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Algebraic relations from finite-nuclear-mass effects to test atomic transition rates

Aaron T. Bondy 1 and G. W. F. Drake 1,2

1Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4
2Canterbury College, Windsor, Ontario, Canada N9B 3Y1

(Received 26 June 2023; accepted 21 August 2023; published 8 September 2023)

General algebraic relations are derived which provide a stringent test of the accuracy of n-photon electric
dipole transition rates when mass-polarization effects are included. They are a generalization of the well-known
equivalence of the length, velocity, and acceleration forms of the transition matrix element that follows from
gauge invariance. The algebraic relations connect the coefficients in a power series in powers of μ/M for the
three gauges, where M is the nuclear mass and μ is the electron reduced mass. These relations also provide a
stringent test of the leading infinite-mass term, a quantity that must be calculated with sufficient accuracy for the
higher-order terms in powers of μ/M to be correct. As a check, the length-velocity algebraic relations are used
to test the accuracy of high-precision calculations for both one-photon (1s2p 1P −1s2 1S and 1s2p 3P −1s2s 3S)
and two-photon (1s2s 1S −1s2 1S) decay for the heliumlike ions with Z = 2–10.
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I. INTRODUCTION

The length, velocity, and acceleration gauges of the dipole
matrix element for radiative transition probabilities for atoms
and molecules are widely used in comparison as a theoretical
check on the accuracy of calculations of quantities, including
polarizabilities and decay rates [1]. These gauges can be re-
garded as particular values of a continuous gauge parameter
controlling longitudinal and scalar contributions to the vector
potential A(r, t ) [2]. In the limit of an infinite nuclear mass,
the gauges should agree to the extent that the wave functions
used are exact. Agreement in the corresponding finite-mass
case requires careful treatment of gauge-dependent finite-
mass effects. Otherwise, the gauges will disagree due to
neglected terms of order μ/M, where M is the nuclear mass
and μ is the reduced mass of the electron. The purpose of this
paper is to derive algebraic relations which quantify the gauge
agreement for any n-photon (nE1) finite-mass transition rate
and to demonstrate that they are satisfied for heliumlike ions
via numerical calculations.

One- and two-photon processes are ubiquitous in atomic
physics. One-photon (E1) and two-photon (2E1) transition
rates are used in numerous astrophysical applications (e.g.,
[3–5]). Resonant rates are important generally in astrophysical
emission, and forbidden rates such as the two-photon decay
rates are important in the limit of low particle density such
as in the characterization of planetary nebulae. The lifetimes
of the resonant states are largely determined by the E1 de-
cay mechanism [6]. In heliumlike ions, on which we focus
in this paper, two-photon decay rates have been calculated
more accurately over time, beginning with Göppert-Mayer
[7], then Breit and Teller [8] and Dalgarno and Bates [9].
Finite-nuclear-mass effects (hereafter “finite-mass effects”)
were considered by Fried and Martin [10], Drake [11], and,
most recently, Bondy et al. [12]. In Ref. [12], algebraic re-
lations were derived to compare decay-rate calculations that
include finite-mass effects in the length and velocity gauges
to approximately 1 part in 108. This method works even for

the exotic p̄2-He, where μ/M ≈ 0.2011. The present paper
generalizes and extends the results of Ref. [12], presenting
a full derivation of the resulting algebraic relations for nE1
transition rates in heliumlike ions up to approximately 1 part
in 1012, and includes the algebraic relationships involving the
acceleration gauge.

There has been increasing interest in exotic particles such
as muonic, pionic, and even antiprotonic helium, where the
electron is replaced by a heavier particle. The Lamb shift in
muonic hydrogen was measured by Pohl et al. [13], igniting
the “proton puzzle,” with further measurements by Nebel et al.
[14]. Theoretical characterization of the muonic Lamb shift
was carried out by Pachucki [15]. Posada et al. [16] calcu-
lated the so-called quantum muon effect in muonic helium
and muonic lithium to rigorously study ionization potentials
in a physical chemistry application. In one-electron plasma
physics, Poszwa et al. [17] studied the finite-mass and finite-
size effects on muonic hydrogenlike atoms in a Debye plasma.
Clearly, exotic few-electron systems play an important role in
fundamental physics, and the characterization of finite-mass
effects is very important because these effects are much larger
than in their electronic counterparts.

In addition to finite-mass corrections of order μ/M, high-
precision calculations also require consideration of relativistic
corrections of order (αZ )2, where α � 1/137 is the fine-
structure constant and Z is the nuclear charge. In low-Z
heliumlike ions, these effects are of comparable size and are
both needed for precise comparison with astrophysical obser-
vation and experiment (see, e.g., Drake and Morton [18]), but
at lowest order, they can be treated independently. This paper
is concerned exclusively with finite-mass effects. Relativistic
effects can be found for the one-photon oscillator strengths
in Głowacki [19] using relativistic configuration interaction
(RCI) wave functions; in transition amplitudes in helium in
the work of Johnson et al. [20], where eigenfunctions of
the no-pair Hamiltonian were used to characterize the role
of negative energy states in obtaining gauge agreement; and
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in the spin-forbidden electric dipole transitions in transition
rates in neutral helium by Morton et al. [21]. Relativistic
effects have been included for the two-photon decay of the
n = 2 metastable states in heliumlike ions by Drake, who
quantitatively estimated them in [11], and by Derevianko and
Johnson using an RCI calculation [22].

