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We study an entangled distributed quantum sensing scheme based on an array of d Mach-Zehnder inter-
ferometers (MZIs) for the estimation of relative phase shifts. The scheme uses d coherent states and a single
squeezed-vacuum state that is distributed among the MZIs by a quantum circuit (QC). The protocol can be
optimized analytically: it overcomes the shot-noise limit and reaches the Heisenberg limit with respect to the
average total number of probe particles, n̄T , for the estimation of arbitrary linear combinations of the d phases.
We compare the entangled strategy with a separable one that uses d coherent and d squeezed-vacuum states
and the same n̄T . The entangled strategy benefits for a substantial reduction of resource overhead and can
achieve a maximum gain equal to d when using the same total squeezed-light intensity as the separable strategy.
Interestingly, the entangled strategy using a single squeezed-vacuum state can reach the same sensitivity as the
separable strategy that uses d copies of the same state. Finally, given a random choices of the QC, we identify
the optimal linear combination of the phases that can be estimated with maximum sensitivity. Our scheme paves
the ways for a variety of applications in distributed quantum sensing with photonic and atomic interferometers.
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I. INTRODUCTION

Optical interferometry exploiting squeezed light [1–4] has
been—since the pioneering proposal by Caves [5]—a corner-
stone of theoretical [6–12] and experimental [13–17] photonic
quantum sensing [18–22]. A Mach-Zehnder interferometer
(MZI) with a high-power coherent state in one input port
and a low-intensity squeezed-vacuum light in the other input
can reach a phase estimation uncertainty �2θ = e−2r/n̄T [5],
where r � 0 is the squeezing parameter, n̄T is the average total
number of photons in the input state, and θ is the relative
phase shift between the two arms of the MZI. This scheme
can overcome the shot-noise (SN) limit �2θSN = 1/n̄T by
an amount depending on the squeezing strength r. Currently,
squeeze factors of more than 10 dB have been observed in
several experiments [18,20,23,24]. Furthermore, when the co-
herent and the squeezed-vacuum states have approximately
the same intensity, the MZI can achieve the Heisenberg limit
(HL) �2θHL = 1/n̄2

T [8]. This prediction has been associ-
ated [8,25] with the onset of NOON states after the first beam
splitter of the MZI, as verified experimentally in Ref. [26].
Overcoming the SN is practically relevant when there are
constraints limiting the total light intensity inside the in-
terferometer [27], as in imaging [28,29], microscopy [30],
and the probing of biological samples [31]. In gravitational
wave detection [32–38], the quantum-enhancement offered
by squeezing allows one to boost substantially the rate
of detectable events. Squeezed-vacuum states also can be
generated via spin-changing collisions in a Bose-Einstein con-
densate [39–41] and used to enhance the sensitivity of atomic
MZIs [42,43].

In this paper we generalize single phase sensing using a
MZI with coherent and squeezed-vacuum input light [5–9]

to the simultaneous estimation of d > 1 relative phase shifts
in an array of spatially-distributed MZIs; see Fig. 1(a). This
system realizes a distributed quantum sensing scheme [44]
that is relevant in quantum optics, as well as in atomic in-
terferometry. It encompasses a variety of interesting possible
applications, including clocks [45,46] and spatial magne-
tometers [47–50]. Compared to other distributed quantum
sensing protocols discussed in the literature [44], our scheme,
using Gaussian states, is prone to analytical optimizations
under different constraints and is expected robust to losses.
Due to the use of MZIs, the sensitivity bounds can be
clearly identified in terms of the average total number of
particles in the input state, n̄T , without ambiguities re-
lated to the resource cost necessary to establish a phase
reference [51–53].

In our scheme, Fig. 1(a), a single squeezed-vacuum state
|ξ 〉 is first split by a linear quantum circuit (QC) implement-
ing a d-mode splitting [54,55]. The QC can be realized, in
practice, by a sequence of two-mode linear operations [56,57]
and generates entanglement among the d output modes
b1, . . . , bd . Each mode b j is used as one input of the jth MZI
of the sensing array ( j = 1, . . . , d), the other input aj being in
a coherent state. The two input modes mix at a balanced beam
splitter, encode a relative phase θ j , and are detected after a
final beam splitter. The overall goal is to estimate arbitrary
linear combinations v · θ =∑d

j=1 v jθ j of the d phase shifts
θ = {θ1, . . . , θd}, where v = {v1, . . . , vd} is a real vector. Our
main results are the following:

(1) We optimize the entangled strategy of Fig. 1(a) over
both the QC and the amplitudes of the d coherent states. We
show that it is possible to estimate any v · θ with the same
sensitivity scaling with n̄T as that obtained for the estimation
of a single phase shift in a MZI, using same squeezed-vacuum
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FIG. 1. (a) Distributed quantum sensing scheme using d MZIs.
The input of the jth MZI is given by a coherent state |α j〉 in the mode
aj , while the other input bj is one of the outputs of a linear d-mode
QC. The input of the QC is a single squeezed-vacuum state |ξ〉, which
is mixed with d − 1 vacuum states |0〉. Since the output state of the
d-mode QC is mode entangled, we identify the scheme of panel (a) as
an entangled distributed sensing strategy. Instead, in the separable
strategy of panel (b), the different MZIs are independent. The jth
MZI has a coherent state |α′

j〉 in the input mode aj and a squeezed-
vacuum state |ξ ′

j〉 in the mode bj . In both strategies, θ1, . . . , θd are
relative phase shifts in each MZI.

state and total coherent state intensity. In particular, using an
estimation strategy based on the method of moments, we pre-
dict sub-SN sensitivities with respect to the average number
of photons in the probe state, n̄T . Furthermore, by measuring
the number of photons at the output ports of the MZIs, it is
possible to saturate the quantum Cramér-Rao bound and reach
the Heisenberg limit �2(v · θ) = 1/n̄T , when optimizing the
relative intensity of the squeezed state.

(2) In the weak-squeezing regime, the multiparameter sen-
sitivity �2(v · θ) can be written as the variance of a collective
quadrature depending on v. We show that the QC is able to
split the state |ξ 〉 so as to squeeze such a quadrature vari-
ance. This possibility is prevented in the separable strategy
of Fig. 1(b) that instead requires d squeezed-vacuum states
(one for each MZI) in order to achieve sub-SN sensitivities
for generic v · θ. This key difference is responsible for the
advantage of the entangled scheme over the separable one.

(3) The entangled strategy overcomes the separable one,
for every v · θ, in several relevant conditions and under differ-
ent constraints. The maximum gain is a factor d , equal to the
number of parameters to estimate. An interesting comparison
is done when the separable strategy of Fig. 1(b) uses d copies
of |ξ 〉. In this case, the entangled scheme can perform equally
well as the separable one, with the benefit of a substantial
reduction of resource overhead.

(4) For any given QC transformation, we identify optimal
v · θ to be estimated with the highest possible sensitivity. This
optimization problem is solved by the diagonalization of d ×
d matrices. In particular, we show that sensitivity regimes and
gains are robust against random choices of the QC.

We notice that the comparison between entangled and
separable strategies for multiparameter estimation, already
discussed for various schemes [58–68], has led to some con-
troversies. In our case, resources, bounds, and constraints are

clearly identified in terms of n̄T , leading to clear conclusions.
The effect of noise and imperfections is also included in the
analysis. On the practical side, our findings pave the way
toward distributed multiphase estimation using quantum re-
sources that are common to many laboratories with photons
and atoms.

II. DISTRIBUTED QUANTUM SENSING

A. Definition and strategies

A generic multiparameter estimation problem consists
of inferring d unknown parameters θ = {θ1, . . . , θd} of a
quantum device. In a distributed scenario, the parame-
ters are encoded in independent (e.g., spatially separated)
modes or interferometers. The parameter encoding is thus
described by commuting transformations. An example is
e−iθ·Ĥ = ⊗d

j=1e−iĤ jθ j , where the generators of the unitary

transformation, Ĥ = {Ĥ1, . . . , Ĥd}, is a set of commuting
Hermitian operators, [Ĥj, Ĥk] = 0 for j, k = 1, . . . , d . The
sensing protocol can follow entangled or separable strate-
gies [54,55,59,62,69]. In the former case, the probe ρ̂ is
prepared in a mode-entangled state, while the latter uses the
product state

⊗d
j=1 ρ̂ j , where ρ̂ j is the probe state of the jth

sensor. An interesting possibility is to consider local mea-
surements at each sensor, without requiring a mode-entangled
measure (a distributed sensing scheme based on a final recom-
bination of parameter-sensing modes has been considered in
Refs. [60,66,68,70–72]): local measurements (although being
suboptimal in general) can have a practical advantage when
the sensing modes are spatially delocalized [73].

B. Figure of merit

In this paper we use, as figure of merit, the variance of a
given linear combination v · θ =∑d

j=1 v jθ j of the d param-
eters θ [54,55,59,60,62,73–77]. In the following we take real
coefficients v j (either positive or negative). We also consider
the normalization |v|2 =∑d

j=1 v2
j = 1/d , without loss of gen-

erality. A relevant example is the average (θ1 + θ2 + · · · +
θd )/d , corresponding to v j = 1/d .

The method of moments is a feasible and general approach
to multiparameter estimation [67]. Here it is based on a set of
d Hermitian and commuting measurement operators X̂ j whose
mean 〈X̂ j〉 is a monotonic function of θ j only. The estimation
method consists in repeating the measurement of the local
observable X̂ j several times. Taking the sample average X̄ j and
inverting the equation 〈X̂ j〉 = X̄ j provides an estimate of θ j .
The method achieves [67]

�2(v · θ)em = vTM−1v, (1)

whereM = GT �−1G, G jk = ∂〈X̂ j〉/∂θk , and � jk = 〈X̂ j X̂k〉 −
〈X̂ j〉〈X̂k〉 are d × d matrices, and the expectation values are
calculated with respect to the joint output state of the d
sensors, e−iĤ·θρ̂eiĤ·θ . The covariance matrix � expresses
correlations between measurement observables. These cor-
relations are directly linked to mode entanglement in the
probe state ρ̂ and can be engineered to enhance the sensitivity
in the estimation of certain combinations v · θ. In separable
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strategies, � is diagonal and Eq. (1) becomes

�2(v · θ)sm =
d∑

j=1

v2
j

Mj
, (2)

where Mj = �2X̂ j/(d〈X̂ j〉/dθ j )2 and �2X̂ j = 〈X̂ 2
j 〉 − 〈X̂ j〉2

,
with the expectation values calculated on the output state of
the jth sensor, e−iĤ jθ j ρ̂ jeiĤjθ j .

The ultimate sensitivity limit in the estimation of
v · θ is provided by the quantum Cramér-Rao bound
(QCRB) [78–80]. In the entangled setting, we have �2(v ·
θ)em � �2(v · θ)eQ, where

�2(v · θ)eQ = vTF−1
Q v, (3)

and FQ is the d × d quantum Fisher information matrix
(QFIM) [81]. If the probe state is pure, ρ̂ = |ψ〉〈ψ |, then the
QFIM is (FQ) jk = 4(〈ψ |ĤjĤk|ψ〉 − 〈ψ |Ĥj |ψ〉〈ψ |Ĥk|ψ〉)
and Eq. (3) can be saturated by optimal measurements and
estimators [82,83]. In the separable setting, we have �2(v ·
θ)sm � �2(v · θ)sQ, where

�2(v · θ)sQ =
d∑

j=1

v2
j

F j
, (4)

and F j is the (scalar) quantum Fisher information [78,79,84].
For pure states, Eq. (4) is obtained from Eq. (3) when taking
the product |ψ〉 =⊗d

j=1 |ψ j〉 such thatFQ becomes diagonal
with entries F j = (FQ) j j = 4(〈ψ j |Ĥ2

j |ψ j〉 − 〈ψ j |Ĥj |ψ j〉2).
We recall that the different terms on the right-hand side

of Eqs. (1)–(4) are understood as divided by the number of
repeated independent measurements m used for the estima-
tion. In particular, Eqs. (1)–(4) can be saturated, in general, for
m � 1. Here and in the following, we neglect the factor m: see
Ref. [85] for a multiparameter Bayesian estimation analysis
including the number of measurements as a resource.

III. MACH-ZEHNDER SENSOR ARRAY

The distributed quantum sensing scheme considered in this
paper consists of an array of d MZIs. The entangled strategy is
shown in Fig. 1(a) and the separable one in Fig. 1(b). In both
cases it is useful to introduce effective angular momentum
operators (Ĵx ) j = (â†

j b̂ j + â j b̂
†
j )/2, (Ĵy) j = (â†

j b̂ j − â j b̂
†
j )/2i

and (Ĵz ) j = (â†
j â j − b̂†

j b̂ j )/2, where â j and b̂ j (â†
j and b̂†

j)
are bosonic mode annihilation (creation) operators [86]. The
jth MZI ( j = 1, . . . , d) is described by the unitary phase-
encoding transformation e−iθ j (Ĵy ) j , where θ j is a relative phase
shift between the two interferometers’ arms and Ĥj = (Ĵy) j is
the corresponding Hamiltonian. We have [â j, â†

k] = [â j, b̂†
k] =

[â j, b̂k] = 0 for j �= k, which guarantees that [Ĥj, Ĥk] = 0.
Finally, we consider local observable X̂ j = (Ĵz ) j , measuring
the population difference between the two output ports of the
jth MZI.

