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Shell effects in high-energy atomic scattering
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Shell effects in the differential cross section of fast charged particle scattering on an atom are studied as
deviations of the Hartree-Fock mean atomic potential predictions from those for the Thomas-Fermi atom.
Significant deviations of that kind are found at moderate momentum transfers, where they are caused by
intermediate atomic shells and regularly oscillate with Z , and also for hard-scattering observables, where they are
caused by inner shells (relativistic at high Z) and depend on Z monotonically. In application to multiple Coulomb
scattering in thick targets, shell corrections to the Molière screening angle are calculated. They are found to pick
up commensurable contributions from inner and outer shells, leading to superposed monotonic and oscillatory
deviations from the Thomas-Fermi prediction.
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I. INTRODUCTION

Scattering of fast particles on atoms of most chemical
elements, owing to their large atomic numbers (Z � 1), is
predominantly elastic and ruled by the mean atomic potential.
The highest sensitivity of the atomic scattering differential
cross section to the shape of the potential is achieved in
the Born approximation, when only one virtual photon is
exchanged between the projectile particle and a single atom
in the target. The scattering differential cross section is then
proportional to the modulus square of the atomic form factor,
equal to the Fourier transform of the spatial density of atomic
electrons [1,2]. This relationship is used for direct experimen-
tal determination of atomic electron distributions, which can
be compared with accurate theoretical predictions based on
Hartree-Fock calculations [3,4], etc.

In practical targets, however, projectile particles are often
beyond the single-scattering regime. That may be due to the
large target thickness or/and moderate particle velocity. If
the traversed target is thicker than a few nanometers, succes-
sive interactions with different atoms happen, rendering the
scattering plural or multiple. The random walk in momentum
transfers washes out fine detail of the single-scattering contri-
butions. Furthermore, if the Coulomb parameter Z1Ze2/h̄v for
single scattering of a particle with charge Z1e and velocity v

is sizable, several photons will be exchanged with every atom.
In any case, as the scattering becomes less perturbative, espe-
cially if it enters a classical regime, the sensitivity to the fine
detail of the atomic potential is generally expected to diminish
due to the integration along the trajectory of the penetrating
particle. Assuming that, it has been common to describe par-
ticle passage through matter based on the Thomas-Fermi (TF)
approximation for the atomic charge distribution, entirely
neglecting the existence of atomic shells. A closer exami-
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nation, however, reveals important scattering observables in
which shell effects should persist. A few examples can be
given.

A prominent feature of any atomic single-scattering differ-
ential cross section is its Rutherford power-law asymptotics at
large momentum transfers. At high-energy small-angle multi-
ple scattering in thick targets, it gives a logarithmically domi-
nant contribution to the particle distribution also in the central
region of angles. All the atomic screening effects are encap-
sulated there only to a constant next to the large logarithm,
known as the Molière screening angle. There were early indi-
cations that the screening angle or the distribution width can
deviate from its value in the TF approximation [5,6], but there
do not yet seem to be definitive studies confirming these signs.

Finer details of the scattering differential cross section tran-
spire if the target is made thinner. The scattering then keeps
close to single in a wider range of momentum transfers q,
which may include the region where the scattering appre-
ciably deviates from Rutherford’s. There atomic screening
manifests itself as a power correction to the Rutherford
asymptotics (the so-called weak-screening regime [7–9]).
Since large q generally correspond to small distances from the
atomic nucleus, weak screening must be determined predom-
inantly by inner shells. Investigations of shell contributions
to the weak-screening correction, however, do not seem to be
forthcoming in the literature.

Deviations from the TF approximation may also arise in
the low-q region, around the maximum of the differential
cross section. Low-q shell corrections are expected to stem
from intermediate or outer shells. However, even though such
shells contain many electrons, their TF treatment may be too
crude. An obvious example is the Z periodicity in the Periodic
Table of Elements; yet the latter in its conventional form is
related only to filling in of the outermost shell, whereas the
existence of similar periodic behavior for intermediate shells
is not so obvious. The theory of internal shell structure of
many-electron atoms continues to develop [10–14].
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Sufficiently accurate conclusions about the magnitude of
shell effects may be based on Hartree-Fock (HF) atom calcu-
lations. On applying HF densities to the description of hard
scattering, one should generally be aware that at very small
distances r from the nucleus the accuracy of the HF method
can decrease. By now, though, substantial progress has been
made in amending the emerging issues and improving the
parametrization quality.

The aim of the present work is to investigate the nonper-
turbative scattering observables sensitive to shell effects, with
the use of modern HF distributions, properly accounting for
the electron density behavior close to the nucleus as well
as relativistic effects. The structure of the paper is the fol-
lowing. In Sec. II A, after showing a comparison of TF and
HF mean electron densities and illustrating the shape and the
magnitude of shell effects, we set forth a description of fast
classical particle scattering in the potential created by such
charge distributions. In Sec. II B it is extended to quantum
scattering. Thereupon, we turn to studying shell effects in
scattering by selecting a few numbers best characterizing the
gross behavior of the differential scattering cross section and
scrutinizing their Z dependences. In Sec. III the region of
intermediate momentum transfers is treated. There the dif-
ferential cross section is found to significantly oscillate as a
function of the atomic number Z . In Sec. IV the opposite case
of large q is considered. The power correction to the Ruther-
ford asymptotics is evaluated and found to be proportional
to the atomic mean-inverse-square radius 〈r−2〉, for which a
formula is derived, capturing its monotonic Z dependence due
to the accumulation of electrons in higher shells, along with an
accelerated rise at high Z due to the relativism of inner shells.
Section V scrutinizes shell corrections to Molière’s screening
angle, which is defined by an integral spanning a wide range of
q. It is established that inner and intermediate shells contribute
there together, leading to a low-Z rise superposed on high-Z
oscillations. A summary is given in Sec. VI.

II. HARTREE-FOCK VS THOMAS-FERMI DENSITIES:
GENERAL DESCRIPTION OF HIGH-ENERGY

SCATTERING

In this preliminary section we will render the description of
high-energy atomic scattering a form most closely connected
to the atomic electron distribution function, providing both
classical and quantum-mechanical descriptions. At the same
time, we will take the opportunity to visualize the differences
between the HF and TF distributions themselves.

A. Atomic potential screening function
and charge-density distribution

The mean electrostatic field of an atom with the atomic
number Z is described by a screened Coulomb potential

ϕ(r) = Ze

r
g(Z, r), (1)

where e > 0 is the proton charge. The screening function g is
everywhere positive, equals unity at the nucleus,

g(Z, 0) = 1, (2)

and decreases with distance r from it. The mean potential
ϕ is linearly induced by the mean electric charge density
e[Zδ(r) − ne(r)] in the atom, with ne(r) the electron density.
It thus obeys a Laplace equation

�ϕ = 4πe[ne(r) − Zδ(r)]. (3)

Having in mind applications to particle passage through ordi-
nary matter, it is natural to assume the atom neutrality∫

d3r ne(r) = Z. (4)

For a spherically symmetrical mean electron density ne(r),
only the radial component of the Laplacian in (3) differs from
zero: �ϕ = �rϕ = r−1 ∂2

∂r2 (rϕ). Equation (3) therefore is es-
sentially an ordinary second-order differential equation for g:

g′′(r) = 4π

Z
rne(r), r > 0. (5)

The boundary condition for a neutral atom is

g(Z,∞) = 0. (6)

Then (2) (which must actually hold as well for ions) is auto-
matically retrieved from (6) and (4):

g(0) = 4π

Z

∫ ∞

0
dr′

∫ ∞

r′
dr rne(r) = 4π

Z

∫ ∞

0
dr r2ne(r) = 1.

The distribution ne(r) in turn depends on the potential
ϕ(r). Rigorously, they should be evaluated together beyond
the mean-field level, in terms of multielectron wave functions.
However, a few important corollaries from Eq. (5) can be
drawn at once.

1. Constraints at r = 0

(a) While Eq. (5) is intrinsically classical, ne(r) on its
right-hand side is determined by quantum mechanics and con-
sequently must be everywhere finite in the nonrelativistic case.
It follows that the right-hand side of Eq. (5) must vanish in the
origin due to the factor r,

rne(r) −−→
r→0

0, (7)

and therefore

g′′(0) = 0. (8)

In a relativistic treatment and for a pointlike nucleus, ne(r)
blows up at r → 0, but only weakly. It proves [15,16] that for
any physical Z obeying√

1 − (Ze2/h̄c)2 > 1
2 , (9)

the conditions (7) and (8) still remain valid.
(b) Another implication from the nonrelativistic quantum

mechanics is Kato’s theorem [17,18] (see Appendix A), re-
lating the (logarithmic) derivative of the density of bound
electrons at the nucleus to the nucleus charge

n′
e(0)

ne(0)
= −2Z

aB
, (10)

where aB = h̄2/me2 = 0.5292 Å stands for the Bohr radius.
It holds for individual electron orbitals, being independent of
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their energies, and is thus equally valid for the total electron
density. Combined with Eq. (5), the relation (10) yields a
constraint on the fourth derivative of the screening function

g(iv)(0) = −4Z

aB
g′′′(0) = −16π

aB
ne(0). (11)

2. Thomas-Fermi approximation

The simplest self-consistent-field approximation, custom-
arily used as a reference one, is due to Thomas and Fermi
[19]. It is purely local, in the sense that ne(r) is determined
by the electron potential energy −eϕ(r) in the same spatial
point r, i.e., −eϕ(r) is regarded as the depth of a physically
broad potential well, which is completely (for a neutral atom)
filled by the quasi-free-electron Fermi liquid. That supplies
the equations

ne(r) = 2
4π

3

(
pmax(r)

2π h̄

)3

, pmax(r) =
√

2meϕ(r). (12)

The system of equations (5) and (12) leads to a scaling of the r
and Z dependences in terms of a single dimensionless variable

ξ (Z, r) = r

aTF(Z )
. (13)

Here the Thomas-Fermi radius

aTF = 1

2

(
3π

4

)2/3

Z−1/3aB = 0.885Z−1/3aB (14)

represents the characteristic Z-dependent spatial scale for this
approximation. The universal (valid for all Z) screening func-
tion

g(Z, r) = φTF[ξ (Z, r)] (15)

of the scaling radius ξ obeys the Thomas-Fermi equa-
tion [2,19]

ξ 1/2φ′′
TF(ξ ) = φ

3/2
TF (ξ ) (16)

subject to the boundary conditions following from (2) and (6):

φTF(0) = 1, φTF(∞) = 0. (17)

The electron density is expressed in terms of φTF as

nTF
e (r) = Z

4πa3
TF

(
φTF(ξ )

ξ

)3/2

(18)

and automatically satisfies the normalization condition (4):∫
d3r nTF

e (r) = Z
∫ ∞

0
dξ ξ 1/2φ

3/2
TF = Z

∫ ∞

0
dξ ξφ′′

TF

= ZφTF(0) = Z.

However compact and simple looking Eq. (16) may be,
because of its nonlinearity, it needs to be solved numerically.
Its computer solution, displayed in Fig. 1, will be used in what
follows for comparison with HF calculations. For analysis of
scattering with high momentum transfers, it is also necessary
to know the small-ξ asymptotics of φTF, which is quoted in
Eq. (B1). Its domain of applicability can be visualized from
Fig. 1.

FIG. 1. Thomas-Fermi screening function vs its scaling variable
ξ = r/aTF(Z ). The solid curve shows the solution of Eq. (16) with
boundary conditions (17) and the dashed the small-ξ asymptotics
(B1). The latter is observed to provide a satisfactory approximation
for ξ < 0.3.

