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Spectral line shape in the limit of frequent velocity-changing collisions
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The speed-dependent spectral line profiles collapse into a simple Lorentz profile in the regime dominated by
the velocity-changing collisions. We derive general formulas for the effective width and shift of the Lorentzian
for arbitrary speed-dependent collisional broadening and shift and velocity-changing collision operators. For a
quadratic speed dependence of collisional broadening and shift, and the billiard ball model of velocity-changing
collisions, we provide simple analytical expressions for the effective Lorentzian width and shift. We show that
the effective Lorentzian width and shift split into components originating from the well-known Dicke-narrowed
Doppler width, speed-averaged collisional broadening and shift, their speed dependencies, and a product term
that mixes the contributions of the broadening and shift speed dependencies. We show how the components
depend on rates of speed-changing and velocity-changing collisions related to the perturber-absorber mass ratio.
We validate analytical formulas numerically on the example of H2 transition perturbed by He.
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I. INTRODUCTION

The shape of molecular spectral line affected by Doppler
broadening and absorber-perturber collisions, in the general
case, requires numerical evaluation and cannot be represented
by a simple analytical function, unless some simplifications
or assumptions are made [1]. The goal of this work is to show
that, in the case when the velocity-changing collisions domi-
nate other line shape effects, the spectral line shape collapses
to an ordinary Lorentz profile and the expressions for its width
and shift can be provided analytically.

The Lorentz profile has been used for over a century to de-
scribe collisionally broadened atomic and molecular spectral
lines. It is particularly justified at high pressure of perturbers,
much lighter than absorbers, in microwave spectral range,
where the speed dependence of collisional broadening and
shift [2,3], as well as Doppler broadening, can be neglected.
Interestingly, also the Gaussian shape of the spectral line can
collapse to the Lorentz profile when the velocity-changing
collisions reduce the mean-free path of the absorber well
below the wavelength of absorbed radiation as predicted by
Dicke [4,5] in the 1950s. It was later demonstrated numer-
ically [6] that the weighted sum of Lorentz profiles (WSL)
[7,8], under frequent velocity-changing collisions described
by the billiard-ball model [9,10] approaches the Lorentz pro-
file and the convergence is faster for lower perturber-absorber
mass ratio. It is related to relative contribution of speed
change during velocity-changing collisions, which is deter-
mined by perturber-absorber mass ratio [11,12]. Recently,
studies on line shapes for which width is dominated by the
speed-dependent collisional shift led to formulating a simple
analytical expression [13,14] (see Eq. (15) in Ref. [13]) for
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width of Lorentzian profile approximating such line shape
when speed-dependent collisional shift is described by a
quadratic function [15] and velocity-changing collisions are
approximated by the hard-collision model [16,17]. The phe-
nomenological finding from Ref. [13] got justification in
a derivation [18] coming from the speed-dependent hard-
collision profile [19,20].

In this paper, we generalize the results from Ref. [18];
we derive general formulas for the effective width and shift
of a Lorentzian to which a sophisticated line shape model,
based on any arbitrary speed-dependent collisional broad-
ening and shift and velocity-changing collision operator,
converges in the limit of frequent velocity-changing colli-
sions. For quadratic speed dependencies of collisional width
and shift, and the billiard-ball model of velocity-changing
collisions, we provide a simple analytical expression for the
effective Lorentzian width and shift. We show how their
components depend on rates of speed-changing and velocity-
changing collisions related to the perturber-absorber mass
ratio. We validate the analytical formulas numerically.

II. ALGEBRAIC REPRESENTATION OF A SPECTRAL
LINE SHAPE

In general, the shape of an isolated spectral line affected
by Doppler broadening and collisions with perturbers can be
evaluated [21,22] from a function h(ω, �v),

I (ω) = 1

π
Re {(1, h(ω, �v))}, (1)

where (·, ·) is defined as a product (a(�v), b(�v)) =∫
d3�v fmA (�v)a(�v)b(�v) of two functions a(�v), b(�v) of absorber

velocity �v, fmA (�v) = (πv2
mA

)−3/2 exp(−v2/v2
mA

) is Maxwellian
distribution, vmA = √

kBT/(2mA) is the most probable
speed of the absorber having mass mA at temperature T ,
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and kB is Boltzmann’s constant. Function h(ω, �v) fulfils
transport-relaxation kinetic equation [22],

1 = −i(ω − ω0 − �k · �v)h(ω, �v) − Ŝ f h(ω, �v), (2)

where ω0 is unperturbed transition frequency, �k is a wave
vector of radiation, and operator Ŝ f describes the effect of
collisions with perturbers.

Equations (1) and (2) can be converted into an algebraic
form expanding function h(ω, �v),

h(ω, �v) =
∞∑

s=0

cs(ω)ϕs(�v), (3)

in a set of orthonormal functions fulfilling condition
(ϕs(�v), ϕs′ (�v)) = δs,s′ . We set ϕ0(�v) = 1. The expansion co-
efficients cs(ω) depend only on frequency for given operator
Ŝ f . In this basis, any operator Â can be represented by matrix
A, having matrix elements [A]s,s′ = (ϕs(�v), Âϕs′ (�v)).

The shape of an isolated spectral line can have algebraic
representation by a series of Lorentz profiles. Following the
approaches from Refs. [10,21,23,24] and notation described
in Refs. [6,22,25], the line shape can be written as [6,25,26]:

I (ω) = 1

π
Re {c0(ω)}, (4)

where the coefficient c0(ω) can be evaluated by solving a set
of complex linear equations,

b = L(ω)c(ω), (5)

for the coefficients cs(ω), where s = 0, 1, . . . , smax. Here the
column b contains unity in the position 0 and zeros in other
positions, i.e., [b]s = δ0,s, and the column c(ω) consists of
the coefficients cs(ω), i.e., [c(ω)]s = cs(ω). The matrix L(ω)
depends on the frequency ω and has the following form:

L(ω) = −i(ω − ω0)1 + iK − S f , (6)

where ω0 corresponds to the unperturbed frequency of the
transition, 1 is the unit matrix, [1]s,s′ = δs,s′ , K is the matrix
that represents the Doppler shift, S f = S f

D + S f
VC is the matrix

that represents the collision operator split into two compo-
nents: S f

D is the matrix that represents the dephasing and
relaxation [27,28] collisional width and shift and S f

VC is the
matrix that represents the velocity-changing collision operator
also affected by dephasing and relaxation. The representation
used here has a property [S f

VC]s,0 = [S f
VC]0,s = 0 for any s and

[K]0,0 = 0. Moreover, all matrices discussed in this work are
symmetric.

