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Simulating quantum transport via collisional models on a digital quantum computer

Rebecca Erbanni,1 Xiansong Xu,1 Tommaso F. Demarie ,2 and Dario Poletti1,3,4,5

1Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
2Entropica Labs, 186b Telok Ayer Street, 068632 Singapore

3EPD Pillar, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
4Centre for Quantum Technologies, National University of Singapore 117543, Singapore

5MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore

(Received 1 August 2023; accepted 8 September 2023; published 28 September 2023)

Digital quantum computers have the potential to study the dynamics of many-body quantum systems.
Nonequilibrium open quantum systems are, however, less straightforward to be implemented. Here we explore
the feasibility of studying steady-state transport in strongly interacting many-body quantum systems on a
digital quantum computer. To do so, we consider a collisional model representation of the nonequilibrium open
dynamics for a boundary-driven XXZ spin chain. More specifically, we investigate how the depth of the quantum
circuit is affected by how close we want the steady state to be to the one expected from the underlying master
equation. We study the simulation of a boundary-driven spin chain in regimes of weak and strong interactions,
which would lead in large systems to diffusive and ballistic dynamics, considering also possible errors in the
implementation of the protocol. Last, we analyze the effectiveness of digital simulation via the collisional model
of current rectification when the XXZ spin chains are subject to nonuniform magnetic fields and show that,
although the circuit depths required to reach steady states are still prohibitive for today’s hardware, few collisions
are enough to suggest a strong rectifying power.
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I. INTRODUCTION

The study of quantum transport in boundary-driven many-
body quantum systems is a significant theoretical, numerical,
and experimental challenge [1,2]. Additional insights from
quantum simulators and digital quantum computers can help
us to further explore and understand the phenomenology of
these systems. However, while these platforms have been used
to study isolated quantum systems extensively, the study of
open quantum dynamics with controllable environment set-
tings is still an ongoing challenge. A possible way to model
these systems is via collisional models [3–10], also known
as repeated interactions schemes. Recently these collisional
models have attracted significant attention from the field of
quantum thermodynamics [11,12]. For instance, they have
been used to study nonequilibrium steady states [13–15],
charging of batteries [16], thermometry [17], nonthermal
baths [18], and current rectification [19]. Collisional models
have also been proven useful to maintain a framework of
energy transport consistent with the laws of thermodynamics
[20–22], and to further show their versatility, have recently
been used to model a perceptron in the context of binary
classification of quantum data [23].

In general, such a framework treats the environment as a set
of ancillae with which the system interacts sequentially for a
finite time τ . Hence, the dynamics of the system and ancillae
can be described by a sequence of unitary operations that
can be more readily implemented on quantum computers and
other experimental platforms [24–27]. In fact, a collisional
model was recently implemented to study the steady state of

an XXZ spin system and even reach a (periodic) nonequilib-
rium steady state [28].

Here we look into the practical feasibility of using
collisional models to simulate dissipative boundary-driven
quantum systems. In particular, extending the work in [28],
we focus on the number of collisions and depths of the circuit
required to reach the steady state and characterize how close
such a state is to the ideal scenario of infinitely short and weak
collisions. We find that a nonequilibrium steady state can be
reached with circuits of depth within reach of current digital
quantum computers, although with still some limitations on
the size of the systems that can be studied, and how well
they can simulate the dissipative dynamics of a local master
equation in Gorini-Kossakowski-Sudharshan-Lindblad form
[29,30]. For these setups, we also study the robustness of the
results versus errors in the implementation of the collisions.
To further investigate the performance of the collisional mod-
els and their eventual implementation on a digital quantum
computer, we also consider a model which leads to strong
spin-current rectification [2].

The paper is structured as follows. In Sec. II, we introduce
the collisional model we use in our simulations and how it is
implemented. Section III presents the spin chain Hamiltonians
considered and their properties. Section IV shows the results
for the uniform spin chain both in parameter regimes for
which a long spin chain would be in the ballistic or diffusive
regimes. In Sec. IV C we extend our analysis to the XXZ
Hamiltonian with a nonuniform magnetic field which shows
strong rectification. In Sec. V, we discuss in more detail
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hardware implementations. Finally, we draw our conclusions
in Sec. VI.

