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Finding, mapping, and classifying optimal protocols for two-qubit entangling gates
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We characterize the set of optimal protocols for two-qubit entangling gates through a mechanism analysis
based on quantum pathways, which allows us to compare and rank the different solutions. As an example of a
flexible platform with a rich landscape of protocols, we consider trapped neutral atoms excited to Rydberg states
by different pulse sequences that extend over several atomic sites, optimizing both the temporal and the spatial
features of the pulses. Studying the rate of success of the algorithm under different constraints, we analyze the
impact of the proximity of the atoms on the nature and quality of the optimal protocols. We characterize in detail
the features of the solutions in parameter space, showing some striking correlations among the set of parameters.
Together with the mechanism analysis, the spatiotemporal control allows us to select protocols that operate under
mechanisms by design, like finding needles in a haystack.
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I. INTRODUCTION

There are several well-studied platforms to build quantum
computer prototypes [1–7], each with many possible designs
proposed to implement different quantum gates. Their mer-
its are compared with regard to the fidelities achieved, the
number of operations that can be executed coherently, and
scalability properties. Cross-platform comparisons of differ-
ent quantum computers are starting to emerge based on their
performance under specific algorithms [8]. Almost all the
protocols proposed so far were developed through ingenious
ideas and further fine-tuned by numerical and experimental
studies. However, these protocols clearly do not encompass
the number of possible solutions. It is the main goal of this
work to organize, classify, rank, and also to visualize all the
possible protocols that can be found for a certain class of
entangling gates given some constraints, to serve as a guiding
search for promising experimental implementations.

To explore the landscape of all possible protocols we use
the techniques of quantum control. Quantum control was pre-
viously used to find the pulse areas and the sequence of pulses
that maximizes the probability of reaching a specific quantum
state [9–14], or a set of states necessary for the realization
of a quantum gate [15–24]. Unlike in previous approaches
where a specific realization of the gate is imposed, here we use
quantum optimal control techniques to scan and characterize
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the full space of optimal solutions, working with sequences
with different numbers of pulses and features [25–32].

When the number of parameters to be optimized is by itself
a variable, many alternatives exist on how to compare and
classify the solutions. To catalog the different protocols, we
use a mechanistic analysis of the internal operation of the gate,
based on quantum pathways tracking the set of computational
basis and ancillary states visited during the gate dynamics. As
a step further, we can guide the optimization algorithm to find
an optimal protocol that works by design.

While our approach is general, we focus on optimal pro-
tocols for entangling gates such as controlled-Z (CZ) gates
implemented on neutral atoms trapped by optical tweezers
[33–37]. These are easily addressable by optical methods and
can be entangled through Rydberg blockade [38–42], offering
promising applications in preparing multiparticle entangle-
ment [12–14,43–50] and simple quantum circuits [48,51–64].
In the usual setup, each qubit is addressed by different lasers
independently of the others, for which the atoms must occupy
largely separated positions in the trap. As the interaction en-
ergy between the atoms becomes much weaker, of the order of
the MHz, the necessary time for the two-qubit gate to operate
reaches the microsecond regime. To speed up the gate, in
this work we will use denser arrays of trapped atoms, which
allow us to boost the dipole-blockade energy near the GHz
[63,65]. The price to pay is that the qubits can no longer
be regarded as independent, as the laser beams may overlap
significantly with more than one qubit site. The interrelation
of the qubits driven by the fields can be regarded as a problem
or as an opportunity. By controlling the position of the atoms
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with respect to the different laser beams and adding a spatial
control knob to the problem, one gains a novel and important
feature that provides both flexibility and robustness to the gate
protocols, in addition to the speed-up. We show that trapped
atoms with strong dipole blockades provide a platform with a
rich landscape of optimal protocols.

In a recent contribution [66], we proposed an extension of
the CZ gate protocol of Jaksch et al. [51] for nonindependent
two-qubit systems, named symmetric orthogonal protocol
(SOP), which implied controlling both the temporal (pulse
areas) and spatial properties of the light. The gate mechanism
relied on the presence of a dark state in the Hamiltonian, for
which the pulses in the sequence had to be spatially orthog-
onal, in the sense that the parameters of these fields at each
qubit location formed orthogonal vectors [66]. In Ref. [66]
we proposed the use of hybrid modes of light to force the
orthogonality. In ideal conditions, the set of parameters under
which the SOP has maximum fidelity defines a lattice in pa-
rameter space, where the implementation of the gate is robust,
but typically with a relatively low yield (F � 0.98).

A second goal of this work is to extend the SOP scheme by
exploring how much some of its requirements are necessary.
To fully optimize the gate performance in this setup, we have
developed an optimization technique that deals not only with
the temporal parameters of the laser but also with the spatial
structure of the field. Our results indicate that, by relaxing the
very strict restrictions of the SOP, one can find a rich family
of optimal protocols with higher yields. Depending on the
number of pulses in the sequence or the operating mechanism
of the gate, striking correlations in the pulse parameters are
found. Typically, nonobvious correlations in control parame-
ters reveal interesting structures in the Hamiltonian that are
exploited in the dynamics, a subject for future studies.

II. QUBIT SETUP

In neutral atoms [67,68], the computational basis is typi-
cally encoded in low-energy hyperfine states of the atom. The
C-PHASE implies that the population returns to the initial
state with a phase change conditional on the state of the con-
trol qubit. When the phase is π , the gate is usually called CZ

gate. In most protocols, this is achieved with an ancillary state
by driving the population through a Rydberg state of the atom
|r〉, gaining a phase accumulation (for resonant 2π pulses)
of π . The pulse frequencies are tuned to excite the chosen
Rydberg state from the ground state (alternatively, from the
|1〉 state) so the other qubit state is decoupled. Doubly excited
Rydberg states cannot be further populated by ladder climbing
due to the dipole blockade mechanism if the atoms are within
the radius blockade distance rB [39,40].

When the atoms are sufficiently separated, one can address
them independently, as in the well-known protocol proposed
by Jaksch and collaborators [51] (JP, for brevity), which uses
the pulse sequence: π1-2π2-π1. In this sequence, the first and
last pulses act on the first qubit (qubit A), and the middle
pulse acts of the second qubit (qubit B). JP demands slow
gates because the largely separated atoms lead to weak dipole
blockades dB, in the MHz. However, working with atoms
at closer interatomic distances (d ≈ 1 μm) one can typi-
cally increase the dipole-dipole interaction to almost a GHz,

depending on the atom and the Rydberg state, potentially
allowing to operate the gate in the nanosecond regime.