In practice, the coefficient c0(ω) is calculated using the
diagonalization technique (cf. [24,29,30]). To do it in this way,
one needs to find the full set of eigenvectors, e j , and corre-
sponding eigenvalues ε j , which fulfill the following equation:

(iK − S f )e j = ε je j, (7)

where j = 0, 1, ..., smax. Once the eigenvectors and eigenval-
ues are known, the coefficient c0(ω) can be computed from
the following expression:

c0(ω) =
smax∑
j=0

β j[e j]0

ε j − i(ω − ω0)
, (8)

where the coefficients β j fulfill the relation b = ∑smax
j=0 β je j .

The main advantage of this approach is that the time-
consuming diagonalization can be carried out once and this
is sufficient to calculate the whole line shape.

III. HIGH FREQUENCY OF THE VELOCITY-CHANGING
COLLISIONS LIMIT

Our derivation is carried out in the limit where the velocity-
changing collisions dominate over the Doppler broadening
and collisional broadening and shift. We assume the absolute
values of all matrix elements of K and S f

D, as well as detuning,
ω − ω0, to be much smaller than the absolute value of the ef-
fective optical frequency of velocity changing collisions, νopt.
Importantly, νopt can be complex due to the dephasing asso-
ciated with optical velocity-changing collisions. All nonzero
matrix elements of S f

VC are directly proportional to νopt. The
recognition of νopt as a complex quantity was originally put
forth by Rautian and Sobelmann [17]. Subsequent support for
this notion came from the comparison between measurements
[31] and theoretical estimations [32]. The complex form of
νopt has been justified through both semiclassical approaches
[17,33–35] and quantum treatments [33,36–41], see also the
references cited therein.

For the matrix S f
VC we can calculate eigenvectors, eVC

j , and
eigenvalues, εVC

j , which fulfill the following equation:

−S f
VCeVC

j = εVC
j eVC

j . (9)

It is easy to see that one of the eigenvectors of the matrix
having property [S f

VC]s,0 = [S f
VC]0,s = 0 is vector b and its

corresponding eigenvalue is zero. Therefore, we can set eVC
0 =

b and εVC
0 = 0. Consequently, for j �= 0 we have [eVC

j ]0 = 0
and εVC

j ∼ νopt.
Now we can rewrite Eq. (7) in the form:(−S f

VC − S f
D + iK

)
e j = ε je j, (10)

where the matrix, which we want to diagonalize, is split into
the dominating part S f

VC and the perturbation part containing
S f

D and K. We take advantage of that and approximate eigen-
vectors e j by eVC

j and eigenvalues ε j by εVC
j and improve

them by perturbation corrections. Setting e j ≈ eVC
j we get

β j = δ j,0. In this, way Eq. (8) can be approximated with the
Lorentz profile:

c0(ω) ≈ 1

ε0 − i(ω − ω0)
, (11)

where the eigenvalue ε0 is approximated by second-order
perturbation. The eigenvalues, ε j , in the second-order pertur-
bation are given by the following expression:

ε j ≈ εVC
j +

smax∑
s,s′=0

[
eVC

j

]
s

( − [
S f

D

]
s,s′ + i[K]s,s′

)[
eVC

j

]
s′

+
smax∑
j′=0
j′ �= j

(∑smax
s,s′=0

[
eVC

j

]
s

( − [
S f

D

]
s,s′ + i[K]s,s′

)[
eVC

j′
]

s′
)2

εVC
j − εVC

j′
.

(12)
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This equation for ε0 simplifies to the following form:

ε0 ≈ − [
S f

D

]
0,0+

+
smax∑
j′=1

{∑smax
s′=1

(−[
S f

D

]
0,s′ + i[K]0,s′

)[
eVC

j′
]

s′
}2

−εVC
j′

, (13)

remembering that εVC
0 = 0, [eVC

0 ]s = δ0,s and [K]0,0 = 0. In
this way, we get a single Lorentz profile,

I (ω) = 1

π

	eff

	2
eff + (ω − ω0 − 
eff )2

, (14)

in the limit of frequent velocity-changing collisions, here

	eff + i
eff = ε0. (15)

It should be noted that we can always use the basis in
which matrix S f

VC is diagonal. In such case [eVC
j ]s = δ j,s,

εVC
j = −[S f

VC] j, j and Eq. (13) takes simple form

ε0 ≈ −[
S f

D

]
0,0 +

smax∑
s=1

( − [
S f

D

]
0,s + i[K]0,s

)2[
S f

VC

]
s,s

. (16)

Furthermore, one can use a basis in which if a matrix element
is nonzero, [S f

D]0,s �= 0, then the corresponding matrix ele-
ment is zero, [K]0,s = 0, and, if [K]0,s �= 0 then [S f

D]0,s = 0.
It is a simple consequence of the symmetry of the correspond-
ing operators. The collisional broadening and shift depend on
the absolute value of the absorber velocity, v = |�v|, and are
not dependent on velocity direction. On the other hand, the
Doppler shift is proportional to the scalar product �k · �v, which
depends on velocity direction. Taking this into account, we
can rewrite Eq. (16) in the following form:

ε0 ≈ −[
S f

D

]
0,0 −

smax∑
s=1

[K]2
0,s[

S f
VC

]
s,s

+
smax∑
s=1

[
S f

D

]2

0,s[
S f

VC

]
s,s

. (17)

IV. APPLICATION IN CASE OF QUADRATIC
SPEED-DEPENDENT COLLISIONAL

BROADENING AND SHIFT

To get physical insight into the expressions derived above,
we consider matrix representation using Burnett functions [9]
described in Appendix A. We assume quadratic speed depen-
dence of collisional broadening and shift [15]. It means that
the operator

Ŝ f
D = −	(v) − i
(v) (18)

is determined by 	(v) and 
(v) given in the following form:

	(v) + i
(v) = 	0 + i
0 + (	2 + i
2)

(
v2

v2
m

− 3

2

)
, (19)

where 	0 and 
0 are the collisional broadening and shift
parameters, averaged over absorber velocity, respectively.
Quadratic speed dependencies of collisional broadening and
shift are described by 	2 and 
2 parameters, respectively.