II. COLLISIONAL MODEL

The dynamics of a quantum system weakly coupled to a
memory-less bath can be described by a master equation in
the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form
[29,30]. Such master equations can be approximated by a set
of repeated interactions, or collisions, between the system and
a suitably prepared environment. For instance, for each bath
the system is in touch with, one can prepare many copies of
ancilla qubits, and then sequentially, let the system interact
with one of these qubits, per bath, at a time. In the following,
we refer to these short interactions as collisions.

This approach requires the use of a large number of ancilla
qubits. However, since all ancillas are equally initialized, one
could also let the system interact with just one ancilla and
reset the latter after an interaction time τ . This strategy that
we employ in the rest of the paper, thus allows to significantly
reduce the total number of qubits needed to simulate a dissi-
pative process.

In the following sections, we consider a one-dimensional
spin chain coupled at the extremities to two baths. More
specifically, we consider a spin chain with L spins to which
we add at each extremity another spin to make the two ancillae
spins. We thus have a system of L + 2 spins where spins 0 and
L + 1 are the ancillae spins, while spins 1 to L are the system
spins. The initial state of the system ρ̂S plus two environment
ancillae, ρ̂ER and ρ̂EL , respectively, for the right and left ones,
is ρ̂EL ⊗ ρ̂S ⊗ ρ̂ER , i.e., an uncorrelated state between the three
parts. Furthermore, each portion is prepared in a pure state.

The collisional model is thus achieved by the following two
steps: (i) the system and the ancillae interact for a time τ and
(ii) the system evolves through unitary evolution determined
by its Hamiltonian (decoupled from the ancillae) while, at
the same time, the ancillae are reset to their initial state. We
note that the actions at step (ii) can be done concurrently
because the operators commute. A schematic description of
the implementation of one iteration of the collisional model
for a system of four spins is given in Fig. 1(a).

The overall evolution is thus determined by two unitary
evolutions, ÛS = exp(−iĤSτ ) which evolves the system due
to its Hamiltonian ĤS for a time τ , and ÛI = exp(−iĤIτ )
which evolves the ancillae and the system for a time τ via the
interaction Hamiltonian ĤI . In the following, the interaction
operator ÛI between the system and the ancillae takes the form
of a partial ˆiSWAP, which is a native gate for superconducting
circuits [31,32]. The choice of the partial ˆiSWAP is because
we aim to simulate the scenario in which the bath is trying
to impose its magnetization. This could be done by using a

ˆSWAP gate, but we noticed that a partial ˆiSWAP allows reaching
a steady state with a much smaller number of collisions. As a
reminder, the ˆSWAP operation Ŝ can be expressed in terms of
the Pauli operators as

Ŝ = 1
2 (1̂ ⊗ 1̂ + Ẑ ⊗ Ẑ + X̂ ⊗ X̂ + Ŷ ⊗ Ŷ ), (1)

and swaps the states of two qubits

Ŝ |ψ〉 |φ〉 = |φ〉 |ψ〉 . (2)

|↓〉 X̂
ˆiSWAP(θ)

|↓〉 X̂
ˆiSWAP(θ)

Û Û

ˆiSWAP(θ) ˆiSWAP(θ)
|↓〉 |↓〉

(a)

Û(dt)

Ĥ2l(dt/2) Ĥ2l(dt/2)

Ĥ2l+1(dt)=

Ĥ2l(dt/2) Ĥ2l(dt/2)

(b)

FIG. 1. (a) Diagram of a collisional model on a system of four
sites (qubits q1 to q4) and two baths (qubits q0 and q5). Here we show
two collisions, each composed of two layers divided by a vertical
dashed line. In the first layer we have, in parallel, the unitary evolu-
tion of the four system qubits, and the measurement and resetting of
the ancilla ones. The second layer shows the partial swaps between
the two bath qubits and the qubits at the extremities of the system.
(b) Trotter step of the unitary evolution as presented in Eq. (10).