Following Ref. [66], as a first approximation to obtain
analytical formulas, we neglect any coupling except for the
|0〉 and |r〉 states in each qubit. The complications that
arise by dealing with the Stark shifts created in nonresonant
two-photon transitions will be treated elsewhere. We model
the local effect of the field on each of the qubits, defining
geometrical factors, ak and bk , so the spatially and tem-
porally dependent interaction of the laser k at the qubit α

(α = a, b) is determined by the Rabi frequencies �̃k (�rα, t ) =
αkμ0rEk (t )/h̄ = α�k (t ). The geometrical factors can be par-
tially incorporated into the Franck-Condon factor μ0r so we
can assume, without loss of generality, that ak and bk are
normalized to unity [(a2

k + b2
k )1/2 = 1]. Using hybrid modes

of light (structured light) one can control ak and bk in a wide
range of values, including negative factors.

The Hamiltonian is block-diagonal, HV
k ⊕ HA

k ⊕ HB
k ⊕ HD,

where HV
k = − 1

2�k (t )(ak|00〉〈r0| + bk|00〉〈0r| + H.c.)
is the Hamiltonian of a three-level system in V
configuration, acting in the subspace of {|00〉, |r0〉, |0r〉}
states, HA

k = − 1
2 ak�k (t )(|01〉〈r1| + H.c.) and HB

k =
− 1

2 bk�k (t )(|10〉〈1r| + H.c.) are two-level Hamiltonians
acting in the subspace of {|01〉, |r1〉} and {|10〉, |1r〉},
respectively. We refer generally to any of these subsystems
with the superscript S (S = V, A, B). Finally, HD

k = 0|11〉〈11|
is the Hamiltonian acting on the double-excited qubit state
|11〉, decoupled from any field.

Using a pulse sequence of nonoverlapping pulses �̃k (�r, t ),
in resonance between the |0〉 state of the qubit and the cho-
sen Rydberg state |r〉, the time-evolution operator of any of
these Hamiltonians can be solved analytically through their
time-independent dressed states, that have zero nonadiabatic
couplings [11,69,70],

US
T =

Np−1∏
k=0

U S
Np−k .

For the V subsystem,

UV
k =

⎛
⎜⎝

cos θV
k iak sin θV

k ibk sin θV
k

iak sin θV
k a2

k cos θV
k + b2

k akbk
[
cos θV

k − 1
]

ibk sin θV
k akbk

[
cos θV

k − 1
]

b2
k cos θV

k + a2
k

⎞
⎟⎠,

(1)
where the mixing angle

θV
k = 1

2

∫ ∞

−∞
�k (t )dt = 1

2
Ak

is half the pulse area. For the two-level subsystem A and B,
we can use the same expression for the relevant states with
ak = 1, bk = 0, for U A

k , and vice versa for U B
k . However, the

mixing angles depend on the local coupling: θA
k = akAk/2 and

θB
k = bkAk/2. We refer to the generalized pulse areas, 2θS

k , as
GPA. It is convenient to encapsulate all the geometrical in-
formation in the so-called structural vectors, defining the row
vector eᵀk ≡ 〈ek| = (ak, bk ) (ek ≡ |ek〉 is the column vector in
bracket notation) formed by all the geometrical factors for a
given pulse.
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III. CLASSIFYING GATE MECHANISMS
THROUGH QUANTUM PATHWAYS

The overall time-evolution operator will be the time-
ordered product U S

T . The success of the implementation of
the CZ gate depends only on the first matrix element U S

T,11,
which must be either 1 or −1 depending on the subsystem
considered. For the V subsystem, we can define the “sym-
metrized” states |1̃k〉 ≡ ak|r0〉 + bk|0r〉 and |dk〉 ≡ bk|r0〉 −
ak|0r〉, where the first receives all the coupling with the initial
state |00〉 and the second is dark. For reasons that will be clear
in the following, we call |0̃〉 to the initial state in any subsys-
tem (|00〉, |01〉, |10〉), that is, to all the computational bases.
To use a more compact notation, we also use sk = sin θV

k
and ck = cos θV

k . In the transformed basis, the time-evolution
operator for the V system has the form

UV
k = ck (|0̃〉〈0̃| + |1̃k〉〈1̃k|) + isk (|0̃〉〈1̃k| + H.c.) + |dk〉〈dk|.

(2)

For the two-level subsystems, we can identify |0̃〉 with |01〉
and |1̃k〉 with |r1〉 for the A subsystem, and with |10〉 and
|1r〉 for the B subsystem, such that Eq. (2) has the same form
in all subsystems, changing the mixing angles θV

k for their
respective values θS

k and removing the dark sector (|d〉〈d|)
from the matrix when appropriate. We can then obtain closed
expressions that are valid for all the subsystems and, in fact,
can be easily generalized for N-qubit systems.

For a single-pulse “sequence,” the only term that connects
|0̃〉 at the initial time with the same state at the final time is

U S
T,11 ≡ 〈0̃|U S

1 |0̃〉 = c1. (3)

This mechanism implies population return and requires θS
1 to

be odd multiples of π , so the GPA must be even for all S
subsystems.

For two-pulse sequences,

U S
T,11 = 〈0̃|U S

2 |0̃〉〈0̃|U S
1 |0̃〉

+ 〈0̃|U S
2 |1̃2〉〈1̃2|1̃1〉〈1̃1|U S

1 |0̃〉 = uS
0 + uS

1, (4)

so U S
T,11 = c2c1 − 〈e2|e1〉s2s1, where 〈1̃2|1̃1〉 = 〈e2|e1〉 is the

scalar product of the two structural vectors. When the spatial
properties of the second pulse differ from those of the first
pulse, |e2〉 	= |e1〉 and |1̃1〉 will overlap with |1̃2〉 and |d2〉. The
population can be spread over all the excited states. In Eq. (4),
uS

0 implies again the same mechanism of population transfer
where each pulse has even generalized area and induces full
population return, whereas uS

1 provides population return to
|0̃〉 after the first pulse populates |1̃1〉 and the second drives
the population back. We call this a one loop diagram (1-loop),
while uS

0 is a zero-loop diagram (0-loop). In a 1-loop, the GPA
of both pulses must be an odd multiple of π . Notice that,
from |1̃1〉, one cannot further excite the system because of the
dipole blockade.

In addition to uS
0 and uS

1 there appears a novel term in three-
pulse sequences, where the population remains in the Rydberg
state while the second pulse acts on the subsystem, and before
returning to the ground state with �3(t ),

uS
d = 〈0̃|U S

3 |1̃3〉〈1̃3|1̃2〉〈1̃2|U S
2 |1̃2〉〈1̃2|1̃1〉〈1̃1|U S

1 |0̃〉
+ 〈0̃|U S

3 |1̃3〉〈1̃3|d2〉〈d2|U S
2 |d2〉〈d2|1̃1〉〈1̃1|U S

1 |0̃〉
= −s3c2s1〈e3|e2〉〈e2|e1〉 − s3s1[〈e3|e1〉 − 〈e3|e2〉〈e2|e1〉],

(5)

which we call a loop with delay or d-loop. The term in brackets
does not exist in the A and B subsystems.