Discussing the velocity-changing collisions, we will focus
on the case where matrix S f

VC is diagonal or is approximated
by a diagonal matrix. In the Burnett functions basis represen-
tation, instead of the index s = 0, 1, . . . , smax, we prefer to use

two other indices, n = 0, 1, . . . , nmax and l = 0, 1, . . . , lmax.
The pair of indices nl can be connected with s=n+(nmax+1)l
and smax = nmax + (nmax + 1)lmax.

The properties of matrix elements in Burnett functions rep-
resentation are summarized in Appendix A. The assumptions
made above constrain the number of nonzero matrix elements,
which contribute to Eq. (17) to only a few,

ε0 = −[
S f

D

]
00,00 − [K]2

00,01[
S f

VC

]
01,01

+
[
S f

D

]2

00,10[
S f

VC

]
10,10

. (20)

Now we can explicitly express the matrix elements: [K]00,01 =
ωD

√
1/2, where ωD = kvmA , [S f

D]00,00 = −(	0 + i
0), and
[S f

D]00,10 = −(	2 + i
2)
√

3/2.

A. Hard-collision model

To discuss the velocity-changing collisions we first con-
sider the hard-collision (HC) model [16,17], discussed
recently in Ref. [18] in a similar context. The HC model is
frequently used due to its simplicity, despite its shortcomings.
In many situations, it helps to get some analytical results. The
operator Ŝ f

HC describing hard velocity-changing collisions has
the following form:

Ŝ f
HCh(ω, �v) = −νopth(ω, �v) + νopt

∫
d3�v′ fmA (�v′)h(ω, �v′),

(21)

where νopt is the effective optical frequency of velocity-
changing collisions, which, in the general case, can be a
complex number [17,31,32,36]. It can be shown that in any
orthonormal base assuming ϕ0(�v) = 1, the matrix representa-
tion of the Ŝ f

HC operator is diagonal, [S f
HC]s,s′ = −νoptδs,s′ (1 −

δ0,s). All its diagonal elements are equal to −νopt, except
[S f

HC]0,0 = 0. Therefore, also in the Burnett functions repre-
sentation, we can write that [S f

HC]01,01 = [S f
HC]10,10 = −νopt.

Inserting these matrix elements into Eqs. (20) and (15) we got

	HC
eff + i
HC

eff = 	0 + i
0 + ω2
D

2νopt
− 3	2

2

2νopt

+ 3
2
2

2νopt
− i

3	2
2

νopt
. (22)

The above result has also been obtained in our recent paper
with a different method, see Eqs. (19a)–(19d) in Ref. [18],
where we have shown that speed-dependent hard-collision
profile [20] collapses into a simple Lorentz profile in the limit
of frequent velocity-changing collisions.

B. Soft-collision model

In the case when perturbers are much lighter then ab-
sorbers, the velocity-changing collisions are described by
soft-collision (SC) model [42]. This model was introduced by
Galatry [43] into the theory of Dicke-narrowed spectral line
shapes. By that time, the Galatry profile (GP) became one of
the most frequently used expressions to describe collisionally
narrowed spectra. The exact speed-dependent Galatry pro-
file (SDGP) with quadratic speed dependence of collisional
width and shift was given in Ref. [44] and should be not
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confused with its approximated expression provided by Prime
et al. [45] using approach from Ref. [46]. It was shown in
Refs. [9,10] that the velocity-changing soft-collisions operator
Ŝ f

HC is represented with a diagonal matrix operator in the Bur-
nett functions basis. The relevant matrix elements are given by
the following expressions: [S f

SC]00,00 = 0, [S f
SC]01,01 = −νopt,

[S f
SC]10,10 = −2νopt, see Refs. [9,10]. In contrast to the HC

model, the matrix elements [S f
SC]01,01 and [S f

SC]10,10 are not
identical. Inserting these matrix elements into Eqs. (20) and
(15) yields:

	SC
eff + i
SC

eff =	0 + i
0 + ω2
D

2νopt
− 3	2

2

4νopt

+ 3
2
2

4νopt
− i

3	2
2

2νopt
. (23)

The three last terms of this equation are two times smaller then
the ones derived in case of the HC model, Eq. (22) [18].

C. Billiard-ball model

The billiard-ball (BB) model [10] provides a more realistic
description of the velocity-changing collisions. This model
properly accounts for the perturber-absorber mass ratio, α =
mp/ma. The matrix describing such velocity-changing colli-
sions [S f

BB]nl,n′l ′ = νopt fDME∗
nl,n′l ′ is determined by coefficients

ME∗
nl,n′l ′ [9,10] defined in Appendix A. This matrix is diagonal

and the factor fD = 1 in case of α = 0, which corresponds
to the soft-collision (SC) model. For nonzero α, the matrix
[S f

BB]nl,n′l ′ is not diagonal and fD becomes greater than one,
reaching 32/(9π ) ≈ 1.132 for α = ∞ [10]. Nevertheless, we
can approximate the original matrix by its diagonal sim-
plification with the same diagonal elements [S f

BB]nl,nl . The
coefficients ME∗

01,01 = −1 and ME∗
10,10 = −2M1, where M1 =

mA/(mA + mB) are of our particular interest since these al-
low to provide the explicit form of the matrix elements
[S f

BB]01,01 = −νopt fD and [S f
BB]10,10 = −νopt fD2/(1 + α). In

contrast to the HC model, these matrix elements are not
identical. The matrix element [S f

BB]01,01 ≈ ν�v describes relax-
ation rate, ν�v , of the velocity vector, �v. On the other hand,
[S f

BB]10,10 ≈ νv2 describes relaxation rate, νv2 , of v2, which is
directly related to speed, v. As it was shown in Refs. [12,47],
the ratio between the speed, v- or its square, v2-changing
collisions and velocity, �v-changing collisions rate νv2/ν�v =
[S f

BB]10,10/[S f
BB]01,01 = 2/(1 + α) varies with α. This ratio

agrees well with results obtained from the classical molecular
dynamics simulations based on realistic molecular interaction
potentials [11,47]. Inserting the matrix elements [S f

BB]01,01 and
[S f

BB]10,10 into Eqs. (20) and (15) we got

	BB
eff + i
BB

eff = 	0 + i
0 + ω2
D

2ν�v
− 3	2

2

2νv2
+ 3
2

2

2νv2
− i

3	2
2

νv2
.