In the entangled strategy, the input mode a j of the jth
MZI is fed with a coherent state |α j〉, where α j = |α j |eiφ j .
The other input b j is an output modes of a QC; see
Fig. 1(a). The QC is a mode-mixing passive device that
generalizes the familiar two-mode beam splitter to an ar-

bitrary number, d , of modes. The QC is the key element
of the entangled strategy. It is described by a d × d uni-
tary matrix U†

QC implementing the mode transformation b̂ j =∑d
k=1(U†

QC) jk (b̂in)k = ÛQC(b̂in ) jÛ
†
QC between input (b̂in) j and

output b̂ j [see Fig. 1(a)], and Û †
QC is the corresponding unitary

operator. In our study, the multimode input state of the QC,
|
ξ

in〉, is given by a squeezed-vacuum state in mode D, while
the other input modes are empty:

|
ξ
in〉 = |0〉1 ⊗ · · · ⊗ |0〉D−1 ⊗ |ξ 〉D ⊗ |0〉D+1 ⊗ · · · ⊗ |0〉d ,

(5)
where ξ = reiϕ and r is the squeezing parameter and |0〉 is the
vacuum. The QC output state is

|
QC〉 = Û †
QC|
ξ

in〉. (6)

We also introduce u j ≡ (U†
QC) jD = |u j |eiδ j with u =

{u1, . . . , ud} being the Dth column vector of the QC matrix
U†

QC.
The average total number of photons in the input state

of Fig. 1(a) is n̄T = dn̄c + n̄s, where n̄c =∑d
j=1 |α j |2/d is

the mean number of photons in each coherent state and
n̄s = sinh2 r is the mean number of photons in the squeezed-
vacuum state.

A. Method of moments sensitivity and QCRB of
the entangled strategy

The inverse moment matrix M−1 as well as the QFIM
(and its inverse F−1

Q ) can be calculated analytically; see Ap-
pendix A 1 for the detailed derivation. In the following, we
restrict to the optimal conditions θ j = π/2 and sin χ j = 0,
for j = 1, . . . , d , where χ j ≡ φ j − ϕ/2 + δ j . The sensitivity
achieved by the method of moments, Eq. (1), is

�2(v · θ)em = − (1 − e−2r )

⎛
⎝ d∑

j=1

|α j |ũ jv j

|α j |2 − ũ2
j n̄s

⎞
⎠

2

+
d∑

j=1

|α j |2 + ũ2
j n̄s(|α j |2 − ũ2

j n̄s
)2 v2

j , (7)

while the QCRB, Eq. (3), is

�2(v · θ)eQ = 1 − e2r

1 + (e2r − 1)
∑d

j=1 |α j |2ũ2
j/
(|α j |2 + ũ2

j n̄s
)

×
⎛
⎝ d∑

j=1

|α j |ũ jv j

|α j |2 + ũ2
j n̄s

⎞
⎠

2

+
d∑

j=1

v2
j

|α j |2 + ũ2
j n̄s

.

(8)

Equations (7) and (8) depend on the QC transformation only
through the vector {ũ j} j=1,...,d , where ũ j ≡ ±|u j | [87]. Notice
that the QCRB is independent from θ. When δ j, φ j, ϕ = 0
(thus satisfying the optimal condition sin χ j = 0 for all j),
the measurement of the number of photons at the output
ports of the MZIs is an optimal one, according to Ref. [83],
and the QCRB can be saturated. Interestingly, the distributed
sensing scheme considered in this paper can reach the optimal
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sensitivity without requiring a second QC mixing the outputs
of the d interferometers before the final detection.

B. Method of moments sensitivity and QCRB of
the separable strategy

In the separable strategy of Fig. 1(b), the jth MZI is fed
with a coherent state |α′

j〉 in mode a j and a squeezed vacuum

state |ξ ′
j〉 in mode b j , where α′

j = |α′
j |eiφ′

j and ξ ′
j = r′

je
iϕ′

j .
Under the optimal phase-locking condition sin χ ′

j = 0, where
χ ′

j = φ′
j − ϕ′

j/2, we find [5–8]

�2(v · θ)sm =
d∑

j=1

|α′
j |2e−2r′

j + (n̄′
s) j

[|α′
j |2 − (n̄′

s) j]2
v2

j , (9)

where (n̄′
s) j = sinh2 r′

j is the mean number of photon in the
state |ξ ′

j〉. The QCRB, Eq. (4), is [8,9]

�2(v · θ)sQ =
d∑

j=1

v2
j

|α′
j |2e2r′

j + (n̄′
s) j

, (10)

and it can be saturated by the measurement of the number of
particles at the output ports of each MZI [8]. We emphasize
that, differently from the entangled strategy, the separable
strategy uses d squeezed-vacuum states. The average total
number of particles in the overall input state of the separable
sensor is thus n̄′

T = dn̄′
c + n̄′

s, where n̄′
c =∑d

j=1 |α′
j |2/d and

n̄′
s =∑d

j=1 sinh2 r′
j is the total mean number of photons in the

d squeezed-vacuum states.

IV. OPTIMIZED MULTIPHASE SENSITIVITY

A. Optimized method of moments sensitivity

In this section, we study the sensitivity of the entangled
strategy, Eq. (7), optimized over the intensities of the d coher-
ent states and over the QC transformation,

γem(v, n̄s, n̄T ) ≡ min
|α1|2,...,|αd |2,ÛQC

�2(v · θ)em. (11)

We assume optimal phase-matching relations between the co-
herent and the squeezed state.

As a general result, we notice that inverting the sign of
an arbitrary number of components of v leaves γem(v, n̄s, n̄T )
unaltered, as easily seen from Eq. (7). In the following we will
thus restrict to only positive linear combinations, with v j � 0
for j = 1, . . . , d .

As proved in Appendix A 2, for n̄T � 2n̄s and any v,
Eq. (11) becomes

γem(v, n̄s, n̄T ) =
(

e−2r

n̄T
+ n̄s

n̄2
T

)⎛⎝ d∑
j=1

|v j |
⎞
⎠

2

. (12)

for the optimal coherent-state intensities and QC parameters

|α j |2 = n̄cd∑d
k=1 |vk|

|v j |, and ũ j = 1√∑d
k=1 |vk|

v j√|v j |
,

(13)

FIG. 2. Optimized sensitivity of the entangled strategy,
γem(v, n̄s, n̄T ), Eq. (12), as a function of v, for d = 2
(a) and d = 3 (b). The vector v is expressed as vT =
(cos φv, sin φv )/

√
2, with φv ∈ [0, π/2], for d = 2, and as

vT = (sin θv cos φv, sin θv sin φv, cos θv )/
√

3, with φv ∈ [0, π/2]
and θv ∈ [0, π/2], for d = 3. Here n̄T = 108 and n̄s = 102.

respectively. Equation (12) is plotted in Fig. 2 as a function of
v for d = 2 and d = 3. In particular, Eq. (12) satisfies

γem(vsing, n̄s, n̄T ) � γem(v, n̄s, n̄T ) � γem(vav, n̄s, n̄T ). (14)

In the above equation, vsing indicates any vector with van-
ishing components except for the jth. This case corresponds
to the estimation of a single phase in a MZI [5–9], namely,
vsing · θ = θ j/

√
d with vsing, j = 1/

√
d , for normalization. The

corresponding sensitivity is

γem(vsing, n̄s, n̄T ) = e−2r

dn̄T
+ n̄s

dn̄2
T

, (15)

for the optimal choice of parameters: |α j |2 = dn̄c, ũ j = 1 with
vsing, j �= 0, Furthermore, vav = (1/d, . . . , 1/d ) is the average
phase, namely, vav · θ = (θ1 + · · · + θd )/d . The correspond-
ing sensitivity is

γem(vav, n̄s, n̄T ) = e−2r

n̄T
+ n̄s

n̄2
T

, (16)

for the optimal choice of parameters |α j |2 = n̄c and ũ j =
1/

√
d for j = 1, . . . , d . Remarkably, the lower and upper

bounds, Eqs. (15) and (16), respectively, differ by a factor
d in the denominator, independently of the normalization of
v. We thus conclude that, for the estimation of any v · θ,
the optimized sensitivity of the entangled strategy, γem, is
characterized by the same scaling with n̄T as that obtained for
single phase estimation in a MZI when using exactly the same
resources. In the following we distinguish different cases.

1. Regime n̄T � (e2r + 1)n̄s

In this regime, Eq. (12) is

γem(v, n̄s, n̄T ) = e−2r

n̄T

⎛
⎝ d∑

j=1

|v j |
⎞
⎠

2

. (17)

It corresponds to a sub-SN uncertainty depending on the
squeezing parameter r. As discussed in Sec. V A, Eq. (17) is
recovered by a Holstein-Primakoff transformation and can be
directly related to quadrature squeezing. Equation (17) is simi-
lar to that obtained in Ref. [55] for the sensitivity of distributed
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radio-frequency sensing via phase modulation using coherent
and squeezed vacuum light and homodyne detection. The
main difference is that here n̄T is the total amount of resources
used for the estimation (including probe and measurement)
and Eq. (17) shows the possibility of overcoming the SN,
1/n̄T . Instead, in Ref. [55] the coherent states necessary for
the homodyne detection are not included in the resource cost.

2. Optimal squeezing

We minimize Eq. (12) with respect to n̄s, with fixed n̄T .
Assuming r � 1 (so that e2r ≈ 4n̄s), we obtain

min
n̄s

γem(v, n̄s, n̄T ) = 1

n̄3/2
T

⎛
⎝ d∑

j=1

|v j |
⎞
⎠

2

, (18)

for the optimal value n̄s ≈ √
n̄T /2. This predicts a scaling

O(n̄−3/2
T ), faster than the SN. The same scaling has been

discussed for single phase estimation in a MZI using coherent
and squeezed-vacuum light with optimized intensities; see
Refs. [6,7].

3. Transient Heisenberg scaling for 2n̄s � n̄T � (e2r + 1)n̄s

In this regime, Eq. (12) predicts

γem(v, n̄s, n̄T ) = n̄s

n̄2
T

⎛
⎝ d∑

j=1

|v j |
⎞
⎠

2

, (19)

which is understood as a Heisenberg scaling, O(1/n̄2
T ), when

neglecting the dependence of n̄T on n̄s (as approximately valid
in the considered regime).

In Fig. 3 we compare a numerical evaluation of Eq. (11)
(green dots) for v = vav with the analytical prediction Eq. (16)
(thin solid green line) as a function of n̄T /n̄s. As expected, the
two lines agree for n̄T � 2n̄s. We clearly recognize the differ-
ent regimes discussed above: the dot-dashed line is e−2r/n̄T ,
the dashed line is 1/n̄3/2

T , and the dotted line is n̄s/n̄2
T . In

Fig. 3(b) we plot minn̄s γem(vav, n̄s, n̄T ) as a function of n̄T .
Circles are numerical results, and the thick solid line is 1/n̄3/2

T .

B. Optimized quantum Cramér-Rao sensitivity

In analogy with Eq. (11), we also study the optimization of
the QCRB,

γeQ(v, n̄s, n̄T ) ≡ min
|α1|2,...,|αd |2,ÛQC

�2(v · θ)eQ, (20)

Similarly to Eq. (14) we have

1

d (dn̄ce2r + n̄s)
� γeQ(vav, n̄s, n̄T ) � 1

dn̄ce2r + n̄s
, (21)

where the lower bound is γeQ(vsing, n̄s, n̄T ) and the upper
bound is γeQ(vav, n̄s, n̄T ) (see Appendix A 2).

1. Regime n̄T � 2n̄s

From Eq. (21), we directly find

e−2r

dn̄T
� γeQ(v, n̄s, n̄T ) � e−2r

n̄T
. (22)

FIG. 3. (a) Optimized sensitivity in the estimation of vav · θ, as a
function of n̄T /n̄s, for fixed n̄s = 100. Green dots are γem(vav, n̄s, n̄T ),
and red triangles γeQ(vav, n̄s, n̄T ), both evaluated numerically. The
thin solid green line is Eq. (16), and the thick solid red line is
the upper bound in Eq. (21). Other lines correspond to different
limiting behaviors: the dot-dashed line is e−2r/n̄T , the dashed line
is 1/n̄3/2

T , and the dotted line is n̄s/n̄2
T . Panels (b) and (c) show

minn̄s γem(vav, n̄s, n̄T ) and minn̄s γeQ(vav, n̄s, n̄T ), respectively, as a
function of n̄T . Circles are numerical results. Thick solid lines are
expected analytical behaviors: 1/n̄3/2

T (b) and 1/n̄2
T (c). In all panels

d = 2 and we indicate the SN (1/n̄T ) and the HL (1/n̄2
T ).

Furthermore, as discussed in Appendix A 3, in this regime we
have

γeQ(v, n̄s, n̄T ) = e−2r

n̄T

⎛
⎝ d∑

j=1

|v j |
⎞
⎠

2

. (23)

It should be noticed that Eq. (23) coincides with Eq. (17).
However, the latter equation is valid for n̄T � (e2r + 1)n̄s,
whereas the former for n̄T � 2n̄s. This demonstrates that the
method of moments is an optimal estimation strategy in the
regime n̄T � (e2r + 1)n̄s.

2. Heisenberg limit for n̄T ≈ 2n̄s

We optimize both the upper and lower bounds in Eq. (21)
with respect to n̄s, for fixed n̄T . Taking r � 1 (so that n̄s ≈
e2r/4), gives

1

dn̄2
T

� γeQ(v, n̄s, n̄T ) � 1

n̄2
T

. (24)

The value of the squeezing parameter that minimizes the
bounds in Eq. (24) is n̄s = n̄T /2. This is different from the
value n̄s ≈ √

n̄T /2 that minimizes Eq. (18). The different op-
timizations also correspond to different scalings, O(n̄−3/2

T ) and
O(n̄−2

T ), respectively.
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A numerical evaluation of γeQ(v, n̄s, n̄T ) for v = vav

is shown in Fig. 3(a) (red triangles). For n̄T � 2n̄s, γeQ

agrees with the dot-dashed line e−2r/n̄T , as predicted by
Eq. (23). In Fig. 3(c) we plot the numerical calculation of
minn̄s γeQ(vav, n̄s, n̄T ) as functions of n̄T (circles): it perfectly
agrees with the expected Heisenberg limit 1/n̄2

T (thick solid
line).