It is now possible to have U S
T,11 ≈ −1 with more than one

dominating contribution, as two diagrams can be −1, while
another one is +1. However, in all the optimal protocols
found, every amplitude of the pathways was negative or, at
most, slightly positive (−1 � uS

j � 0.1).
For four pulse sequences, one can show that

U S
T,11 = uS

0 + uS
1 + uS

d + uS
2, (6)

uS
0 = c4c3c2c1 (0-loop),

uS
1 = −s4〈e4|e3〉s3c2c1 − c4s3〈e3|e2〉s2c1 − c4c3s2〈e2|e1〉s1 (1-loops),

uS
d = −s4〈e4|(1 + (c3 − 1)|e3〉〈e3|)|e2〉s2c1 − c4s3〈e3|(1 + (c2 − 1)|e2〉〈e2|)|e1〉s1

−s4〈e4|(1 + (c3 − 1)|e3〉|〈e3|)(1 + (c2 − 1)|e2〉〈e2|)|e1〉s1 (d-loops),

uS
2 = s4〈e4|e3〉s3s2〈e2|e1〉s1 (2-loop). (7)

For the A and B subsystems, one must again remove the terms
1 − |ek〉〈ek| from the expressions because they involve pop-
ulation passage through the dark state. Analogous formulas
can be derived for larger sequences. While the number of
pathways increases exponentially with the number of pulses,
the mechanism of all protocols up to five-pulse sequences can
be roughly characterized using 0-loops, 1-loops, 2-loops, and
d-loops.

Because each term is negative and their sum must be ap-
proximately −1, we can define the variables

xS = uS
0 + uS

1 − uS
d − uS

2,

yS = uS
0 + uS

d − uS
1 − uS

2, (8)

such that any protocol is represented as a point within a
square, referred to as the m-square. Each apex of the square
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corresponds to a gate mechanism that relies on a single type
of pathway (diagram), so pure 0-loop mechanisms appear in
the lower-left apex, pure 1-loop mechanisms in the upper-left
apex, pure d-loop mechanisms show up in the lower-right
apex, and 2-loop mechanisms in the upper-right apex. Collab-
orative mechanisms that involve the contribution of multiple
diagrams are situated between these apexes, although the
mapping is not entirely unambiguous. Different collaborative
mechanisms may share the same coordinates in the m-
square, especially around the center of the square, when both
xS, yS ≈ 0, which can be obtained with equal contribution of
1- and d-loops, 0- and 2-loops, or of all diagrams at the same
time. However, the advantage of using the m-square is that it
allows one to easily represent and classify a mechanism with-
out fully listing the values of all the contributing diagrams.

Further on, to visualize the set of mechanisms used by the
optimal protocols, we partition each m-square into nine boxes
and rank the mechanism as a number ωS ∈ [1, 9] depending
on the box where (xS, yS ) is located for subsystem S. Defin-
ing the floor integers (greatest integer smaller than the real
number) �xS� = �l (xS + 1)/2�+ 1, �yS� = �l (yS + 1)/2] + 1�
(where l = 3 is the number of divisions of each m-square
side, �xS�, �yS� ∈ [1, 3]), we call ωS = �yS� + l (�xS� − 1)
the number that ranks the mechanism for each subsystem. As
explained in more detail in Sec. V, these numbers can be rep-
resented in a cube, so-called m-cube, giving each mechanism
three coordinates ordered as (ωA, ωB, ωV ), which summarize
in a simple visual way the mechanism under which the gate
operates in each protocol. Obviously, the finer we divide the
m-square into boxes the more information we will be able
to obtain. In this work we will use a minimal division to
characterize the mechanisms in the simplest possible way.

IV. OPTIMAL PROTOCOLS

We start by exploring the landscape of all possible opti-
mal CZ protocols with nonoverlapping pulses in two adjacent
qubits. The optimization parameters are the effective pulse
areas Ak (where k runs through the number Np of pulses in the
sequence) and there are two geometrical parameters per pulse.
In this work �k (t ) are real, so the relative phase between
the pulses is fixed as either zero or π . To obtain the optimal
parameters we use the Nelder and Mead simplex optimiza-
tion scheme [71,72] with linear constraints starting in NT =
5×104 initial configurations obtained through a uniform dis-
tribution over the parameters within some chosen range. The
geometrical factors are constrained such that a minimum value
of |bk| � σ is imposed. Protocols with smaller σ accept solu-
tions where the influence of the pulse on both qubits at the
same time can be smaller, which can be related to more sep-
arated qubits. The SOP scheme requires the orthogonality of
the structural vectors, demanding control over the amplitude
and sign of ak and bk . In principle, this can be achieved using
hybrid modes of light [66]. But we also perform optimizations
forcing the positivity of the geometrical factors (ak, bk � σ )
with less demanding conditions for its experimental imple-
mentation, which we denote by σ+ (p-restricted protocols).

Figure 1 shows the rate of success, which is the percent of
initial conditions Nε/NT that lead to optimal gates which per-
form with errors smaller than a threshold ε (the fidelity being

FIG. 1. Performance of the spatiotemporal control measured
from the rate of success of the optimization of the gate as a function
of the error threshold, for different pulse sequences (Np from 2 to 5
for the lowest to highest rates) with (a) σ = 0.1, (b) σ = 0.6. The
dotted lines show the results obtained for p-constrained protocols.

F = 1 − ε) for sequences with different numbers of pulses
and two values of σ : 0.1 and 0.6. The rate of success (as well
as the maximum fidelity that can be achieved) increases with
the number of pulses, as can be expected from a variational
method with increasing number of control knobs. Since the fi-
delity as a function of the parameters has many local maxima,
the increase in Nε/NT shows that the optimization algorithm
can overcome many of the local maxima. The rate of success
is smaller for p-restricted protocols, particularly with σ = 0.6,
but high-fidelity solutions (ε � 10−7) can almost always be
found. Optimal solutions achieve certain fidelity thresholds
between 10−7 and 10−8 for all the different sequences, and
then the probability to find protocols with higher fidelity
decays steeply. Although the exact numbers for the rate of
success may depend on the sampling of the initial parameters,
the overall behavior is consistent across all sets.