A known caveat is that the function φTF obtained from
Eqs. (16) and (17) behaves not quite physically at both large
and small r (or ξ ) [2,19]. As is evident from Eqs. (18)
and (17), the TF electron density blows up at the origin as
nTF

e (r) ∼
r→0

r−3/2, whereas rigorously in quantum mechanics

[beyond the semiclassical approximation (12)] it must remain
finite everywhere [cf. Eq. (10) and see Fig. 2(a)]. That might
seem to be relatively harmless in application to g, as long as
g(0) = φTF(0) = 1 and g′(0) = φ′

TF(0)/aTF are finite even in
the TF approximation. However, φ′′

TF(0) = ∞ strongly vio-
lates the condition (8). That in turn will affect the power index
of the hard-scattering asymptotics, which we will be studying
below, in Sec. IV.

3. Hartree-Fock electron density parametrizations

For our purposes, a sufficiently accurate description of
electron densities can be obtained from relativistic HF calcu-
lations. The accuracy of such calculations generally declines
at both very small and very large r. To minimize the corre-
sponding errors, it proved efficient to parametrize inner shells
as hydrogenic and employ a nonuniform grid in r. For practi-
cal applications (e.g., for x-ray scattering), it is often sufficient
to know only the radial electron densities, which may thus
be reparametrized directly, provided this does not add signif-
icant errors at small r. An improved HF parametrization of
that kind was proposed in [20]. It employs five exponential
terms for the electron density (rather than for the screening
function), automatically fulfilling (8), and is subjected to a
few additional constraints, such as (10) and the equality of
〈r2〉 to the appropriate atomic values. Some of the coefficients
of the exponentials obtained by the fitting are negative. The
resulting parametrization was assessed to be accurate up to re-
ciprocal lattice vectors g = 12 Å−1, improving the accuracy of
older parametrizations [21], which held only up to g = 6 Å−1.
However, five exponentials may still not be enough to capture
all the numerous shell features in a high-Z atom. Caution is
thus needed when different shells can contribute at simul-
taneously large Z and small r (large q). In the discussion
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FIG. 2. Electron density in a silicon atom (Z = 14). Green solid
curves correspond to the HF density [20] and black dashed curves to
the TF approximation. (a) The K-shell region, in which the density
ne(r) monotonically decreases. The K-shell radius equals aB/2Z
[see Eq. (81) below]. (b) Radial density r2ne(r) in the full range,
exhibiting three (K , L, and M) shells in a silicon atom. The integrals
under both curves equal Z/4π . The TF radius aTF for the given Z is
evaluated by Eq. (14).

of mixed large- and moderate-q physics in Sec. V, we will
restrict ourselves to using the HF tables only for Z < 18.

A comparison of parametrization [20] with the TF approxi-
mation for the silicon atom is shown in Fig. 2. The HF density
(solid curves) exhibits significant oscillatory deflections from
the TF one (dashed curves), which is a manifestation of shell
effects. It is thus evident that the TF approximation is rather
crude, but as was noted in the Introduction, for semiclassical
scattering problems, shell contributions are often smeared out
by averaging along the particle trajectory as well as over its
impact parameters. This smearing is what we wish to quantify
next.

B. Classical small-angle scattering in a screened Coulomb field

Turning to the description of scattering, we restrict our
attention to the high-energy case, which is the least obscured
and complicated by dynamical effects. At the same time, in
spite of the high momentum, heavy projectiles such as protons
and ions may have a moderate velocity (a condition to be
specified later in Sec. II C 1), making their atomic scatter-
ing amenable to classical treatment [1,22,23]. The classical
description of scattering depends on fewer parameters (not
involving the Planck constant) and promises to be simpler. We
thus treat the classical case first.

Consider a beam of energetic pointlike charged particles
(protons or bare nuclei with a charge Z1e) incident on an

atom with a velocity v along the z axis. In the leading-order
high-energy approximation, the (predominantly transverse to
z axis) momentum transferred to a fast classical particle at an
impact parameter b is expressed as a derivative

q(b) = ∂

∂b
χ0(b) (19)

of the function [16,23,24]

χ0(b) = −Z1e

v

∫ ∞

−∞
dz ϕ(z, b), (20)

where ϕ is the electrostatic potential (1) of the atom. This
function carries all the information about the atomic potential
required for description of high-energy scattering. It arises
also in the quantum-mechanical description (see Sec. II C),
where it amounts to an eikonal phase in units of h̄.

The function χ0(b), in which the longitudinal coordinate
of the atomic potential is integrated out, obeys a Laplace
equation in the transverse plane

�⊥χ0(b) = −Z1e

v

∫ ∞

−∞
dz �ϕ(z, b)

= 4π
Z1e2

v

(
Zδ(b) −

∫ ∞

−∞
dz ne(z, b)

)
(21)

involving the projected electron density
∫ ∞
−∞ dz ne(z, b). From

this equation, χ0(b) may be evaluated directly, bypassing eval-
uation of ϕ. In the b → 0 limit, the right-hand side of (21) is
dominated by the δ-function term (the atomic nucleus contri-
bution). Taking into account the identity �⊥ ln b = 2πδ(b),
the small-b asymptotics of χ0 follows in the form

χ0(b) 

b→0

2Z1Ze2

v
ln

b

b0
. (22)

The constant b0 under the logarithm will be determined later,
in Sec. II C.

1. Expression for the indicatrix in terms of ne(r)

For our calculations of shell effects in classical scattering
it will be instrumental to reduce the scattering indicatrix q(b)
to a single integral of the electron spatial distribution ne(r),
on account of the spherical symmetry of the latter. Rewrite
Eq. (21) for b > 0 as

1

b

∂

∂b
bq = 1

b

∂

∂b
b

∂

∂b
χ0 ≡ �⊥χ0

= −4π
Z1e2

v

∫ ∞

−∞
dz ne(z, b).

Multiplication of both sides by b and integration over b taking
into account the boundary condition q(∞) = 0 produces a
double-integral expression of q through ne(r). It may be cast
in a factorized form

q(b) = 2Z1Ze2

vb
S1(b), (23)

with

ZS1(b) = 2π

∫ ∞

b
db′b′

∫ ∞

−∞
dz ne(b′, z) (24)
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FIG. 3. Functions S1(b) [Eq. (25)], S2(b) [Eq. (32)], and S0(b)
[Eq. (44)], evaluated using HF electron densities [20] for a silicon
atom. Due to the averaging over the projectile trajectory, the shell
structure in them is less pronounced than in the electron density [cf.
Fig. 2(b)]. The inset shows the behavior of S1(b) and S2(b) in the
small-b region.

being nothing but the number of electrons outside a cylinder
of radius b. (This number is proportional to the total electric
charge contained within that cylinder, which, due to the ax-
ial symmetry and Gauss’s divergence theorem, for a neutral
atom unambiguously determines the mean transverse radial
electric-field strength at a given b.) Passage to spherical co-
ordinates allows one to accomplish all the integrations except
the radial one, involving the atom-dependent function ne(r):

S1(b) = 4π

Z

∫ ∞

b
dr r

√
r2 − b2ne(r) (25a)

≡ 2π

Z

∫ ∞

−∞
dz z2ne(r)|r=√

b2+z2 . (25b)

Observing that

S1(0) = 1

Z

∫
d3r ne(r) = 1,

from Eq. (23) one verifies that large-momentum-transfer scat-
tering asymptotics q(b) 


b→0

2Z1Ze2

vb is screening independent

and complies with (22). The behavior of the function S1(b)
for a silicon atom is illustrated in Fig. 3. It is much smoother
than the underlying r2ne(r) shown in Fig. 2(b). This bears out
the averaging effect mentioned in the Introduction. Now it is
quantified by Eqs. (24) and (25).

The classical differential cross section dσcl/d2q is next
obtained by differentiation (evaluation of a Jacobian) of the
impact parameters by momentum transfers or, conversely, of
momentum transfers by impact parameters. The latter may be
done directly, given the indicatrix (23) and (25a):

dσcl

d2q
=

∣∣∣∣∂b
∂q

∣∣∣∣ =
∣∣∣∣∂q
∂b

∣∣∣∣
−1

=
∣∣∣∣det

∂2χ0

∂bi∂bk

∣∣∣∣
−1

. (26)

To express the differential cross section in terms of the
momentum transfer, one needs yet to express b through q.

Equation (23) in its generic form is not invertible explicitly
but can serve to relate dσ and q parametrically.

In the present high-energy approximation, obviously there
is no Z1 charge sign (or, equivalently, q sign) dependence. In
fact, the dependence on the charge absolute value in classical
mechanics can be eliminated as well, as is shown below.

2. The Z1/v scaling for the classical momentum transfer

In what follows, it will be more convenient to compare the
relative than absolute cross sections. Also, since in Eqs. (20),
(21), and (23) the momentum transfer is proportional to the
particle charge Z1 and is reciprocal to the particle velocity,
the dependence of dσcl/d2q on these parameters can be elim-
inated by passing to a reduced variable

Q(b) = v

2Z1Ze2
q(b) (27a)

= 1

b
S1(b). (27b)

The latter depends only on b and implicitly on Z , but not on
Z1/v.

To recast the differential cross section in terms of the
reduced momentum Q, it suffices to multiply (26) by q2,
counterweighting the q2 scale in d2q in the denominator:

q2 dσcl

d2q
= Q2 dσcl

d2Q
= Q2

∣∣∣∣∂Q
∂b

∣∣∣∣
−1

= Q2

∣∣∣∣ db2

dQ2

∣∣∣∣. (28)

The advantage of such a product is that it, besides Z , depends
only on b or on Q(b), but not on q(b) and Z1/v independently.
Even more convenient is to work with the ratio dσcl/dσR,
where

q2 dσR

d2q
≡ Q2 dσR

d2Q
= Q−2 (29)

is the Rutherford cross section for the unscreened Coulomb
field, obtained by substituting Q = 1/b into (28). The ratio
dσcl/dσR tends to unity at large Q, and for the same reason as
for (28), depends only on Z and Q:

dσcl

dσR
= Q4 dσcl

d2Q
= Q4

∣∣∣∣ db2

dQ2

∣∣∣∣ = R(Z, Q), (30)

R(Z, 0) = 0, R(Z,∞) = 1.

On inserting (27b) and (25a) into Eq. (30) and evaluating
the derivative, we arrive at a representation

dσcl

dσR
= S3

1 (b)

b2|dQ/db| = S3
1 (b)

S2(b)
. (31)

The denominator here involves a new function S2 related to S1

by differentiation:

S2(b) = dQ

d (1/b)
=

(
1 − b

d

db

)
S1(b) (32a)

= 4π

Z

∫ ∞

b

dr r3

√
r2 − b2

ne(r) (32b)

= 2π

Z

∫ ∞

−∞
dz r2ne(r)|r=√

b2+z2 . (32c)
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Like S1(b), it equals unity in the origin:

S2(0) = 1

Z

∫
d3r ne(r) = 1.

The behavior of the function S2(b) for a silicon atom is illus-
trated in Fig. 3 by the dashed curve. Notably, compared with
S1(b), it manifests stronger shell effects. That may be traced to
the S′

1(b) term in Eq. (32a), which eliminates the b integration
in the representation (24), or to a more singular integrand
in Eq. (32b), making the relationship with ne(r) more local.
Equation (31), through (25a) and (32b), and Eq. (27b) define
a parametric dependence (with b the parameter) of dσcl/dσR

on Q.

3. Thomas-Fermi scaling in classical scattering

As long as shell effects in the q dependence of the classical
scattering cross section are milder than for r2ne(r), for its
description it is tempting to combine the classical scaling with
that existing in the TF model. Substitution of (18) and (16)
into (27b), (25a), and (32b) leads to a parametric dependence
of the differential cross section

dσ TF
cl

dσR
= RTF(aTFQ) =

[
STF

1 (B)
]3

STF
2 (B)

(33)

and the reduced momentum transfer

Q(B) = 1

aTF(Z )B
STF

1 (B) (34)

on the impact parameter in units of the Thomas-Fermi
radius,

B(Z, b) = b

aTF(Z )
. (35)

The functions STF
1,2 are expressed through the TF screening

function via

STF
1 (B) =

∫ ∞

B
dξ

√
ξ − B2

ξ
φ

3/2
TF (ξ ), (36)

STF
2 (B) =

∫ ∞

B

dξ ξ√
ξ − B2/ξ

φ
3/2
TF (ξ ). (37)

They are shown in Fig. 4 by the solid and the dashed curve, re-
spectively. Compared with HF functions exemplified in Fig. 3,
their behavior is smoother.