The balance of this paper is organized as follows. The
theory of one- and two-photon transition rates in the frame-
work of Fermi’s golden rule is reviewed in Sec. II. In Sec. III,
the constitutive relations between the finite- and infinite-mass
transition rates in the length, velocity, and acceleration gauges
are derived, and the algebraic relations on which the paper is
focused are established. General relations, valid for any nE1
transition-rate calculation, are given in Sec. III B. Calculations
which confirm the length-velocity algebraic relations for the
case of one- and two-photon decay in heliumlike ions are
described and presented in Sec. IV. A discussion of the results
is presented in Sec. V, along with the outlook for future work.
The Appendix provides explicit perturbation expressions for
the algebraic quantities, with μ/M regarded as a perturbation
parameter.

II. THEORY

Although the basic formalism of radiative transition rates
is well known, it is valuable to go through the details to
ensure that all finite-mass effects are properly included. Fol-
lowing Ref. [12], the discussion of finite-mass effects in light
(Z � 10) atoms begins with the nonrelativistic Schrödinger
equation,

Hinert|ψ〉 = ENR|ψ〉, (1)

with the Hamiltonian

Hinert = P2
N

2M
+

N∑
i=1

⎛
⎝ P2

i

2me
− Ze2/4πε0

|Ri − RN | +
N∑

j>i

e2/4πε0

|R j − Ri|

⎞
⎠,

(2)
where Ri, RN , Pi, PN , me, and M are the positions, momenta,
and masses of the electrons and nucleus, respectively. In
center-of-mass (c.m.) coordinates,

Rcm = MRN + me
∑

Ri

M + 2me
, (3)

ri = Ri − RN, (4)

Hcm = 1

2μ

N∑
i=1

p2
i + 1

M

N∑
i=1

N∑
j>i

pi · p j + 1

2(M + 2me )
P2

cm

−
N∑

i=1

⎛
⎝Ze2/4πε0

|ri| +
N∑

j>i

e2/4πε0

|r j − ri|

⎞
⎠, (5)

where μ = meM
me+M is the reduced mass. The second term

involving the double sum of pi · p j , defines the mass-
polarization term, which vanishes in the limit of infinite
nuclear mass M → ∞. The third term describes the motion
of the c.m. in the inertial frame, and so it can be neglected for
an atom in free space.

To treat interactions with the electromagnetic field, we now
introduce the interaction Hamiltonian. The vector potential

of the electromagnetic field that interacts with the atom is
described by

A(R, t ) = A0(ω)ε̂ eik·R−iωt + c.c., (6)

where

A0(ω) = c

(
h̄

2εoωV

)1/2

(7)

corresponds to a photon of frequency ω, wave vector k (|k| =
ω/c), and polarization ε̂ ⊥ k normalized to an energy of h̄ω

in the volume V . This work assumes the long-wavelength and
electric dipole approximations, so the factor eik·R in Eq. (6)
is replaced by unity so that A = A0ε̂. In the semiclassical
approximation the minimal coupling replacements

PN → PN − ZeA(RN), (8)

Pi → Pi + eA(Ri ) (9)

are made in the inertial Hamiltonian given in Eq. (2). The
interaction Hamiltonian in the inertial frame is

Hint = − Ze

Mc
PN · A(RN) + e

mec

N∑
i=1

Pi · A(Ri ) (10)

and will be written in the appropriate c.m. frame in the ensuing
equations.

A. One-photon transitions

For the sake of definiteness, we consider the case of sponta-
neous emission. However, the same algebraic relations apply
to the cases of absorption and stimulated emission. Between
an initial state |i〉 and a final state | f 〉, the decay rate is given
by Fermi’s golden rule,

wi,fd� = 2π

h̄
|〈i|Hint| f 〉|2ρ(ω)d�, (11)

where

ρ(ω) = Vω2

(2πc)3h̄
(12)

is the density of states of photons in a volume V with
frequency ω. This can be summed over polarizations and
integrated over solid angles d� [23] to give a total decay
rate of

wi,f = 4
3αωi,f |〈i|Qx| f 〉|2, (13)

where α is the fine-structure constant, ωi, f = (Ei − E f )/h̄,
and x = r, p, a for the length, velocity, and acceleration
forms of the dipole operator. For the velocity form, it follows
directly from Eqs. (6) to (12) that

Qp = − Z

Mc
PN + 1

mec

N∑
i=1

Pi. (14)

The length form Qr can then be obtained by requiring that the
commutation relation

[Hinert, Qr/h̄ωi,f ] = Qp (15)
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be satisfied, which yields

Qr = − i

c
ωi,f

(
ZRN −

N∑
i=1

Ri

)
. (16)

The dipole operator in the acceleration form Qa can be
obtained using the commutation relation

[Hinert, Qp/h̄ωi,f ] = Qa, (17)

where

Qa = iZ

mec ωi,f

Zme + M

M

N∑
i=1

(Ri − RN)

|Ri − RN|3 . (18)

Although the numerical tests in this work (as in Ref. [12])
are performed for the length and velocity forms, we present
the corresponding acceleration forms throughout the paper
and extend the algebraic relations we derive to include this
acceleration form.