(24)

We do not need to limit our discussion to the diagonal
approximation in this place. We can take into account the
full matrix, [S f

BB]nl,nl , and use Eq. (13). However, to derive
the exact analytical expressions, we used another method
described in Appendix B, where we found that ν�v = νopt,

νv2 = νopt (2/(1 + α))( fD/ fv2 ), and got the following

	BB
eff + i
BB

eff = 	0 + i
0 + ω2
D

2νopt

+
(

− 3	2
2

2νopt
+ 3
2

2

2νopt
− i

3	2
2

νopt

)
1 + α

2

fv2

fD
.

(25)

	BB
eff and i
BB

eff are the effective width and shift of the
Lorentzian, which the quadratic speed-dependent billiard-ball
profile (SDBBP) [6] collapses to, under frequent velocity-
changing collisions. This expression is a generalization of
Eq. (22) [18] to the arbitrary mass ratio α case. It should be
noted that the factor fv2/ fD (except α = 0 and α = ∞ for
which is equal to one), is slightly greater than unity but not
more than 2.36% in the worst case of α = 2, see Table I.

Equations (22) and (25) become equivalent when α = 1
and corresponding fv2/ fD = 1.018756 is approximated by
unity. Some equivalence of the HC model and BB model with
α = 1 was already discussed in Refs. [6,12,47]. For α = 0 and
the corresponding fv2/ fD = 1, it means in case of SC [42,43],
Eq. (25) provides the effective width and shift of Lorentzian
to which quadratic speed-dependent Galatry profile [6,44]
collapses under frequent velocity-changing collisions. In this
case Eq. (25) is reduced to Eq. (23). It is worth mentioning that
comparing the asymptotic behavior of hard- and soft-collision
models we can see that the components of the effective width
and shift related to suppressed Doppler effect [4] and ther-
mally averaged collisional broadening and shift are the same
for both models. In contrast, the components related to the
speed dependence of collisional broadening and shift are two
times smaller in the case of the soft-collision model. It is a
natural consequence of the fact that νSC

v2 = 2νHC
v2 , when we

keep the same νSC
�v = νHC

�v for both models.

V. COMPONENTS OF EFFECTIVE WIDTH AND SHIFT

In line with our previous paper [18], it is important
to note that the Dicke parameter can take on complex
values, νopt = νr

opt + iν i
opt [17,31,32,36]. Therefore, we can

decompose the effective Lorentzian width and shift of the
asymptotic quadratic correlated speed-dependent billiard-ball
profile [6,25,27,48] into several contributions:

	eff = 	0 + 	γ + 	δ + 	γδ + 	ωD , (26a)


eff = 
0 + 
γ + 
δ + 
γδ + 
ωD . (26b)

Assuming quadratic speed-dependent collisional broaden-
ing and shift as well as velocity-changing collisions described
by the billiard-ball model, these contributions are

	γ = − fv2

fD

1 + α

2

νr
opt

|νopt|2
3

2
	2

2, (27a)

	δ = fv2

fD

1 + α

2

νr
opt

|νopt|2
3

2

2

2, (27b)

	γδ = −2
fv2

fD

1 + α

2

ν i
opt

|νopt|2
3

2
	2
2, (27c)
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TABLE I. Coefficients fD, fv2 and their ratio fD/ fv2 evaluated for different α within billiard ball model.

4α fD fv2 fD/ fv2

0 1 1 1
1/100 1.00000331561954 1.00000991995975 0.99999339572530
1/50 1.00001319212471 1.00003935941918 0.99997383373542
1/20 1.00008114950708 1.00023998438455 0.99984120323127
1/10 1.00031613831745 1.00091992503335 0.99939676821212
1/5 1.00119948726834 1.00336387252056 0.99784287105456
1/4 1.00182496341562 1.00501525070746 0.99682563295473
1/3 1.00310178272716 1.00822551613664 0.99491806810334
1/2 1.00636139570140 1.01565719613513 0.99084750202223
2/3 1.01027159637697 1.02349086931942 0.98708413202431
1 1.01895378488101 1.03806540223391 0.98158919725889
3/2 1.03178515946401 1.05522030753985 0.97779122718887
2 1.04294734723661 1.06757150938264 0.97693441429486
3 1.05994565861 1.0835515889 0.9782142996
4 1.0717514674 1.093265697 0.980321134
5 1.08028126 1.09975074 0.982296461
10 1.101660 1.114423 0.9885474
20 1.11523 1.122707 0.99334
50 1.12464 1.1280 0.997
100 1.1280 1.1280 1
∞ 32/9π ≈ 1.131 1.131 1

	ωD = νr
opt

|νopt|2
1

2
ω2

D, (27d)


γ = fv2

fD

1 + α

2

ν i
opt

|νopt|2
3

2
	2

2, (27e)


δ = − fv2

fD

1 + α

2

ν i
opt

|νopt|2
3

2

2

2, (27f)


γδ = −2
fv2

fD

1 + α

2

νr
opt

|νopt|2
3

2
	2
2, (27g)


ωD = − ν i
opt

|νopt|2
1

2
ω2

D. (27h)

For real νopt = νr
opt (ν i

opt = 0) the components of effective
width are: 	ωD 	0, 	γ , 	δ . The first two terms represent
collisionally suppressed Doppler broadening and velocity-
averaged collisional width, respectively. 	γ can be seen as a
reduction of line width caused by the speed-dependence of
collisional broadening. It is qualitatively coherent with find-
ings in the other context of the speed-dependent Voigt profile
(SDVP) [2,3], where also the narrowing of the spectral line
was triggered by speed dependence of collisional broadening.
On the other hand, 	δ represents an additional broadening of
the line caused by the speed-dependent spread of collisional
shift [7,8,49]. The character of these contributions does not
depend on the sign of 	2 and 
2 parameters. The effec-
tive shift, in such circumstances, has only two components,

0 and 
γδ . The first one represents an ordinary velocity-
averaged collisional shift, however, the second term is less
obvious and is related to the product of speed dependencies
of collisional broadening and shift or their correlation [18].