We can characterize the optimal solutions in parameter
space or in relation to the mechanism (dynamics) that they
imply for the gate performance. In Fig. 2(a) we represent the
scaled distribution of optimal solutions ρA(AT ) = NA/Nε as a
function of the total pulse area, where Nε is the total number
of solutions with an error smaller than ε = 10−3, and NA is
the subset of those solutions with a total area in the vicinity
of AT = ∑

k |Ak| (within an interval 
A = 0.05π ). The re-
sults are shown for different pulse sequences with σ = 0.1.
Two-pulse sequences constrain all possible optimal solutions
such that AT /π = 6 + 4l , l ∈ Z. The effect of the constraints
shows up in AT , but also in strong correlations in the areas of
the two pulses, as shown in Fig. 3(a), where we represent the
fraction of solutions as a function of A1 and A2 for the two-
pulse sequence. The pulse areas must alternate: one following
4l + 2, the other 4l ′ + 4 (l, l ′ ∈ Z). This behavior follows the
pattern of the minima of uV

0 = cos(A2/2) cos(A1/2), which
is imposed by the nature of the 0-loop mechanism in the V
subsystem, as observed in Sec. V. We have recently found
that the nature of the parameters in these optimal protocols
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FIG. 2. Characterization of the parameters of the optimal proto-
cols found by spatiotemporal control with fidelity higher than 0.999.
In panel (a) we show the probability distribution of the protocols as
a function of the total pulse area for different pulse sequences, ρA. In
panel (b) we show the cumulative distribution RA, as a function of the
total pulse area, for three-pulse sequences at different values of σ . In
panel (c) we show the distribution of the cosine of the angle between
the structural vectors for three-pulse sequences using different values
of σ .

is rooted in approximate solutions of Diophantine equations,
which also allows the existence of single-pulse protocols [73].

Adding an extra pulse weakens the constraints, so interme-
diate values of AT become possible. A minimum total pulse
area of 4π is necessary for high fidelity, and particularly for
Np = 3 one can observe maxima at AT = 4π and 8π . These
protocols coincide with the pulse areas in the JP [51] and in
the SOP [66]. For this set of solutions, 〈e1|e2〉 = 〈e2|e3〉 = 0,
while e1 = e3. However, among the set of all possible so-
lutions with high fidelity, the propensity for these values is
small. The distribution of optimal areas changes for differ-
ent values of σ and in p-restricted protocols, especially in
short sequences (Np � 3). Figure 2(b) shows the cumulative
distribution of protocols with a total area smaller than AT ,
RA(AT ) = ∫ AT

0 ρA(A′
T )dA′

T . For σ = 0.1 there are protocols
with minimum pulse area AT ∼ 4π . In contrast, p-restricted
protocols need AT � 9π . The step-wise behavior clearly

FIG. 3. Distribution of the pulse areas for the optimal protocols
using (a) two pulses, (b), (c) three pulses, (d) four pulses. The color
scale grading from black to red to yellow indicate the frequency of
the observed values. In panel (c) we choose A3 instead of A2.

reveals that some values of AT are preferred, which differ
depending on the setup. It is possible to find protocols that
use weaker fields but at the expense of worsening the fidelity
of the gate.

In Fig. 2(c) we evaluate the correlation between geometri-
cal vectors for three-pulse sequences as a distribution of their
relative orientation, ρee(cos β ) = Nβ/Nε , where Nβ is the
subset of solutions with a corresponding value of cos β (within
an interval of 0.05) and error smaller than 10−3. With σ = 0.1,
e1 and e3 are mostly aligned, while e2 can take any orientation
with respect to the previous vectors, with small preferences
for aligned, anti-aligned, and at angles 0.23π, 0.77π , corre-
sponding to 〈e1|e2〉 = ±0.75. Interestingly, with larger σ , e1,
and e2 tend to be anti-aligned, while e3 is mostly oriented
perpendicular to the other vectors, with clear peaks in the dis-
tribution at 0.42π and 0.58π angles. These signatures reveal
different underlying mechanisms for the operation of the gate
that we believe correlate to 1-loop or 2-loop mechanisms, as
we comment in Sec. IV.

Figures 3(b) and 3(c) show that for three-pulse sequences
one can still find correlations among the pulse areas, which
show up as net-like structures. However, for pulse sequences
with four or more pulses, almost any value of AT larger than
4π is possible, although values of AT /π = 4l + 6 (not 4l + 4)
and aligned or anti-aligned structural vectors (not orthogonal)
are still slightly preferred within the set of higher fidelity
protocols. This is a signature of the high diversity of solutions
living in a multidimensional space, which is dense in the
intersection with any chosen two-dimensional manifold. As
we show in Sec. VI, mapping the distribution over certain
classes of solutions, defined in terms of specific mechanisms,
one can find or recover more restrictive values or stronger
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correlations among the pulse areas. The decay at larger values
of AT observed in Fig. 3 is artificial due to the imposed range
in the sampling of initial parameters. The possible pairwise
correlations between the geometrical factors or between other
parameters increase with the square of the number of pulses,
but at most, weak correlations are observed in the set of all
optimal protocols. To analyze the behavior of the different
optimal protocols we resort now to the mechanism analysis
introduced in Sec. III. By constraining the protocols to obey
particular mechanisms, we show that clearer correlations can
be inferred between the optimal parameters.

V. MECHANISM ANALYSIS

Optimal protocols based on two-pulse sequences are char-
acterized by highly constrained values for the optimal areas
and fully aligned structural vectors. Mechanistically, when
starting in the |00〉 state, these protocols consist solely of pure
0-loops, resulting in (xV , yV ) = (−1,−1), which impose the
constraints in the pulse areas. When starting in either the |01〉
or |10〉 there can be pure 0-loops and 1-loops, as well as
collaborative mechanisms that involve contributions of both
loops. In such cases, if one dominates when starting in |01〉,
the opposite dominates when starting in |10〉.

Figure 4 gives a panorama of the mechanisms found for
the V subsystem. From top to bottom, we increase the number
of pulses (Np = 3, 4, 5), and from left to right the constraints
(σ = 0.1, σ+ = 0.1, σ = 0.6). Except for the last row, which
is dedicated to the mechanisms found in the A subsystem
(which are the same as those in the B subsystem) for dif-
ferent pulse sequences (Np = 3, 4, 5 from left to right). The
frequency of solutions is normalized to the peak value of the
distribution, hence a higher density of colors implies a broader
set of mechanisms for the optimal protocols.

The most obvious conclusion is the wider choice of mech-
anisms (and of frequent mechanisms) that shows up with the
number of pulses or the strength of the constraints. Focusing
on the similarities, for fixed σ the m-squares tend to in-
crease the density of solutions towards the center and towards
2-loops, as the number of pulses increases.