The differential cross section of classical scattering on a
TF atom, defined by Eqs. (33)–(37), is plotted in Fig. 5 by
the dashed curve. At moderately low aTFQ, visually, it rises
approximately linearly [cf. Eq. (8) in [25] and Eq. (6.64) in
[26]]:

dσ TF
cl

dσR



0.1�aTFQ�1
0.415aTFQ. (38)

At very low aTFQ (see the inset of Fig. 5), the ratio
1

aTFQ
dσ TF

cl
dσR

actually tends not to 0.415 but to zero.1 Such a

1According to Eqs. (33) and (34), 1
aTFQ

dσTF
cl

dσR
= B(STF

1 )2

STF
2

. This expres-

sion tends to zero both at B → 0 (Q → ∞) and at B → ∞ (Q → 0),
since STF

1 (B) ∼ STF
2 (B) ∼

B→∞
B−3.

FIG. 4. Functions STF
1 (B) [Eq. (36)], STF

2 (B) [Eq. (37)], and
STF

0 (B) [Eq. (53)].

ratio was investigated in [27], where it was denoted by
f (η), with η = aTFQ/2.2 The coefficient 0.415 in the for-
mula (38) approximately corresponds to the maximum of
the Lindhard-Nielsen-Scharff function f . For scattering in
solids, the extensibility of this function far below its maximum
may be unreliable, so long as the TF approximation breaks
down at ξ > 10, yet outer shells are generally distorted by
the formation of interatomic bonds. However, the maximum
corresponds to rather typical Q.

4. Comparison with the HF-based cross section

We are now in a position to compare the scattering dif-
ferential cross section in the TF approximation with that
evaluated by (31) with HF electron densities [20]. The results,
for exemplary values Z = 3 and 14, are shown in Fig. 5. For
classical scattering (in contrast to quantum, which will be
treated in the next section), no pronounced oscillatory effects
in Q dependences are observed. That is natural because, as
was pointed out above, transverse and longitudinal spatial in-
tegrations largely smear out the multipeak structure of r2ne(r).

Nonetheless, some differences between HF and TF scatter-
ing cross sections are manifest. If Z is low, the HF and TF
results do not coincide for any Q except at a single crossing
point. If Z is high, the HF and TF results coalesce at moderate
aTFQ, but at high aTFQ they split apart, although not as rapidly
as for low Z .

This demonstrates that for sufficiently large Z the accuracy
of the TF approximation for dσcl/dσR can be satisfactory,
but only for limited momentum transfers (e.g., aTFQ < 6 for
Z = 14 in Fig. 5). For larger aTFQ it does not describe the
deviation of dσcl/dσR from unity adequately. This is chained
to the fact that, as was mentioned in Sec. II A 2, the TF

2At the small scattering angles considered here, Q corresponds to
the Lindhard-Nielsen-Scharff variable t1/2 [27].
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FIG. 5. Ratio of the classical scattering differential cross sec-
tion to its Rutherford asymptotics. The black dashed curve shows
dσ TF

cl /dσR calculated for the TF approximation of the atomic electron
density [Eqs. (33)–(37)]. The solid curves show the ratio dσcl/dσR

calculated by Eqs. (31), (25a), and (32b) with ne(r) from HF tables
[20] for Z = 3 (Li), red curve, and Z = 14 (Si), blue curve. For
each Z , aTF(Z ) is evaluated by Eq. (14). For Z = 14, the result for
dσcl/dσR is closer to the TF prediction, virtually coinciding with it
at aTFQ < 6. The deviation from TF for aTFQ > 6 is predominantly
determined by inner shells. The inset shows the behavior of the slope

1
aTFQ

dσTF
cl

dσR
at very low aTFQ, reaching a maximum, and tending to zero

at both sides away from it.

approximation breaks down at small r, which is responsible
for large momentum transfers.

The differences from the TF approximation observed in
the hard-scattering region deserve a more detailed inves-
tigation, and their relationship with inner shells is plau-
sible. That will be the object of our study in Sec. IV.
Meanwhile, we will extend our treatment to the quantum
domain.

C. Quantum (eikonal) scattering in a screened
Coulomb potential

At high energy, atomic scattering is sufficiently simple to
treat quantum mechanically too, because quantum transverse
motion, just like classical, is suppressed by an inverse power
of the large longitudinal momentum [2,16,23,28]. Exchange
amplitudes between the incident fast electron and atomic elec-
trons are negligible. (If the projectile is a proton or a bare
nucleus, exchange channels are completely absent.) There-
fore, to the leading order in energy, the scattering is governed
by the mean electrostatic potential of the nucleus and its
bound electrons.

The negligibility of quantum transverse motion within the
atomic field action domain implies that the particle wave
function at a given impact parameter virtually does not depend
on the wave-function values at other impact parameters. It
just gains a position-dependent phase factor, which tends to
a finite limiting value e(i/h̄)χ0(b) behind the atom. The eikonal
phase χ0(b) here is the same as the formerly encountered
function (20). At large distances behind the atom, however,
wave properties of the transverse motion ultimately unfreeze,
giving rise to diffraction. The amplitude a of scattering with

a definite q (or deflection angle) thus receives interfering
contributions from all the impact parameters, in accordance
with the Huygens principle:

a(q) = 1

2π ih̄

∫
d2b e(i/h̄)q·b(1 − e(i/h̄)χ0(b) ). (39)

The differential scattering cross section for this so-called
eikonal approximation [2,16,23,28] is expressed as

dσ

d2q
= |a|2. (40)

1. Integral representation of the eikonal phase through ne(r)

Similarly to Sec. II B, we factorize the exponent in (39) as

i
χ0(b)

h̄
= 2iαS0(b), (41)

extracting all the dependence on Z1 and v to a prefactor

α = Z1Ze2

h̄v
(42)

known as the Coulomb parameter. The isolated atom-specific
factor

S0(b) = −
∫ ∞

b
db′Q(b′) ≡ −

∫ ∞

b

db′

b′ S1(b′) (43)

depends on only b and Z . By inserting here the representation
(25a) for S1(b), changing the integration order, and doing the
b′ integration, one is led to a single-integral expression for S0

through ne(r):

S0(b) = 4π

Z

∫ ∞

b
dr r

(√
r2 − b2 − r arccosh

r

b

)
ne(r). (44)

The function S0(b) is everywhere negative and diverges at
small b logarithmically,

S0(b) 

b→0

ln
b

b0
, (45)

complying with Eq. (22) (see the dot-dashed curve in Fig. 3).
An explicit integral representation (44), in which the b-
dependent block in the integrand asymptotically behaves
logarithmically, as

√
r2 − b2 − r arccosh

r

b



b→0
r

(
1 − ln

2r

b

)
,

enables one to infer the constant b0, which appeared in
Eq. (22):

ln b0 = 〈ln 2r〉 − 1. (46)

We will adopt throughout the definition for atomic averaging
of any function F (r) in the form

〈F (r)〉 = 4π

Z

∫ ∞

0
dr r2ne(r)F (r), (47)

including the 1/Z prefactor, to satisfy the identity 〈1〉 = 1.
At large q, the integral (39) is dominated by small-b con-

tributions. Therefore, high-q asymptotics of the scattering
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amplitude is obtained by inserting (45) in (39):

a −−−→
q→∞ aR = b−2iα

0

i

2π h̄

∫
d2b e(i/h̄)q·bb2iα

= b−2iα
0

i

h̄

∫ ∞

0
db b1+2iαJ0(qb/h̄)

= 1

qQ

(
2h̄

qb0

)2iα
(1 + iα)

(1 − iα)
. (48)

Note that although the phase of aR depends nontrivially on
the value of the Coulomb parameter α, yet the global phase
depends on the screening via b0, in the differential cross
section (40) those dependences drop out:

dσR

d2q
= |aR|2 = 1

q2Q2
. (49)

Therefore, Eq. (49) coincides with its classical counterpart
(29). That is the salient feature of the Rutherford scattering.

At smaller momentum transfers, when the sensitivity of
dσ/d2q to screening is restored, the ratio dσ/dσR in general
becomes α dependent. However, if α is large or small, the de-
pendence on it fades away or becomes trivial so that dσ/dσR

essentially reduces to a function of a single variable.
Specifically, if both Z1 and Z2 are large, or v  c, the

parameter (42) can be large (α � 1) despite that e2/h̄c =
1/137  1, viz., for scattering of protons on silicon (Z = 14),
the boundary between the perturbative and nonperturbative
regimes lies at a collision energy of 5 MeV, when v ≈ 0.1c
and α ≈ 1. As α → ∞, evaluation of the integral

dσ

dσR
=

∣∣∣∣ i

2α

q2

h̄2

∫ ∞

0
db b J0(qb/h̄)(e2iαS0(b) − 1)

∣∣∣∣
2

(50)

in the stationary-phase approximation leads back to (31):

dσ

dσR
−−−→
α→∞

dσcl

dσR
.

In this limit, the cross-section ratio depends on q, Z1, and v

only through a single variable Q. The semiclassical atomic
scattering regime and its applications are discussed in [22,23].

In the opposite limit |α|  1 [e.g., for |Z1| = 1 (initial
electron or proton), not too high an atomic number of the
target Z2  h̄c/e2 = 137, and relativistic projectile velocities
v ∼ c], the exponential in (50) may be linearized:

dσ

dσR
−−→
α→0

dσ1

dσR
=

∣∣∣∣q2

h̄2

∫ ∞

0
db b J0(qb/h̄)S0(b)

∣∣∣∣
2

.

It depends only on q/h̄ = 2αQ. On inserting here (44) and
utilizing the integral∫ r

0
db b J0(kb)

(√
r2 − b2 − r arccosh

b

r

)
= sin kr − kr

k3
,

one retrieves the familiar form factor formula [2,29,30]
dσ1

dσR
= [1 − �(q)]2, (51)

where

�(q) = 4π

Z

∫ ∞

0
dr r2 sin qr/h̄

qr/h̄
ne(r) ≡ 1

Z

∫
d3r eiq·r/h̄ne(r)

(52)
is the atomic form factor.

FIG. 6. Differential scattering cross-section ratios relative to the
Rutherford cross section vs the reduced momentum transfer in units
of the inverse TF radius, for scattering on a lithium atom (Z = 3).
The curves correspond to α = 0.1 (blue), 0.3 (green), and 1 (red).
For α = 1, the cross-section ratio nearly coincides with its classical
limit shown by the black curve (corresponding to the red curve in
Fig. 5). At small α, there are noticeable shell effects: K-shell and
L-shell contributions manifest as shallow bulges.

In the TF approximation (18) and (13), the function (44)
becomes

STF
0 (B) = STF

1 (B) −
∫ ∞

B
dξ

√
ξ arccosh

ξ

B
φ

3/2
TF (ξ ), (53)

where STF
1 (B) is given by Eq. (36) and B is related to b by

Eq. (35).

2. Eikonal scattering on Hartree-Fock atoms

In Figs. 6 and 7 the quantum cross-section ratio dσ/dσR is
plotted for exemplary atomic numbers Z = 3 and 14, for sev-
eral values of Coulomb parameter α. The limit α → ∞ (black
curves) corresponds to the semiclassical approximation, in

FIG. 7. Same as in Fig. 6 but for scattering on a silicon atom
(Z = 14). The curves correspond to α = 0.1 (blue), 0.3 (green), and
1 (red). For α = 1, the ratio nearly coincides with its classical limit
(the blue curve in Fig. 5). For small α, the shape of the Q dependence
is different from classical (the black curve), but shell effects are faint.
The black dashed curve shows the TF form factor [Eqs. (51) and (18)]
for α = 0.1.
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which dσ/dσR depends on the single variable Q. At α = 1
(red curves in Figs. 6 and 7), for any Z , the cross section is
already fairly close to classical. By contrast, at α = 0.1 (blue
curves in Figs. 6 and 7), it is well approximated by the form
factor formula (51) and exhibits shell effects provided Z is not
too large (Fig. 6) [in contrast to r2ne(r), for which shell effects
are prominent even at high Z]. There it depends virtually on a
single variable q/h̄ = 2αQ.