To study mass-polarization effects, Qp, Qr , and Qa must be
transformed to c.m. plus relative coordinates to conform with
the Hamiltonian in Eq. (5), with the result

Qp = Zp

mec

N∑
i=1

pi,

Qr = iωi,f

c
Zr

N∑
i=1

ri,

Qa = iZ

mec ωi,f
Zp

N∑
i=1

ri

|ri|3 , (19)

where

Zp = Zme + M

M
, Zr = Zme + M

Nme + M
,

and the number of electrons is N = 2 for heliumlike atoms.
The Zp and Zr terms account for the radiation produced by the
nucleus as it moves in the c.m. frame. These operators satisfy

[Hcm, Qr] = h̄ωi,f Qp, [Hcm, Qp] = h̄ωi,f Qa (20)

in the c.m. frame. To the extent that the nonrelativistic
Schrödinger equation, Eq. (1), is solved exactly, the relation

〈i|Qr | f 〉 = 〈i|Qp| f 〉 = 〈i|Qa| f 〉 (21)

is satisfied.

B. Two-photon transitions

According to Fermi’s golden rule, the triply differential
rate for two-photon decay is

dw(2γ )d�1 d�2 = 2π

h̄

∣∣U (2)
i,f

∣∣2
ρ(ω1)ρ(ω2)d�1 d�2 dE1.

(22)

As in the one-photon case shown in Eq. (12), ρ(ω1) and
ρ(ω2) are the densities of photon states, subject to the energy-
conserving condition

Ei − Ef = h̄ω1 + h̄ω2. (23)
The second-order transitions are described by interaction with
the electromagnetic vacuum by [24]

U (2)
i,f = −

∑
n

[ 〈 f |Hint (ω1)|n〉〈n|Hint (ω2)|i〉
En − Ei + h̄ω2

+ 〈 f |Hint (ω2)|n〉〈n|Hint (ω1)|i〉
En − Ei + h̄ω1

]
. (24)

In the dipole approximation (A = A0ε̂), together with
Eq. (12) for ρ(ω) and Eq. (7) for A0, the two-photon decay
rate is [12]

w(2γ ) = 1

2

∫ 


0

dw(2γ )

dω1
dω1

= 4α2


3π

∫ 1

0
|Q(2γ )(y)|2dy, (25)

with y = ω1/
 and 
 = (Ei − E f )/h̄. The length, velocity,
and acceleration forms of this dipole operator Q(2γ ) are

Q(2γ )
p (ω1, ω2) = −(ω1ω2)1/2

∑
n

〈1 1S |Q′
p,z|n 1P〉〈n 1P |Q′

p,z|2 1S〉
(

1

ωn − ωi + ω2
+ 1

ωn − ωi + ω1

)
, (26)

Q(2γ )
r (ω1, ω2) = −(ω1ω2)1/2

∑
n

〈1 1S |Q′
r,z|n 1P〉〈n 1P |Q′

r,z|2 1S〉
(

1

ωn − ωi + ω2
+ 1

ωn − ωi + ω1

)
, (27)

Q(2γ )
a (ω1, ω2) = −(ω1ω2)1/2

∑
n

〈1 1S |Q′
a,z|n 1P〉〈n 1P |Q′

a,z|2 1S〉
(

1

ωn − ωi + ω2
+ 1

ωn − ωi + ω1

)
, (28)

with

Q′
p = 1

mec
Zp

N∑
i=1

pi, (29)

Q′
r = i(ω1ω2)1/2

c
Zr

N∑
i=1

ri, (30)

Q′
a = iZ

mec (ω1ω2)1/2
Zp

N∑
i=1

ri

r3
i

. (31)

Comparing Eqs. (29)–(31) with the one-photon version in
Eq. (19), we note that the overall frequency ω and Z terms,
along with the momentum p and position r operators, oc-
cur with the same power for the corresponding gauge. The
only difference is that the frequency in the prefactor reads
(ω1ω2)1/2 for the two-photon dipole operator in the length
and acceleration gauges but just ωi,f in the corresponding
single-photon operator. This correspondence will be used in
generalizing the conclusions drawn from one- and two-photon
transition rates to the general case of nE1 transitions.
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C. Calculations

We begin by rewriting the c.m. Hamiltonian from Eq. (5)
in reduced-mass atomic units, given by

ρ = μ

me

r
a0

, τ = μ

me

αc

a0
t,

i∇ = −me

μ

a0

h̄
p, ε =

(
me

μ

)
E

α2mec2
, (32)

where a0 is the Bohr radius and E is the nonrelativistic en-
ergy from Eq. (1). With these substitutions, the two-electron
Schrödinger equation takes the dimensionless form[