The other contributions, namely 	γδ , 
γ , 
δ , and 
ωD ,
only come into play if νopt has a nonzero imaginary

component, i.e., ν i
opt �= 0. While we will not delve into a

detailed discussion of these contributions, we will touch on
the last one, 
ωD . This shift arises due to Dicke-suppressed
Doppler broadening, and it should decrease inversely with
pressure, similar to the well-known 	ωD [4]. This is because
νopt is proportional to pressure, while ωD remains constant
at a given temperature. Therefore, in a moderate range of
pressures, this term can potentially impact the precise de-
termination of the line position. In fact, as we demonstrate
in the following section, under certain conditions, 
ωD can
contribute up to 2 MHz to the effective line shift, 
eff .

To describe the relative contribution of each effect (x =
γ , δ, γ δ, or ωD) under specific physical conditions, we in-
troduce dimensionless parameters 	x/	0 and 
x/
0. It is
worth noting that all collisional parameters, including νopt,
	0, 	2, 
0, and 
2, are proportional to gas pressure. There-
fore, the dimensionless parameters 	x/	0 and 
x/
0 for
x = γ , δ, and γ δ are independent of pressure. In fact, as we
show in the following section, under certain conditions, 	δ can
account for approximately 35% of 	0, and the absolute value
of 
γδ can reach 5% of 
0 or 20% of 	0. For further details,
please refer to the next section.

VI. NUMERICAL VALIDATION

We validated the analytical expressions obtained in the
previous section. To achieve this, we compared our results
with the numerical half-width at half-maximum (HWHM)
	exact and the frequency 
exact corresponding to the position
of the maximum of the quadratic speed-dependent billiard-
ball profile [6]. Specifically, we focused on validating the
formulas for 	γ , 	δ , 	ωD , and 
γδ given by Eqs. (27a), (27b),
(27d), and (27g), respectively. To carry out our calculations,
we considered four values of α = 1/3, 1, 3, 10, assuming real
νopt = νr

opt, ν i
opt = 0.
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(a) (b)

(c) (d)

FIG. 1. Numerical verification of asymptotic formulas for 	γ ,
	δ , 	ωD , and 
γδ . (a)–(c) show ratios of 	exact/	γ , 	exact/	δ ,
	exact/	ωD as functions of νopt/	2, νopt/
2, νopt/ωD, respectively,
where 	exact is numerically evaluated half width at half maximum
(HWHM) of the quadratic speed-dependent billiard-ball profile.
(d) shows the ratio of 
exact/
γδ as a function of νopt/

√
	2
2

where 
exact is numerically evaluated frequency corresponding to
a maximum of the quadratic speed-dependent billiard-ball profile.
Presented ratios were evaluated for α = 1/3, 1, 3, 10 as well as for
α = 0, it means soft collisions (SC), and hard collisions (HC).

To provide further insight, we also compared our results
with those obtained from the soft-collision model, which
corresponds to the billiard-ball model with α = 0 and the
speed-dependent Galatry profile [44] and the hard-collision
model [16,17], which we discuss in detail in Ref. [18]. To
simplify our analysis, we focused on one effect at a time and
set the appropriate values for the line shape parameters: 	0,

0, 	2, 
2, ωD, νopt in the quadratic SDBBP.

Our results, shown in Fig. 1, demonstrate that 	exact con-
verges to 	γ , 	δ , 	ωD as well as 
exact approaches 
γδ in the
limit of high νopt. However, we observed that the convergence
is slower for higher values of α in the case of 	γ , 	δ , and

γδ . This observation is directly related to the fact that νv2

decreases with increasing α, while ν�v remains constant. On
the other hand, the situation is different for 	ωD , which is
determined by ν�v and is not dependent on α. As shown in
Fig. 1(c), the variations for α are weak in this case. However,
for extremely large values of α, significant discrepancies for
different α are observed. This topic has been discussed in
detail in Ref. [6].

The discussion of the effective broadening component 	δ ,
which arises from the speed dependence of the collisional
shift 
(v), is important in this context. As mentioned earlier,
an increase in α results in a decrease in νv2 . Therefore, we
anticipate that, with other parameters held constant, an in-
crease in α will result in an increase in 	δ . In the frequent

FIG. 2. Ratio of 	exact (α)/	exact (α = 0) evaluated for several
values νopt/
2 within quadratic speed-dependent billiard-ball profile
in which parameters 	0, 
0, 	2, ν i

opt, and ωD were set to zero and
its comparison with ratio 	δ (α)/	δ (α = 0) ≈ 1 + α obtained for
νopt/
2 → ∞.

velocity-changing collisions regime, where νopt dominates, an
asymptotic analytical relation for quadratic SDBBP [6] can be
written as:

	δ (α)

	δ (α = 0)
= fv2

fD
(1 + α) ≈ 1 + α. (28)

To simplify the calculation, the factor fv2/ fD in the asymptotic
relation can be approximated as unity, introducing an error of
less than 2%. We verified the accuracy of this approximation
for finite values of νopt/
2 by simulating quadratic SDBBP
for various values of νopt/
2 and α, while setting all other
parameters (	0, 
0, 	2, ν i

opt, and ωD) to zero. We then cal-
culated 	exact for the simulated profiles, and plotted the ratios
	exact (α)/	exact (α = 0) as a function of α for several values of
νopt/
2 (3, 10, 100, 1000) in Fig. 2. As shown in this figure,
for νopt/
2 = 10, the simulation results are reproduced by
Eq. (28) for small to moderate values of α up to α = 3.

As mentioned in Sec. III, our derivation was conducted un-
der the assumption that velocity-changing collisions dominate
over both Doppler broadening and collisional broadening and
shift, particularly their speed-dependent parts. To satisfy this
condition, the interactions between the absorber and perturber
molecules at the initial and final molecular states need to be
either identical or closely similar [17,33–41]. Physically, this
requirement can be met in the case of rovibronic transitions in
molecular hydrogen. This can be observed through ab initio
calculations, as presented in Ref. [50]. Additionally, it has
been demonstrated in Refs. [28,51] that such calculations,
along with the use of SDBBP [6], can achieve subpercent
agreement with experimental data.