The partial ˆiSWAP is then

ÛI = e−iŜθ = 1̂ cos(θ ) − iŜ sin(θ ). (3)

A small value of θ implies a small swap between the sys-
tem and the ancilla, stemming from a short duration of the
interaction between them. In Appendix A, we show that one
can derive a GKSL-type master equation for the dynamics
of the reduced density matrix of the system by considering
infinitesimal collisions, and we show that θ with τ are related
by [33,34]

θ = asin(
√

1 − e−γ τ ). (4)

III. BOUNDARY-DRIVEN XXZ SPIN CHAINS

To obtain general enough results, we use a prototypical
Hamiltonian for the spin chain, i.e., the XXZ model with, in
some scenarios, an external inhomogeneous magnetic field.
The Hamiltonian is given by

Ĥ =
L−1∑
l=1

[
J
(
σ̂ x

l σ̂ x
l+1 + σ̂

y
l σ̂

y
l+1

) + 	σ̂ z
l σ̂ z

l+1

] +
L∑

l=1

hl σ̂
z
l , (5)

where σ̂
α=x,y,z
l the Pauli matrices, J the magnitude of the tun-

neling between nearest sites, 	 the magnitude of the coupling
between the spins, hl the site-dependent magnetic field in the
z direction. For simplicity here we only consider the magnetic
field to be site dependent. The ratio 	/J is often referred to as
the anisotropy parameter. This is a prototypical model to study
quantum transport [1,2]. We work in units such that h̄ = 1 and
J = 1.
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During the collisions, the first and last spins are coupled to
two single-spin baths at sites l = 0 and l = L + 1, prepared
(and reset) in the up and down states, i.e., ρ̂E ,L = |↑〉 〈↑|,
ρ̂E ,R = |↓〉 〈↓|. We choose this setup for the bath because (i)
it can lead to stronger currents, (ii) stronger effects of the
interaction [35,36], and (iii) these are states which are very
easy to prepare in a quantum circuit (for example, compared
to mixtures or other correlated states). In the limit of strong
and instantaneous collisions, the dissipative evolution of the
reduced density matrix of the system is described by a GKSL
master equation [29,30]

d ρ̂S

dt
= −i[Ĥ, ρ̂S] +

∑
l=1,L

Dl (ρ̂S ), (6)

where Dl are the dissipators acting on the first and last sites.
The general expression for the dissipators is given by

Dl (ρ̂S ) = γ
[
λl

(
σ̂+

l ρ̂Sσ̂
−
l − 1

2 {σ̂−
l σ̂+

l , ρ̂S}
)

+ (1 − λl )
(
σ̂−

l ρ̂Sσ̂
+
l − 1

2 {σ̂+
l σ̂−

l , ρ̂S}
)]

, (7)

where γ is the dissipation rate due to the baths, while the driv-
ing imposed by the baths is set by λl and σ̂±

l = (σ̂ x
l ± iσ̂ y

l )/2
are the raising and lowering operators. When λl = 0 (λl = 1)
on one side of the chain, the dissipator alone tends to set the
spin to be pointing down |↓〉l 〈↓| (up |↑〉l 〈↑|). For λl = 0.5
instead, the dissipator drives the spin is acting on, towards an
equal mixture of up and down (|↓〉l 〈↓| + |↑〉l 〈↑|)/2.

Once the system reaches the steady state, i.e., d ρ̂S/dt = 0,
there will be a steady spin current flowing through the system,
which can be computed as

J = tr( ĵl ρ̂S ), (8)

where ĵl is the current operator for the lth bond

ĵl = 2J
(
σ̂ x

l σ̂
y
l+1 − σ̂

y
l σ̂ x

l+1

)
. (9)

In the case in which λ1 = 1 and λL = 0 (or vice versa)
and the absence of magnetic field hl = 0, one can observe
different transport regimes in the system, notably a ballistic
regime for 0 � 	 < 1 and diffusive for 	 > 1 [1,2]. In the
presence of a large magnetic field that points in one direction
for half a chain and in the opposite direction for the other
half, the emerging steady state can have extremely different
spin current magnitudes depending on whether λ1 = 0 and
λL = 1 or vice versa. In other words, the system is a strong
spin-current rectifier [37–39].