C. Optimized sensitivity of the separable strategy

Finally, for comparison, we also minimize the sensitivity
of the separable strategy, introducing

γsm(v, n̄′
s, n̄′

T ) ≡ min
|α′

1|2,...,|α′
d |2,r′

1,...,r
′
d

�2(v · θ)sm. (25)

and

γsq(v, n̄′
s, n̄′

T ) ≡ min
|α′

1|2,...,|α′
d |2,r′

1,...,r
′
d

�2(v · θ)sq. (26)

The minimum is searched with respect to the d coher-
ent state intensities and squeezing parameters (the opti-
mal phase-matching condition between the coherent and
squeezed-vacuum at the input of each MZI is assumed). The
optimization of Eq. (25) is generally difficult. We can ob-
tain an analytical expression in the regime n̄′

T � (e2r′
T + 1)n̄′

s
and under the assumption r′

j � 1, j = 1, . . . , d (see Ap-
pendix A 2):

γsm(v, n̄′
s, n̄′

T ) = e−2r′
T

n̄′
T

⎛
⎝ d∑

j=1

|v j |2/3

⎞
⎠

3

, (27)

where r′
T = arcsinh

√
n̄′

s. The optimal parameters are

|α′
j |2 = dn̄′

c∑d
k=1 |vk|2/3

|v j |2/3 and (n̄′
s) j = n̄′

s

dn̄′
c

|α′
j |2. (28)

Notice that the optimized QCRB of the separable strategy, γsQ,
equals the right-hand side of Eq. (27) in the regime n̄′

T � 2n̄′
s.

V. COMPARISON BETWEEN OPTIMAL ENTANGLED AND
SEPARABLE STRATEGIES

In the following, we compare optimal entangled and
separable strategies for the estimation of arbitrary linear com-
binations of the parameters. We first clarify the role of the
QC by relating the sensitivity to the quadrature variance in an
opportune regime. We then provide a quantitative comparison
when considering different constraints on resources.

A. Multimode quadrature squeezing

At the optimal working point θ j = π/2, for all j =
1, . . . , d , Eq. (1) can be written as

�2(v · θ)em = �2

⎡
⎣ d∑

j=1

(Ĵx ) j

〈(Ĵz ) j〉
v j

⎤
⎦

|
in〉

≈ 2�2

⎡
⎣ d∑

j=1

x̂ j
v j

|α j |

⎤
⎦

|
QC〉

. (29)

The mean value and variance after the first equality sign are
evaluated on the state |
in〉 = |
α

in〉 ⊗ |
QC〉, where |
α
in〉 =⊗d

j=1 |α j〉 is the product of coherent states entering the d
MZIs, and |
QC〉 is given in Eq. (6). The subsequent ap-
proximation is obtained by assuming that the numbers of
particles in the jth coherent state, |α j |2, is large enough
to replace the mode operator with a number, â j ∼ |α j |eiφ j ,
also implying (Ĵx ) j ≈ |α j |x̂ j/

√
2, (Ĵy) j ≈ |α j | p̂ j/

√
2 and

(Ĵz ) j ≈ |α j |2/2, where x̂ j = (e−φ j b̂ j + eiφ j b̂†
j )/

√
2 and p̂ j =

(e−iφ j b̂ j − eiφ j b̂†
j )/

√
2i are quadrature operators satisfying the

canonical commutation relation [x̂ j, p̂ j] = i. On the second
line of Eq. (29), mean values and variances are evaluated
on state |
QC〉. Equation (29) reveals that minimizing the
estimation uncertainty is equivalent to looking for the mini-
mum variance of a linear combination of quadrature operators.
We then plug the optimal value of |α j | given by Eq. (13),
obtaining

�2(v · θ)em ≈ 2

dn̄c

⎛
⎝ d∑

j=1

|v j |
⎞
⎠

2

�2

⎡
⎣ d∑

j=1

x̂ j ṽ j

⎤
⎦

|
QC〉

, (30)

where ṽ j = v j/(|v j |
∑d

k=1 |vk|)1/2. We can rewrite the vari-
ance on the right-hand side as

�2

⎡
⎣ d∑

j=1

x̂ j ṽ j

⎤
⎦

|
QC〉

= �2

⎡
⎣ d∑

j=1

e−iϕ/2w j b̂ j + eiϕ/2w∗
j b̂

†
j√

2

⎤
⎦

|
QC〉

= 〈
ξ
in|ÛQCŴ †x̂2

DŴÛ †
QC|
ξ

in〉, (31)

where |
ξ
in〉 is given in Eq. (5) and w j = ei(ϕ/2−φ j )ṽ j . Fur-

thermore, we have used the relation
∑d

j=1 w j b̂ j = Ŵ †b̂DŴ ,
where D refers to the squeezed-vacuum input mode, x̂D =
(e−iϕ/2b̂D + eiϕ/2b̂†

D)/
√

2 and Ŵ is a unitary operator [88].
We have also rewritten the variance as an average value by
noticing that 〈
QC|x̂ j |
QC〉 = 0 and made use of Eq. (6).
Finally, by choosing ÛQC = Ŵ , we can reverse the unitary
transformation Ŵ acting on x̂D and get

�2

⎡
⎣ d∑

j=1

x̂ j ṽ j

⎤
⎦

|
QC〉

= �2[x̂D]|ξ〉D
. (32)

This equation conveys one of the key messages of this paper:
the optimized quantum circuits transform the squeezing in the
input quadrature D into the squeezing of a linear combination
of the d quadrature operators depending on the arbitrary v.
Such transformation enhances the sensitivity in the estimation
of the corresponding linear combination ν · θ of the param-
eters. This idea is summarized schematically in Fig. 4. By
plugging Eq. (32) into Eq. (30), we obtain

�2(v · θ)em ≈ 2

dn̄c

⎛
⎝ d∑

j=1

|v j |
⎞
⎠

2

�2[x̂D]|ξ〉D
. (33)

Finally, taking �2[x̂D]|ξ〉D = e−2r/2, namely, the squeezed
(for r > 0) quadrature variance associated to the squeezed-
vacuum state injected into input mode D, we recover Eq. (17),
with dn̄c ≈ n̄T . Notice also that, from the relation ÛQC = Ŵ ,
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FIG. 4. Basic illustration of QC operation: it transforms the
squeezed-vacuum state in the input mode D, from being squeezed in
the quadrature plane xD-pD (a), to being squeezed in the quadrature
plane x · ṽ =∑d

j=1 x j ṽ j and p · ṽ =∑d
j=1 pj ṽ j (b). Here r = 1.

we get u j = (UQC)D j = W D j = w j = ei(ϕ/2−φ j )ṽ j . This gives
back the optimal QC parameters ũ j = ṽ j [compare Eq. (13)
and the expression of ṽ j given above] and implies δ j = ϕ/2 −
φ j (+π ), where the extra +π has to be included if ṽ j is neg-
ative, thus recovering the optimal phase-matching condition
sin χ j = sin (φ j − ϕ/2 + δ j ) = 0 discussed in Sec. III A.

The situation is quite different for the separable strategy.
In this case, under a Holstein-Primakoff transformation anal-
ogous to the one considered above, we find

�2(v · θ)sm =
d∑

j=1

�2

[
(Ĵx ) j

〈(Ĵz ) j〉
v j

]
|α′

j〉⊗|ξ ′
j〉

≈ 2
d∑

j=1

�2

[
x̂ j

v j

|α′
j |

]
|ξ ′

j〉

= 2
d∑

j=1

v2
j

|α′
j |2

�2[x̂ j]|ξ ′
j〉. (34)

The sensitivity breaks up into the sum of d quadrature vari-
ances, with �2[x̂ j]|ξ ′

j〉 = e−2r′
j /2. Upon optimizing Eq. (34)

over the d squeezing parameters r′
j with r′

j � 1, for a given
ν, it is possible to recover Eq. (27). Equation (34) shows that
the estimation of an arbitrary ν · θ with a sensitivity overcom-
ing the standard quantum limit (set by vacuum fluctuations)
requires, in general, having d squeezed-vacuum states. On
the other hand, the entangled strategy requires only the QC
to optimally distribute a single squeezed vacuum state among
the d MZIs.

B. Comparison between optimal entangled and separable
strategies under different constraints

In the following we study the gain factors GC(v) and
GQ
C (v), defined as the ratio between the estimation uncer-

tainties of the separable and the entangled strategy, evaluated
using the method of moments and QCRB, respectively, and
optimized under a common constraint C on resources. Differ-
ent cases are considered.

1. C1: Same average total number of particles and same total
squeezed-vacuum intensities

Under the constraint {C1 : n̄′
T = n̄T , n̄′

s = n̄s}, we write

GQ
C1

(v, n̄s, n̄T ) = γsQ(v, n̄s, n̄T )

γeQ(v, n̄s, n̄T )
. (35)

For n̄T � 2n̄s, the optimized QCRB in the entangled case
is given in Eq. (23). In the same limit, and for r′

j � 1 ( j =
1, . . . , d), the optimized QCRB in the separable case is γsQ =
e−2r/n̄T (

∑d
j=1 |v j |2/3)3; see Sec. IV C. We thus find

GQ
C1

(v) =
⎛
⎝ d∑

j=1

|v j |2/3

⎞
⎠

3⎛
⎝ d∑

j=1

|v j |
⎞
⎠

−2

, (36)

which, in particular, is independent of n̄s and n̄T . It is possible
to prove that

1 = GQ
C1

(vsing) � GQ
C1

(v) � GQ
C1

(vav) = d. (37)

The left-hand-side inequality follows from monotonicity of
the p-norm and the triangular inequality [89]. The right-hand
side is a consequence of the reverse Hölder’s inequality [90].
The highest gain, in the considered regime, is a factor d ,
achieved for the estimation of vav · θ. Clearly, the entangled
and the separable strategies reach the same optimal estimation
of a single parameter (namely, νsing · θ).

Let us now turn to the gain obtained with the method of
moments,

GC1 (v, n̄s, n̄T ) = γsm(v, n̄s, n̄T )

γem(v, n̄s, n̄T )
, (38)

given by the ratio between Eq. (25) and Eq. (11). We find
thatGC1 (v, n̄s, n̄T ) recovers Eq. (36) for n̄T � (e2r + 1)n̄s and
r′

j � 1 for all j = 1, . . . , d . A plot of GC1 = GQ
C1

, in this
regime, is shown in Fig. 5(a) for d = 2 and in Fig. 5(b) for
d = 3. We clearly observe the gain factor d for v = vav.

In the rest of this section, we focus on the optimal case
v = vav and explore a wider parameter regime than the one
considered above. In Fig. 6(a) we plot the numerical evalua-
tion of GC1 (vav, n̄s, n̄T ) as a function of n̄T /n̄s and for d = 2
(dots). The solid line is

GC1 (vav, n̄s, n̄T ) = n̄T e−2r′ + n̄s

n̄T e−2r + n̄s
, (39)

where r′ = arcsinh
√

n̄s/d (note that n̄s = d sinh2 r′ =
sinh2 r). This equation is the ratio between Eq. (16), valid for
n̄T � 2n̄s, and

γsm(vav, n̄s, n̄T ) = e−2r′

n̄′
T

+ n̄′
s

n̄′2
T

, (40)

with n̄′
T = n̄T and n̄′

s = n̄s. Equation (40) is derived from
Eq. (9) by assuming an even splitting of resources, |α′

j |2 = n̄c

and (n̄′
s) j = n̄s/d for j = 1, . . . , d , as predicted by Eq. (28).

Let us first analyze the behavior of the gain in the limit
n̄T � e2r n̄s, which also implies n̄T � e2r′

n̄s since r � r′.
Equation (39) simplifies to

GC1 (vav, n̄s, n̄T ) ≈ e2(r−r′ ) =
{

d for n̄s � d
e2r for n̄s � d.

(41)
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FIG. 5. Sensitivity gain of the entangled over the separable strat-
egy for d = 2 (left column) and d = 3 (right column). Panels (a) and
(b) plot GC1 (v, n̄s, n̄T ), Eq. (38). Notice that in the regime of pa-
rameters of panels (a) and (b), we have GC1 = GQ

C1
, with GQ

C1
given

in Eq. (36). Panels (c) and (d) show the result of the numerical
evaluation of GC2 (v, n̄T ), Eq. (43). The vector v is expressed as
in polar and spherical coordinates, respectively, as in Fig. 2. In all
panels n̄T = n̄′

T = 108. In panels (a) and (b), n̄s = n̄′
s = 102.

The case n̄s � d is obtained by recognizing that, in this
limit, n̄s ≈ e2r/4 ≈ de2r′

/4. In particular, we recover the gain
factor d discussed previously. In the opposite case, n̄s � d ,
and, in particular, taking the limit d → ∞, the even split-
ting of squeezed photons among the modes, namely, r′

j =
r′ = arcsinh

√
n̄s/d for all j = 1, . . . , d , implies r′

j → 0. The
separable sensing scheme thus reduces to d MZIs fed with
coherent state in one port and (approximately) the vacuum
in the other port. This is characterized by a SN sensitivity,
γsm(vav, n̄s, n̄T ) → 1/(dn̄c) = 1/n̄T , as seen in Eq. (40). It is
possible to show that the same sensitivity is also achieved for
the optimized quantum Cramér-Rao bound. The situation is
different for the entangled scheme. In this case, r remains
finite in the limit d → ∞ and the entangled strategy still
achieves a sub-SN sensitivity; see Eq. (16). Surprisingly, a
finite gain is obtained when a single squeezed-vacuum state
is mixed, by the QC, with a large number (d − 1) of vacuum
states |0〉. The discussion reported in Sec. V A explains the
physical reason for the finite gain: the QC is able to turn
the squeezed state in a single input port to a squeezing in the
opportune combination of quadrature modes, regardless of the
number of such modes (thus also in the limit d → ∞).