For three-pulse sequences, the m-square for the V subsys-
tem with σ = 0.1 [Fig. 4(a)] shows most mechanisms lying
in a triangle, involving mostly pure 0-loops (the dominant
mechanism) and collaborative mechanisms mostly at the cen-
ter of the square. Pure 1-loop mechanisms are very infrequent
but become more important for σ+ = 0.1 and especially so
for σ = 0.6. In the latter case, the collaborative mechanisms
involve mainly 0-loops and 1-loops, rather than d-loops. If we
confine the mechanism analysis to the set of protocols with
smaller pulse areas (AT < 6π or AT < 10π for p-restricted
protocols, results not shown in Fig. 4) we observe the same
tendency: a bigger contribution of d-loops in collaborative
mechanisms, as pure mechanisms cease to appear.

The m-square for four-pulse sequences [Figs. 4(d)–4(f)] is
a colorful version of the three-pulse case, which has brighter
features towards the center. While 2-loops are not possi-
ble in three-pulse sequences, they are available in four- and
five-pulse protocols and become more important as σ or the
number of pulses increases.

FIG. 4. m-square showing the dominance of different mecha-
nisms in optimal protocols for the V subsystem with three-pulse
sequences (a) to (c); four-pulse sequences (d) to (f); five-pulse se-
quences (g) to (i). In the left column σ = 0.1, the center is for
p-restrictive protocols with σ+ = 0.1 and the right column for σ =
0.6. The last row is reserved for the mechanism for the A subsystem
with (j) Np = 3, (k) 4, and (l) 5. The color intensity indicates the
propensity of the mechanism.

By symmetry, the m-square for the A and B subsystems
[Figs. 4(j)–4(l)] is always the same and typically displays a
more variety of viable mechanisms than in the V subsystem,
with prevalent mechanisms along the diagonal (1-loops to d-
loops and their combinations). Pure 0-loops are still possible,
but their presence is mostly reduced to three-pulse sequences.
As Np increases, d-loops and 2-loops become more important.
For five-pulse sequences, the prevalent mechanisms practi-
cally occupy all the upper triangle of the m-square. On the
other hand, the diagrams are qualitatively similar regardless
of σ .

But the (xS, yS ) values of the different subsystems are not
independent. To better visualize this information, we parti-
tioned the x and y m-square for each subsystem in nine boxes
and assigned an integer value ωS ∈ [1, 9] to each mechanism
based on the location of the (xS, yS ) coordinates. Hence,
for each system, pure or dominant 0-loops correspond to
ω = 1, 1-loops to ω = 3, d-loops to ω = 7, and 2-loops to
ω = 9. Collaborative mechanisms rank between the closest
pure mechanisms, or possibly fully collaborative mechanisms
(ω = 5). We choose the xy plane to represent ωV , the yz
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FIG. 5. m-cube showing the most frequent mechanisms (brown
circles) and all observed mechanisms (gray) used by the optimal
protocols with (a) two-pulses, (b) three-pulses, (c) four-pulses, and
(d) five-pulse sequences. The most frequent mechanisms occupy
planes, shown in yellow.

plane for ωA, and the xz plane for ωB. The three values of ω

characterize a point in the so-called m-cube, which is shown
in Fig. 5 for the different pulse sequences with σ = 0.1. The
color indicates the probability of finding such a mechanism
among the set of optimal protocols with an error smaller than
10−3. As a reference, Jaksch protocol is a pure d-loop for the
V and A subsystems and a pure 0-loop for the B subsystem,
occupying the (7, 1, 7) point in the m-cube, or alternatively,
because the A and B subsystems can be interchanged, the
(1, 7, 7) point. In the SOP, on the other hand, all pulses act on
both qubits at the same time, adding some contributions of the
different diagrams that depend on the b1 (=b3) geometrical
factors. When b1 increases, in some configurations all the
diagrams contribute approximately the same (cos θ ≈ sin θ ≈
1/

√
2), so uS

0 ≈ −0.25 ≈ uS
d and uS

1 ≈ −0.5, for which xS ≈
−0.5 and yS ≈ 0, occupying the z = 7 plane. Not all SOP
protocols use the same mechanisms, although for the V sub-
system the behavior is similar in the dressed-state picture.
This is another instance of the known fact that the mechanism
analysis depends on the chosen representation [74,75].

Figure 5(a) shows that all mechanisms for the two-pulse
sequences lie in the xy plane (ωV = 1), and most of them are
in the diagonal; that is, ωA + ωB = 4. Hence, whenever the
gate performs as a 0-loop in A, it works as a 1-loop in B and
vice versa. The same correlation over ωA and ωB is observed in
three-pulse sequences, but in a weaker form. Now the majority
of the mechanisms show up with ωS ∈ [1, 3] or ωS = 7, espe-
cially in ωV . The m-cube looks similar when we constrain the
analysis to high-fidelity protocols (error smaller than 10−7), so
the decay in the rate of success of the algorithms (see Fig. 1)
has no clear implications from the mechanistic point of view.

While the center of the m-cube is always filled with mech-
anisms, almost all mechanisms are used as the number of

pulses increases. Interestingly, the preferred mechanisms lie
on a single plane (shaded in yellow in Fig. 5). The value of ωT ,
which is the sum of the three ω values (ωT = ωV + ωA + ωB),
is equal to 9 for three-pulse sequences, 15 for four-pulse se-
quences, and 21 for five-pulse sequences, when σ = 0.1. This
implies a surprising symmetry where the preferred optimal
protocols use the same mechanisms regardless of the subsys-
tem where it is applied, as the role of ωS can be interchanged
between the different subsystems. Large values of ωT mostly
correspond to favoring 2-loops over d-loops, and d-loops over
1-loops in the collaborative mechanisms, as one moves from
three- to five-pulse sequences. Similar or slightly lower values
are observed for larger σ .

VI. MECHANISM-GUIDED OPTIMIZATION

As the number of pulses increases, so does the rate of
success, where most initial conditions lead to high-fidelity
protocols after the optimization. In addition, almost all possi-
ble mechanisms are explored by these protocols. The density
of solutions in parameter space suggests that the algorithms
tend to find protocols that are closer to the initial conditions,
which leads to the following question: Are all possible pro-
tocols being found? And, can we target specific protocols by
biasing the optimization algorithm?

Clearly, very symmetric protocols occupy a negligible vol-
ume in parameter space and typically have lower fidelities,
as the SOP recently proposed [66], so one needs to impose
the symmetries as restrictions in the optimization algorithm
to find them. In this work, we follow a different procedure to
find optimal protocols by maximizing the fidelity evaluated
with the chosen pathways, thus finding mechanism-driven
protocols of our choice.