−1

2

(∇2
ρ1

+ ∇2
ρ2

) − μ

M
∇ρ1 · ∇ρ2 + V (ρ1, ρ2)

]
Ψ = εΨ ,

V(ρ1, ρ2) = − Z

ρ1
− Z

ρ2
+ 1

|ρ1 − ρ2| . (33)

Approximate variational solutions are constructed by solving
the generalized eigenvalue problem in a double Hylleraas
basis set [25] of the form


 = c0
0 +
i+ j+k��∑

i jk

⎡
⎢⎢⎣c(A)

i jk ϕi jk (αA, βA)︸ ︷︷ ︸
A sector

+ c(B)
i jk ϕi jk (αB, βB)︸ ︷︷ ︸

B sector

⎤
⎥⎥⎦.

(34)

The individual basis functions have the form

ϕi jk (α, β ) = ri
1 r j

2 rk
12 e−αr1−βr2 YM

l1,l2,L(r̂1, r̂2)

± exchange, (35)

where YM
l1,l2,L

(r̂1, r̂2) are vector-coupled spherical harmonics.
The different sectors of the basis functions in Eq. (34) allow
for the characterization of both the asymptotic A sector (r →
∞) and short-range B sector (r → 0). The nonlinear param-
eters αm and βm, m = 1, 2, are obtained by calculating the
four derivatives ∂E

∂αm
and ∂E

∂βm
analytically and then finding the

zeros using Newton’s method. � = (i + j + k)max describes
the Pekeris shell defining the number of terms in each basis
sector. For the initial and final states in both one- and two-
photon decay, an optimized wave function is generated by the
aforementioned procedure minimizing the energy of the state
in question. A complete set of intermediate states is needed for
evaluating two-photon transitions. A pseudospectrum defined
by

〈
n|H |
m〉 = εnδn,m, 〈
n|
m〉 = δn,m (36)

is generated for this purpose. This pseudospectrum provides a
discrete variational representation of all bound and continuum
states that is provably complete in the limit � → ∞ [26].

III. FINITE-MASS EFFECTS

It is convenient to express the finite-mass corrections to
wx,∞ as the product of three factors: the power of Zx, which
characterizes the radiation emitted by the nucleus moving in
the c.m. frame; the power (μ/me), a mass-scaling factor anal-
ogous to the normal isotope shift; and a power series Fx(μ/M )
that characterizes the mass-polarization correction to the wave
functions. The first two are trivial to account for, leaving the
remaining focus on the function Fx(μ/M ). We write down

these relationships for the case of spontaneous emission but
emphasize that the ensuing algebra is the same for other tran-
sition rates involving the same number of photons and leads
to the same algebraic relationships. For single-photon decay,
the three factors enter in the form

w(1γ )
r = Z2

r

(
μ

me

)
Fr (μ/M )w(1γ )

r,∞ , (37)

w(1γ )
p = Z2

p

(
μ

me

)3

Fp(μ/M )w(1γ )
p,∞, (38)

w(1γ )
a = Z2

p

(
μ

me

)3

Fa(μ/M )w(1γ )
a,∞ . (39)

For two-photon decay, they enter in the form

w(2γ )
r = Z4

r

(
μ

me

)
Fr (μ/M )w(2γ )

r,∞ , (40)

w(2γ )
p = Z4

p

(
μ

me

)5

Fp(μ/M )w(2γ )
p,∞, (41)

w(2γ )
a = Z4

p

(
μ

me

)5

Fa(μ/M )w(2γ )
a,∞ , (42)

where x = r, p, a for the length, velocity, and acceleration
gauges, respectively. To reiterate, the prefactors of these six
equations follow from the definitions of the decay rates in
Eqs. (13) and (33) and also from the fact that the calculation is
performed in reduced-mass atomic units. The overall powers
of (μ/me) follow from a factor of (μ/me) for each factor of ω

or p in the matrix elements and (μ/me)−1 for each factor of r.
It is noteworthy that the constitutive relationship between the
finite- and infinite-mass decay-rate expressions is identical in
the velocity and acceleration cases.

The algebraic relations studied in this work follow from the
coefficients in an expansion of the mass-polarization function
Fx(μ/M ) in powers of (μ/M ) of the form

F x(μ/M ) = 1 + (μ/M )Cx + (μ/M )2Dx + (μ/M )3Ex + · · · .

(43)

The mass-polarization term ( μ

M )∇1 · ∇2 enters linearly in the
Hamiltonian in Eq. (33), and therefore, a uniformly con-
vergent power series in μ/M exists within its radius of
convergence. The power series is rapidly convergent for he-
lium and other atomic systems since μ/M ∼ 10−4 or smaller,
and so only the first few terms are needed. This expansion
forms the basis for the algebraic relations discussed in the
following section.