The evaluation of the gain GC1 (vav, n̄s, n̄T ) for rela-
tively small values of n̄T /n̄s is more difficult. In this case,
Eq. (40) breaks down, and, although Eq. (39) predicts
GC1 (vav, n̄s, n̄T ) = 1, we observe smaller values numerically
[see, for example, Fig. 6(a)]. In particular, the numerical study
gives a bifurcation of optimal resources in the separable strat-
egy [see the inset of Fig. 6(a)]. In this case, �2(vav · θ)sm is
minimized by an uneven splitting of resources such that one
phase is estimated much better than the other. This is due

FIG. 6. (a) Gain GC1 (vav, n̄s, n̄T ) as a function of n̄T /n̄s, with
fixed n̄s = 103 and for d = 2. The numerical evaluation (dots) is
compared with Eq. (39) (solid line). The inset shows the average
number of squeezed photons to be injected into each of the two
MZIs in order to optimize the sensitivity of the separable strategy:
(sinh2 r′

j )/n̄s for j = 1 (blue dots) and j = 2 (gray circles). For low
values of n̄T /n̄s, a bifurcation appears, meaning that one interferom-
eter gets more squeezed photons than the other. (b) GC1 (vav, n̄s, n̄T )
plotted as a function of d (dots), Eq. (39), with n̄c = 108 and n̄s =
102. The solid line is GC1 (vav, n̄s, n̄T ) = d , which is expected for
d � n̄s; the dashed line is GC1 (vav, n̄s, n̄T ) = e2r , for d � n̄s; see
Eq. (41).

to the existence of an optimal sensitivity point for the single
MZI when n̄s ≈ √

n̄T /2. For low values of the ratio n̄T /n̄s,
an even distribution of input resources would result in a low
number of coherent photons per interferometer, keeping each
MZI away from its optimal working point. A nonsymmetric
configuration is therefore favorable in this regime.

2. C2: Same average total number of particles

With the constraint {C2 : n̄′
T = n̄T } we impose only the

same total average number of particles. We optimize the sen-
sitivity of the entangled and of the separable strategies over n̄s

and n̄′
s, respectively. We thus define

GQ
C2

(v, n̄T ) = minn̄′
s
γsQ(v, n̄′

s, n̄T )

minn̄s γeQ(v, n̄s, n̄T )
(42)

and

GC2 (v, n̄T ) = minn̄′
s
γsm(v, n̄′

s, n̄T )

minn̄s γem(v, n̄s, n̄T )
. (43)
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The numerical evaluation of Eq. (43) is shown in Fig. 5(c) for
d = 2 and Fig. 5(d) for d = 3. We see that GC2 (v, n̄T ) � 1 for
all v, with the maximum gain achieved for v = vav. Similar
results are also obtained for GQ

C2
(v, n̄T ).

In the specific case v = vav, we find

GQ
C2

(vav, n̄T ) = d. (44)

This follows from minn̄s γeQ(vav, n̄s, n̄T ) = n̄−2
T for n̄s ≈

n̄T /2, and minn̄′
s
γsQ(vav, n̄′

s, n̄T ) = 1/d (n̄T /d )−2 = d/n̄2
T for

n̄′
s ≈ n̄T /2. It should be noticed that Eq. (44) holds for n̄′

s =
n̄s. The entangled strategy uses a single squeezed-vacuum
state of n̄s particles, while the separable strategy uses d
squeezed-vacuum states, each with n̄s/d photons. The gain for
the method of moments is instead

GC2 (vav, n̄T ) =
√

d. (45)

This is obtained by optimizing Eqs. (16) and (40), over n̄s and
n̄′

s, respectively. This gives minn̄s γem(vav, n̄s, n̄T ) = n̄−3/2
T for

n̄s ≈ √
n̄T /2, and minn̄′

s
γsm(vav, n̄′

s, n̄T ) = 1/d (n̄T /d )−3/2 =√
d/n̄3/2

T , for n̄′
s ≈ d (

√
n̄T /d )/2, respectively. A maximum

gain
√

2 and
√

3 is observed in Figs. 5(c) and 5(d), for d = 2
and d = 3, respectively.

3. C3: Same average total number of particles and equal
squeezed-vacuum intensities for all modes

Here we impose the constraint {C3 : n̄′
T = n̄T , r′

j =
r, for j = 1, . . . , d}: namely, the separable strategy uses d
copies of the squeezed-vacuum state |ξ 〉 used in the entangled
strategy. We write

GQ
C3

(v, n̄s, n̄T ) = min|α′
1|2,...,|α′

d |2 �2(v · θ)sQ

min|α1|2,...,|αd |2,ÛQC
�2(v · θ)eQ

. (46)

Notice that the condition r′
j = r implies n̄′

s = dn̄s: the total
number of squeezed photons used by the separable strategy is
d times larger than the one used by the entangled strategy. For
n̄T � 2n̄s, we find

GQ
C3

(v, n̄s, n̄T ) = 1. (47)

Equation (47) is derived in Appendix A 2. Although there
is no effective gain in this case, it is still interesting that
the entangled strategy using a single squeezed-vacuum state
achieves the same performance as the sequential strategy us-
ing d squeezed states with the same squeezing parameter.

Let us now focus on the gain obtained from the method of
moments sensitivity,

GC3 (v, n̄s, n̄T ) = min|α′
1|2,...,|α′

d |2 �2(v · θ)sm

min|α1|2,...,|αd |2,ÛQC
�2(v · θ)em

, (48)

and let us consider the case v = vav. In Fig. 7 we show
GC3 (vav, n̄s, n̄T ) as a function of n̄T /n̄s. The numerical
optimization (dots) is compared with

GC3 (vav, n̄s, n̄T ) = n̄T e−2r + dn̄s

n̄T e−2r + n̄s
(49)

shown as a solid line. This equation is derived by taking the
ratio between Eq. (40) and Eq. (16) with n̄′

T = n̄T and n̄′
s =

dn̄s. In the regime n̄T � de2r n̄s, we find GC3 (vav, n̄s, n̄T ) = 1.

FIG. 7. Gain factor GC3 (vav, n̄s, n̄T ) as a function of n̄T /n̄s, with
n̄s = 103 and for d = 2. The numerical evaluation of the gain
Eq. (48) (dots) is compared with Eq. (49) (solid line). The inset
shows the average number of squeezed photons to be injected into
each MZI in order to optimize the sensitivity of the separable strat-
egy, (sinh2 r′

j )/n̄′
s for j = 1 (blue dots) and j = 2 (gray circles): a

bifurcation appears for low values of n̄T /n̄s.

Equation (49) predicts an increase of the gain when decreas-
ing n̄T /n̄s and GC3 (vav, n̄s, n̄T ) = d for low enough values of
the ratio. As shown in Fig. 7, this regime is characterized,
however, by a bifurcation of optimal parameters for the sepa-
rable case (see inset), and the assumption leading to Eq. (49),
namely, the even distribution of resources among the d MZIs
for the separable case, breaks down.

C. Impact of noise and imperfections

So far we have focused on the sensitivity gain obtained
in the noiseless case. In the following we analyze different
possible sources of imperfections. For simplicity, we study
the estimation of the average phase vav · θ taking |α j |2 = n̄c,
j = 1, . . . , d . We also consider the optimal working point
θ j = π/2. Under these conditions, the sensitivity for the en-
tangled strategy reads

�2(vav · θ)em = (e2r − 1)n̄c

d2

⎛
⎝ d∑

j=1

ũ j sin χ j

n̄c − ũ2
j n̄s

⎞
⎠

2

− (1 − e−2r )n̄c

d2

⎛
⎝ d∑

j=1

ũ j cos χ j

n̄c − ũ2
j n̄s

⎞
⎠

2

+ 1

d2

d∑
j=1

n̄c + ũ2
j n̄s

n̄c − ũ2
j n̄s

. (50)

1. Imperfect choice of parameters

In this section we restrict to the case d = 3. We assume the
relative phases χ j distributed on a circle around the optimal
point χ j = 0 with

pσ (χ j ) = 1

2π I0(1/σ 2)
exp
[
cos
(
χ j
)
/σ 2

χ

]
, (51)
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FIG. 8. Average gain Eq. (53) as a function of the parameters
σ 2

χ (dashed blue line) and σ 2
ũ (solid black line) normalized to 1/n̄T .

The numeric is compared with analytical predictions: the dotted blue
curve is Eq. (54); the two dotted horizontal lines are the limiting val-
ues of the gain, for σ 2 → ∞ (see main text). The dashed vertical line
corresponds to σ 2 = 1/n̄T . Here n̄T = 108, n̄s = 100 and averaging
is done under 106 repetitions.

where I0(1/σ 2) is the modified Bessel function of the first
kind of order 0. Equation (51) models imperfections in the
phase locking. Similarly, we take the vector ũ = (ũ1, ũ2, ũ3)
(defining the configuration of the QC) distributed on the
sphere according to the probability density function

pσ (ũ) = k

4π sinh k
exp
[
ũT

optũ/σ 2
ũ

]
, (52)

where ũopt is the optimal direction [ũopt = (1, 1, 1)/
√

3 in
our case]. This corresponds to an imperfection in the QC
(still considered to be lossless). The analysis of a nonunitary
QC due to losses and decoherence is more difficult, and it is
beyond the scope of this paper.

In Fig. 8 we show the results of a numerical analysis. We
plot

Gσ (vav, n̄s, n̄T ) = �2(vav · θ)sm

〈�2(vav · θ)em〉σ (53)

as a function of σ 2. Two cases are considered: (1) σ = σχ and
σũ = 0 (dashed blue line) and (2) σ = σũ and σχ = 0 (solid
black line). In the evaluation of Eq. (53), the constraint C1 is
considered; see Sec. V B 1.

It is worth examining the first case in more detail. When
σχ � 1, Eq. (51) can be well approximated by a Gaussian of
width σχ . We thus have 〈sin χ j〉σχ

= 0 by simple symmetry
arguments, and, to the first order in σ 2

χ , 〈cos χ j〉σχ
� 1 −

σ 2
χ/2, 〈sin2 χ j〉σχ

� 〈χ2
j 〉 ∼ σ 2

χ and 〈cos2 χ j〉σχ
∼ 1 − σ 2

χ . In
the regime n̄T � (e2r + 1)n̄s, n̄s/d � 1, we find

Gσχ
(vav, n̄s, n̄T ) ≈ d

(
1 + e4r

d
σ 2

χ

)−1

, (54)

recovering the gain d for σ 2
χ → 0. Equation (54) can also

be used to derive the value of the gain corresponding to
σ 2

χ ∼ 1/n̄T , with n̄T � 1. This is a relevant check as con-
trolling parameter fluctuations with precision at the shot-noise

FIG. 9. Gain Eq. (56) as a function of the parameter 1 − η corre-
sponding to the probability of losses at each detector. The inset shows
the sensitivity Eq. (55) as a function of 1 − η. Here d = 3, n̄T = 108,
n̄s = 100, and we assume optimal parameters.

limit is a task achievable in most laboratories. If σ 2
χ � de−4r ,

Eq. (54) can be linearized and the relative decrease in gain
approximated as �Gσχ

(vav, n̄s, n̄T )/d ≈ e4rσ 2
χ/d � 1. This

is precisely the situation we get for σ 2
χ ∼ 1/n̄T and in the

regime specified above. The gain of our scheme is thus proven
to be robust against reasonably small fluctuations around its
optimal configuration, in a relevant regime of parameters.

In the opposite limit, σ 2
χ → ∞ or σ 2

ũ → ∞,
the probability distributions (51) and (52) be-
come uniform. A simple calculation shows that
limσχ→∞ Gσχ

(vav, n̄s, n̄T ) = d2e−2r/(cosh r + d − 1) and
limσũ→∞ Gσũ (vav, n̄s, n̄T ) = d2e−2r/(e−2r + d − 1). Notice
that limσχ→∞ Gσχ

(vav, n̄s, n̄T ) � limσũ→∞ Gσũ (vav, n̄s, n̄T ) �
d . These results, together with a direct comparison between
the two main curves of the figure, prove that our scheme
is generally more robust against fluctuations in the QC
parameters than in relative-phase fluctuations between the
input states. Also, as one could expect, large fluctuations
imply an exponential suppression of the gain achieved by the
entangled strategy with the squeezing parameter r.

2. Particle losses and finite detection efficiency

Photon losses in a given output mode or, equivalently, finite
detection efficiency, can be described through a beam splitter
which couples that mode with a fictitious vacuum mode. Tak-
ing, for simplicity, the same loss coefficient η (η = 1 in the
ideal case) for all output modes, we obtain

[�2(v · θ)em]η =�2(v · θ)em

+ 1 − η

η

d∑
j=1

|α j |2 + ũ2
j n̄s(|α j |2 − ũ2

j n̄s
)2

× (1 + cot2 θ j )v
2
j , (55)

as derived in Appendix A 5, where �2(v · θ)em is given in
Eq. (A44) of Appendix A 1 and corresponds to the ideal case
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(η = 1). In Fig. 9 we plot the sensitivity gain

Gη(vav, n̄s, n̄T ) = [�2(vav · θ)sm]η
[�2(vav · θ)em]η

(56)

as a function of 1 − η. Here the entangled and separable
strategies are compared for the same number of losses and
applying the constraint C1; see Sec. V B 1. The sensitivity of
the separable case is derived by taking d = 1 in Eq. (55) and
then making use of Eq. (2). Overall, we find a gain larger
than one for any amount losses, recovering the factor d for
η → 1. In the opposite limit, η → 0, the uncertainty of both
the entangled and the separable strategies diverges (see inset
of Fig. 9) such that Gη(vav, n̄s, n̄T ) → 1.

VI. OPTIMAL LINEAR COMBINATION OF PHASES

In the previous section, we have discussed the optimal con-
figuration of the sensor network of Fig. 1(a) that minimizes
the uncertainty �2(v · θ) for the estimation of a given linear
combination of phases v · θ. Here we consider the opposite
problem. For a specific configuration of the sensor network,
namely, a specific QC transformation U†

QC, coherent state
intensities, and squeezing parameter, we want to find the opti-
mal linear combination of phases v · θ that can estimated with
the smallest possible uncertainty.