This gives a basic idea of the q dependence of dσ/dσR in
the entire range of momentum transfers and for any value of
the Coulomb parameter. The only variable, the dependence
on which has not been explored in detail yet, is the target
atomic number Z . It is not ruled out that shell effects in this
dependence can actually be more pronounced than in the q
dependence. We will investigate the Z dependence in what
follows and show that this is indeed the case. To reason-
ably restrict our consideration, we will focus on just a few
representative numbers characterizing the single-scattering
differential cross section at moderate and large momentum
transfers and also on the Molière screening angle, which char-
acterizes multiple scattering.

III. SHELL EFFECTS IN CLASSICAL ATOMIC
SCATTERING AT MODERATE MOMENTUM TRANSFERS

At typical moderate q the scattering cross section generally
behaves in a complicated manner, as was illustrated above
in Figs. 6 and 7. In the classical case, however, the behav-
ior of dσcl/dσR at moderate Q (aTFQ � 1) is characterized
primarily by its slope. As has been pointed out for the two ex-
emplary cases in Fig. 5, this slope can appreciably differ from
the corresponding TF prediction, especially at low Z . Since,
according to Eqs. (31), (25a), (32b), and (27b), moderate Q
corresponds to moderate b, this deviation may generally be
expected to stem from outer- or intermediate-shell contribu-
tions. Such shells are not hydrogenic, so their description is
less trivial than that for inner ones.

The most reliable way to evaluate the Z dependence of the
mentioned slope is numerical. It will be easier to calculate
this slope not as a derivative, but as the ratio 1

aTFQ
dσcl
dσR

at some
suitable point in the region of linear behavior of dσcl/dσR.
The only special point in this region is at the maximum of the
slope

aTFQ = 0.3, (54)

corresponding to B = 1.53 (see the inset of Fig. 5). In Fig. 8
the solid curve shows the Z dependence of 1

aTFQ
dσcl
dσR

|aTFQ=0.3,
evaluated by Eqs. (31), (25a), and (32b) with HF electron
densities [20]. It exhibits smooth regular oscillations about

the TF value max f = 1
aTFQ

dσ TF
cl

dσR
|aTFQ=0.3 = 0.415 (the dotted

line). To understand the nature of these oscillations, it could be
valuable to relate them to known regularities in the electronic
structure of the atom.

First of all, it is suggestive to compare these oscillations
with the periods of the chemical Periodic Table of Elements,
each ending by a noble gas. Some of the noble gases, Ne
(Z = 10), Kr (Z = 36), and Rn (Z = 86), are observed to
correspond approximately to the centers of the broad minima
in Fig. 8, but other noble gases, Ar (Z = 18) and Xe (Z = 54),

FIG. 8. The Z dependence of 1
aTFQ

dσcl
dσR

(the slope of the classical
cross-section ratio) at its maximum, aTFQ = 0.3 (cf. Fig. 5). The
black solid curve is evaluated based on HF densities [20]. The red
dashed curve is a fit by parametrization (64). The black dotted is
the corresponding (maximal) value of the Lindhard-Nielsen-Scharff

function f = 1
aTFQ

dσTF
cl

dσR
(scattering on a TF potential) (cf. the inset of

Fig. 5).

on the contrary, are close to the centers of the broad maxima.
One extra maximum yet corresponds not to any noble gas but
to Be (Z = 4) and B (Z = 5). It thus appears that chemistry (or
first ionization energies) does not give a clue for the observed
oscillatory behavior. That is not surprising, because chemical
periods mainly reflect the structure of the outermost shell,
containing a few electrons, whereas the projectile particle
penetrates the entire atom.

However, the values of Z ,

Z = 5 (B, l = 1), Z = 21 (Sc, l = 2),

Z = 58 (Ce, l = 3), (55)

at which the maxima in Fig. 8 are achieved, correspond to
the corners of the so-called left step or Janet variation of
the Periodic Table [13,14]. This table in turn agrees with
the phenomenological Madelung rule, asserting that electron
(n, l ) shells are filled in order of increasing n + l rather than
the principal quantum number n [14]. Every new shell that
starts being filled is not necessarily the most peripheral. For
instance, the largest d and f shells are often located inside
the atom and do not participate in chemical reactions [10,12].
It should be admitted that to date, Madelung’s rule has not
been proven ab initio from quantum mechanics (Löwdin’s
challenge [14,31]), despite the continuing efforts [31–34].

The numbers (55) actually correspond to Z values at which
a new value of l first appears. A physical explanation for them
has been proposed, based on the TF potential [2,35]. It argues
that for a screened Coulomb field, the centrifugal potential
h̄2l (l+1)

2mr2 for a given l dominates the electrostatic potential
−Ze2φTF(ξ )/r not only at small, but also at large r. When
it dominates for all r throughout, it precludes formation of
a potential well. The condition at which a global minimum
emerges in the effective potential Veff(r) = V (r) + h̄2l (l+1)

2mr2

(the sum of the electrostatic and the centrifugal potentials) is
the simultaneous equality to zero of the effective potential and
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FIG. 9. Reduced effective potential aTF
Ze2 Veff(r) = − φTF(ξ )

ξ
+

1
ξ2 ξ∗φTF(ξ∗) of an electron with a definite angular momentum in
the TF potential, for a value of Z , critical for the appearance of an
orbital with an increased angular momentum. The value of ξ∗, the
same for all l , is determined by Eq. (59).

of its derivative (see Fig. 9)

Veff(r) = −Ze2

r
φTF(ξ ) + h̄2l (l + 1)

2mr2
= 0, (56)

V ′
eff(r) = 0. (57)

By combining Eqs. (56) and (57), one can eliminate both Z
and l:

d

dr
[r2Veff(r)] ∝ d

dr
[rφTF(ξ )] ≡ d

dξ
[ξφTF(ξ )] = 0. (58)

The latter equation has a single solution

ξ = ξ∗ = 2.1, (59)

at which point ξ∗φTF(ξ∗) = 0.486. Note that the value (59) is
comparable to a typical ξ contributing to (36) and (37) for B
around 1.5 [see Eq. (54) and Fig. 10].

Once ξ is known, it is converted to r by Eqs. (13) and (14)
and then Z is expressed from Eq. (56) as a function of l:

Z (l ) = 4

3π

(
l (l + 1)

ξ∗φTF(ξ∗)

)3/2

= 1.25[l (l + 1)]3/2. (60)

The inversion of Eq. (60) gives for l (Z ) in the argument of the
cosine

2l (Z ) =
√

(Z/Z0)2/3 + 1 − 1, (61)

FIG. 10. Dashed circle corresponds to a radius r = ξ∗aTF, with ξ∗
given by Eq. (59), at which electron orbitals with a new momentum l
first appear. The arrow shows the trajectory of a fast particle passage
through an atom at an impact parameter b = 1.53aTF, corresponding
to the largest slope of dσcl/dσR (the maximum of f ). A large part
of the circle is close to the trajectory, making it plausible that the
vicinity of the corresponding radius significantly contributes to the
slope of dσcl/dσR at its maximum.

with Z0 = 1.25 × 4−3/2 = 0.156. Since Z0  1 and Z/Z0 �
1, Eq. (61) may be approximated by

2l (Z ) = (Z/Z0)1/3 − 1, (62)

which is equivalent to replacing in (56) and (60) l (l + 1) →
(l + 1/2)2, as is usually done in the WKB approximation
[2,35], in spite of l being not really large.

This derivation gives numbers (55) only approximately.
Yet it does not take into account that an atomic electron, in
contrast to the external projectile, moves in the potential [36]

− (Z − 1)e2

r
φTF(ξ ) − e2

r
, (63)

rather than − Ze2

r φTF(ξ ) in Eq. (56). The residual −e2/r term
in (63) does not permit the centrifugal potential to domi-
nate at asymptotically high r and leads to the formation of
a double well or a knee feature in the single-well effective
potential [10].

Nonetheless, the presented analysis suggests that once a
new l opens up, it permits the atom to get packed more densely
and thereby lower its energy. In this way, as Z monotonically
increases, the atom size “breathes” with respect to its TF
approximation. In application to scattering, denser packed
(contracted) atoms correspond to smaller cross sections of
scattering on them and to greater typical momentum transfers,
i.e., to the minima in Fig. 8. Conversely, more loosely packed
(swelled) atoms correspond to the maxima in Fig. 8.

A partial corroboration to this conjecture comes already
from Fig. 2(b), where for Z = 14 (belonging to the region of
Z marked in Fig. 8 as denser packed) the HF distribution is
indeed more compact than the TF one. To check this view-
point further, in Fig. 11 we plot r2ne(r), best characterizing
simultaneously the integrands of Eqs. (25) and (32), for the
atoms corresponding to the maxima of Fig. 8 (left column)
and to its minimum (right column), in the region r < 3aTF rel-
evant for the characteristic trajectory schematized in Fig. 10.
Apparently, the distributions on the left are narrower than
those on the right, because as Z increases, the shell maxima
slide inside with respect to the TF distribution maximum
and to the B value taken in Eq. (54). That also demonstrates
why the oscillations of the slope of dσcl/dσR are so large,
being about half the relative magnitude of oscillations in the r
dependence of r2ne in Fig. 2(b), despite being largely smeared
out in the q dependence. So, alternating variations of the atom
size do exist, whatever the explanation for their phase in terms
of the shell buildup process; however, will not investigate the
phase issue here in more detail.

To accomplish the phenomenological study of Z oscil-
lations in the present problem, it may be expedient to
approximate the oscillatory part of the 1

aTFQ
dσcl
dσR

dependence
on Z by a simple trigonometric function times a power law:

1

aTFQ

dσcl

dσR
= C0

(
1 + A0

Zμ
cos[2π l (Z ) + α0]

)
. (64)

When employing (61) in (64), because the values (60) are
somewhat lower than empirical ones (55), it is more accurate
to treat Z0 as a fitting parameter, along with C0, A0, α0, and
μ. The fit of the ansatz (64) to the data (the red dashed
curve in Fig. 8) gives C0 ≈ 0.4, A0 ≈ 1, µ ≈ 2

3 , Z0 ≈ 0.14,
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FIG. 11. Radial density distributions vs ξ = r/aTF for atoms corresponding to the maxima of Fig. 8 (left column) and those corresponding
to its minima (right column). Dashed curves show the Z-independent TF distribution.

and α0 ≈ 1.4. Too much meaning should not be attached to
the substantial additional phase α0 > 0: It just reflects the fact
that the prefactor Z−μ shifts the locations of the extrema to the
left.

We have thus described Z oscillations at a single value
of Q only. Of course, similar oscillations take place for any
Q � a−1

TF , and it would be worth knowing how they depend on
the Q value. Not contemplating here an exhaustive analysis,
let us just mention that the form of (64) and (61) remains
valid in a rather wide range of Q, but its parameters become
Q dependent. In general, as Q increases, the amplitude A0 of
the oscillations decreases.

Finally, it will be instructive to compare the oscillations of
the slope of dσcl/dσR with Z1/3-periodic dependences found
in the literature for other observables. In [37] tiny (of relative
magnitude ∼10−3) oscillations with similar periodicity and
phase were discussed for atomic total binding energies. There
the power-law index of the oscillation envelope was twice
higher, µ ≈ 4

3 , yet in [37] the maxima had a double-humped
structure; an l-quantized TF model was developed to explain
that.