It is seen from Fig. 1 that for α � 3 and νopt/	2 � 10 the
error introduced by our approximation of 	γ does not exceed
16%. Similarly, for νopt/
2 � 10 our approximation of 	δ

reproduces the corresponding width with inaccuracy less than
7%. Ultimately, if νopt/ωD � 10 the error on 	ωD is at most
0.3%, which is significantly smaller than in the previous cases.
On the other hand, for the pressure shift, if νopt/

√
	2
2 � 10

our approximation of 
γδ introduces error, which does not
exceed 23%. In conditions where the speed-averaged values
	0 and 
0 are significantly greater than their speed dependen-
cies, 	2 and 
2, the combined errors originating from these
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TABLE II. Comparison of the Lorentz profile effective param-
eters for Q(1) 1-0 transition in H2 perturbed by He (α = 2) at
10 atm and 296 K obtained with Eqs. (27a)–(27h) derived from the
billiard-ball model (BB) and effective parameters from Ref. [18,50]
derived from hard-collision model (HC). The line shape parameters
are 	0 = 22.346, 
0 = 90.971, 	2 = 10.856, 
2 = 38.192, νr

opt =
404.148, ν i

opt = −54.697, ωD = 21.659 [50] are given in the units of
10−3 cm−1.

	x 	BB
x (10−3 cm−1) 	BB

x /	0 	HC
x (10−3 cm−1) 	HC

x /	0

	0 22.346 1.000 22.346 1.000
	γ −0.645 −0.029 −0.430 −0.019
	δ 7.974 0.357 5.316 0.238
	γδ 0.613 0.027 0.409 0.018
	ωD 0.572 0.026 0.572 0.026
	eff 30.860 1.381 28.215 1.263
	exact 30.140 1.349 27.388 1.226


x 
BB
x (10−3 cm−1) 
BB

x /
0 
HC
x (10−3 cm−1) 
HC

x /
0


0 90.971 1.000 90.971 1.000

γ −0.087 0.001 −0.058 −0.0006

δ 1.079 0.012 0.719 0.008

γδ −4.533 −0.050 −3.022 −0.033

ωD 0.077 0.0008 0.077 0.0008

eff 87.507 0.962 88.688 0.975

exact 86.270 0.948 88.005 0.967

contributions result in a significantly smaller relative error on
the entire line profile. Additionally, if the νopt dominates over
the other line shape parameters (i.e., 	2, 
2, ωD) by several
dozens, our approximation should reproduce the original pro-
file with several percent accuracy.

We compared the collapsed Lorentz profile to the SDBBP
[6]. To do this, we examined the Q(1) 1-0 transition in H2

perturbed by He at a pressure of 10 atm and a temperature
of 296 K. We used the same line shape parameters as in
Ref. [18], which were obtained from Ref. [50]. The values
of the line shape parameters can be found in the caption of
Table II. This table lists all contributions 	x and 
x to the
effective Lorentzian width 	eff and shift 
eff , respectively.
These values were calculated using Eqs. (27a)–(27h) under
the assumption of a billiard-ball model (α = 2) for velocity-
changing collisions and the hard-collision model, as described
in Ref. [18]. In Table II and Fig. 3, we used the unit of wave
numbers ν̃ = 2πω/c instead of circular frequencies ω, which
is more common in molecular spectroscopy for line shape
parameters.

The ratios νr
opt/ωD = 18.7, νr

opt/	2 = 37.2, and νr
opt/
2 =

10.6 demonstrate that our assumption from Sec. III, that the
velocity-changing collisions dominate over Doppler broaden-
ing and collisional broadening and shift, is valid for the chosen
conditions (pressure, temperature, molecular system). It is
important to note that the values of 	0 and 
0 are not relevant
in this context, as they only result in a simple convolution with
the Lorentz profile determined by these parameters, which are
additive in the case of Lorentz profiles. Furthermore, we have
verified that the binary collision approximation holds well
under these conditions, and the contribution of three-body
collisions to collisional width and shift should not exceed the

FIG. 3. A comparison of the reference speed-dependent billiard-
ball profiles (SDBBP) calculated with α = 2, 1, 0 and parameters
listed in the caption of Table II for Q(1) 1-0 transition in H2 perturbed
by He at 10 atm and 296 K [18,50] and Lorentz profiles (LPBB)
derived as the collapsed SDBBP calculated with parameters given
in this work by Eqs. (26a)–(27h) as well as Lorentz profile (LPHC)
derived as the collapsed hard-collision profile from Ref. [18]. The
area under each line is normalized to 1. The lower graph presents the
residuals against reference SDBBP (α = 2) having α corresponding
to H2-He system with the same color notation as in the top panel.

percentage level. For a detailed discussion, see Sec. II B3 in
Ref. [1].

The H2 spectral line perturbed by He, for which α = 2,
allows us to observe the importance of the perturber/absorber
mass ratio for the collapse of the spectral line shape to a
Lorentz profile due to frequent velocity-changing collisions.
As shown in Table II, the use of the BB model results in a
Lorentz profile that is 9.4% wider than the profile obtained
from the HC model [18]. This is mainly due to the fact that
	δ , the second most significant contribution to 	eff after 	0, is
50% larger in the case of the BB model compared to the HC
model. It should be noted that the 	eff and 
eff obtained from
Eqs. (26a) and (26b), agree with the 	exact and 
exact obtained
from the original SDBBP within 2.3% and 1.4%, respectively.

Figure 3 compares the SDBBP [6] with α = 2, 1, 0
with Lorentz profiles derived from the BB model (LPBB)
and the HC model (LPHC). It shows that LPBB(α = 2)
provides a good approximation of SDBBP(α = 2), with a
difference of about 2% at the maximum of the profile.
In contrast, LPHC exhibits a much larger deviation. The
LPHC follows closely LPBB(α = 1) and SDBBP(α = 1). The
discrepancy between SDBBP(α = 2) and LPHC is caused
by the fact that, in the case of the HC model, the fre-
quency of speed-changing collisions νv2 does not capture
its dependence on α, which is about 2/3 times smaller for
the BB model with the same parameter values and α = 2.
On the other hand the frequency of speed-changing col-
lisions νv2 for HC model agrees within 2% with those
from BB model with α = 1. A comparison of SDBBP(α =
2) with soft-collision profiles LPSC and SDGP [44],
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which are equivalent to LPBB(α = 0) and SDBBP(α = 0),
respectively, looks even worse. It is caused by the fact that
the BB model with the same parameter values and α = 2 has
the frequency of speed-changing collisions νv2 only about 1/3
of this in SC model (BB model with α = 0).