A. Fisher spectrum and squeezing spectrum

Finding the optimal vector v ∈ Rd that minimizes Eq. (1)
and/or Eq. (3) is solved by calculating the spectrum of the ma-
trices FQ andM, which we indicate as Fisher and squeezing
spectrum, respectively. These spectra contain useful informa-
tion regarding the multiparameter problem, in general. We
have

min
v∈Rd

�2(v · θ)em = 1

μmaxd
, (57)

where μmax is the largest eigenvalue ofM. The correspond-
ing optimal eigenvector vμmax gives the linear combination of
parameters vμmax · θ that can be estimated with the smallest
possible uncertainty when using the specific method of mo-
ments considered (namely, based on the chosen measurement
observables X̂ j , probe state, and phase encoding transforma-
tion). Following the inequality �2(v · θ)eQ � �2(v · θ)em, we
have fmax � μmax, where fmax is the largest eigenvalue of the
QFIM and satisfies

min
v∈Rd

�2(v · θ)eQ = 1

fmaxd
. (58)

The corresponding optimal eigenvector v fmax (in general,
v fmax �= vμmax ) gives the linear combinations of parameters,
v fmax · θ, that can be estimated with the highest possible
sensitivity (when optimized over all generalized output mea-
surements and all possible estimation strategies) for the given
probe state and phase encoding transformation. The demon-
stration of Eqs. (57) and (58) is reported in Appendix A 4.
Furthermore, a degeneracy (e.g., in the squeezing spectrum)
reveals independent linear combinations of parameters that
can be estimated with the same sensitivity. Specifically, if
dμ is the degeneracy of the eigenvalue μ of M, then the

sensitivity �2(v · θ)em = 1/(μd ) is the same for any v given
by a linear combination of the dμ orthonormal eigenvectors

v(1)
μ , . . . , v

(dμ )
μ . In particular, M−1 (F−1

Q ) is defined on the
subspace of Rd generated by a basis of eigenvectors of M
(FQ) corresponding to finite eigenvalues.

B. Random choice of quantum circuit

Here we consider random choices of the QC and find the
corresponding optimal �2(v · θ)em. To be more explicit, we
generate random unitary QC matrices U†

QC (with uniform
Haar measure) and calculate the largest eigenvalue μmax of
M (see Appendix A 1 for the analytical expression of this
matrix). Furthermore, without loss of generality, we take
the same number of photons in each coherent state, namely,
|α j |2 = n̄c = (n̄T − n̄s)/d , for all j = 1, . . . , d .

Figure 10 summarizes our findings, while different an-
alytical limits are discussed below. The figure shows
EQC[1/(μmaxd )] (green dots), where EQC[· · · ] indicates
statistical averaging. For comparison, we also consider
EQC[1/( fmaxd )] (red triangles). An analytical upper bound to
Eq. (57),

min
v∈Rd

�2(v · θ)em � ũTM(ũ)−1ũ
d

, (59)

is derived by taking the suboptimal v = ũ/
√

d [91]. The in-
equality (59) is valid for every QC, and numerical calculations
reveal that it is tight in a wide regimes of parameters. In
particular, for n̄T � 2n̄s, and taking the statistical average, we
find the simplified expression

EQC[ũTM(ũ)−1ũ]

d
= e−2r

n̄T
+ n̄sS

n̄2
T

, (60)

where S ≡ EQC[d
∑d

j=1 ũ4
j ] [91]. Equation (60) is plot as

solid black line in Fig. 10(a). We recognize different scalings
for different regimes of parameters and discuss them in the
following.

1. Regime n̄T � (e2r + 1)n̄s

In this regime, the moment matrix simplifies to

M−1 = e−2r − 1

n̄c
ũũT + 1

n̄c
Id , (61)

where Id is the d × d identity matrix. Equation (61) can
be diagonalized straightforwardly: we find μmax = n̄ce2r , the
corresponding eigenvector being vμmax = ũ/

√
d . In this case,

the upper bound ũTM(ũ)−1ũ)/
√

d is tight, with the first term
in Eq. (60) dominating over the second one. The optimal
sensitivity

min
v∈Rd

�2(v · θ)em = e−2r

n̄T
(62)

is shown as a dot-dashed line in Fig. 10(a) and found to
agree with the numerics. It is worth noticing that the result
of Eq. (62) is independent of vector ũ, so that averaging
over the QC has almost no effect on the sensitivity [er-
ror bars in Fig. 10(a) are so small that they are hidden by
the corresponding numerical data points]. Below we show
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FIG. 10. (a) Optimized phase uncertainties as functions of n̄T /n̄s, for fixed n̄s = 100 and d = 10. In all panels, EQC[· · · ] indicates statistical
average over 104 random choices of the unitary transformation U †

QC. Symbols show EQC[1/(μmaxd )] (green dots) and EQC[1/( fmaxd )] (red

triangles). The solid black line is Eq. (60). The dot-dashed line is e−2r/n̄T , Eq. (62), the dashed line is
√
S/n̄3/2

T , Eq. (63), and the dotted
line is n̄sS/n̄2

T , Eq. (64). The gray regions are defined by 1/n̄T (SN) and 1/n̄2
T (HL) [these limits are also reported in panels (b) and (e)].

(b) EQC[minr 1/(μmaxd )] as a function of n̄T and for d = 10 (circles). The solid green line is Eq. (63). Panel (c) shows EQC[minr 1/(μmaxd )]n̄3/2
T

as a function of d and for n̄T = 106 (circles). The solid green line is Eq. (63). The corresponding optimal values of n̄s are shown as
circles in panel (d), where the solid line is the theoretical prediction n̄s ≈ √n̄T /(4S) with S ≡ EQC[d

∑d
j=1 ũ4

j ]. Finally, panel (e) plots
EQC[minr 1/( fmaxd )] as a function of n̄T and for d = 10 (circles). The solid red line is Eq. (66). Error bars in all panels are root mean
square fluctuations.

that fmax = μmax = n̄ce2r in this regime, with corresponding
eigenvectors v fmax = vμmax = ũ/

√
d . The optimal sensitivity

predicted by the QFIM is thus saturated by the practical
estimation method given by the method of moments: in the
present limit, EQC[1/(μmaxd )] = EQC[1/( fmaxd )] = e−2r/n̄T

with negligible fluctuations due to random choices of the QC.

2. Optimal squeezing for n̄T ≈ (e2r + 1)n̄s

We now optimize the squeezing parameter in order to
maximize μmax, for a given average total number of parti-
cles n̄T and QC transformation. Such optimization cannot be
performed analytically: for each QC, we evaluate numerically
the maximum eigenvalue μmax of the corresponding M and
optimize it with respect to n̄s. Numerical results are compared
to the analytical optimization of Eq. (60). For n̄s � 1 (such
that e2r ≈ 4n̄s) this predicts

min
r

EQC[ũTM(ũ)−1ũ]

d
≈

√
S

n̄3/2
T

(63)

for n̄s ≈ √n̄T /(4S). In Fig. 10(b) we plot
EQC[minn̄s 1/(μmaxd )] as a function of n̄T and for fixed
d (dots). The solid line is Eq. (63). In Fig. 10(c) we
plot EQC[minn̄s 1/μmax]n̄3/2

T as a function of d , and the
corresponding optimal values of n̄s are shown in Fig. 10(d).
Dots are numerical results, and the solid line is the theoretical
prediction n̄s ≈ √n̄T /(4S). Equation (63) is further shown as
a dashed line in Fig. 10(a).

3. Transient Heisenberg scaling for 2n̄s � n̄T � (e2r + 1)n̄s

In this regime, the first term in Eq. (60) can be neglected,
and we obtain

EQC[ũTM(ũ)−1ũ]

d
≈ n̄sS

n̄2
T

. (64)

This predicts a transient Heisenberg scaling, for fixed n̄s,
with prefactor approximately given by n̄s. This prediction is
confirmed in Fig. 10(a), where Eq. (64) is shown as a dotted
line.

4. Quantum Cramér-Rao bound

In the regime n̄T � 2n̄s, the QFIM assumes the simple
form

FQ = n̄c(e2r − 1)ũũT + n̄cId . (65)

The maximum eigenvalue is fmax = e2r n̄c and the corre-
sponding eigenvector is v fmax = ũ/

√
d . For n̄T � 2n̄s we find

minv∈Rd �2(v · θ)eQ = e−2r/n̄T . Furthermore, taking n̄s � 1
(so that n̄s ≈ e2r/4), we can optimize fmax = 4n̄cn̄s with re-
spect to n̄s, for a fixed n̄T : replacing n̄s = n̄T − n̄cd and taking
the derivative with respect to n̄c, we find the optimal condition
dn̄c = n̄s = n̄T /2. This predicts the saturation of the Heisen-
berg limit

min
v∈Rd

�2(v · θ)eQ = 1

n̄2
T

(66)

with respect to the total number of particles n̄T . In Fig. 10(e)
we show the the statistical average of minn̄s 1/( fmaxd ) (dots)
as a function of n̄T . The solid line is 1/n̄2

T .
In Fig. 10(a) we plot 1/( fmaxd ), averaged on random

choices of the QC (triangles) for fixed n̄s = 100 and d . Nu-
merical simulations agree well with analytical predictions in
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the different limits. The QCRB shows Heisenberg scaling for
n̄T /n̄s ≈ 2 and tends to subshot noise scaling faster than the
method of moments sensitivity, i.e., the sub-SN scaling is
achieved for smaller values of n̄T .

VII. DISCUSSION AND CONCLUSIONS

We have studied an analytically solvable, versatile, and
experimentally-relevant model of multiparameter estimation.
The protocol is based on an array of MZIs [see Fig. 1(a)] and
uses a single squeezed-vacuum state and d coherent states. We
address various regimes depending on the relative intensity of
the squeezed light. We show the possibility to estimate arbi-
trary linear combination v · θ of d phase shifts with sub-SN
sensitivity with respect to the average total number of particles
in the input state.

The key element of our proposal is the configurable QC. It
optimally distributes a single squeezed-vacuum state among
d output modes, generating mode entanglement. In particular,
we have explicitly shown that the QC allows to squeeze the
variance of an opportune collective quadrature, given by a
linear combination of modes, below the vacuum limit. Such
a quadrature squeezing is responsible for reducing the un-
certainty �2(v · θ) below the SN. This possibility is absent
in the separable strategy of Fig. 1(b), which instead requires
d squeezed-vacuum states, one for each MZI, in order to
estimate v · θ with a sub-SN sensitivity. An analysis of pos-
sible imperfections shows that the scheme is not especially
fragile and tolerates a reasonable amount of losses and noise.
Upscaling to large d builds on the possibility to create re-
liable multimode QCs [54,55], which is a general problem
in quantum technologies. We notice that Refs. [54,55] have
experimentally realized a QC for the splitting of squeezed
light up to d = 4 modes and used it for sensing. As a main
difference, our protocol consider the estimation of relative
phase shifts in MZIs: here sensitivity bounds and the compar-
ison with the separable strategy accounts for the total average
number of particles in the probe state and the output detection
does not require additional resources.

The maximum gain of the entangled over the separable
strategy is a factor d , reached for the estimation of the aver-
age phase vav · θ =∑d

j=1 θ j/d and obtained when fixing the
average total number of particles in the squeezed state(s). An
interesting case is when the separable strategy is run with d
copies of the squeezed-vacuum state used in the entangled
scheme and the same mean number of particles n̄T . In this
case, the two strategies reach the same sensitivity, despite the
entangled scheme using (a factor d) less nonclassical states.

While the literature on distributed quantum sensing has
mainly focused on the estimation of specific linear combina-
tions of different parameters, the possibility of optimizing the
sensor array for the estimation of any v · θ, as discussed in
this paper, is generally highly desirable. This possibility has
been shown only in the configurable multimode displacement
sensor of Ref. [55] and for multipass phase sensing [85]
using a photonic Bell state [73]. Further configurable ap-
proaches include the splitting and multimode recombination
of squeezed-vacuum light [68] and twin-Fock states [60]. In
our case, the sensing scheme uses local measurements, a sim-
ple phase estimation scheme, and avoids the recombination of
the states using a second multimode beam-splitter [60,66,68].
In addition, we show the possibility to saturate the quantum

Cramér-Rao bound by measuring the intensity at the local
outputs of the MZIs, without requiring any additional recom-
bination of the modes. The scheme is thus particularly suitable
for spatially distributed sensing. In particular, optimizing the
relative intensity of the squeezed-vacuum state, it is possible
to reach the Heisenberg limit.

A further interesting problems raised in the context of
multiparameter estimation is whether a single sensor network
allows the estimation of multiple linear combination of phases
at the same time [76]. This problem is solved here by changing
the mode D of the QC where the squeezed-vacuum state
is injected; see Fig. 1(a). Indeed, a single d-mode QC can
be optimized to estimate d different (e.g., orthogonal) lin-
ear combinations vD · θ (with D = 1, . . . , d and vi · v j = δi j)
with the same sensitivity: each input mode D of the QC
corresponds to a specific optimal vD · θ.

The results of this work are relevant in current experi-
ments realizing squeezed-vacuum light and multimode linear
splitting transformations [54,55,57]. They pave the way to
distributed sensing using multiple MZIs—in both optical and
atomic systems—with a large variety of applications ranging
from field and biological sensing, gravitational wave detec-
tion, quantum clocks, and inertial measurements.

ACKNOWLEDGMENTS

We thank R. Corgier and V. Gebhart for discussions. We
acknowledge financial support from the European Union’s
Horizon 2020 Qombs Project (FET Flagship on Quantum
Technologies Grant No. 820419) and the QuantEra grant
SQUEIS.

