at a temperature tending to zero,
respectively.

In this work, we carry out a numerical analysis, which
makes it possible to analyze the dynamics of the superradiance
process in a wide time interval, taking into account the finite
transverse dimensions of the ensemble. The results of this
analysis for different temperatures are shown in Fig. 2.

The speed �(t = 0+) immediately after the abrupt switch-
ing off of the excitation is qualitatively well described by
Eq. (6). Some quantitative differences are due to the finite
transverse size of the considered ensembles.

For t > 0, on time intervals of the order of the natural
lifetime of an atomic excited state the time dependence of �(t )
demonstrates some important features. For t = 0+, �(t ) is not
maximal. After the excitation is turned off, �(t ) changes non-
monotonically. It can even change sign. That is, at certain time
intervals, the intensity of secondary radiation in the coherent
forward lobe does not decrease, but increases. The velocity �

reaches its maximal negative values at k0v0 ∼ γ .
An oscillating behavior and a change in the sign of �(t )

can take place already for fixed atoms. We checked that in this

case, these effects are stronger the greater the optical thickness
b0 is. At the same time for a given size of atomic cloud heating
significantly enhances the considered effects, which is clearly
seen in Fig. 2.

In our opinion the oscillation in the afterglow of the atomic
ensemble is connected to quantum beating and is caused by
interference of light scattering through different collective
states [27,39].

To conclude this section, we note that for the flat-layer
model, the time dependence of G(t ) can be analyzed within
the framework of a computationally simpler approach used,
for example, in [29,40]. The description of the dynamics can
be carried out on the basis of a spectral analysis of stationary
transmission using the Bouguer-Beer-Lambert law, followed
by an inverse Fourier transform and transition to a time
representation.

B. Influence of motion on diffusion trapping

It follows from Fig. 2 that, for the ensembles under study,
the transient processes end at the time γ t ∼ 5–6 after the
superradiance stage. Then the trapping stage begins. Here,
the trapping time changes slightly with temperature, which, in
our opinion, is precisely what was observed in the experiment
[26].

This result seems quite natural since, as is known, the
diffusion trapping time τd , given by the horizontal segment
in Fig. 1, is determined by the optical thickness b. For immo-
bile atoms and clouds with large resonance optical thickness
b0 = σ0nL � 1 this time is well described by the following
simple relation:

τd = 3b2
0

απ2
τ0, (7)

where σ0 = 6πk−2
0 is the resonance cross section for the con-

sidered dilute media consisting of two-level atoms and the
parameter α depends on the shape of the cloud. For cubic
volume α = 3.

The decrease in τd is associated with a change in the
mean free path due to the Doppler effect. The role of this
effect is relatively small at sub-Doppler temperatures. How-
ever, numerical calculations show that this decrease turns
out to be more significant than relation (7) predicts if
b0 is replaced by b(v) = b0g(k0v/γ ) determined in accor-
dance with the Voigt profile for moving atoms. Here, g(x) =√

π/8 exp(1/4x2)erfc(1/2x)/x.
The solid line in Fig. 3 shows the calculated dependence

of τd on the atomic velocity for an atomic ensemble with
k0L = 60. The dashed line shows how the time τd would
change if it were calculated using Eq. (7) while taking into
account the dependence of the optical thickness on tempera-
ture. For the convenience of comparison, the results calculated
using Eq. (7) were renormalized so that they coincided with
the results of numerical calculations for immobile atoms. The
need for renormalization is due to the limited applicability
of Eq. (7) for a not very large optical depth of the atomic
ensemble (see [41]).

Figure 3 demonstrates a noticeable discrepancy between
the results of the two calculations, which can be explained
by the photon frequency drift during multiple scattering
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FIG. 3. Dependence of τd on k0v0 (temperature) for an atomic
ensemble with k0L = 60 (b0 	 5.65). The solid line gives the result
of the numerical calculation. The dashed line is drawn on the basis
of Eq. (7); γ t = 40.

inside the cloud [33,42,43]. In the multiple-scattering regime,
a photon acquires a random frequency shift of the order of
k0v0 at each scattering, and its frequency performs a random
walk in the frequency space. This frequency drift leads to the
appearance of nonresonant photons, which have a large mean
free path and, consequently, a shorter lifetime in the ensemble.