VII. CONCLUSIONS

In summary, we demonstrated that under the limit of
frequent velocity-changing collisions, the speed-dependent
Dicke-narrowed profile of the spectral line collapses to the
Lorentz profile. Our work provides formulas for effective
Lorentzian width and shift, which take into account the arbi-
trary speed dependence of collisional broadening and shift, as
well as the velocity-changing collision operator. Specifically,
for the asymptotic behavior of the quadratic speed-dependent
billiard-ball profile [6], we obtained simple analytical expres-
sions for Lorentzian width and shift. Our results generalize
those recently reported in Ref. [18] for the speed-dependent
hard-collision profile [20] to the case of arbitrary perturber-
absorber mass ratio, α. We verified the applicability of our
formulas by comparing them with numerical calculations of
quadratic speed-dependent billiard-ball profiles over a wide
range of line shape parameters.

Finally, our comparison with the numerical calculation of
the H2 spectral line perturbed by He showed good agreement
with the profile derived in this work. This is thanks to properly
accounting for the perturber-absorber mass ratio, which was
not possible with the hard-collision model. Our results offer a
more accurate and general description of spectral line shapes
under the limit of frequent velocity-changing collisions, with
potential applications in various fields including atmospheric
and astrophysical spectroscopy involving rovibrational transi-
tions of molecular hydrogen.
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APPENDIX A: THE BURNETT FUNCTIONS
REPRESENTATION

For evaluation of the speed-dependent Dicke-narrowed
spectral line shape from the transport-relaxation equation we
use a subset of the Burnett functions having axial symmetry
about the wave vector �k [9]. A detailed discussion of the
application of this set of basis functions, as well as matrix rep-
resentation of the operators present in the transport-relaxation

equation, can be found in Ref. [6]. For convenience we recall
these results here, using the original formulation.

We assume the basis functions in the following
form [10]:

ϕnl (�v) = Nnl
(
v/vmA

)l
Ll+1/2

n

(
v2/v2

mA

)
Pl (�ek · �ev ), (A1)

where a normalization factor,

Nnl =
√

π1/2 n! (2l + 1)

2 	(n + l + 3/2)
, (A2)

	(. . .) is the gamma-Euler function. The associated Laguerre
polynomials are defined as

Ll+1/2
n (x2) =

n∑
m=0

(−1)m 	(n + l + 3/2)

m! (n − m)! 	(m + l + 3/2)
x2m, (A3)

where x = v/vmA is the reduced speed of the active molecule.
The Legendre polynomials are defined as

Pl (y) = 1

2l

[l/2]∑
k=0

(−1)k (2l − 2k)!

k! (l − k)! (l − 2k)!
yl−2k, (A4)

where y = �ek · �ev is the cosine of the angle between the veloc-
ity vector �v = v�ev and the wave vector �k = k�ek , �ev and �ek are
unit vectors.

The basis functions, ϕnl (�v), are eigenfunctions of the
velocity-changing collision operator in the case of the soft
collisions, where perturber-absorber mass ratio α = 0. Like
in [6], when calculating matrix elements of an operator, Â, we
use the following notation [A]nl,n′l ′ = (ϕnl (�v), Âϕn′l ′ (�v)) =
〈nl|Â|n′l ′〉.

The Doppler shift operator, �k · �v = ωD�ek · �v/vmA , is repre-
sented by a matrix, K, the elements of which are [6]

[K]nl,n′l ′ = ωD〈nl|�ek · �v/vm|n′l ′〉, (A5)

where ωD = kvmA and

〈nl|�ek · �v/vm|n′l ′〉

= [
√

n + l + 3/2 δn,n′−√
n δn,n′+1]

√
(l + 1)2

4(l + 1)2−1
δl,l ′−1

+ [
√

n + l + 1/2 δn,n′−√
n + 1 δn,n′−1]

√
l2

4l2−1
δl,l ′+1.

(A6)

The speed-dependent collisional width and shift operator,
Ŝ f

D = −	(v) − i
(v), is represented by a matrix, S f
D, the ele-

ments of which are [6,24][
S f

D

]
nl,n′l ′ = 4√

π (2l + 1)
Nnl Nn′l δl,l ′

∫ ∞

0
dx e−x2

x2l+2

× Ll+1/2
n (x2) Ll+1/2

n′ (x2)
[
	

(
xvmA

) + i

(
xvmA

)]
.

(A7)

In the case of quadratic speed-dependent collisional broaden-
ing and shift [15],

	(v) + i
(v) = 	0 + i
0 + (	2 + i
2)

(
v2

v2
m

− 3

2

)
, (A8)
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the matrix elements can be written as[
S f

D

]
nl,n′l ′ = − [	0 + i
0 − (	2 + i
2)3/2]δn,n′δl,l ′

− [	2 + i
2]〈nl|v2/v2
m|n′l ′〉, (A9)

where

〈nl|v2/v2
m|n′l ′〉

= [(2n + l + 3/2) δn,n′ −
√

(n + l + 1/2)n δn,n′+1

−
√

(n + l + 3/2)(n + 1) δn,n′−1]δl,l ′ . (A10)

The velocity-changing collisions operator Ŝ f
BB in the

billiard-ball model is represented by a matrix, S f
BB, the

elements of which are [9,10][
S f

BB

]
nl,n′l ′ = ν (0) ME∗

nl,n′l ′ , (A11)

where ν (0) = v2
m/(2D(0) ) and

D(0) = 3

8

(
kBT

2πμ

)1/2 1

Nσ 2
(A12)

is the first-order self-diffusion coefficient for rigid spheres, σ

is the average of the rigid sphere diameter of the absorber
and perturber, N is the number density of perturbers, μ =
mAmP/(mA + mP ) is the reduced mass. The analytical ex-
pressions for coefficients ME∗

nl,n′l ′ for billiard-ball model were
derived by Lindenfeld and Shizgal [9,10]

ME∗
nl,n′l ′ = − δl,l ′

3 l!

8M2

√
n! n′!

	(n + l + 3/2)	(n′ + l + 3/2)

{
ñ∑

p=0

ñ−p∑
s=0

ñ−p−s∑
m=0

l∑
q=0

l−q∑
r=0

[
4p (r + s + p + q + 1)!

(p + q + 1)! r! s!

]

×
[

	(n + n′ − 2s − 2p − m + l − r − q − 1/2) B(1)
p,q(∞)

(n − m − s − p)! (n′ − m − s − p)! (l − r − q)! m!