APPENDIX

1. Derivation of Eqs. (7) and (8)

Our methods are based on a technique to calculate the
QFIM that was outlined in Ref. [92]. It should be noticed,
however, that Ref. [92] considered a different sensing con-
figuration: the generalization to the array of MZIs is not
straightforward and requires additional algebraic work. Fur-
thermore, our calculation leads to a different expression for
the matrix h than that reported in Ref. [92] [see Eq. (A22)
below, the subsequent discussion, and the Erratum Ref. [93]].
Alternative approaches to calculate the QFIM of Gaussian
states have been also considered; see Refs. [63,66,94,95].

a. Preliminary definitions

We consider the general case where a product of d ′ single-
mode squeezed states is sent to a passive linear network Â†

and transformed according to

|
〉 = Â†
d ′⊗

k=1

|βk, ξk〉. (A1)

Here |βk, ξk〉 is the single-mode displaced squeezed state in
the mode k: βk is the coherent amplitude of the state and
ξk = rkeiϕk its squeezing parameter. In the following, we will
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assume that Â† is a Gaussian unitary, that is, a unitary oper-
ator which transforms Gaussian states into Gaussian states.
Because Â† is also a passive, i.e., particle-number preserv-
ing, transformation, if we set ĉ = (ĉ1, . . . , ĉd ′ )T , a relation
ÂĉÂ† = ĉ′ =Aĉ must hold, with A a unitary matrix (simi-
larly, Âĉ†Â† =A∗ĉ†). Here ĉ†

k and ĉk are bosonic creation and
annihilation operators, respectively,

We recall the definition of the Q function for the state |�〉
of a generic d ′-mode system:

Q(α) = |〈α|�〉|2
π

, (A2)

where |α〉 =⊗d ′
k=1 |αk〉, |αk〉 being an arbitrary single-mode

coherent state in mode k. From the point of view of the Q func-
tion, a transformation Â†|�〉 is equivalent to a transformation
Â|α〉 of the coherent states; moreover, it is a well-known prop-
erty that a Gaussian passive transformation Â sends a product
of coherent states into another product of coherent states, in
particular: Â|α〉 = |α′〉 = |Aα〉. A is the matrix that imple-
ments the transformation α′ = Aα of the amplitudes of the
coherent states associated with the Q function. It is possible to
show that this matrix is the same as the one which describes
the transformation of the annihilation operators implemented
by Â, that is, Â† ĉ Â = ĉ′ = Aĉ, and, correspondingly, the
Hermitian conjugate of the matrix which describes the trans-
formation of the annihilation operators implemented by Â†,
which we have denoted asA above. The relationA† = A will
be frequently used in what follows.

Using the Q-function representation of the states, (A1),
Ref. [92] showed that

〈n̂ j〉 = −1 + ∂ j∂
∗
j G(μ)|μ=0, (A3)

〈n̂ j n̂k〉 = [∂ j∂
∗
j ∂k∂

∗
k − (1 + δ jk )∂ j∂

∗
j − ∂k∂

∗
k ]G(μ)|μ=0 + 1,

(A4)

where μ = (λ1, . . . , λd ′ , λ∗
1, . . . , λ

∗
d ′ )T is an arbitrary 2d ′-

dimensional complex vector, ∂ j , ∂∗
j are shorthand notation

for ∂/∂λ j , ∂/∂λ∗
j , n̂ j = ĉ†

j ĉ j , and the expectation values are
evaluated in state |
〉. We have G(μ) = e�, where

� ≡ 1
4 (ν†

bM−1μ + μ†M−1νb + μ†M−1μ), (A5)

νb = (b1, . . . , bd ′ , b∗
1, . . . , b∗

d ′ )T , (A6)

b j =
∑

k

A†
jk (βk + β∗

k eiϕk tanh rk ), (A7)

M−1 = 2

(
E −NET

−N†E ET

)
, (A8)

N = A†DA∗, (A9)

E = A†CA, (A10)

C jk = δ jk cosh2 rk, (A11)

and

D jk = δ jkeiϕk tanh rk . (A12)

Using Eq. (A8), we find

�= 1

4

[(
b∗ b

) · 2

(
E −NET

−N†E ET

)(
λ

λ∗

)
+(λ∗ λ

) · 2

(
E −NET

−N†E ET

)(
b
b∗

)
+(λ∗ λ

) · 2

(
E −NET

−N†E ET

)(
λ

λ∗

)]
,

which we can write more explicitly as

� = 1
2 [b∗ · (Eλ − NET λ∗) + b · (−N†Eλ + ET λ∗) + λ∗ · (Eb − NET b∗) + λ · (−N†Eb + ET b∗)

+λ∗ · (Eλ − NET λ∗) + λ · (−N†Eλ + ET λ∗)].

We then calculate the first and second partial derivatives of � with respect to λ j and λ∗
j :

∂ j� = 1

2

∑
k

[−((N†E ) jk + (N†E )k j )(λk + bk ) + 2Ek j (λ
∗
k + b∗

k )] =
∑

k

E∗
jk (λ∗

k + b∗
k ) − (EN)∗jk (λk + bk ), (A13)

∂∗
j � = 1

2

∑
k

[2E jk (λk + bk ) − ((NET ) jk + (NET )k j )(λ
∗
k + b∗

k )] =
∑

k

E jk (λk + bk ) − (EN) jk (λ∗
k + b∗

k ), (A14)

∂∗
j ∂k� = E jk, (A15)

∂ j∂
∗
k � = Ek j = E∗

jk, (A16)

∂∗
j ∂

∗
k � = − 1

2 ((NET ) jk + (NET )k j ) = −(EN) jk, (A17)

∂ j∂k� = − 1
2 ((N†E ) jk + (N†E )k j ) = −(EN)∗jk . (A18)

To derive the above equations, we have used the following relations: E = E† and N = NT , which also imply ET = E∗ and
N† = N∗, respectively, (EN)T = EN, NET = (EN)T = EN, and N†E = (EN)† = ((EN)T )∗ = (EN)∗. We are now ready to
work out the partial derivatives of G(μ) that appear in Eqs. (A3) and (A4):

∂ j∂
∗
j G(μ) = (∂ j∂

∗
j �)e� + (∂ j�)(∂∗

j �)e� = (E j j + (∂ j�)(∂∗
j �))e�
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and

∂ j∂
∗
j ∂k∂

∗
k G(μ) = ∂ j[(Ekk + (∂k�)(∂∗

k �))(∂∗
j �)e� + ((∂∗

j ∂k�)(∂∗
k �) + (∂k�)(∂∗

j ∂
∗
k �))e�]

= [(EN) jk (EN)∗jk −(EN)∗jk (∂∗
j �)(∂∗

k �)−(EN) jk (∂ j�)(∂k�) + E jkE∗
jk + E jk (∂ j�)(∂∗

k �) + E∗
jk (∂∗

j �)(∂k�).

+ (E j j + (∂ j�)(∂∗
j �))(Ekk + (∂k�)(∂∗

k �))]e�.

By evaluating the derivatives at μ = 0, we get

∂ j∂
∗
j G(μ)|μ=0 = E j j + (∂ j�)0(∂∗

j �)0,

where (∂ j�)0 is shorthand notation for (∂ j�)|μ=0, and

∂ j∂
∗
j ∂k∂

∗
k G(μ)|μ=0 = (EN) jk (EN)∗jk − (EN)∗jk (∂∗

j �)0(∂∗
k �)0 − (EN) jk (∂ j�)0(∂k�)0 + E jkE∗

jk + E jk (∂ j�)0(∂∗
k �)0

+ E∗
jk (∂∗

j �)0(∂k�)0 + (E j j + (∂ j�)0(∂∗
j �)0)(Ekk + (∂k�)0(∂∗

k �)0).

Finally, Eqs. (A3) and (A4) are rewritten as

〈n̂ j〉 = −1 + E j j + (∂ j�)0(∂∗
j �)0 (A19)

and

〈n̂ j n̂k〉 = (EN) jk (EN)∗jk − (EN)∗jk (∂∗
j �)0(∂∗

k �)0 − (EN) jk (∂ j�)0(∂k�)0 + E jkE∗
jk + E jk (∂ j�)0(∂∗

k �)0 + E∗
jk (∂∗

j �)0(∂k�)0

+ 〈n̂ j〉〈n̂k〉 − δ jk (E j j + (∂ j�)0(∂∗
j �)0). (A20)

At this point, we introduce the d ′ × d ′ matrix h, with elements h jk = 〈n̂ j n̂k〉 − 〈n̂ j〉〈n̂k〉. Taking into account the above
equations for 〈n̂ j〉 and 〈n̂ j n̂k〉, we have

h jk = (EN) jk (EN)∗jk − (EN)∗jk (∂∗
j �)0(∂∗

k �)0 − (EN) jk (∂ j�)0(∂k�)0 + E jkE∗
jk + E jk (∂ j�)0(∂∗

k �)0 + E∗
jk (∂∗

j �)0(∂k�)0

− δ jk (E j j + (∂ j�)0(∂∗
k �)0).

This equation can be rewritten in a compact form by introduc-
ing the vector γ j ≡ (∂ j�)0. Notice that (γ j )∗ = (∂∗

j �)0. From
Eqs. (A13) and (A14), we get γ j =∑k E∗

jkb∗
k − (EN)∗jkbk ,

namely,

γ = E∗b∗ − (EN)∗b. (A21)

Finally, making use of vector γ and of the Hadamard entry-
wise product ◦, we can rewrite h in the compact form:

h = EN ◦ (EN)∗ − EN ◦ γγT − (EN)∗ ◦ (γγT )∗ + E ◦ E∗

+ E ◦ γγ† + E∗ ◦ (γγ†)∗ − (E + γγ†) ◦ I. (A22)

Matrix h is real and symmetric. An expression similar to
Eq. (A22) was derived in Ref. [92]; see Eq. (14) in that refer-
ence. There are, however, important differences with respect
to Eq. (A22). Only our formula for h reproduces the correct
and well-known expression of the QFIM relative to a single
MZI fed with coherent and squeezed-vacuum input light, cor-
responding to the case d = 1 (see the following section for the
derivation of the QFIM).

In our sensing scheme, the initial state is given by

|
in〉 = |
α
in〉 ⊗ |
ξ

in〉.
The state |
α

in〉 = |α1〉 ⊗ · · · ⊗ |αd〉 is a product state of co-
herent states in modes a1, . . . , ad . The state |
ξ

in〉 = |0〉 ⊗
· · · ⊗ |ξ 〉 ⊗ · · · ⊗ |0〉 is a product of a squeezed-vacuum state
|ξ 〉 in mode (bin )D and the vacuum |0〉 in modes (bin ) j for
j = 1, . . . , d and j �= D. This initial state should be com-
pared with the product state in Eq. (A1). In order to facilitate
the identification of the two cases, we can set â j ≡ ĉ j and

(b̂in ) j ≡ ĉ j+d ( j = 1, . . . , d ), thus introducing a more homo-
geneous notation valid for all of the 2d = d ′ input modes of
the sensor array. We then identify the 2d × 2d unitary matrix
corresponding to the mode transformation performed by the
QC as

U† =
(

Id 0
0 U†

QC

)
.

The d × d identity matrix Id describes the action of the QC
on the coherent states, while b̂ j =∑d

k=1(U†
QC) jk (b̂in )k ( j =

1, . . . , d ), U†
QC being a unitary d × d matrix. We denote the

system state after the QC as |
out〉, so that we have |
out〉 =
Û †|
in〉 = (Î ⊗ Û †

QC)|
α
in〉 ⊗ |
ξ

in〉 = |
α
in〉 ⊗ |
QC〉. In the

last equality, we have set |
QC〉 = Û †
QC|
ξ

in〉.

b. Inverse moment matrix and method of moments sensitivity

The so-called moment matrix corresponds to the covariance
matrix of a particular set of estimators of the unknown param-
eters θ j , j = 1, . . . , d . It is defined as follows [67]:

M = GT �−1G, (A23)

where

G jk = ∂〈X̂ j〉ρ(θ)

∂θk
, j = 1, . . . , K ; k = 1, . . . , d (A24)

and

� jk = 〈X̂ j X̂k〉ρ̂(θ) − 〈X̂ j〉ρ̂(θ)〈X̂k〉ρ̂(θ), j, k = 1, . . . , K,

(A25)
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ρ̂(θ) being the output state of the whole sensor array. The
X̂ j , j = 1, . . . , K , are K Hermitian operators which corre-
spond to measurements performed on the output state ρ̂(θ).
We choose X̂ j ≡ (Ĵz ) j = (â†

j â j − b̂†
j b̂ j )/2, with j = 1, . . . , d .

By this choice, the two matrices G and � can be evaluated
through the Q-function-based technique already illustrated in
the previous section. In our case, ρ̂(θ) = |
(θ)〉〈
(θ)| is a
pure state. The phases θ1, . . . , θd to be estimated are encoded
in |
out〉 [defined in the previous section] through the unitary
transformation ⊗d

j=1e−iθ j (Ĵy ) j , where e−iθ j (Ĵy ) j identifies the jth

MZI in the array, with (Ĵy) j = (â†
j b̂ j − b̂†

j â j )/2i. Therefore

|
(θ)〉 = ⊗d
j=1e−iθ j (Ĵy ) j |
out〉 = ⊗d

j=1e−iθ j (Ĵy ) j Û |
in〉.
This equation should be compared with Eq. (A1): the identi-
fication Â† = ⊗d

j=1e−iθ j (Ĵy ) j Û † is straightforward. The action
of Â† on the annihilation operators of the input modes can
be represented by the relation ĉ′

j =∑k A†
jk ĉk ( j = 1, . . . , 2d)

with

A† =
(

C̃ S̃
−S̃ C̃

)(
Id 0
0 U†

QC

)
=
(

C̃ S̃U†
QC

−S̃ C̃U†
QC

)
, (A26)

where C̃ jk = cos (θ j/2)δ jk and S̃ jk = sin (θ j/2)δ jk . On the
basis of Eq. (A25) and having set X̂ j ≡ (Ĵz ) j , we have

� jk =〈
(θ)|(Ĵz ) j (Ĵz )k|
(θ)〉
− 〈
(θ)|(Ĵz ) j |
(θ〉)〈
(θ)|(Ĵz )k|
(θ)〉. (A27)

Since (Ĵz ) j = (â†
j â j − b̂†

j b̂ j )/2 = (ĉ†
j ĉ j − ĉ†

j+d ĉ j+d )/2 =
(n̂ j − n̂ j+d )/2, through simple calculations we can write � jk

in terms of the elements of matrix h:

� jk = 1
4 (h j,k + h j+d,k+d − h j,k+d − h j+d,k ),

j, k = 1, . . . , d. (A28)