A more significant Z1/3-periodic dependence was found
in [38] for quantum defects or phase shifts of zero-energy
electron wave functions in atoms, taking into account the
−e2/r interaction at large r similar to that in Eq. (63). Those
oscillations, more clearly displayed in [39], are less regular,
but their phase does not contradict that in our Fig. 8.

Taking into account the symmetry between the projectile
and the target atom in a binary collision, an example can
be added of pronounced Z1 oscillations discovered experi-
mentally in electronic energy loss of moderate-velocity ions
transmitted through thin foils [40,41]. The elementary col-
lision process here may be viewed as ion collision with an
electron of the medium, the latter being pointlike, as in our
present consideration, with a proviso that at collision velocity
v below the Bohr velocity the atomic electrons cannot be
regarded as free.

About as large Z1 oscillations were observed [42] in
backscattering (as opposed to small-angle scattering consid-
ered in the present paper) of very low-energy ions, when the
loss is predominantly nuclear, i.e., is due to elastic scattering
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of atoms as a whole. Even greater Z1 oscillations were found
in grazing reflection of ions from a crystal surface [43] and
in channeling of ions transmitted through a crystal [44,45], in
the latter case being important for ion implantation [46]. In
all those Z1 oscillations the Z1/3

1 periodicity was not reported;
they look less regular, although in general the minima and
maxima match with those in our Fig. 8. The Z1/3-periodic de-
pendences are thus generally not so unusual in atomic physics,
but their manifestation is process dependent and seems to
be enhanced in scattering with certain momentum transfers
or in channeling, due to certain restrictions on the particle
motion. From the modern perspective, additional control of
the particle dynamics is possible with the aid of bent crystals,
in which the bending radius is a tunable parameter (see, e.g.,
[47–50] and references therein).

IV. WEAK SCREENING OF RUTHERFORD
ASYMPTOTICS

Deviations from the TF approximation must arise as well
for large momentum transfers but be related there mostly to
inner shells, because large q correspond to small r. Clearly,
inner shells are not amenable to the TF treatment. Instead,
they are hydrogenic, which also promises simplicity.

In the extreme high-q limit, dσ/dσR →
q→∞ 1, becoming

completely independent of the electron distribution. How-
ever, as Figs. 5–7 indicate, unity is approached rather slowly,
seemingly by a power law (weak screening [7–9]). The char-
acteristic number in this case should be the coefficient in
the subleading asymptotics. Its Z dependence may now be
explored for shell effects. However, different existing theories
predict different values even for the index of the power law in
the subleading asymptotics, as will be delineated here shortly.

Many investigations of atomic scattering were based on
the TF approximation for electron densities. It predicts a
dσ TF/dσR − 1 ∼

q→∞ q−3/2 asymptotic law, as evaluated in

Appendix B for arbitrary α in the eikonal approximation:

dσ TF

dσR



q→∞ 1 −
√

2π

(
h̄

qaTF

)3/2

CTF(α). (65)

The coefficient CTF(α) > 0, inferred from Eq. (B9), looks
somewhat complicated,

CTF(α) = −7

3
Re

B
(
1 − iα, 7

4 + iα
)

B
(
1 + iα,− 3

4 − iα
) , (66)

but is simplified in limiting cases.
In the large-α (semiclassical) limit (in fact, already at α >

1) it scales as3

CTF(α) 

α�1

7
(

1
4

)
3

(
3
4

)α3/2 = 6.90 α3/2. (67)

3Straightforward derivation of (67) from (66) is lengthy, because at
large α the real part of the Beta function ratio in (66) is subdominant
to its imaginary part. The derivation will be skipped herein, but
this relationship can be easily checked numerically with any desired
accuracy.

This corresponds to the asymptotics of the classical differen-
tial cross section [see Appendix B 1, Eq. (B5)]:

dσ TF
cl

dσR



Q→∞
1 − 7B

(
1
2 , 1

4

)
6(aTFQ)3/2

.

In the opposite limit α → 0 the coefficient turns to unity,

CTF(0) = −7

3


(

7
4

)


(
1 + 7

4

) 
(
1 − 3

4

)


(− 3
4

) = 1,

and the cross section ratio becomes

dσ TF

dσR



Q→∞
1 −

√
2π

(
h̄

qaTF

)3/2

. (68)

However, it appears to differ from the asymptotics of the Born
expansion for a generic ne(r), obtained from Eq. (51):

dσ1

dσR



Q→∞

[
1 + π

2Z
n′

e(0)

(
2h̄

q

)4
]2

= 1 − 2π

aB
ne(0)

(
2h̄

q

)4

. (69)

[In the second equality, Kato’s theorem (10) was employed.]
The power law (69) has index 4, which is greater than that in
(68). In the TF approximation though, ne(0) would be infinite,
so these approximations are just mutually incompatible.

The problem of the power correction to the Rutherford
asymptotics was also addressed in the pioneering work by
Molière [28], who treated the scattering problem in the
eikonal approximation and obtained a structure

dσM

dσR



q→∞ 1 − 2

(
μ0

Q

)2

ln
Q

μ1
, (70)

with parameters µ0 and µ1 generally depending on the screen-
ing function and α. Here the power-law index is equal to 2,
being at variance with both (65) and (69). It is essential that
(70) was based on Molière’s parametrization [28] of the TF
potential, which mitigates the TF electron density singularity
in the origin, but rather deliberately, not in a way truly related
to the atomic shell structure. This may have an effect on the
subleading asymptotics.

A. Power correction to the Rutherford asymptotics

To get a reliable prediction for the weak-screening correc-
tion, we will calculate it here from scratch. That is easy to do
now based on the representations established in Sec. II. Let us
begin, again, with the classical case.

1. Classical high-Q subleading asymptotics

In Sec. II B 1 the leading-order Rutherford asymptotics of
the classical scattering cross section was obtained by sending
b → 0. The correction to it follows by extending the expan-
sion of the radicals in the integrands of (25a) and (32b) to the
next order,

r
√

r2 − b2 

b→0

r2 − b2

2
, r3/

√
r2 − b2 


b→0
r2 + b2

2
, (71)
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and integrating termwise

S1 

b→0

1 − b2

2
〈r−2〉, (72)

S2 

b→0

1 + b2

2
〈r−2〉 
 1

S1
(73)

(cf. the inset of Fig. 3). Here

〈r−2〉 = 4π

Z

∫ ∞

0
dr ne(r) (74)

is the expectation value [according to the definition (47)] of
the inverse-square radius of an atomic electron.

In a more elucidating way, Eq. (72) can be derived from
(24):

S1(0) − S1(b) = 2π

Z

∫ b

0
db′b′

∫ ∞

−∞
dz ne(b′, z) (75a)



b→0

π

Z
b2

∫ ∞

−∞
dz ne(0, z) = b2

2
〈r−2〉. (75b)

The integration in (75a) runs over a cylinder of radius b, whose
axis is parallel to the fast particle velocity and passes through
the atom nucleus. The exterior of this charged [with density
ne(r)] cylinder does not exert a force on the particle inside it,
whereas the cylinder interior constitutes the difference from
the pointlike nucleus charge. As b → 0, the cylinder shrinks
to a charged string (75b), the integration along which yields
〈r−2〉.

Introducing (72) and (73) in (31), we obtain the weak-
screening correction to the differential cross-section ratio

dσcl

dσR



Q→∞
1 − 2

Q2
〈r−2〉. (76)

It has the same Q index equal to 2 as Molière’s Eq. (70), but
does not contain a logarithm of Q.

The absence of the logarithm can now be readily under-
stood. As we noted above, Molière’s calculation, unlike ours,
employs his parametrization for the atomic potential. With the
aid of (5), one can express (74) through the atomic potential
as ∫ ∞

0
dr ne(r) ∝

∫ ∞

0

dr

r
g′′(r). (77)

If g(r) were parametrized here so that its connection with
ne(r) via the condition (6) were abolished, the integral (77)
generally would logarithmically diverge at small r. As is
shown in Appendix C, the physical regularization of this
divergent integral is effectively provided by the impact param-
eter, which is reciprocal to q and so gives rise to ln q.

If instead of Molière’s parametrization the Thomas-Fermi
model g(r) = φTF(ξ ) were employed, the integral in Eq. (77)
would diverge at small r by a power law [cf. Eq. (B1)] and this
would yield a greater power of q. That is chained to the fact
that for the Thomas-Fermi screening function the condition
(8) is violated severely: φ′′

TF(0) = ∞.
The accuracy of the asymptotics (76) for silicon as an

example is shown in Fig. 12. The asymptotic approximation
holds well for aTFQ � 15. This is congruent with b/aTF � 15
in the parabolic region of S1(b) and S2(b) in the inset of Fig. 3.

FIG. 12. The solid curve shows the ratio of the differential cross
section of high-energy classical scattering on a silicon atom (Z =
14) to the Rutherford cross section. The electron charge density in
Eqs. (31), (25a), and (32b) is evaluated by the HF parametrization
[20]. The dashed curve shows asymptotics (76), with 〈r−2〉 taken
from HF tables [56]. For comparison with TF approximation, see
Fig. 5.

As for the TF approximation, it is evident from Fig. 5 that at
such high Q it is far from being accurate.

2. Eikonal calculation

In the quantum case, one needs at first to find the sub-
leading small-b expansion for the eikonal phase. To this end,
it suffices to integrate expansion (72) for S1(b) according to
Eqs. (43) and (45):

S0(b) 

b→0

ln
b

b0
− 〈r−2〉

4
b2. (78)

Correspondingly, the regular part of the phase factor expands
as

e2iαS0 

b→0

(
b

b0

)2iα(
1 − 2iα

〈r−2〉
4

b2

)
.

On inserting this into Eq. (50) and integrating over b or ξ with
the aid of the formula∫ ∞

0
dξ ξ 1+2(n+iα)J0(ξ ) = 21+2(n+iα) (1 + n + iα)

(−n − iα)
, (79)

we are led to

dσ

dσR



Q→∞

∣∣∣∣1 + 2iα(1 + iα)2

(2αQ)2
〈r−2〉

∣∣∣∣
2


 1 − 2

Q2
〈r−2〉. (80)

Remarkably, this coincides with the classical result (76), by
virtue of the fact that in the squared amplitude the dependence
on α, and therewith on h̄, has canceled in the given order.

Since Eq. (80) is fully quantal, it can be compared with
the first Born approximation (69). Equation (80) predicts a
lower falloff index, thus giving a more dominant contribution.
However, there is no actual contradiction with (69), insofar
as (80) with Q−2 = (2h̄α/q)2 corresponds to a higher order
in α.
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B. The Z dependence of 〈r−2〉
Having pinned down the index of the asymptotic law, we

are now ready to explore shell effects in its coefficient (74).
That can be done, again, by computing its Z dependence.

1. Nonrelativistic K shell

As was pointed out in Sec. IV A 1, in the TF approximation
〈r−2〉 diverges at small r, because ne(r) blows up at r → 0
strongly. In a HF treatment, there will be no divergence, but it
is plausible that 〈r−2〉 will be dominated by inner shells. From
Fig. 2(a) (pertaining to silicon, but being typical for all the
elements) it is evident that the integral (74) must primarily
be dominated by the K shell. If the two electrons in this
shell are described by purely hydrogenic nonrelativistic wave
functions,

ne(r) = nK (r) = 2

π

(
Z

aB

)3

e−2Zr/aB , (81)

their aggregate contribution to 〈r−2〉 amounts to

〈r−2〉K = 4(Z/aB)2. (82)

However, contributions from the other shells should not be
just omitted.