In the following, we constrain the optimization to obtain
pure mechanisms in the V subsystem, while the gate may
perform differently in the other subsystems, thus selecting a
specific family of mechanisms, which shows up as points in
the z plane of the m-cube. Obviously, other choices could have
been made. Using this procedure it is possible to find pre-
viously unexplored protocols even under highly constraining
conditions. For instance, we can find pure 1-loop protocols
in two-pulse sequences with fidelity better than F � 0.99
(but not better than 0.999). Figure 6 shows how the pulse
areas are now correlated, following a very different pattern
than in 0-loop protocols. The correlation between A1 and A2

differs and AT has different values than before and is typi-
cally larger. Although most protocols imply aligned structural
vectors, anti-aligned vectors are also possible. Lower yields
and fewer possible pulse areas or strict correlations among
the optimal parameters for all the protocols (lower density of
solutions), explain why such mechanisms are seldom found
without guiding the search in the algorithm.

In Fig. 7 we show the rate of success of the optimization
at selecting some particular protocols which correspond to
points in the z = 1, 3, 5, 7 planes of Fig. 5(c) in four-pulse
sequences, chosen for illustrative purposes. As expected from
our previous analysis without mechanism selection, pure 0-
loops are easy to find even in gates performing at high fidelity.
The lowest fidelity protocols are achieved by pure 2-loop
protocols, hence their absence in unbiased optimizations.
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FIG. 6. Distribution of the pulse areas of the optimal protocols
with error smaller than 0.01 obtained by optimizing two-pulse se-
quences that use only pure 0-loop or 1-loop mechanisms in the V
subsystem. In panel (b) we show the correlation between the pulse
areas in 1-loop mechanisms. The correlation for the 0-loop mecha-
nism is shown in Fig. 3.

Figure 8 shows the distribution of pulse areas for the differ-
ent mechanisms, and Fig. 9 some representative correlations
between structural vectors. Protocols with pure-mechanisms
constrain the pulse areas such that in 0-loops and 2-loops,
all pulses have the same areas; in 1-loops, the areas of the
fourth pulses A4 differ, and in d-loops, odd pulses and even
pulses have different areas. The total pulse areas in 0-loop
protocols follow the same rules as in the two-pulse sequences:
AT /π = 6 + 4l . In all other cases, the rule is AT /π = 6 + 2l
except in d-loops, which also allow total pulse areas smaller
than 6π . Some of these constraints are reminiscent of what
we found in two-pulse sequences, which may offer a guide to
understanding the nature of the protocols. On average, pure
0-loop and 2-loop protocols typically require larger AT than
1-loop and d-loop protocols.

The analysis of the vector correlations shows the follow-
ing: In 0-loop protocols, odd vectors (e1, e3) as well as even
vectors (e2, e4) are mostly aligned with each other, while odd
to even vectors show up at any possible orientation, with

FIG. 7. Rate of success as a function of the threshold error, using
four-pulse sequences to optimize the gate following predetermined
mechanisms.

FIG. 8. Time-domain features of the optimization. Distribution
of the pulse areas A1 (violet), A2 (green), A3 (blue), A4 (orange)
for the optimal protocols that use only (a) 0-loops, (b) 1-loops, (c)
d-loops, and (d) 2-loops in the V subsystem.

some preference for aligned or anti-aligned configurations. In
1-loop protocols, e1 and e3 are strictly aligned or anti-aligned
to e2, while they are mostly aligned to each other; e4 appears
at all possible orientations but the distribution shows peaks at
0.23π , 0.42π , 0.58π , and 0.77π , corresponding to 〈e4|e j〉 =
±0.25,±0.75. In d-loop protocols, e1 and e3 are both strictly
aligned or anti-aligned to each other, and perpendicular to e2,
while e4 takes all possible orientations. Finally, in 2-loops e1

is aligned or anti-aligned to e2, and e3 to e4, while e3 and e4

show at 0.23π , 0.42π , 0.58π , and 0.77π angles with respect
to both e1 and e2.

FIG. 9. Spatial-domain features of the optimization. Distribution
of the cosine of the angles between structural vectors for the optimal
protocols that only use (a) 0-loops, (b) 1-loops, (c) d-loops, and
(d) 2-loops in the V subsystem.
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Restricting the analysis of the optimal parameters to a
subset of the protocols that belong to different families of
mechanisms allows us to identify distinctive correlations. Al-
though we currently do not have any theoretical explanation
for the observed restrictions and correlations, we expect that
they will help revealing the nature of the dynamics, similar to
the relation between the orthogonality of the structural vectors
and the exploitation of a hidden dark state in the SOP [66].

VII. SUMMARY AND CONCLUSIONS

Using quantum control tools, we have explored the space
of optimal protocols for implementing CZ entangling gates
in systems of two nonindependent qubits, with high fidelity.
Studying the rate of success of the optimal control algorithm
as a function of the gate error for different pulse sequences un-
der different constraints, we have evaluated the impact of the
proximity of the atoms. High-fidelity protocols can be found
already with two-pulse sequences in highly interdependent
qubits, where each field acts strongly on both qubits at the
same time. However, the density of solutions decreases as the
qubits approach each other, and in a more pronounced way if
the fields are forced to be positive everywhere. The minimal
pulse areas necessary to implement the protocols also increase
with the constraints.

To characterize the protocols up to five-pulse sequences,
we have proposed a mechanism analysis based on pathways
that connect the initial computational state of the qubit with
the final state, in terms of 0-, 1-, d-, and 2-loops, represented
on a square. We have approximately ranked the solutions in
terms of pure mechanisms or their combinations, character-
izing each protocol by a point in a cube. Finally, we have
developed optimization algorithms that select protocols that
operate under chosen mechanisms.

All protocols in two-pulse sequences require a 0-loop
mechanism for the dynamics starting in |00〉 (for the dynamics
starting in |01〉 or |10〉 the mechanism can be a 0 or 1-loop or
its superposition). But lower-fidelity protocols can be found
forcing a 1-loop mechanism in |00〉, at the expense of needing
larger pulse areas. The correlations in the parameters are not
obvious for larger sequences but can be found by imposing
mechanism constraints. For instance, four-pulse sequences
that implement pure mechanisms inherit much of the structure
of two-pulse sequences. Some mechanisms involve preferred
orientations in the structural vectors and probably reveal inter-
esting Hamiltonian structures that are exploited in the gate dy-
namics, in the same way, that the SOP used a dark state [66].