A. Algebraic relations

If the wave functions and sums over intermediate states are
exact, then for an n-photon transition it should be true that
w

(nγ )
p = w

(nγ )
r = w

(nγ )
a , or in terms of ratios

w
(nγ )
p

w
(nγ )
p,∞

= w
(nγ )
r

w
(nγ )
r,∞

= w
(nγ )
a

w
(nγ )
a,∞

. (44)

By expanding the prefactors in the rate equations in powers of
μ/M using the relations

μ/me = 1 − μ/M, (45)

me/M = μ/M + (μ/M )2 + (μ/M )3 + . . . (46)
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and collecting coefficients of equal powers of μ/M up to
(μ/M )3, one can derive algebraic relations connecting the co-
efficients Cr , Dr , Er , . . . in Eq. (43). For one-photon transition
rates, the results are

Order (μ/M ) : Cp − Cr = −2, (47)

Cp = Ca,

Order (μ/M )2 : 2Cp + Dp − Dr = −1, (48)

Dp = Da,

Order (μ/M )3 : Cp + 2Dp + Ep − Er = 4, (49)

Ep = Ea.

For two-photon transition rates, the results are

Order (μ/M ) : Cp − Cr = −4, (50)

Cp = Ca,

Order (μ/M )2 : 4Cp + Dp − Dr = −6, (51)

Dp = Da,

Order (μ/M )3 : 6Cp + 4Dp + Ep − Er = 4, (52)

Ep = Ea.

The relationship between the length and velocity coefficients
in the above equations is precisely the same as that between
length and acceleration, but with the acceleration-form coeffi-
cients taking the place of the velocity coefficients. Further, it
is seen that the velocity and acceleration coefficients must be
equal. The degree to which these equations are satisfied tests
how well the length and velocity gauges agree for a given
calculation. For example, Ref. [12] demonstrated agreement
to 1 part in 108 between the length and velocity gauges for the
two-photon decay rates of heliumlike ions. In the Appendix,
we demonstrate that the aforementioned algebraic relations
can be obtained from perturbation theory as well, a topic that
will be further explored in a future publication.

B. Generalization to higher-order transitions

The preceding analysis can be extended to the general
n-photon transition rate (nE1) problem. The constitutive rela-
tions between the two gauges can be obtained by accounting
for the additional sets of intermediate states needed to ac-
commodate higher-order transitions, leading to extensions of
dipole operators given in Eqs. (26) and (27) for the case
of two-photon transitions. This involves tracking additional
powers of Zp,r and μ/me that come from more virtual dipole
matrix elements. In the general case, these relationships are

w(nγ )
p = Z2n

p

(
μ

me

)2n+1

Fp(μ/M )w(nγ )
p,∞, (53)

w(nγ )
r = Z2n

r

(
μ

me

)
Fr (μ/M )w(nγ )

r,∞ , (54)

w(nγ )
a = Z2n

p

(
μ

me

)2n+1

Fa(μ/M )w(nγ )
a,∞ . (55)

In the same fashion as described in Sec. III A, equating the
ratios of the finite- and infinite-mass transition rates in the two
gauges leads to the generalized algebraic relations mentioned

following Eq. (52):

Order (μ/M ) : Cp − Cr = −2n, (56)

Cp = Ca,

Order (μ/M )2 : 2nCp + Dp − Dr = −n(2n − 1), (57)

Dp = Da,

Order (μ/M )3 : n(2n − 1)Cp + 2nDp + Ep − Er

= 2
3 n(n + 1)(5 − 2n), (58)

Ep = Ea,

The length-acceleration relations are the same as for
the length-velocity cases just presented, provided that the
acceleration and velocity coefficients are exchanged. Equa-
tions (56)–(58) can be used to compare length and velocity
nE1 transition rates up to order (μ/M )3. Equation (58) was
not tested in this work or Ref. [12] since we are able to achieve
agreement in the finite-mass decay rates between the gauges
only to approximately 1 part in 109, whereas in helium the
third-order corrections are around 1 part in 1012. Extending
this set of algebraic relations to higher-order terms in the
power series is straightforward and follows the procedure
described in this section.

IV. RESULTS

The algebraic relations given in Sec. III have been tested
and verified in numerical calculations involving one- and two-
photon decay rates, which, as mentioned previously, give rise
to algebraic relationships identical to other transitions involv-
ing the same number of photons. The algebraic coefficients,
along with the satisfaction of the corresponding algebraic
relations, are presented in Tables I and II.

We begin by writing the constitutive relations between the
finite- and infinite-mass decay rates in Eqs. (40) and (41) in
terms of the expansion parameter μ/M:

Gx(μ/M ) = (μ/M )Cx + (μ/M )2Dx + · · · , (59)

where Gx(μ/M ) is a gauge-dependent function of the finite-
and infinite-mass decay rates, the radiation emitted by the
nucleus in the c.m. frame, and mass scaling. Gx(μ/M ) differs
from the power series Fx(μ/M ) defined in Eqs. (40) and (41)
by 1. Next, three values of μ/M were used: μ/M itself, along
with 10(μ/M) and 20(μ/M), to establish three equations for
Eq. (59). In what follows, the analyses of the one- and two-
photon decay cases are treated somewhat differently.