Notice that � is a d × d matrix, whose elements, according to
Eq. (A28), can be obtained as combinations of the elements of
h, a 2d × 2d matrix. Equation (A22) expresses h in terms of
the two matrices E and EN and the vector γ . E and EN are
derived by referring to Eqs. (A9) to (A12). In particular, from
Eqs. (A11) and (A12) we get

C =
(

Id 0
0 C1

)
(A29)

and

CD =
(

0 0
0 C1D1

)
. (A30)

In the above equations, C1 and C1D1 are d × d matrices with
elements

(C1) jk = δ jk[(1 − δDk ) + δDkc2] (A31)

and

(C1D1) jk = δ jkδDkeiϕsc, (A32)

respectively, where D is the index of the input port into which
|ξ 〉 is injected, and s ≡ sinh r, c ≡ cosh r (these shortcuts will

be repeatedly used below). So we get

E = A†CA =
(

C̃
2 + S̃E1S̃ −(S̃C̃ − S̃E1C̃)

−(S̃C̃ − C̃E1S̃) S̃
2 + C̃E1C̃

)
,

(A33)

with E1 = U†
QCC1UQC, and

EN =A†CDA∗ =
(

S̃E1N1S̃ S̃E1N1C̃
C̃E1N1S̃ C̃E1N1C̃

)
, (A34)

with E1N1 = U†
QCC1D1U∗

QC. We also have

γ =b∗ =
(

C̃β∗
0

−S̃β∗
0

)
=
(

C̃γ0
−S̃γ0

)
, (A35)

so that

γγ† =
(

C̃φ−C̃ −C̃φ−S̃
−S̃φ−C̃ S̃φ−S̃

)
(A36)

and

γγT =
(

C̃φ+C̃ −C̃φ+S̃
−S̃φ+C̃ S̃φ+S̃

)
, (A37)

where (β0) j = |α j |eiφ j , (φ+) jk = |α j ||αk|e−i(φ j+φk ), (φ−) jk =
|α j ||αk|e−i(φ j−φk ). Notice that, to derive γ , we made use of
Eq. (A21) in its simplified form γ = b∗. Indeed, if each in-
put mode is either in a coherent or in a squeezed-vacuum
state, then the following special relations hold: E∗b∗ =
b∗, (EN)∗b = 0 and b = A†β with β = (β0 0)T , reducing
Eq. (A21) to γ = b∗.

At this point, we easily get
(E1N1) jk = (U†

QCC1D1U∗
QC) jk = eiϕsc |u j ||uk|e−iδ j e−iδk ,

(A38)

(E1) jk = (U†
QCC1UQC) jk = δ jk + s2|u j ||uk|e−iδ j eiδk ,

(A39)

where we have set (UQC)D j ≡ u j = |u j |eiδ j . Making
use of these two equations, explicit expressions can

be easily derived for the submatrices (C̃
2 + S̃E1S̃) jk =

δ jk + s2|u j ||uk|e−iδ j eiδk sin (θ j/2) sin (θk/2), (S̃E1N1S̃) jk =
eiϕsc |u j ||uk|e−iδ j e−iδk sin (θ j/2) sin (θk/2), etc., and also
(C̃φ−C̃) jk = c2|α j | |αk| e−i(φ j−φk ), (C̃φ+C̃) jk = c2|α j ||αk|
e−i(φ j+φk ), etc. Using these results and relying on Eq. (A22),
we obtain h. Then, making use of Eq. (A28), we get the
following expression for �:

� jk = 1
4 {|α j ||αk||u j ||uk| sin θ j sin θk[(e2r − 1) sin χ j sin χk

− (1 − e−2r ) cos χ j cos χk] + (|α j |2 + |u j |2n̄s)δ jk}
+ 1

4 |u j |2|uk|2(2c2 − 1)s2 cos θ j cos θk . (A40)

Here we have introduced the symbol χ j = φ j − ϕ/2 + δ j .
Consider now Eq. (A24), rewritten for the specific choice
X̂ j ≡ (Ĵz ) j :

G jk = ∂〈
(θ)|(Ĵz ) j |
(θ)〉
∂θk

= 1

2

∂〈
(θ)|(n̂ j − n̂ j+d )|
(θ)〉
∂θ j

δ jk, j, k = 1, . . . , d.

(A41)
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A formula for the evaluation of 〈
(θ)|n̂ j |
(θ)〉 was derived
in Eq. (A19): 〈
(θ)|n̂ j |
(θ)〉 = −1 + E j j + γ jγ

∗
j for j =

1, . . . , 2d . The same information is conveniently condensed

in the (diagonal) matrix −I2d + (E + γγ†) ◦ I2d , whose
diagonal elements are the 〈
(θ)|n̂ j |
(θ)〉, j = 1, . . . , 2d .

Making use of Eqs. (A33) and (A36), one finds

−I2d + (E + γγ†) ◦ I2d =
(

−Id + C̃
2 + (S̃E1S̃) ◦ Id + C̃φ−C̃ 0

0 −Id + S̃
2 + (C̃E1C̃

) ◦ Id + S̃φ−S̃

)

×
(

−Id + C̃
2 + S̃

2
(E1 ◦ Id ) + C̃φ−C̃ 0

0 −Id + S̃
2 + C̃

2
(E1 ◦ Id ) + S̃φ−S̃

)
,

where the general result (ZY Z) ◦ Id = Z2(Y ◦ Id ) has been used, Z being a diagonal matrix. Note that, for j = 1, . . . , d , the
expectation value 〈
(θ)|(n̂ j − n̂ j+d )|
(θ)〉 corresponds to the difference between the two diagonal blocks of this matrix, so that,
after simple algebraic manipulation, we get

G jk =1

2

∂〈
(θ)|(n̂ j − n̂ j+d )|
(θ)〉
∂θ j

δ jk = 1

2
sin θ j[|u j |2s2 − |α j |2]δ jk . (A42)

At this point, if we aimed to obtain the explicit expression of the moment matrix, we would still have to compute the inverse
matrix �−1. On the other hand, we only need G−1 to derive M−1 = (G−1)T �G−1, the advantage being that G is diagonal and
thus is easily inverted. From Eqs. (A40) and (A42), one readily gets

(M−1) jk = |α j ||αk||u j ||uk|
[

(e2r − 1)
sin χ j

|α j |2 − |u j |2n̄s

sin χk

|αk|2 − |uk|2n̄s
− (1 − e−2r )

cos χ j

|α j |2 − |u j |2n̄s

cos χk

|αk|2 − |uk|2n̄s

]

+ |α j |2 + |u j |2n̄s

(|α j |2 − |u j |2n̄s)2
δ jk + |α j |2 + |u j |2n̄s

(|α j |2 − |u j |2n̄s)2
cot2 θ j δ jk + (2n̄s + 1)n̄s|u j |2|uk|2 cot θ j

|α j |2 − |u j |2n̄s

cot θk

|αk|2 − |uk|2n̄s
,

(A43)

where s2 ≡ sinh2 r = n̄s. By plugging Eq. (A43) into �2(v · θ)em = vTM−1v, we obtain

�2(v · θ)em = (e2r − 1)

⎛
⎝ d∑

j=1

|α j ||u j | sin χ j

|α j |2 − |u j |2n̄s
v j

⎞
⎠

2

− (1 − e−2r )

⎛
⎝ d∑

j=1

|α j ||u j | cos χ j

|α j |2 − |u j |2n̄s
v j

⎞
⎠

2

+
d∑

j=1

|α j |2 + |u j |2n̄s

(|α j |2 − |u j |2n̄s)2
v2

j

+
d∑

j=1

cot2 θ j
|α j |2 + |u j |2n̄s

(|α j |2 − |u j |2n̄s)2
v2

j + (2n̄s + 1)n̄s

⎛
⎝ d∑

j=1

cot θ j
|u j |2

|α j |2 − |u j |2n̄s
v j

⎞
⎠

2

. (A44)

We can write �2(v · θ)em = �2(v · θ)em|θ1= ... =θd = π/2 +
Q(cot θ1, . . . , cot θd ), where Q is a second-degree polynomial
in the variables cot θ1, . . . , cot θd such that Q = 0 at θ1 =
· · · = θd = π/2. Since Q � 0 for all values of θ1, . . . , θd , the
condition

θ j = π

2
, j = 1, . . . , d (A45)

identifies the optimal working point of the scheme, i.e., the
point, among all possible values of θ1, . . . , θd , at which the
estimation uncertainty is the smallest. In a similar way, we
can minimize the uncertainty with respect to the parameters
χ1, . . . , χd . As Q(cot θ1, . . . , cot θd ) is independent of these
parameters, we focus on �2(v · θ)em|θ1= ... =θd = π/2. By set-
ting

sin χ j = 0, j = 1, . . . , d, (A46)

we minimize the first squared term in Eq. (A44) and simul-
taneously maximize the second one by a suitable choice of
sign for cos χ j = ±1, j = 1, . . . , d . To maximize the second
squared term in Eq. (A44), a sum of terms of equal sign is
expected between round brackets, providing a criterion for

the correct choice of sign. Overall this yields the absolute
minimum of �2(v · θ)em with respect to χ1, . . . , χd . In the fol-
lowing, we will set |u j | cos χ j = ±|u j | ≡ ũ j . At the optimal
working point θ j = π/2 and applying the optimal condition
sin χ j = 0 to the phases of the input states, the sensitivity
equation simplifies to Eq. (7). The optimal choice of sign for
the cosine terms cos χ j = ±1 is now embedded in the more
general problem of optimizing the sensitivity with respect to
the QC parameters {ũ j} j=1,...,d .

c. Quantum Fisher information matrix and quantum
Cramér-Rao bound

The derivation of the QFIM follows closely that of the
inverse moment matrix, reported above. If a system is in the
pure state |
〉 and subject to a phase-encoding transformation
of the form ⊗d

j=1e−iθ j (Ĵz ) j , the elements of the QFIM can be
calculated as

(FQ) jk = 4[〈
|(Ĵz ) j (Ĵz )k|
〉 − 〈
|(Ĵz ) j |
〉〈
|(Ĵz )k|
〉].
(A47)
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To make use of this equation, we notice that, in our scheme,
encoding the phases in the state |
out〉 through the uni-
tary transformation ⊗d

j=1e−iθ j (Ĵy ) j , as assumed in the previous
section, is equivalent to encoding them in the state |
〉 =
⊗d

j=1e−i π
2 (Ĵx ) j |
out〉, where (Ĵx ) j = (â†

j b̂ j + b̂†
j â j )/2, through

the unitary transformation ⊗d
j=1e−iθ j (Ĵz ) j , with (Ĵz ) j = (â†

j â j −
b̂†

j b̂ j )/2. This alternative formulation is more convenient here.
Overall, |
〉 can be expressed as

|
〉 =
(
⊗d

j=1e−i π
2 (Ĵx ) j

)
Û †|
out〉.

Therefore, this time we have Â† = (⊗d
j=1e−i π

2 (Ĵx ) j )Û † or, in
matrix form:

A† = 1√
2

(
Id −iId

−iId Id

)(
Id 0
0 U†

QC

)

= 1√
2

(
Id −iU†

QC

−iId U†
QC

)
. (A48)

Similarly to what has been done for M−1, we can express
(FQ) jk as

(FQ) jk = h j,k + h j+d,k+d − h j,k+d − h j+d,k,

j, k = 1, . . . , d, (A49)

where h jk = 〈
|n̂ j n̂k|
〉 − 〈
|n̂ j |
〉〈
|n̂k|
〉. The old ex-
pressions of E, EN, and γ , Eqs. (A33) to (A35), will
change according to the change in the evolution operator A†,
Eq. (A48):

E = A†CA = 1
2

(
Id + E1 i(Id − E1)

−i(Id − E1) Id + E1

)
,

EN = A†CDA∗ = 1
2

(−E1N1 −iE1N1
−iE1N1 E1N1

)
,

γ = 1√
2

(
β0

∗

iβ0
∗

)
= 1√

2

(
γ0
iγ0

)
.

However, notice that Eqs. (A38) and (A39) for E1N1 and E1
and the expression of β0 are left unaltered. We then derive
matrix h by making use of Eq. (A22), and, finally, from
Eq. (A49), we find

(FQ) jk = |α j ||αk|[(e−iϕu je
iφ j ukeiφk + eiϕu∗

j e
−iφ j u∗

k e−iφk )sc

+ (u∗
j e

−iφ j ukeiφk +u je
iφ j u∗

k e−iφk )s2+δ jk]+|u j |2s2δ jk

= |α j ||αk||u j ||uk|[(e2r − 1) cos χ j cos χk

− (1 − e−2r ) sin χ j sin χk] + (|α j |2 + |uk|2n̄s)δ jk .

(A50)

The QFIM derived in Eq. (A50) does not depend on the
phases θ1, . . . , θd to be estimated. However, it still needs to be
optimized with respect to the parameters {χ j} j=1,...,d . Since,
unlike the case of Eq. (A44), a simple expression for vTFQ

−1v

is not available, we here assume that the optimal condition
sin χ j = 0 derived for vTM−1v still holds for the present
case. By applying that to Eq. (A50), we find

(FQ) jk = (e2r − 1)|α j ||αk|ũ j ũk + (|α j |2 + ũ2
j n̄s
)
δ jk . (A51)

To obtain the quantum Cramér-Rao bound, we first use the
Sherman-Morrison formula to invert the above equation:

(FQ
−1) jk = 1

|α j |2 + ũ2
j n̄s

δ jk − (e2r − 1)

1 +K (e2r − 1)

× |α j ||αk|ũ j ũk(|α j |2 + ũ2
j n̄s
)(|αk|2 + ũ2

k n̄s
) , (A52)

where K =∑d
j=1 |α j |2ũ2

j/(|α j |2 + ũ2
j n̄s). Finally, the QCRB

of Eq. (8) is derived by making use of �2(v · θ)eQ =
vTFQ

−1v.