While for large sequences almost any possible mechanism
is used by different optimal protocols, the set of preferred
mechanisms lies on a single plane, revealing that strong cor-
relations also characterize the space of mechanisms. These
correlations are such that for any dominant mechanism, by
interchanging the type of controlled dynamics starting in any
computational basis of the qubit (except the uncoupled |11〉
state), one can find an alternative dominant optimal proto-
col. As the number of pulses increases, or the constraints
become stronger, collaborative mechanisms are favored where
the largest contributions move from 0-loops to 1-loops, from
1-loops to d-loops, and from d-loops to 2-loops. The mecha-
nisms for the dynamics starting from the |01〉 or the |10〉 states

are typically more varied than those starting from |00〉, but less
dependent on the constraints.

The approach followed in this work, and the number of
calculations performed, prevent us from making a proper esti-
mate of the effect of noise and decoherence on the fidelity of
the gate. In principle, albeit at a high computational cost, some
effects can be incorporated in the optimization algorithm [76].
The sources of noise that will mainly affect the fidelity depend
crucially on the time duration of the gate. Working with non-
independent qubits based on denser arrays of atoms allows us
to boost the dipole blockade mechanism and hence the peak
Rabi frequencies. The duration of the optimal pulses obtained
in this work could ideally be in the tens of nanoseconds, for
which fluctuations in the beam intensities and positions, as
well as the thermal motion of the atoms, are the main sources
of gate errors. Preliminary results show that the relative error
in the fidelity can be smaller than 1% working at temperatures
of ≈25 μK with intensity beam fluctuations of the order of
3% [73], that can be achieved in the laboratory [45,77,78].
But the errors are highly dependent on the peak amplitudes
of the fields, so protocols relying on a single dominant field,
with large pulse area, are prone to much larger errors than
protocols that distribute the total pulse area among many
different pulses.

From the theoretical point of view, our study offers a novel
methodology to map and characterize a dense space of optimal
protocols of general validity for quantum computing, regard-
less of the gate or specific platform. A mechanism analysis
always depends on the choice of representation and therefore
on what the observer wants to learn [74,75]. The quantum
pathways on the basis of the Hamiltonian used in this work,
have allowed us to visualize the prevalent mechanisms, which
differ for the different pulse sequences, and can be extended
to compare the behavior of protocols designed to maximize
the fidelity of different gates, that use different numbers of
qubits [79]. It still remains to be seen how much of this
analysis can be applied as a guide for finding useful protocols
in the laboratory. To date, most proposed quantum protocols
were based on human ingenuity, forcing very restricting sets
of parameters. These highly symmetrical protocols typically
implied gates that operated with pure mechanisms. However,
in the full space of mechanisms, such protocols can only be
found by guiding the search, and biasing the optimization
algorithm. At the expense of increasing the complexity of the
system, controlling the spatial properties of the laser beams
working with structured light, we have shown in this work
that the landscape of protocols is much richer than expected,
and exploring this landscape may offer great flexibility for the
experimental implementation.

ACKNOWLEDGMENTS

This research was supported by the Quantum
Computing Technology Development Program (NRF-
2020M3E4A1079793). I.R.S. thanks the BK21 program
(Global Visiting Fellow) for the stay during which this
project started and the support from the Ministerio de
Ciencia e Innovación of Spain (MICINN), Grant No.
PID2021-122796NB-I00. S.S. acknowledges support from
the Center for Electron Transfer funded by the Korean
government (MSIT) (NRF-2021R1A5A1030054)

032620-9



SOLA, SHIN, AND CHANG PHYSICAL REVIEW A 108, 032620 (2023)

[1] J. I. Cirac and P. Zoller, A scalable quantum computer with ions
in an array of microtraps, Nature (London) 404, 579 (2000).

[2] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe,
and J. L. O’Brien, Quantum computers, Nature (London) 464,
45 (2010).

[3] M. H. Devoret and R. J. Schoelkopf, Superconducting cir-
cuits for quantum information: An outlook, Science 339, 1169
(2013).

[4] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C.
White, D. Sank, J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B.
Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, C.
Quintana, P. Roushan, A. Vainsencher, J. Wenner et al., State
preservation by repetitive error detection in a superconducting
quantum circuit, Nature (London) 519, 66 (2015).

[5] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni,
H. A. Janacek, N. M. Linke, D. N. Stacey, and D. M. Lucas,
High-Fidelity Preparation, Gates, Memory, and Readout of a
Trapped-Ion Quantum Bit, Phys. Rev. Lett. 113, 220501 (2014).

[6] F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and
J. Wrachtrup, Observation of Coherent Oscillation of a Sin-
gle Nuclear Spin and Realization of a Two-Qubit Conditional
Quantum Gate, Phys. Rev. Lett. 93, 130501 (2004).

[7] M. Saffman, T. G. Walker, and K. Mølmer, Quantum informa-
tion with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).

[8] D. Zhu, Z. P. Cian, C. Noel, A. Risinger, D. Biswas, L. Egan, Y.
Zhu, A. M. Green, C. H. Alderete, N. H. Nguyen, Q. Wang, A.
Maksymov, Y. Nam, M. Cetina, N. M. Linke, M. Hafezi, and
C. Monroe, Cross-platform comparison of arbitrary quantum
states, Nat. Commun. 13, 6620 (2022).

[9] S. Rice and M. Zhao, Optical Control of Molecular Dynamics
(John Wiley & Sons, New York, 2000).

[10] M. Shapiro and P. Brummer, Quantum Control of Molecular
Processes (John Wiley & Sons, New York, 2011).

[11] B. W. Shore, Manipulating Quantum Structures Using Laser
Pulses (Cambridge University Press, Cambridge, 2011).

[12] V. S. Malinovsky and I. R. Sola, Quantum control of entangle-
ment by phase manipulation of time-delayed pulse sequences.
I, Phys. Rev. A 70, 042304 (2004).

[13] V. S. Malinovsky and I. R. Sola, Quantum Phase Control of
Entanglement, Phys. Rev. Lett. 93, 190502 (2004).

[14] V. S. Malinovsky and I. R. Sola, Phase-Controlled Collapse and
Revival of Entanglement of Two Interacting Qubits, Phys. Rev.
Lett. 96, 050502 (2006).

[15] J. P. Palao and R. Kosloff, Optimal control theory for unitary
transformations, Phys. Rev. A 68, 062308 (2003).

[16] C. M. Tesch, L. Kurtz, and R. de Vivie-Riedle, Applying op-
timal control theory for elements of quantum computation in
molecular systems, Chem. Phys. Lett. 343, 633 (2001).

[17] C. M. Tesch and R. de Vivie-Riedle, Quantum Computation
with Vibrationally Excited Molecules, Phys. Rev. Lett. 89,
157901 (2002).