The broadening of the spectrum after the end of the ex-
citation pulse under conditions close to those considered in
this paper was investigated in [33]. There, the calculation was
carried out based on the radiative transfer equation, which
takes into account the motion of atoms. The results of our
calculation performed using the coupled-oscillator method are
shown in Fig. 4(a). The spectrum is calculated for radiation
scattered at an angle of 90◦. In contrast to [33], we use
the short-term Fourier transform [44]. When analyzing the
spectral composition of secondary radiation under essentially
nonstationary conditions, this approach seems to us more
natural than the usually determined time-dependent spectral
intensity. The specific calculation was made for a rectangular
window with duration γ�t = 30. The center of the window
was at different times γ t after the end of the excitation pulse.

For illustration, in Fig. 4(b) we show the broadening of
the spectrum upon heating for a fixed point in time. After the
end of the excitation, the atoms begin to radiate at their own
frequency. At times where the main mechanism is diffusion
radiation trapping, there is a noticeable broadening of the
spectrum due to multiple scattering. An increase in temper-
ature (as well as an increase in the size of the cloud) enhances
the effect of frequency drift, which explains the acceleration
of fluorescence observed in Fig. 3.

C. Influence of motion on the subradiation of dimers

The role of motion manifests itself most unexpectedly at
the stage of subradiation of diatomic clusters. As can be
seen from Fig. 1, for all considered temperatures the motion
reduces the duration of the trapping stage and also, at certain

FIG. 4. Change in the shape of the fluorescence emission spec-
trum (a) over time at a fixed temperature k0v0 = 0.03γ and (b) during
heating for a given moment of time γ t = 20. The ensemble size
is k0L = 50. Averaging is performed over about 10 000 atomic
configurations.

time intervals, leads not to a weakening, but to an increase in
the subradiation effect.

The influence of dimers begins to dominate when the
diffusion stage is completed. For the conditions for which
Fig. 1 is drawn, this is the case for comparatively long times.
The relative role of clusters can be enhanced if the diffusion
effect is weakened. This can be done by reducing the optical
thickness since the influence of dimers does not need to be
revealed against the background of diffusion trapping.

This is well demonstrated in Fig. 5, which shows the de-
pendence τ = τ (t ) for a fixed temperature corresponding to
k0v0 = 0.02γ and a fixed atomic density nk−3

0 = 0.005 but
for ensembles of different sizes with a small optical thickness.

Figure 5 shows another effect that appears when the motion
is taken into account. For small systems, a nonmonotonic time
dependence of the decay rate of the total fluorescence intensity
is observed. At large times the curves τ = τ (t ) for ensembles
of different sizes go to the same asymptote. This is because the
characteristic lifetime of long-lived excited states of atomic
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FIG. 5. Dynamics of instantaneous fluorescence delay time for
various numbers of atoms. k0v0 = 0.2γ ; nk−3

0 = 0.005.

clusters depends on the average distance between atoms in
them and does not depend on the size of the ensemble itself.

The main features of the influence of motion on cluster
subradiation can be understood if we consider the temporal
evolution of the excited state of a specific pair of atoms with a
change in the distance between them. It is known that a system
of two two-level atoms with Jg = 0 and Je = 1 has six onefold
excited collective states. These states can be calculated by
diagonalizing the 6 × 6 matrix (3) for a diatomic system. Two
pairs of states are degenerate. The frequency shifts �c and the
width �c of the four distinct states of the stationary dimer can
be found as follows:

�c

γ
= 3ε

4

[
q

(
cos(kr)

(kr)3
+ sin(kr)

(kr)2

)
− p cos(kr)

kr

]
,

�c

γ
= 1 − 3ε

2

[
q

(
sin(kr)

(kr)3
− cos(kr)

(kr)2

)
− p sin(kr)

kr

]
, (8)

where ε = ±1, p0 = 0, q0 = −2, p±1 = 1, and q±1 = 1.
Let us consider how the total intensity and the population

of the excited state of a diatomic quasimolecule change with
time if atoms move and the dimer is excited when the inter-
atomic distance is equal to a given r0.

Figure 6 shows the evolution of the considered system
for two cases. Curves 1 and 2 correspond to the excitation
of the longest-lived state and the shortest-lived one at r0,
respectively. For comparison curve 3 in Fig. 6(a) depicts the
decay of noninteracting atoms at a rate of γ . The curves are
calculated for r0 = 3.5k−1

0 . The distance of closest approach
is rm = 0.1k−1

0 ; the relative velocity of atoms is k0v = 0.2γ .
Note that for the chosen conditions, the initially short-

lived state (curve 2) becomes subradiant upon approach. At
small interatomic distances the population of the excited state
practically does not change. The radiation intensity decreases
significantly. This manifests itself as a dip in curve 2 in
Fig. 6(b). After passing the point of closest approach, the
radiation intensity increases. For the initial subradiant state,
the picture is reversed. It decays very quickly when the atoms
approach each other.