2. Higher shells

To approximately account for higher-shell contributions,
begin with quoting the generic formula for the expectation
value 〈r−2〉 for an arbitrary single-electron nonrelativistic hy-
drogenic bound state [2,51]:

〈r−2〉nonrel
nl = (Z/aB)2

n3
(
l + 1

2

) . (83)

This sufficiently simple form can be summed over all spin
states, angular momentum numbers m and l , and all principal
quantum numbers n up to infinity, if we assume that high
shells, even though not hydrogenic, do not contribute signifi-
cantly:

Z〈r−2〉 

Z→∞

2
∑
nlm

〈r−2〉nl = 2
∞∑

n=1

(Z/aB)2

n3

n−1∑
l=0

l∑
m=−l

1

l + 1
2

= 4

(
Z

aB

)2 ∞∑
n=1

n−2 = 2π2

3

(
Z

aB

)2

.

(84)

The latter result must be thought of as the large-Z scaling law
for 〈r−2〉 of a nonrelativistic atom.

However, the sum
∑

n−2 with the increase of n actually
converges too slowly and for finite Z stays considerably below
the limiting value (84). On the other hand, the residual differ-
ence depends on Z smoothly. A simple TF-based power-law
formula for it was given in [52]:

a2
B

4Z
〈r−2〉DP 


Z→∞
π2

6
− 1.508Z−1/3. (85)

With the increase of Z , the approximation (85) improves and
approaches the predictions of nonrelativistic HF calculations
[53] (see the red dashed curve in Fig. 13).

FIG. 13. Atomic mean inverse square radius (74) in units of
its nonrelativistic K-shell contribution evaluated by Eq. (82). Open
squares show calculations of [54,55] based on nonrelativistic HF
distributions [53]. The red dashed curve shows the nonrelativistic
interpolation formula (85) taking into account higher shells. The red
solid curve shows the fit (86) to the nonrelativistic HF data. Closed
blue circles show the calculation based on relativistic HF tables [56].
The blue solid curve shows Eq. (97), taking into account relativistic
corrections for K , LI, and LII shells.

An even better approximation can be achieved if both the
coefficient and the index of the power correction are treated as
fitting parameters. The fit

a2
B

4Z
〈r−2〉nonrel

fit ≈ π2

6
− 1.1Z−0.267 (86)

is accurate enough for virtually all Z (see the red solid curve
in Fig. 13). It proves to hold even for Z � 7, when the right-
hand side of (86) already subsides below the pure hydrogenic
K-shell contribution (82). This reflects the fact that at low Z
the electron wave functions cease to be perfectly hydrogenic:
The repulsion between electrons becomes comparable to their
attraction to the nucleus even for the lowest shells. That in-
creases typical r and in turn decreases 〈r−2〉.

3. Relativistic effects

Physically, however, it should be noted that the limit (84)
is not approached at Z → ∞ at all, because inner shells in
this limit become relativistic. Since at high Z those shells
are hydrogenic, they can be described fully relativistically by
solving the Dirac equation.

The counterpart of the formula (83) for a Dirac electron in
a Coulomb field has the form [57]

〈r−2〉nl j = 2(Z/aB)2
(
1 − ε2

nl j

)3/2
κ (2κεnl j − 1)

ζ 3
√

κ2 − ζ 2[4(κ2 − ζ 2) − 1]
. (87)

Here

εnl j =
(

1 + ζ 2

(nr +
√

κ2 − ζ 2)2

)−1/2

, ζ = Ze2

h̄c
(88)
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is the bound electron energy in units of mc2, in a state with the
principal quantum number n = nr + |κ| = 1, 2, 3, . . ., orbital
angular momentum l , and total angular momentum j = l ± 1

2 .
The parameter κ is conventionally defined as

κ = −(
j + 1

2

)
sgn(l · s) =

{
l if j = l − 1

2

−(l + 1) if j = l + 1
2 .

(89)

In the nonrelativistic limit ζ → 0, Eq. (87) reduces to

〈r−2〉nl j 

Ze2→0

2(Z/aB)2

(nr + |κ|)3(2|κ| + sgn κ )
, (90)

and since 2|κ| + sgn κ = 2l + 1 for both κ = l and κ =
−(l + 1), the nonrelativistic formula (83) is recovered.

Since, according to its definition (89), |κ| is an integer
greater than zero, the right-hand side of (87) as a function of
Z has singularities at

Ze2

h̄c
=

√
1 − 1

4
, 1,

√
22 − 1

4
, 2,

√
32 − 1

4
, 3, . . . .

The first singularity is encountered when the factor 4(κ2 −
ζ 2) − 1 in the denominator of (87) turns to zero for |κ| = 1,
i.e., at

Z =
√

3h̄c

2e2
= 118.7. (91)

This is the same value at which the conditions (7) and (8)
break down. As yet, no elements have been discovered with
Z > 118.

We now apply formula (87) to the lowest shells, which
must be the most relativistic. Each of the two electrons in the
K shell (the ground state 1s1/2) has quantum numbers

κ = −1, nr = 0.

Therewith (88) simplifies to

ε1s1/2 =
√

1 − ζ 2

and Eq. (87) yields

〈r−2〉1s1/2 = 2

(
Z

aB

)2 1√
1 − ζ 2(2

√
1 − ζ 2 − 1)

. (92)

The Z dependence of the last, relativistic factor in (92) is
illustrated in Fig. 14 by the solid curve. For example, for lead
(Z = 82) it exceeds 2.

Each of the two electrons in the LI shell (2s1/2 state) has
quantum numbers

κ = −1, nr = 1.

Insertion thereof to Eq. (88) gives the term energy

ε2s1/2 =
√

1 +
√

1 − ζ 2

2
,

while (87) is written as

〈r−2〉2s1/2 = 1
8 〈r−2〉1s1/2 N2s1/2 (ζ ), (93)

FIG. 14. The Z dependence of relativistic factors characterizing
K , LI, and LII shells. The solid curve shows 〈r−2〉1s1/2 for the K
shell, evaluated by Eq. (92), relative to its nonrelativistic counterpart
〈r−2〉nonrel

1s1/2
= 2Z2/a2

B. The dashed curve shows the additional factor

N2s1/2 (Ze2/h̄c) for the LI shell, evaluated by Eq. (94). The dotted
curve shows the factor N2p1/2 (Ze2/h̄c) for the LII shell, evaluated by
Eq. (96).

with

N2s1/2 (ζ ) = 2

(1 +
√

1 − ζ 2)3/2(
√

1 +
√

1 − ζ 2 − 2−1/2)
.

(94)
Both factors 〈r−2〉1s1/2 and N2s1/2 in (93) include relativistic
effects, but as Fig. 14 shows, the Z dependence of N2s1/2 is
weaker. This is because 〈r−2〉1s1/2 given by Eq. (92) contains
in the denominator two factors vanishing at ζ = √

3/2 and
ζ = 1, whereas N2s1/2 is finite for ζ � 1.

Similarly, each electron in the LII shell (2p1/2 state) is
characterized by

κ = 1, nr = 1, ε2p1/2 = ε2s1/2

and Eq. (87) gives

〈r−2〉2p1/2 = 1
24 〈r−2〉1s1/2 N2p1/2 (ζ ), (95)

with

N2p1/2 (ζ ) = 6

(1 +
√

1 − ζ 2)3/2(
√

1 +
√

1 − ζ 2 + 2−1/2)
.

(96)

The ζ dependence of N2p1/2 (dotted curve in Fig. 14) is slightly
weaker than for N2s1/2 .

For 2p3/2 and higher shells, relativistic effects are neg-
ligible [58]. The relativistic effects for the aggregate 〈r−2〉
can thus be taken into account by summing the corre-
sponding corrections for the K (two electrons), LI (two
electrons), and LII (two electrons) shells. Given that the rel-
ative contributions of the LI and LII shells are not large, it
is admissible to approximate the N2s1/2 and N2p1/2 factors by
N2s1/2 (0) = N2p1/2 (0) = 1. Therewith, in the sum of relativis-
tic contributions, the relatively simple structure (92) factors
out:

2〈r−2〉1s1/2 + 2〈r−2〉2s1/2 + 2〈r−2〉2p1/2

≈ 2
(
1 + 1

8 + 1
24

)〈r−2〉1s1/2 = 7
3 〈r−2〉1s1/2 .
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Subtracting the corresponding nonrelativistic contribution and
adding to the full nonrelativistic result (86), we get

a2
B

4Z
〈r−2〉 ≈ π2

6
− 1.1Z−0.267

+ 7

6

(
1√

1 − ζ 2(2
√

1 − ζ 2 − 1)
− 1

)
. (97)

This combined approximation proves to be sufficiently close
to the relativistic HF calculations [56] (see the blue curve in
Fig. 13).

We conclude that the Z dependence of 〈r−2〉 is monotonic,
but nonuniform (see Fig. 13), in spite of the dominance of
inner shells. With the increase of Z from its lowest values,
the increase of 〈r−2〉/Z due to the accumulation of higher
shells gradually slows down, but at Z > 40 the inner-shell
contributions get enhanced by relativistic effects, owing to
which the dependence of 〈r−2〉/Z on Z accelerates again.

V. SHELL CORRECTIONS TO THE MOLIÈRE
SCREENING ANGLE

Hitherto we analyzed the differential cross section of single
atomic scattering. To observe it directly in an experiment
requires a particularly thin target, no thicker than a few
nanometers for a solid. For more practical and less fragile
targets, such a condition is not met, and the scattering is multi-
ple. What is observed then is the particle angular distribution
function, which is to be found from the solution of a linear
transport equation.

Conventionally, this problem is treated in terms of deflec-
tion angles, which are related to the momentum transfers we
dealt with above simply by

χ = q/p, (98)

where p is the large longitudinal momentum, assumed to be
nearly conserved in the course of the particle passage through-
out the target. It follows that the single-scattering angle (98),
as well as the aggregated deflection angle θ , is small com-
pared to a radian, so in the transport equation they may be
approximated by transverse vectors:

∂ f

∂l
= na

∫
dσ (χ )[ f (θ − χ, l ) − f (θ, l )]. (99)

Here f (θ, l ) = f (θ, l ) is the particle distribution function at
the traversed length l , dσ (χ ) = d2χ dσ

d2χ
is the differential

cross section of particle scattering on a single atom through
angle χ , and na is the density of atoms in the medium.

The solution of the transport equation (99) with initial con-
dition f (0, l ) = δ(θ) is obtained as a Fourier-Bessel integral
with the integrand depending on the target thickness purely
exponentially:

f (θ, l ) = 1

2π

∫ ∞

0
dρ ρ J0(ρθ )

× exp

(
−nal

∫
dσ (χ )[1 − J0(ρχ )]

)
. (100)

Now when naσ l in the exponent is large, the target may be
regarded as physically thick and the scattering process as

multiple. The sharply peaking exponential in the integrand of
(100) may then be replaced by its small-ρ asymptotics. Taking
into account the Coulomb character of atomic scattering, the
exponent needs to be evaluated with the next-to-leading loga-
rithmic accuracy, which leads to Molière’s theory [26,59,60].
The corresponding approximate solution reads4

f (θ, l ) = 1

2π

∫ ∞

0
dρ ρ J0(ρθ ) exp

(
−χ2

c ρ2

2
ln

2

χ ′
aρ

)
.

(101)
Here

χ2
c = 4πnal

(
Z1Ze2

pv

)2

(102)

encapsulates the target thickness and density, whereas all the
atomic characteristics in this thick-target (angular diffusion)
limit enter the Molière screening angle [59,60]

χ ′
a = q′

a/p. (103)

The energy-independent number q′
a characterizing the target

atoms is defined by

ln q′
a(α) = lim

qR→∞

(
ln qR −

∫ qR

0

dq

q

dσ

dσR

)
+ γE − 1, (104)

with γE = 0.577 Euler’s constant. The inverse of q′
a may be

thought of as an analog of the screening radius.5

With dσ/dσR generally depending on both Z and α, so
does q′

a. However, the α dependence of q′
a, known as the

Coulomb correction, appears to entirely factor out from the
Z dependence (see, e.g., [62] and references therein). For
characterization of the Z dependence alone, it is thus sufficient
to investigate the Born limit qa(0). That will be our task in the
present section.