A. One-photon decay

In the case of one-photon decay, this system of three linear
equations, a 3 × 3 system, was explicitly solved in order to
include the cubic coefficients Ex of (μ/M )3 in the mass-
polarization power series. This procedure is carried out for
successively larger basis sets according to Eq. (34) up to
� = (i + j + k)max = 17. These corrections contribute to the
extent that the decay rates between the length and velocity
gauges agree beyond the (μ/M )2 order, or better than 1 part in
108. The third-order coefficients are not displayed in Table I,
nor is the third-order algebraic equation, Eq. (58), tested (the
decay rates do not presently agree well enough to warrant
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TABLE I. Mass-polarization parameters Cx and Dx from Eq. (43) are shown for the one-photon decay processes in the indicated singlet
and triplet He and He-like ions, along with the accompanying algebraic relations, Eqs. (47) and (48). For the triplet transition at the bottom,
[†] indicates third-order contributions (Ex terms) are included in the calculation, and [‡] indicates they are omitted.

Ion Cp Cr Cp − Cr Dp Dr 2Cp + Dp − Dr

2 1P − 1 1S
4He −3.572719(1) −1.57271(3) −2.00000(3) 8.888(1) 2.73(2) −0.99(2)
7Li+ −3.299929(3) −1.299919(7) −2.00001(1) 6.6723(8) 1.067(4) −0.995(5)
9Be++ −3.061260(8) −1.0612(2) −2.0005(1) 5.3580(3) 0.232(6) −0.997(6)
11B3+ −2.896567(5) −0.89655(3) −2.00002(4) 4.5986(4) −0.194(5) −1.000(6)
12C4+ −2.780462(2) −0.78047(3) −1.99999(3) 4.1215(2) −0.439(2) −0.999(2)
14N5+ −2.6952538(3) −0.695250(4) −2.000003(4) 3.800(1) −0.61(2) −0.98(2)
16O6+ −2.6304056(1) −0.630403(2) −2.000002(2) 3.5687(6) −0.702(9) −0.99(1)
19F7+ −2.579540(1) −0.57953(1) −2.000006(14) 3.3959(4) −0.762(1) −1.001(1)
20Ne8+ −2.5386356(1) −0.538638(6) −1.999996(6) 3.2618(8) −0.812(4) −1.002(5)

2 3P − 2 3S
4He [†] −7.609183(1) −5.60918375(4) −1.999999(1) 12.9523(2) −1.266053(8) −1.0000(2)
4He [‡] −7.609191(1) −5.60920948(3) −1.999982(1) 12.9703(1) −1.206957(4) −1.0411(1)

such a comparison); however, third-order contributions to
lower-order coefficients Cx and Dx are explicitly considered
by solving the 3 × 3 system defined by Eq. (59),⎡

⎢⎣ y y2 y3

10y 10y2 10y3

20y 20y2 20y3

⎤
⎥⎦

⎡
⎢⎣Cx

Dx

Ex

⎤
⎥⎦ =

⎡
⎢⎣ Gx(y)

Gx(10y)

Gx(20y)

⎤
⎥⎦, (60)

where y = μ/M and x = p, r for the two gauges. The first-
and second-order mass-polarization power-series coefficients
that arise in treating one-photon decay in heliumlike ions
are presented in Table I. The results are calculated by
averaging the largest basis sets, and the standard deviation
of these was taken to be the uncertainty. The coefficients of
the mass-polarization power series do converge with increas-
ing basis-set sizes, but not in a monotonic fashion as in the
decay rates. Thus, the stated results and errors presented in
Table II correspond to an average and standard deviation of
the calculations from the several largest basis sets. The first-
and second-order coefficients in both the length and velocity
gauges are presented in Table II, where the coefficients are
shown to obey the algebraic relations in Eqs. (50) and (51).

The inclusion of third-order corrections made little differ-
ence for the singlet case; a larger difference was observed in

the case of triplet decay, where it was necessary to include
the Ex coefficients to satisfy the (μ/M )2 algebraic relation.
This point is illustrated in the last two rows of Table I and
is a consequence of the Pauli principle: for triplet states, the
electron-electron correlation plays a smaller role. Therefore,
in the triplet case of one-photon decay, the coefficients (par-
ticularly {Dx}) are sensitive to the (μ/M )3 contributions.

B. Two-photon decay

In [12], the algebraic relations that are the subject of this
paper were derived for the first time and numerically tested for
the case of two-photon decay 2 1S −1 1S in heliumlike ions
(Z = 2 − 10), along with the heavier μ-He, π -He, and p̄-He.
These results are reproduced in Table II. Instead of solving the
linear system described by Eq. (59), as in the one-photon case,
iterative linear regressions are performed on this set of equa-
tions to obtain the mass-polarization coefficients Cx and Dx.
On the initial iteration, the Cx values are obtained by a linear
regression assuming no (μ/M )2 contributions (i.e., Dx = 0).
Then, using these Cx values, an updated equation is subject to
linear regression to get the Dx coefficients. These updated Dx

values are then used for a second regression to find Cx, and the
process is repeated once more to update the Dx coefficients.