][
Ml+p−r−q

1 Mn+n′+q−2m−2s−p
2 (M1 − M2)m+r+2s

]}
, (A13)

where M1 = mA/(mA + mP ) = 1 − M2, ñ = min(n, n′) and

B(1)
p,q(∞) = (2p + q + 1)!

2q! (2p + 1)!
− 2q−1(p + q + 1)!

p! q!
. (A14)

The exact diffusion coefficient D differs from D(0) and they
are related by coefficient fD = D/D(0) which evaluation is
explained in Appendix B. Using these quantities the matrix
elements can be written as[

S f
BB

]
nl,n′l ′ = νdiff fD ME∗

nl,n′l ′ (A15)

where

νdiff = v2
m

2D
(A16)

is the effective frequency of velocity-changing collisions.

APPENDIX B: NONDIAGONAL CORRECTIONS TO
EFFECTIVE LORENTZIAN WIDTH AND SHIFT

Aiming at calculations of spectral line shape with quadratic
speed-dependent collisional broadening and shift in the limit
dominated by velocity-changing collisions, Eq. (5) can be
rewritten in the Burnett functions representation,

1 = (−i(ω − ω0) − [
S f

D

]
00,00

)
c00(ω)

+ i
[
K

]
00,01c01(ω) − [

S f
D

]
00,10c10(ω), (B1a)

0 = i[K]01,00δn,0c00(ω) −
∞∑

n′=0

[
S f

VC

]
n1,n′1cn′1(ω), (B1b)

0 = −[
S f

D

]
10,00δn,1c00(ω) −

∞∑
n′=1

[
S f

VC

]
n0,n′0cn′0(ω). (B1c)

We also take advantage of the fact that c00(ω) is not
coupled to other coefficients by matrix S f

VC and it domi-
nates two other matrices S f

D and K. Therefore, in the limit

of frequent velocity-changing collisions, we are allowed to
use matrix S f

VC and only those matrix elements of S f
D and

K, which provide coupling of c00(ω) to other coefficients in
the transport-relaxation equation. With the velocity-changing
collision operator in the form from Eq. (A11), we can find
c00(ω) by solving two other sets of linear equations,

δn,0 = −
∞∑

n′=0

ME∗
n1,n′1an′1, (B2a)

δn,1 = −
∞∑

n′=1

ME∗
n0,n′0an′0. (B2b)

Equations (B2a) and (B2b) are equivalent to Eqs. (B1b)
and (B1c) when we set

cn1(ω) = − i[K]01,00

ν (0)
c00(ω)an1, (B3a)

cn0(ω) =
[
S f

D

]
10,00

ν (0)
c00(ω)an0. (B3b)

Now we can rewrite Eq. (B1a) in the following form:

1 =
(

− i(ω − ω0) − [
S f

D

]
00,00

+ [K]2
01,00

ν (0)
a01 −

[
S f

D

]2

10,00

ν (0)
a10.

)
c00(ω). (B4)

It is convenient to introduce the coefficient fD =
a01(−ME∗

01,01) = a01, were a01 can be found by solving
Eq. (B2a) [10]. Analogically, we can introduce fv2 =
a10(−ME∗

10,10) = a102/(1 + α), were a01 can be found by
solving Eq. (B2b).

Table I collects the coefficients fD and fv2 as well as
their ratios for the same set of α. We repeat the calcula-
tions of fD performed by Lindenfeld in 1980 [10] for the
billiard-ball model but with higher numerical precision (our
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results are in good agreement for all but the last digit of
the Table 1 of Ref. [10]). With these coefficients we define
effective rates ν�v = ν (0)/ fD of change of velocity vector �v and
νv2 = ν (0)[2/(1 + α)]/ fv2 of change of v2. From that we can
obtain the relation νv2 = ν�v[2/(1 + α)]( fD/ fv2 ) between rates
of change of �v and v2.

Solving Eq. (B4) yields

c00(ω) = 1

	eff + i
eff − i(ω − ω0)
, (B5)

where the effective Lorentzian width and shift are

	eff + i
eff = −[
S f

D

]
00,00 + [K]2

01,00

ν�v
−

[
S f

D

]2

10,00

νv2
. (B6)

This equation can be also written in the following form:

	eff + i
eff = 	0 + i
0 + 1

2

ωD

ν�v
−3

2

(	2 + i
2)2

ν�v

1 + α

2

fv2

fD
,

(B7)

which gives Eq. (25).
To take into account any arbitrary speed dependence of col-

lisional broadening, 	(v), and shift, 
(v), we need to include
other matrix elements, [S f

D]n0,00, besides [S f
D]10,00. In such

case, Eqs. (B1a)–(B1b) should be generalized to the following
form:

1 = (−i(ω − ω0) − [
S f

D

]
00,00

)
c00(ω)

+ i[K]00,01c01(ω) −
∞∑

n′=1

[
S f

D

]
00,n′0cn′0(ω), (B8a)

0 = i[K]01,00δn,0c00(ω) −
∞∑

n′=0

[
S f

VC

]
n1,n′1cn′1(ω), (B8b)

0 = −[
S f

D

]
n0,00c00(ω) −

∞∑
n′=1

[
S f

VC

]
n0,n′0cn′0(ω). (B8c)

The coefficient c00(ω) can be found in analogical way like
in Eqs. (B1a)–(B1b). The only difference is that the set of
linear equations, Eq. (B2b), is replaced by[

S f
D

]
n0,00∑∞

n′=1

[
S f

D

]
n′0,00

= −
∞∑

n′=1

ME∗
n0,n′0an′0, (B9)

and scaling Eq. (B3b) is replaced by

cn0(ω) =
∑∞

n′=1

[
S f

D

]
n′0,00

ν (0)
c00(ω)an0. (B10)

Now from Eq. (B8a) we get

1 =
(

−i(ω − ω0) − [
S f

D

]
00,00 + [K]2

01,00

ν (0)
a01

− 1

ν (0)

∞∑
n=1

[
S f

D

]
n0,00

∞∑
n′=1

[
S f

D

]
n′0,00an′0

)
c00(ω), (B11)

and, as a consequence, the effective Lorentzian width and
shift:

	eff + i
eff = − [
S f

D

]
00,00 + [K]2

01,00

ν�v

− 1

ν (0)

∞∑
n=1

[
S f

D

]
n0,00

∞∑
n′=1

[
S f

D

]
n′0,00an′0.

(B12)
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