Inserting dσ/dσR from Eq. (51) into Eq. (104) and per-
forming the q integration prior to r and r′ integrations with
the aid of the formula

lim
qR→∞

[
ln

qR

h̄
−

∫ qR

0

dq

q

(
1 − sin qr/h̄

qr/h̄

)(
1 − sin qr′/h̄

qr′/h̄

)]
+ γE − 1 = W (r, r′), (105)

where

W (r, r′) = ln
r + r′

rr′ + (r − r′)2

4rr′ ln
r + r′

|r − r′| − 1

2
, (106)

4The neglect of the size of atomic nuclei in Eq. (101) implies that
the typical accumulated momentum transfers pθ ∝ (nal )1/2 are still
small at the nuclear scale, i.e., the target thickness is not too large,
which is usually fulfilled in practice. Even if the nuclear size is taken
into account [26,61], the theory involves the parameters (103) and
(104), which will be our object of study herein.

5The prime in q′
a (not to be confused with a derivative) is a conven-

tion to distinguish it from qa = e1/2−γE q′
a = 0.926q′

a [60]. The limit
qR → ∞ in (104) physically implies that qR � q′

a. It may also be
worth noting that, if in (104) on the upper limit it were possible to
set qR = ∞, this integral would be proportional to the mean-square
momentum transfer.
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FIG. 15. Function W (ξ, ξ ′) = W (ξ ′, ξ ), the kernel in the integral
expression (107) of the screening momentum logarithm through the
atomic electron density. The solid curve shows W (ξ, 1) = W (1, ξ ),
from which W (ξ, ξ ′) at any arguments ξ and ξ ′ can be reconstructed
via relation (109), by a dilation in ξ and the addition of a con-
stant. The dashed curve shows W (ξ, 0.3) and the dot-dashed curve
W (ξ, ∞). For comparison of spatial scales, the dotted curve shows
also

√
ξφ

3/2
TF (ξ ), which multiplies W in Eq. (111).

we are led to a double-integral representation for the logarithm
of Molière’s screening momentum:

ln
q′

a(0)

h̄
= 1

Z2

∫
d3r d3r′ne(r)ne(r′)W (r, r′) (107a)

=
(

4π

Z

)2 ∫ ∞

0
dr r2ne(r)

∫ ∞

0
dr′r′2ne(r′)W (r, r′)

(107b)

≡ 〈W (r, r′)〉. (107c)

By partial integration in (107b) with the use of Eq. (5) it may
be transformed to a somewhat simpler form in terms of the
screening function,

ln
q′

a(0)

h̄
=

∫ ∞

0
dr g′(r)

∫ r

0
dr′g′(r′)[ln(r′−2 − r−2) − 2],

(108)
but here we will stick to the representation (107b) involving
the electron density.

The weighting function (106) diverges logarithmically at
both small and large r and r′, reflecting the Coulomb character
of the scattering. It has a scaling property

W (Cr,Cr′) = − ln C + W (r, r′) (109)

and so can be decomposed into a sum of two functions of
single variables, e.g., by choosing C = 1/r′:

W (r, r′) = − ln r′ + W (r/r′, 1), W (∞, 1) = 0. (110)

The behavior of W (r, r′) for several fixed values of its second
argument is shown in Fig. 15.

In the pure Thomas-Fermi model (18), employing
Eq. (109) with C = a−1

TF and aTF(Z ) defined by Eq. (14), we
would get

ln
q′TF

a (0)aTF

h̄

=
∫ ∞

0
dξ

√
ξφ

3/2
TF (ξ )

∫ ∞

0
dξ ′√ξ ′φ3/2

TF (ξ ′)W (ξ, ξ ′)

= 0.18. (111)

FIG. 16. Integrand of the integral (107b), determining the
Molière screening momentum for a silicon atom. The K-shell and
L-shell contributions and their interference are manifest as enhance-
ments (bright spots). Electron densities for silicon, entering here as
r- and r′-dependent factors, are given in Fig. 2.

This is somewhat higher than the value

ln
q′TF

a (0)aTF

h̄
= ln

√
1.13 + γE − 1

2
= 0.14 (112)

obtained by Molière [59] based on his parametrization for the
TF potential.

To visualize the behavior of the integrand of the double
integral in (107b), it is shown in Fig. 16 for a silicon atom. It
exhibits a significant K-shell contribution (the brightest spot
at r, r′ ∼ 0.03 Å) and a sizable interference between the K
and L shells (two prolate spots at r ∼ 0.03 Å and r′ ∼ 0.2 Å
and at r′ ∼ 0.03 Å and r ∼ 0.2 Å). In general, inner shells
give greater contribution than outer ones, but the interference
between inner and intermediate shells is also noticeable.

To isolate shell contributions from the TF one, the latter
needs to be subtracted, because it is expected to yield the
monotonic part of the Z dependence. To this end, rewrite
Eq. (107c) by adding ln aTF(Z ) to both of its sides:

ln
q′

a(0)aTF

h̄
= 〈W (r/aTF, r′/aTF)〉 = 〈W 〉(Z ). (113)

The right-hand side here is to be computed based on a HF den-
sity parametrization. The result for HF parametrization [20] is
plotted in Fig. 17. Let us now inspect the latter dependence.

At Z < 5, the HF result is observed to be appreciably
higher than the TF one. This may be attributed to the fact
that a relatively large contribution comes from the K shell,
which yields a charge density higher than average. A similar
expectation was quoted in the Introduction. It may be expected
further that with the increase of Z , the relative contribution
of the K shell diminishes, whereby the atom on the average
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FIG. 17. The solid curve shows the Z dependence of ln q′
a (0)aTF

h̄
defined by Eqs. (113) and (106), with ne parametrized by HF den-
sities [20]. The dashed horizontal curve shows the TF result (111).
The dot-dashed curve shows the K-shell contribution (114). For more
details see the text.

swells. Indeed, ln q′
a(0)aTF

h̄ rapidly drops down in this region
with the increase of Z .

The K-shell contribution to ln q′
a (0)aTF

h̄ can be isolated by
replacing on the right-hand side of (113) the electron density
with that of the (purely hydrogenic) K shell, given by Eq. (81):

ln
q′

a(0)aTF

h̄

∣∣∣∣
K

=
(

4π

Z

)2 ∫ ∞

0
dr r2nK (r)

×
∫ ∞

0
dr′r′2nK (r′)W

(
r

aTF
,

r′

aTF

)

= 1

Z2

(
4 ln

2ZaTF

aB
+

∫ ∞

0
dξ ξ 2e−ξ

×
∫ ∞

0
dξ ′ξ ′2e−ξ ′

W (ξ, ξ ′)
)

≡ 8

3Z2
(ln Z + 0.1). (114)

The latter dependence, shown in Fig. 17 by the dot-dashed
curve, is close to HF calculations up to Z = 5. (The agreement
might be improved by taking into account the repulsion be-
tween the K-shell electrons.) Since this contribution falls off
with Z rapidly enough, it does not require taking into account
relativistic effects.

At Z = 5 the decline halts, because an l = 1 shell opens
up [see Eq. (55)], allowing the atom to pack more com-
pactly and contract relative to the TF approximation. (Note
that this value of Z matches with a maximum in Fig. 8.)
Correspondingly, ln q′

a (0)aTF

h̄ passes through a minimum and
starts increasing again. The growth with respect to TF cannot
continue indefinitely, and at Z = 10 (neon) a maximum is
achieved, corresponding to a minimum of the dependence in
Fig. 8. Next, it turns down again, but the decrease is already
slower. It is noteworthy that for most of the elements of the
third period the value of q′

a is still greater than that for Be
discussed in [5].

To summarize this section, shell effects for q′
a prove

to be substantial too. The magnitude of the oscillations is

approximately 25%, which is commensurate with that for
1

aTFQ
dσcl
dσR

|aTFQ=0.3 exhibited in Fig. 8.

VI. SUMMARY AND DISCUSSION

In this work it was established that despite the fact that
shell effects in nonperturbative and multiple scattering are
smeared out in angular distributions, they do persist in Z
dependencies of certain characteristic determinants of the
scattering differential cross section. A tentative explanation
is that with a monotonic increase in Z , the allowed angular
momenta of atomic orbitals increase in a stepwise manner.
This causes the atom to alternately contract and swell with
respect to its TF approximation, at the aTF scale relevant here,
inducing breather-type oscillations of various scattering ob-
servables. In any case, the Z dependence of the phase of those
slowing oscillations is related not with that of Mendeleev’s
Periodic Table, but rather with that of its left step or Janet’s
variation.

The second, nonoscillatory type of shell effects is due
to inner atomic shells, which cause a noticeable devia-
tion of the differential cross section from the Rutherford
asymptotics at large momentum transfers. Inner-shell contri-
butions are significantly enhanced at high Z by relativistic
effects.

There are also scattering observables, in which the
two mentioned types of shell effects combine, as in the
Molière screening angle, characterizing multiple Coulomb
scattering. Being defined as an integral over a wide range
of q, that quantity picks up commensurable contributions
from all the shells. Since inner shells are compact, they
increase the screening angle when Z is low, whereas in-
termediate shells give rise to its breather oscillations at
larger Z .

As regards the perspective of experimental verification of
the predicted effects, a few remarks can be added. Although
the sensitivity of multiple-scattering angular distributions to
Molière’s screening angle is moderate and measurements may
well be carried out in a wide range of projectile energies and
target thicknesses, thinner targets should be favorable for that
purpose. The sensitivity to shell effects can be enhanced yet by
comparing the scattering distributions on C and Ne-Al targets,
for which the shell effects are predicted to have opposite signs.

For measurement of single scattering, where shell ef-
fects must be the most pronounced, the use of thin foils or
gaseous targets is essential. Such measurements are allevi-
ated at high q, where the weak-screening correction to the
Rutherford asymptotics can show up. It is desirable to de-
termine this correction with a sufficient accuracy, since the
asymptotic law dσ/dσR − 1 ∼ q−2 itself [Eq. (80)], along
with the relationship of its coefficient to 〈r−2〉, demands
verification. This single-scattering correction also has to be
discriminated from the subleading power-law contribution
χ2

c
θ2 ln θ2

χ2
c

in multiple Coulomb scattering [63], which has
the opposite sign. The way to such measurements has al-
ready been pawed by experiments [7–9] with MeV light
ions.

Most difficult seem to be measurements of single scatter-
ing at moderate q. There they are complicated by a sizable
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probability of rescattering, but in reward the shell effects in
that case should be the largest. To maximize the sensitivity to
them, it may be worth exploiting the fact that deviations of
the slope of dσcl/dσR from its TF value at Q ∼ 0.3 a−1

TF have
opposite sign for Be and Ne-Al, so it may be worth comparing
scattering on those elements in the first place.
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APPENDIX A: DERIVATION OF THE KATO THEOREM

For the reader’s convenience, we will present here a sim-
ple derivation of Kato’s relation (10). For an electron orbital
characterized by orbital angular momentum l = 0 and prin-
cipal quantum number n (energy E ), the radial Schrödinger
equation in a screened Coulomb field (1) reads

r
d2

dr2
Rn0 + 2

d

dr
Rn0 + 2m

h̄2 [Er + Ze2g(r)]Rn0 = 0, (A1)

where Rnl is the radial component of the wave function:
ψnlm(r, θ, φ) = Rnl (r)Ylm(θ, φ). As r → 0, the second deriva-
tive and the energy terms in Eq. (A1) vanish, giving rise to
a relationship between the wave-function derivative in the
origin and the nucleus charge:

dRn0

dr

∣∣∣∣
r=0

= −Ze2m

h̄2 Rn0(0).