TABLE II. Mass-polarization parameters Cx and Dx from Eq. (43) are shown for two-photon decay in He and He-like ions, along with the
accompanying algebraic relations, Eqs. (50) and (51), for the metastable singlet transition indicated. This table is reproduced from Ref. [12].

Ion Cp Cr Cp − Cr Dp Dr 4Cp + Dp − Dr

2 1S − 1 1S
4He −5.2333588(30) −1.23336(8) −4.0000(8) 16.4344(10) 1.607(26) −6.106(27)
7Li+ −5.385078(8) −1.385078(12) −4.000000(17) 17.124(27) 1.95(32) −6.37(35)
9Be++ −5.487355(9) −1.4871(5) −4.0002(5) 17.799(7) 1.74(35) −5.89(36)
11B3+ −5.557584(1) −1.5575(1) −4.00008(13) 18.3518(12) 2.09(12) −5.97(12)
12C4+ −5.6094000(16) −1.60943(13) −3.99996(13) 18.8227(18) 2.47(14) −6.08(14)
14N5+ −5.64973214(24) −1.649718(24) −4.000014(24) 19.24196(29) 2.661(28) −6.018(28)
16O6+ −5.68233816(7) −1.682327(12) −4.000010(12) 19.61265(9) 2.903(16) −6.020(16)
19F7+ −5.7094498(5) −1.70942(6) −4.000025(61) 19.9487(8) 3.099(99) −5.99(10)
20Ne8+ −5.73247255(30) −1.73249(3) −3.99998(3) 20.2487(10) 3.40(10) −6.08(10)

032807-6



ALGEBRAIC RELATIONS FROM FINITE-NUCLEAR-MASS … PHYSICAL REVIEW A 108, 032807 (2023)

This procedure is carried out for successively larger basis sets
according to Eq. (34) up to � = (i + j + k)max = 17. The
slight disagreement in the (μ/M )2 relation for Z = 2 and 3
indicates that the rates between the gauges do not quite agree
to order (μ/M )2. This is because μ/M ∝ 1/Z and Z = 2 and
3 are the largest μ/M values considered.

V. CONCLUSIONS AND DISCUSSION

This paper has both derived and numerically tested general
algebraic relations that quantify the agreement between the
length and velocity gauges for the general n-photon (nE1)
finite-mass transition-rate equations and tested them for he-
liumlike ions. The corresponding relationships between the
length or velocity and acceleration gauges have also been
derived. These relations are built on the postulate, initially put
forward in Ref. [12], that the mass-polarization component
of the finite-mass effect can be treated with a power series
in μ/M. Equations (53)–(55) provide constitutive relations
that can be used to account for finite-mass effects for nE1
transition rates. The prefactors in these equations can be
used to convert infinite-mass transition rates calculated in any
theoretical or computational framework to the corresponding
finite-mass rates. Equations (56)–(58) are the corresponding
algebraic relationships that test for gauge agreement to en-
sure that mass-polarization effects are included correctly to
a desired order in μ/M. These relations place tight con-
straints on theoretical calculations of finite-mass effects in
nE1 transition processes, as demonstrated in the case of the
spontaneous emission of heliumlike ions. They also test the
leading infinite-mass term since an error here would carry
through to the higher-order terms in μ/M.

Another approach to obtaining the coefficients Fx(μ/M )
contained in Eqs. (53)–(55) is to treat the mass-polarization
term, ∇ρ1 · ∇ρ2 , in Eq. (33) perturbatively in the parameter
μ/M. This would provide a more direct, but also more com-
putationally intensive, method for calculating the coefficients
Cx, Dx, Ex, . . . of the successive powers of μ/M. This will be
explored in a future publication, but it is worth noting that
the coefficients Cx and Dx, already calculated in Tables I and
II, satisfy the given algebraic relations up to order (μ/M )2 ≈
10−8. A further improvement could be a more judicious selec-
tion of values for μ/M used to demonstrate numerically the
algebraic relations. Currently, the actual μ/M value is used,
along with both 10 and 20 times this value; however, there is
nothing particular about these choices, and there is no need
to use μ/M itself. Exploring the space of possibilities here
would likely lead to a more convincing demonstration of the
algebraic relations.

The formalism developed here for treating the mass-
polarization component of the finite-mass effect in the
calculation of nE1 transition rates in heliumlike ions could be
extended to other atomic processes. The form of the resulting
algebraic relations would be different from those presented
here for other nE1 processes, depending on the form of the
quantity being calculated; however, they would still serve
as a theoretical check between calculations in the velocity
and length gauges and would be derived in the same way as
presented here and in Ref. [12]. In calculations of stimulated
emission, absorption, and photoionization [27,28], the same

algebraic relations would apply as for spontaneous emission,
but the numerical values of the Cx, Dx, etc., coefficients would
be different. One possible application would be to the study
of Feshbach resonances [27]. For precision QED calculations
[28,29] to be compared with experiments, finite-mass effects
are needed, and the method in this paper provides a systematic
method for their inclusion. In the particular problem of two-
photon decay, accurate comparison with experimental results
[30] requires a correct relativistic treatment. This was done
previously in Refs. [11,22], but a future publication of ours
will add relativistic effects to the finite-mass effects discussed
in this paper by a highly accurate perturbation calculation.
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APPENDIX: EXAMPLE DERIVATION OF MASS
POLARIZATION COEFFICIENTS USING PERTURBATION