[18] J. P. Palao, R. Kosloff, and C. P. Koch, Protecting coherence
in optimal control theory: State-dependent constraint approach,
Phys. Rev. A 77, 063412 (2008).

[19] M. H. Goerz, D. M. Reich, and C. P. Koch, Optimal con-
trol theory for a unitary operation under dissipative evolution,
New J. Phys. 16, 055012 (2014).

[20] T. Caneva, T. Calarco, and S. Montangero, Chopped random-
basis quantum optimization, Phys. Rev. A 84, 022326 (2011).

[21] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W.
Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T.
Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, Training
Schrödinger’s cat: Quantum optimal control, Eur. Phys. J. D 69,
279 (2015).

[22] C. P. Koch, U. Boscain, T. Calarco, G. Dirr, S. Filipp, S. J.
Glaser, R. Kosloff, S. Montangero, T. Schulte-Herbrüggen, D.
Sugny, and F. K. Wilhelm, Quantum optimal control in quan-
tum technologies. strategic report on current status, visions
and goals for research in europe, EPJ Quantum Technol. 9, 19
(2022).

[23] M. M. Müller, D. M. Reich, M. Murphy, H. Yuan, J. Vala, K. B.
Whaley, T. Calarco, and C. P. Koch, Optimizing entangling
quantum gates for physical systems, Phys. Rev. A 84, 042315
(2011).

[24] L. S. Theis, F. Motzoi, F. K. Wilhelm, and M. Saffman,
High-fidelity Rydberg-blockade entangling gate using shaped,
analytic pulses, Phys. Rev. A 94, 032306 (2016).

[25] H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, Quantum
optimally controlled transition landscapes, Science 303, 1998
(2004).

[26] A. Rothman, T.-S. Ho, and H. Rabitz, Exploring the level sets of
quantum control landscapes, Phys. Rev. A 73, 053401 (2006).

[27] R. Chakrabarti and H. Rabitz, Quantum control landscapes,
Int. Rev. Phys. Chem. 26, 671 (2007).

[28] J. P. Palao, D. M. Reich, and C. P. Koch, Steering the opti-
mization pathway in the control landscape using constraints,
Phys. Rev. A 88, 053409 (2013).

[29] A. N. Pechen and D. J. Tannor, Are There Traps in Quantum
Control Landscapes? Phys. Rev. Lett. 106, 120402 (2011).

[30] T.-S. Ho, J. Dominy, and H. Rabitz, Landscape of unitary trans-
formations in controlled quantum dynamics, Phys. Rev. A 79,
013422 (2009).

[31] K. W. Moore and H. Rabitz, Exploring constrained quantum
control landscapes, J. Chem. Phys. 137, 134113 (2012).

[32] B. Russell, H. Rabitz, and R.-B. Wu, Control landscapes are
almost always trap free: A geometric assessment, J. Phys. A:
Math. Theor. 50, 205302 (2017).

[33] F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A.
Vernier, T. Lahaye, and A. Browaeys, Single-Atom Trapping in
Holographic 2D Arrays of Microtraps with Arbitrary Geome-
tries, Phys. Rev. X 4, 021034 (2014).

[34] D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and A.
Browaeys, An atom-by-atom assembler of defect-free arbitrary
two-dimensional atomic arrays, Science 354, 1021 (2016).

[35] J. T. Wilson, S. Saskin, Y. Meng, S. Ma, R. Dilip, A. P. Burgers,
and J. D. Thompson, Trapping Alkaline Earth Rydberg Atoms
Optical Tweezer Arrays, Phys. Rev. Lett. 128, 033201 (2022).

[36] A. P. Burgers, S. Ma, S. Saskin, J. Wilson, M. A. Alarcón, C. H.
Greene, and J. D. Thompson, Controlling Rydberg excitations
using ion-core transitions in alkaline-earth atom-tweezer arrays,
PRX Quantum 3, 020326 (2022).

[37] W. Lee, H. Kim, and J. Ahn, Three-dimensional rearrangement
of single atoms using actively controlled optical microtraps,
Opt. Express 24, 9816 (2016).

[38] D. Comparat and P. Pillet, Dipole blockade in a cold Rydberg
atomic sample, J. Opt. Soc. Am. B 27, A208 (2010).

[39] D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang,
R. Côté, E. E. Eyler, and P. L. Gould, Local Blockade of

032620-10

https://doi.org/10.1038/35007021
https://doi.org/10.1038/nature08812
https://doi.org/10.1126/science.1231930
https://doi.org/10.1038/nature14270
https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1103/PhysRevLett.93.130501
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1038/s41467-022-34279-5
https://doi.org/10.1103/PhysRevA.70.042304
https://doi.org/10.1103/PhysRevLett.93.190502
https://doi.org/10.1103/PhysRevLett.96.050502
https://doi.org/10.1103/PhysRevA.68.062308
https://doi.org/10.1016/S0009-2614(01)00748-5
https://doi.org/10.1103/PhysRevLett.89.157901
https://doi.org/10.1103/PhysRevA.77.063412
https://doi.org/10.1088/1367-2630/16/5/055012
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1140/epjqt/s40507-022-00138-x
https://doi.org/10.1103/PhysRevA.84.042315
https://doi.org/10.1103/PhysRevA.94.032306
https://doi.org/10.1126/science.1093649
https://doi.org/10.1103/PhysRevA.73.053401
https://doi.org/10.1080/01442350701633300
https://doi.org/10.1103/PhysRevA.88.053409
https://doi.org/10.1103/PhysRevLett.106.120402
https://doi.org/10.1103/PhysRevA.79.013422
https://doi.org/10.1063/1.4757133
https://doi.org/10.1088/1751-8121/aa6b77
https://doi.org/10.1103/PhysRevX.4.021034
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1103/PhysRevLett.128.033201
https://doi.org/10.1103/PRXQuantum.3.020326
https://doi.org/10.1364/OE.24.009816
https://doi.org/10.1364/JOSAB.27.00A208


FINDING, MAPPING, AND CLASSIFYING OPTIMAL … PHYSICAL REVIEW A 108, 032620 (2023)

Rydberg Excitation in an Ultracold Gas, Phys. Rev. Lett. 93,
063001 (2004).

[40] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz,
T. G. Walker, and M. Saffman, Observation of Rydberg block-
ade between two atoms, Nat. Phys. 5, 110 (2009).

[41] A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau,
D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Obser-
vation of collective excitation of two individual atoms in the
Rydberg blockade regime, Nat. Phys. 5, 115 (2009).

[42] J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill,
M. P. A. Jones, and C. S. Adams, Cooperative atom-Light
Interaction in a Blockaded Rydberg Ensemble, Phys. Rev. Lett.
105, 193603 (2010).

[43] H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz,
A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D.
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