Multiplication of its sides by 2Rn0(0) converts it to a relation
in terms of the probability density:

dR2
n0

dr

∣∣∣∣
r=0

= −2Ze2m

h̄2 R2
n0(0) ≡ −2Z

aB
R2

n0(0). (A2)

For nonzero orbital momenta (l � 1), the radial Schrödinger
equation demands that Rnl ∼

r→0
rl [2], whereby R2

nl ∼ r2l →
r→0

0, d
dr R2

n0 ∼ r2l−1 →
r→0

0, and (A2) is sustained as well for

l � 1 (trivially, with both of its sides equal to zero). Insofar
as it holds for any n and l , multiplication of both sides of
(A2) by Y 2

nl (θ, φ) and summation over all l and n leads to the
relation (10).

APPENDIX B: THOMAS-FERMI HARD-SCATTERING
ASYMPTOTICS

Realizing that the TF approximation is not strictly appli-
cable for evaluation of the weak-screening correction to the
Rutherford asymptotics, we will nonetheless derive it here for
the sake of comparison with the more rigorous Eq. (80).

The solution of the TF equation (16) with boundary condi-
tions (17) by power series in ξ is well known [64,65]:

φTF(ξ ) 

ξ→0

1 − 1.59ξ + 4
3ξ 3/2. (B1)

The coefficient of the linear term here can only be determined
numerically, by solving the differential equation with both
boundary conditions (17), whereas the coefficient preceding
ξ 3/2 follows from the differential equation (16) and boundary
condition φTF(0) = 1 alone.

1. Classical hard scattering on the TF potential

In the classical case, inserting (B1) into (19) and (20) and
integrating termwise with the aid of the integral

−
∫ ∞

−∞
dz

∂

∂b

1

(b2 + z2)s/2
= B

(
1

2
,

s + 1

2

)
s

bs
, s > −1,

(B2)
where B(x, y) = (x)(y)/(x + y) is the Euler beta func-
tion, we observe that the term −1.59ξ in (B1) does not
contribute, because it corresponds to s = 0 (or, in physical
terms, to an additive constant in the potential). The rest evalu-
ates to

Q(b) = − 1

2Z1Ze2

∫ ∞

−∞
dz

∂

∂b
V (z, b)



b→0

−1

2

∫ ∞

−∞
dz

∂

∂b

1√
z2 + b2

−2

3
a−3/2

TF

∫ ∞

−∞
dz

∂

∂b
(z2 + b2)1/4

= 1

b

[
1 − B( 1

2 , 1
4 )

3

(
b

aTF

)3/2
]
. (B3)

Inverting this relationship within the same subleading accu-
racy, one finds

b2(Q) 

Q→∞

1

Q2

[
1 − 2

3

B
(

1
2 , 1

4

)
(aTFQ)3/2

]
. (B4)

Next, inserting (B4) into (30) and differentiating, we obtain
the cross section

dσ TF
cl

dσR
= Q4

∣∣∣∣ db2

dQ2

∣∣∣∣ 

Q→∞

1 − 7

6

B
(

1
2 , 1

4

)
(aTFQ)3/2

, (B5)

with 7
6 B( 1

2 , 1
4 ) ≈ 6.12. Therefore, in the TF approximation the

correction to the Rutherford asymptotics appears in the order
Q−3/2, with the index lower than in (76).

2. Quantum hard scattering on the TF potential

The asymptotics for the quantum-mechanical scattering
cross-section ratio (50) can be derived similarly. To this end,
first the subleading small-b asymptotics of S0(b) needs to be
found. It is retrieved straightforwardly by plugging the result
(B3) into (43). There the integration gives

STF
0 (b) 


b→0
ln

b

b0
− B

(
1
2 , 1

4

)
3

a−3/2
TF

∫ b

0
db b1/2

= ln
b

b0
− 2B

(
1
2 , 1

4

)
9

(
b

aTF

)3/2

. (B6)

The eikonal amplitude involves an exponential of this func-
tion. The subleading asymptotics of the exponential readily
follows from Eq. (B6):

e2iαSTF
0 (b) 


b→0

(
b

b0

)2iα
[

1 − 2iα
2B

(
1
2 , 1

4

)
9

(
b

aTF

)3/2
]
. (B7)

The integrals arising after substitution of (B7) into the impact
parameter representation (50) of the eikonal scattering ampli-
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tude can be evaluated by the generic formula∫ ∞

0
dξ ξ 1+2(n+iα)J0(ξ ) = 21+2(n+iα) (1 + n + iα)

(−n − iα)
. (B8)

The differential cross-section ratio (50) then equals

dσ TF

dσR



q→∞

∣∣∣∣∣ i

2α

∫ ∞

0
dξ ξ 1+2iαJ0(ξ )

+2B
(

1
2 , 1

4

)
9

(
h̄

qaTF

)3/2 ∫ ∞

0
dξ ξ 1+3/2+2iαJ0(ξ )

∣∣∣∣∣
2

.

The first term here gives a pure phase factor. It is therefore
convenient to factor it out; after squaring, it gives unity:

dσ TF

dσR



q→∞

∣∣∣∣∣1 + 4

9

(
2h̄

qaTF

)3/2

B

(
1

2
,

1

4

)

× (1 − iα)
(

7
4 + iα

)
(1 + iα)

( − 3
4 − iα

)
∣∣∣∣∣
2

.

The arising products of Gamma functions can further be com-
bined into Beta functions by the identities

(1 − iα)
(

7
4 + iα

) = 
(

11
4

)
B

(
1 − iα, 7

4 + iα
)
,

(1 + iα)
( − 3

4 − iα
) = 

(
1
4

)
B

(
1 + iα,− 3

4 − iα
)
.

Then with the identity B( 1
2 , 1

4 )( 11
4 )/( 1

4 ) = 21
16

√
π we are

led to (65) and (66):

dσ TF

dσR



q→∞ 1 + 7

3

√
2π

(
h̄

qaTF

)3/2

Re
B

(
1 − iα, 7

4 + iα
)

B
(
1 + iα,− 3

4 − iα
) .

(B9)

APPENDIX C: WEAK-SCREENING CORRECTION TO
THE RUTHERFORD ASYMPTOTICS FOR A GENERIC

SCREENING FUNCTION

Here we will derive the power correction to the Ruther-
ford asymptotics of high-q scattering in a screened Coulomb
field, not enforcing the condition (8). It will be shown that
the result will then qualitatively differ from (76), involving a
logarithmic contribution and acquiring the same structure as
Molière’s (70).

1. Evaluation of S0

In classical mechanics the reduced momentum transfer
(27a) is expressed via the derivative

Q(b) = ∂

∂b
S0(b) (C1)

of the reduced eikonal phase (43), which is expressed through
the atomic potential as [cf. Eq. (20)]

S0(b) = −
∫ ∞

b

dr√
r2 − b2

g(r). (C2)

In quantum mechanics, the scattering amplitude is expressed
in terms of (an integral of an exponential of) the same function

S0(b). In any case, we first need to evaluate the asymptotic
expansion of (C2) in the limit b → 0 (corresponding to q →
∞) up to terms of order b2.

To this end, taking into account the behavior of the factor
in the integrand 1√

r2−b2 

b→0

1
r + b2

2r3 , where both terms are

singular functions of r, rearrange (C2) as

−S0(b) =
∫ ∞

b
dr

(
1√

r2 − b2
− 1

r
− b2

2r3

)
g(r)

+
∫ ∞

b

dr

r
g(r) + b2

2

∫ ∞

b

dr

r3
g(r). (C3)

The benefit of such a transformation is that each of the partial
integrals may be handled independently, employing suitable
approximations for each case.

The integral in the first line of (C3) converges very rapidly
for r � b → 0 due to the first factor of the integrand. Hence,
its small-b asymptotics may be derived by just Taylor expand-
ing the screening function

g(r) = g(0) + rg′(0) + r2

2
g′′(0), (C4)

viz.,∫ ∞

b
dr

(
1√

r2 − b2
− 1

r
− b2

2r3

)
g(r)



b→0

(
ln 2 − 1

4

)
g(0) + b

2
g′(0) + b2

8
(1 + 2 ln 2)g′′(0). (C5)

The second integral in (C3) diverges at b → 0 logarithmi-
cally. It can be reduced to a convergent one by a single partial
integration∫ ∞

b

dr

r
g(r) = −g(b) ln b −

∫ ∞

b
dr g′(r) ln r. (C6)

Granted that the latter integral remains finite in the limit b →
0, it can be exactly supplemented to an integral beginning at
r = 0: ∫ ∞

b

dr

r
g(r) = −g(b) ln b +

∫ b

0
dr g′(r) ln r

−
∫ ∞

0
dr g′(r) ln r. (C7)

The first two terms may be rearranged by partial integration,
if we substitute g′(r) = d

dr [g(r) − g(0)], so that the bracket
vanishes at the origin, canceling the 1/r singularity:∫ ∞

b

dr

r
g(r) = −g(0) ln b

−
∫ b

0

dr

r
[g(r) − g(0)] −

∫ ∞

0
dr g′(r) ln r.

(C8)

Small-b expansion of the latter structure is now readily ob-
tained by inserting the Taylor expansion (C4) into the middle
integral:∫ ∞

b

dr

r
g(r) 


b→0
− g(0) ln b − bg′(0) − b2

4
g′′(0)

−
∫ ∞

0
dr g′(r) ln r. (C9)
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The third integral in (C3) diverges at b → 0 quadratically.
By triple integration by parts, it is reduced to a convergent
one:

b2

2

∫ ∞

b

dr

r3
g(r) = 1

4
[g(b) + bg′(b)]

− b2

4
g′′(b) ln b − b2

4

∫ ∞

b
dr g′′′(r) ln r.

(C10)

Within the required accuracy, the lower limit of the last inte-
gral may merely be replaced by 0, while in the second term, it
is justified to set g′′(b) 
 g′′(0). In the first term, g(b) needs to
be Taylor expanded via Eq. (C4). Altogether, that gives

b2

2

∫ ∞

b

dr

r3
g(r) 


b→0

1

4

[
g(0) + 2bg′(0) + 3b2

2
g′′(0)

]

− b2

4
g′′(0) ln b − b2

4

∫ ∞

0
dr g′′′(r) ln r.

(C11)

Combining the pieces (C5), (C9), and (C11) of Eq. (C3)
and collecting the like terms, we get the subleading small-b
asymptotics of S0(b),

S0 

b→0

ln
b

b0
+ b2

4

∫ ∞

0
dr g′′′(r)

(
ln

2r

b
+ 1

)
, (C12)

where b0 is given by Eq. (46).

2. Classical scattering

Putting (C12) into (C1) and differentiating, we are led to
the representation

Q(b) = ∂

∂b
S0(b) = 1

b
+ b

2

∫ ∞

0
dr g′′′(r)

(
ln

2r

b
+ 1

2

)
(C13)

for the subleading small-b asymptotics of the indicatrix. It
features a ln b factor in the subleading term and upon inversion
as

b2(Q) = 1

Q2
+ 1

Q4

∫ ∞

0
dr g′′′(r)

(
ln 2Qr + 1

2

)
(C14)

and substitution into (28) leads to a result

dσ

dσR
= 1 + 1

Q2

∫ ∞

0
dr g′′′(r)

(
2 ln 2Qr + 1

2

)
(C15)

similar to Molière’s (70), with

μ2
0 = g′′(0). (C16)

However, if the condition (8) is valid, the term containing ln Q
vanishes [

∫ ∞
0 dr g′′′(r) = −g′′(0) = 0], whereby we return to

our Eqs. (72) and (76).

3. Quantum scattering

In the quantum calculation we expand

e2iαS0 (b) 

(

b

b0

)2iα[
1 + iα

2
b2

∫ ∞

0
dr g′′′(r)

(
ln

2r

b
+ 1

)]

=
(

b

b0

)2iα

+ iα

2

[ ∫ ∞

0
dr g′′′(r) ln

2r

b0

− g′′(0)

(
1 + i

2

∂

∂α

)]
b2

(
b

b0

)2iα

. (C17)

Inserting this into the impact parameter representation (39)
for the scattering amplitude, carrying out the integration by
the formula (B8), and subsequently differentiating by α, we
obtain a structure similar to (70) again, but this time with µ1

depending on α.
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