FIG. 6. (a) Dynamics of the population of the excited state of
a diatomic quasimolecule with a change in the distance between
atoms. (b) Time dependence of the total radiation intensity. Curve
1 corresponds to the initial excitation of the longest-lived state at
r0 = 3.5k−1

0 ; curve 2 corresponds to the shortest-lived state. Curve
3 depicts the decay with a rate of γ . The relative velocity of atoms
is k0v = 0.2γ . The distance of closest approach is rm = 0.1k−1

0 . The
vertical line corresponds to the moment of closest approach of the
atoms.

For motionless atoms each eigenstate of a quasimolecule
decays independently of the others. Therefore, when any one
of them is excited, other states are not populated during the
further evolution of the system. The subradiant state remains
subradiative. This is not the case for moving atoms. The
relation (8) describes the possibility of a subradiant state
becoming superradiant even in the absence of transitions be-
tween different collective states. The decay rate of this state,
i.e., of a state with given ε, p, and q, varies nonmonotonically
with r and can be either greater or less than γ . This means that
a change in the fluorescence rate of a cluster can be observed
even in the absence of nonadiabatic transitions between its
different states.

When atoms move, transitions between different collective
states are also possible, which have an additional effect on
the radiation dynamics. Such transitions are shown in Fig. 7.
Here, we show the relative populations of four distinct states
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FIG. 7. Dynamics of the relative population of various collective
states of a diatomic quasimolecule with a change in the distance
between atoms. One of the atoms is stationary; the second one moves
with speed k0v = 0.05γ parallel to the z axis. Curve 1 corresponds
to ε = 1, p = 1, and q = 1; curve 2 corresponds to ε = −1, p = 1,
and q = 1; curve 3 corresponds to ε = −1, p = 0, and q = 2; and
curve 4 corresponds to ε = 1, p = 0, and q = 2.

for different geometries of a diatomic quasimolecule. It is
assumed that one of the atoms is immobile. It is located at
the origin of coordinates. The second atom moves parallel to
the z axis. At the initial moment of time, it was at the point
k0z0 = −3, k0x0 = 1, k0y0 = 0. At this moment, the system is
excited to the state whose shift and width are given by formula
(8) with ε = 1, p = 0, and q = 2. Atom speed is equal to
k0v = 0.05γ .

The transitions between different eigenstates of a diatomic
quasimolecule are clearly visible. Note that for the param-
eters under consideration, after the scattering of atoms, the
most populated state is the longest lived one with ε = −1,
p = 0, and q = 2. We checked that the last result is preserved
regardless of which state was excited before the interatomic
approach.

In a real multiatomic cloud, laser radiation excites not
one, but a superposition of all possible states. And the
nature of subradiation is determined by those that are sub-
radiative at small interatomic distances. The others states
decay rapidly, and their population turns out to be low,

which is manifested in the fluorescence of the ensemble as a
whole.

IV. CONCLUSION

In the present work, we studied the effect of atomic mo-
tion on the dynamics of the fluorescence of dilute atomic
ensembles excited by resonant pulsed radiation. This effect
was analyzed for three main stages of fluorescence evolution:
the stage of superradiance, the stage of diffuse trapping of
radiation, and the stage when subradiance is determined by
the emission of atomic clusters randomly formed in the con-
sidered disordered atomic medium. It was shown that already
for ensembles cooled to sub-Doppler temperatures, motion
can significantly affect the nature of the considered collective
effects.

It was found that, in addition to an increase in the sub-
radiation velocity into the coherent forward-scattering cone,
heating leads to the appearance of a nonmonotonic depen-
dence of the radiation velocity. At certain time intervals, the
decay of fluorescence in this direction can be replaced by
its increase. At the trapping stage, the main factor affecting
the fluorescence rate is the diffusion of the secondary ra-
diation frequency as a result of multiple scattering of light
in an optically dense medium. We studied the fluorescence
spectrum and revealed its significant broadening upon heating
of the ensemble. The most interesting results were found for
subradiation of diatomic quasimolecules. In the temperature
range corresponding to the MOT, the subradiation effect is
enhanced for moving atoms. This effect is explained by the
action of two factors, first, a change in the rate of decay of
each of the eigenstates of a quasimolecule with a change in the
distance between atoms and, second, possible nonadiabatic
transitions between different sub- and superradiant states due
to the motion of atoms.
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