2. Optimized sensitivities

a. Derivation of Eq. (17)

Our starting point is Eq. (7). Taking

|α j |2 � ũ2
j n̄s (A53)

for all j, we can simplify the denominator of all terms in the
equation, obtaining

�2(v · θ)em = −
⎛
⎝ d∑

j=1

ũ j
v j

|α j |

⎞
⎠

2

+ e−2r

⎛
⎝ d∑

j=1

ũ j
v j

|α j |

⎞
⎠

2

+
d∑

j=1

v2
j

|α j |2 +
d∑

j=1

ũ2
jv

2
j

|α j |4 n̄s. (A54)

To proceed with the optimization, we want to neglect the last
terms with respect to the others. Taking into account Eq. (A53)
and the further condition

e−2r

⎛
⎝ d∑

j=1

ũ j
v j

|α j |

⎞
⎠

2

�
d∑

j=1

ũ2
jv

2
j

|α j |4 n̄s (A55)

allows us to simplify Eq. (7) to

�2(v · θ)em = −(1 − e−2r )

⎛
⎝ d∑

j=1

ũ j
v j

|α j |

⎞
⎠

2

+
d∑

j=1

v2
j

|α j |2 .

(A56)

We recognize that the first terms writes as a scalar product: it
can be minimized by taking ũi ∝ vi/|αi|, which gives

min
ũ

�2(v · θ)em =
⎛
⎝ d∑

j=1

v2
i

|α j |2

⎞
⎠e−2r . (A57)

For the optimization over the coherent state intensities,
(n̄c) j = |α j |2, we rely on the method of Lagrangiam multi-
pliers. The derivative of the Lagrangian function L[(n̄c)k, λ]
associated with the minimization of Eq. (A57) under the con-
straint

∑d
j=1(n̄c) j = dn̄c is

∂

∂ (n̄c) j
L[(n̄c)k, λ] = − v2

j

(n̄c)2
j

e−2r − λ. (A58)
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Setting this to zero, we find that the first term on the right-hand
side of the above equation equals λ for all j. We have

|v j+1|
(n̄c) j+1

= |v j |
(n̄c) j

, (A59)

for j = 1, . . . , d − 1. Making use of the constraint on the total
number of coherent photons, we obtain the optimal parameters
(n̄c) j and ũ j given in Eq. (13). By replacing these parameters
into Eq. (A57), we recover Eq. (17). Finally, using the above
optimal parameters, we obtain that Eq. (A53) is satisfied for
n̄T � 2n̄s and Eq. (A55) is satisfied for the more restrictive
n̄T � (e2r + 1)n̄s.

b. Derivation of Eq. (23)

Under the condition |α j |2 � ũ2
j n̄s, one can make the

approximation |α j |2 + ũ2
j n̄s ≈ |α j |2 and simplify the denom-

inators of Eq. (A52). The quantity K appearing in the same
equation also simplifies, as K ≈ 1. The QCRB derived from
this approximated form of FQ

−1 coincides with Eq. (A56).
Therefore, the optimization performed on �2(v · θ)em also
works for �2(v · θ)eQ. However, only the assumption |α j |2 �
ũ2

j n̄s is needed in this case. Therefore, the result must hold in
the wider regime n̄T � 2n̄s.

c. Derivation of Eq. (27)

The starting point is Eq. (9). Taking (n̄′
c) j � (n̄′

s) j for all j
allows us to simplify the denominator of Eq. (9), giving

�2(v · θ)sm =
d∑

j=1

(
e−2r′

j

(n̄′
c) j

+ (n̄′
s) j

(n̄′
c)2

j

)
v2

j . (A60)

In the limit,

(n̄′
c) j � (n̄′

s) je
2r′

j (A61)

the above equation reduces to

�2(v · θ)sm =
d∑

j=1

e−2r′
j

(n̄′
c) j

v2
j . (A62)

To minimize this equation with respect to all r′
j under the con-

straint
∑d

j=1(n̄′
s) j =∑d

j=1 sinh2 r′
j = n̄′

s, we further assume

r′
j � 1, so that e−2r′

j ≈ 1/[4(n̄′
s) j]. Using the method of La-

grange multipliers we obtain

min
{r′

j}
�2(v · θ)sm = e−2r

⎛
⎝ d∑

j=1

|v j |
|α′

j |

⎞
⎠

2

, (A63)

which is achieved for

(n̄′
s) j = n̄s

|v j |/|α′
j |∑d

k=1 |vk|/|α′
k|

, (A64)

where |α′
j | = √(n̄′

c) j . Next, we minimize Eq. (A63) with
respect to all the amplitudes |α′

j | under the constraint∑d
j=1 |α′

j |2 = dn̄′
c. The derivative of the Lagrangian function

L[|α′
k|, λ] is

∂

∂|α′
j |
L[|α′

k|, λ] = −2

(
d∑

k=1

|vk|
|α′

k|

)
|v j |
|α′

j |2
− 2λ|α′

j |. (A65)

We set the derivative to zero, assume |α′
j | �= 0 and divide by

|α′
j |, getting

λ = −
(

d∑
k=1

|vk|
|α′

k|

)
|v j |
|α′

j |3
. (A66)

The right-hand side must be constant for j = 1, . . . , d . This
implies

|v j+1|2/3

(n̄′
c)opt

j+1

= |v j |2/3

(n̄′
c)opt

j

, (A67)

with j = 1, . . . , d − 1, from which, making use of the con-
straint on the total number of coherent photons, one obtain
Eqs. (27) and (28). Finally, taking the optimal parameters
(n̄′

c) j and (n̄′
s) j , and approximating r′

j with its average value

r′ = arcsinh(n̄s/d ), Eq. (A61) becomes n̄′
T � (e2r′ + 1)n̄′

s.
For the QCRB, notice that, under the condition |α′

j |2 �
(n̄′

s) j , Eq. (10) reduces to Eq. (A62), so the optimization of
the QCRB immediately follows from the discussion above.

d. Derivation of Eq. (47)

GQ
C3

(v, n̄s, n̄T ) can be derived analytically in the regime
n̄T � 2n̄s. In this regime, the QCRB of the entangled strategy
is given by Eq. (A56). The optimal QCRB is also known, from
Eq. (22). For what concerns the separable strategy, the expres-
sion to optimize is the one of Eq. (A62) where, according to
the constraint C3, one needs to set r′

j = r. We get

�2(v · θ)sQ =
⎛
⎝ d∑

j=1

v2
j

(n̄′
c) j

⎞
⎠e−2r,

which is, except for the primed particle numbers (n̄′
c) j ,

exactly the expression in Eq. (A57). Therefore, we get
min|α′

1|,...,|α′
d | �2(v · θ)sQ = min|α1|,...,|αd |,ÛQC

�2(v · θ)eQ and,

thus, GQ
C3

(v, n̄s, n̄T ) = 1, as stated in the main text.

e. Derivation of Eq. (12)

We will show here that the optimal conditions of Eqs. (13)
can be substituted into Eq. (A54) to get the optimal entangled
sensitivity, even in the regime n̄T � 2n̄s. To this aim, we
compute the derivatives of the Lagrangian function associated
with the minimization of Eq. (A54) under the two constraints∑d

j=1 ũ2
j = 1 and

∑d
j=1 |α j |2 = dn̄c:

∂

∂ ũ j
L = 2e−2r

(
d∑

k=1

ũkvk

|αk|

)
v j

|α j | + 2n̄s

(
ũ jv

2
j

|α j |4
)

− 2λũ j,

(A68)

∂

∂|α j |L=−2e−2r

(
d∑

k=1

ũkvk

|αk|

)
ũ jv j

|α j |2 − 4n̄s

(
ũ2

jv
2
j

|α j |5
)

− 2|α j |μ,

(A69)
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where L ≡ L[ũk, |αk|, λ, μ], λ and μ denoting the two La-
grangian multipliers. We get conditions for the minimum by
setting the right-hand sides to zero. This way, we are left
with 2d coupled equations. By direct substitution, we find
that these are solved by Eqs. (13), with λ = [e−2r/(dn̄c) +
n̄s/(dn̄c)2](

∑
j |v j |)2 and μ = −λ/(dn̄c).

3. Derivation of Eq. (21)

The lower bound in Eq. (21) is obtained by first using the
Cauchy-Schwarz inequality,

�2(v · θ)eQ = vTFQ
−1v � |v|4

(vTFQv)
. (A70)

From Eq. (A51) we then have

vTFQv = (e2r − 1)

⎛
⎝ d∑

j=1

|α j |ũ jv j

⎞
⎠

2

+
d∑

j=1

|α j |2v2
j + n̄s

d∑
j=1

ũ2
jv

2
j . (A71)

We have⎛
⎝ d∑

j=1

|α j |ũ jv j

⎞
⎠

2

�

⎛
⎝ d∑

j=1

v2
j

⎞
⎠
⎛
⎝ d∑

j=1

|α j |2ũ2
j

⎞
⎠�

∑d
j=1 |α j |2

d
,

where the first inequality is due to Cauchy-Schwarz and the
second is a consequence of ũ2

j � 1 and
∑d

j=1 v2
j = 1/d . Using

v2
j � 1/d , we also have

d∑
j=1

|α j |2v2
j �

∑d
j=1 |α j |2

d
, and

d∑
j=1

ũ2
jv

2
j �

1

d
. (A72)

Combining Eq. (A71) with the above inequalities gives

vTFQv �
e2r
∑d

j=1 |α j |2 + n̄s

d
.

Taking into account that
∑d

j=1 |α j |2 = n̄T − n̄s and |v|4 =
1/d2, from Eq. (A70), we obtain

�2(v · θ)eQ � 1

d (dn̄ce2r + n̄s)
. (A73)

The lower bound is valid for all ÛQC and all |α1|2, . . . , |αd |2
and thus also for the optimal configuration, giving Eq. (21).

Finally, the upper bound is obtained by replacing Eqs. (13)
for |α j |2 and ũ j into Eq. (8).

4. Effect of losses in particle detection

In order to include the effect of particle losses in our calcu-
lation we consider a new evolution matrix

A† =

⎛
⎜⎜⎝

√
η Id −√

1 − η Id 0 0√
1 − η Id

√
η Id 0 0

0 0
√

η Id −√
1 − η Id

0 0
√

1 − η Id
√

η Id

⎞
⎟⎟⎠
⎛
⎜⎜⎝

Id 0 0 0
0 C̃ S̃ 0
0 −S̃ C̃ 0
0 0 0 Id

⎞
⎟⎟⎠
⎛
⎜⎜⎝

Id 0 0 0
0 Id 0 0
0 0 A1

† 0
0 0 0 Id

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

√
η Id −√

1 − η C̃ −√
1 − η S̃A1

† 0√
1 − η Id

√
η C̃

√
η S̃A1

† 0
0 −√

η S̃
√

η C̃A1
† −√

1 − η Id

0 −√
1 − η S̃

√
1 − η C̃A1

† √
η Id

⎞
⎟⎟⎠, (A74)

which replaces the evolution matrix in Eq. (A26). The structure of the above matrix is the following: it consists of 4 × 4 blocks,
each block corresponding to a d × d smaller matrix; the four inner blocks are relative to modes which describe particles traveling
along the interferometer, while the outer ones correspond to the vacuum modes just introduced to take care of possible particle
losses. The inverse moment matrix can be derived, as above, through the relation M−1 = (G−1)T �G−1. We refer to Eq. (A28)
to find the expression of �, which, in turn, requires the evaluation of matrix h, Eq. (A22). None of the angular momentum
operators involved in the definition of �, Eq. (A27), contains the loss vacuum modes, so that, when averaging on the output
state, we effectively trace on those modes. This brings about a simplification in the evaluation of �, that is, one needs only to
derive the four inner blocks of matrix h, while the outer blocks can be safely disregarded. Equations (A33)–(A37) thus become

(E )innerblocks =
(

(1 − η)Id + η(C̃
2 + S̃E1S̃) −η(S̃C̃ − S̃E1C̃)

−η(S̃C̃ − C̃E1S̃) (1 − η)Id + η(S̃
2 + C̃E1C̃)

)
, (A75)

(EN)innerblocks = η

(
S̃E1N1S̃ S̃E1N1C̃
C̃E1N1S̃ C̃E1N1C̃

)
, (A76)

(γγ†)innerblocks = η

(
C̃φ−C̃ −C̃φ−S̃
−S̃φ−C̃ S̃φ−S̃

)
, (A77)

(γγT )innerblocks = η

(
C̃φ+C̃ −C̃φ+S̃
−S̃φ+C̃ S̃φ+S̃

)
. (A78)
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The expression of � obtained from the new matrices is �i j = η2[�i j]η=1 + 1
4η(1 − η)(|αi|2 + |ui|2s2)δi j . We also easily find

Gi j = η[Gi j]η=1. Therefore, applying M−1 = (G−1)T �G−1 we obtain our final expression for the inverse moment matrix,

(M−1)i j = [(M−1)i j]η=1 + 1 − η

η

|αi|2 + |ui|2n̄s

(|αi|2 − |ui|2n̄s)2
(1 + cot2 θi )δi j, (A79)

from which we recover Eq. (55), using �2(v · θ)em = vT M−1v.

5. Proof of Eqs. (57) and (58)

Let us demonstrate Eq. (57): the demonstration of Eq. (58)
is analogous. Equation (57) is a direct consequence of

�2(v · θ)em = vTM−1v � |v|4/vTMv, (A80)

vTMv � vT
μmax
Mvμmax = μmax and |v|2 = 1/d . These imply

the bound �2(v · θ)em � 1/(μmaxd ), which is saturable for

v/|v| = vμmax . The inequality (A80) follows from the Cauchy-
Schwarz inequality ( f T f )(gT g) � ( f T g)2 with f =M1/2v

and g =M−1/2v and is saturated if and only if f = λg for
some real number λ, namely, if and only if v is an eigenvector
of M. Note that M1/2 is well definite since M � 0: this
follows from M = CT �−1C, � � 0 being a covariance ma-
trix, and �−1 � 0 being the inverse of a positive semidefinite
matrix.
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and (KĤ )nb̂D = (KĤ )(n−1)[Ĥ, b̂D] for n > 1. Then, resulting
from our choice of Ĥ , we have (KĤ )nb̂D =∑d
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