THEORY

This Appendix demonstrates that perturbation theory can
be used to obtain the algebraic relations that are the subject
of this paper. According to Rayleigh-Schrödinger pertur-
bation theory, since the mass-polarization term enters the
Schrödinger equation linearly, its coefficient μ/M can be
regarded as a perturbation parameter. Rayleigh-Schrödinger
perturbation theory then generates a power-series expansion
in powers of μ/M for the wave functions and energies that is
uniformly convergent within the radius of convergence. For
transition rates, the coefficients correspond to those extracted
numerically in the present work. As an example, we consider
explicitly the relationship for the first-order mass-polarization
coefficients between the length and velocity forms of single-
photon transitions, given in Eq. (47) as

Cp − Cr = −2.

The single-photon decay rate, given in Eq. (13), is

wi,f = 4
3αωi,f |〈i|Qx| f 〉|2.

We will work in center-of-mass coordinates, using
reduced-mass atomic units, given in Eq. (32), such that
the length and velocity operators are ρ ≡ ρ1 + ρ2 and ∇ ≡
∇1 + ∇2, respectively. The condition that the length and
velocity gauge should be equal with all finite-mass effects
included is

Z2
p

(
μ

me

)3


E |〈i|∇| f 〉|2 = Z2
r

(
μ

me

)

E3|〈i|ρ| f 〉|2,

|〈i|∇| f 〉|2 =
(

Zr

Zp

)2(
μ

me

)−2


E2 |〈i|ρ| f 〉|2,
(A1)
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where we have used ωi,f = 
Ei,f ≡ 
E in atomic units and
all finite-mass dependence besides mass polarization has been
factored out. In what follows, the expansions in Eqs. (45) and
(46) are utilized to give

(
Zr

Zp

)2(
μ

me

)−2

= 1 − 2μ/M + · · · .

The fundamental perturbation equations(
H0 + μ

M
∇ρ1 · ∇ρ2

)(
|
〉(0) + μ

M
|
〉(1) + · · ·

)
=

(

E (0) + μ

M

E (1) + · · ·

)(
|
〉(0) + μ

M
|
〉(1) + · · ·

)
can then be solved to write 
E and the squared dipole ma-
trix elements |〈i|ρ| f 〉|2 and |〈i|∇| f 〉|2 as expansions in μ/M.
These are

(
E )2 =
[

E (0) + μ

M

E (1) + · · ·

]2

= [
E (0)]2 + 2
μ

M
[
E (1)]2 + · · · ,

|〈i|∇| f 〉|2 =
[
〈i|∇| f 〉(0) + μ

M
〈i|∇| f 〉(1) + · · ·

]2

= |〈i|∇| f 〉(0)|2 + 2
μ

M
|〈i|∇| f 〉(1)|2 + . . . ,

|〈i|ρ| f 〉|2 =
[
〈i|ρ| f 〉(0) + μ

M
〈i|ρ| f 〉(1) + · · ·

]2

= |〈i|ρ| f 〉(0)|2 + 2
μ

M
|〈i|ρ| f 〉(1)|2 + · · · .

The first-order dipole matrix element terms 〈i|∇| f 〉(1) and
〈i|ρ| f 〉(1) both contain two terms, arising from first-order
corrections to both the initial- and final-state wave func-

tions. Finally, putting these expansions back into Eq. (A1)
gives

(1 − 2μ/M + · · · )
[
(
E (0) )2 + 2

μ

M
(
E (1) )2 + · · ·

]
×

[
(R(0) )2 + 2

μ

M
(R(1) )2 + . . .

]
= (P(0) )2 + 2

μ

M
(P(1) )2 + · · · ,

where the perturbation coefficients for the length and velocity
dipole matrix elements are written in a slightly abbreviated
notation using R(n) ≡ |〈i|ρ| f 〉(n)| and P(n) ≡ |〈i|∇| f 〉(n)|, re-
spectively. Solving these perturbation equations yields

(
E (0)R(0) )2 = (P(0) )2

in zeroth order, successfully recovering the commutator iden-
tity. In first order, we obtain

(
E (1)R(0) )2 + (
E (0)R(1) )2 − (
E (0)R(1) )2 = (P(1) )2.

Rearranging and using the zeroth-order identity give

2

(
P(1)

P(0)

)2

− 2
(
E (1)R(0) )2 + (
E (0)R(1) )2

(
E (0)R(0) )2
= −2.

By identifying

Cp ≡ 2

(
P(1)

P(0)

)2

, (A2)

Cr ≡ 2
(
E (1)R(0) )2 + (
E (0)R(1) )2

(
E (0)R(0) )2
, (A3)

we have derived explicit perturbation expressions for Cp

and Cr and recovered the desired algebraic relation in
Eq. (47) connecting the first-order length and velocity mass-
polarization coefficients that arise in transition rates in
single-photon transitions.
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