For the unitary evolution of the system, we implement
a second-order Suzuki-Trotter decomposition [40,41]. The
Hamiltonian Eq. (5) can, in fact, be written as a sum of
nearest-neighbor terms on site l and l + 1 alone, which we
refer to as Ĥl , and thus Ĥ = ∑

l Ĥl . The unitary evolution
on the system alone U (dt ) for a short time dt can thus be
approximated by

Û (dt ) =
(∏

l

e−iĤ2l
dt
2

)(∏
l

e−iĤ2l+1dt

)(∏
l

e−iĤ2l
dt
2

)
, (10)

where we group together the Hamiltonian terms acting on odd
and even bonds. For the overall unitary evolution Û (τ ) one
thus needs to repeat Û (dt ) a τ/dt number of times, noting

FIG. 2. Magnetization profile and spin current for a spin chain
with L = 4 spins, coupled to a left and right bath in the up and down
states, respectively. The parameters of the system and interaction
Hamiltonians and the Suzuki-Trotter evolution are hz = 0, 	 = 1.5,
γ = 1, τ = 0.05 (τ = 0.2), dt = 0.01, θ = 0.222(θ = 0.439) for
the first (second) row and the different shades of color refer to
(a,c) sites 1 to 4 and (b,d) bonds 1 to 3, from darker to lighter.
The third row shows a summary of the magnetization profiles and
steady-state currents for different values of τ = 0.05, 0.2, 0.4 from
darker to lighter. As τ → 0 the result should approach the solution
to the GKSL master equation.

that
∏

l e−iĤ2l+1
dt
2 at the end of a Û (dt ) can be merged in a

single operation with the one at the beginning of the next dt .

IV. RESULTS

In Sec. IV A we show results for the XXZ model in Eq. (5)
without external fields (hl = 0), in Sec. IV B we consider the
effect of errors in the implementation of the unitary evolution
and of the dissipation, and in Sec. IV C we show the results
for the XXZ model in Eq. (5) with nonzero hl such that the
steady state would have strong rectification.

A. XXZ model

For concreteness, we now consider a system with L = 4,
λ1 = 1, λL = 0, and 	 = 1.5J or 	 = 0.5J . The first case is
represented in Fig. 2 while the second in Fig. 3. In all the
computations below we use the state ρ̂S = |↑↑↓↓〉 〈↑↑↓↓|
as our initial condition. In Figs. 2(a), 2(b), 3(a), and 3(b)
we consider a short interaction time (and Suzuki-Trotter step)
τ = 0.05 while in Figs. 2(c), 2(d), 3(c), and 3(d) we show the
results for τ = 0.2 [42]. In Figs. 2(a), 2(c), 3(a), and 3(c) we
show the local magnetization at each site, while in Figs. 2(b),
2(d), 3(b), and 3(d) we show the current in each of the three
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FIG. 3. Magnetization profile and spin current for a spin chain
with L = 4 spins, coupled to a left and right bath in the up and down
states, respectively. The parameters of the system and interaction
Hamiltonians and the Suzuki-Trotter evolution are hz = 0, 	 = 0.5,
γ = 1, τ = 0.05 (τ = 0.2), dt = 0.01, θ = 0.222(θ = 0.439) for
the first (second) row and the different shades of color refer to
(a,c) sites 1 to 4 and (b,d) bonds 1 to 3, from darker to lighter.
The third row shows a summary of the magnetization profiles and
steady-state currents for different values of τ = 0.05, 0.2, 0.4 from
darker to lighter.

bonds in the system. Figures 2(e), 2(f), 3(e), and 3(f) depict,
respectively, the magnetization versus the site and the current
versus the bonds, in the steady state for different values of
the collision time τ . Each τ is represented by a continuous
line from darker to lighter color for smaller to larger τ . The
steady-state values expected by an exact reproduction of the
master equation (6) are depicted by the dotted line.

In both Figs. 2(a) to 2(d) and Figs. 3(a) to 3(d) we observe
that larger values of τ result in the system reaching a steady
state with a smaller number of collisions m, shown clearly
both by the magnetization and current plots. However, for
larger values of τ one observes that the current is not the same
in the different bonds, something we would expect in a steady
state. We relate this to the discretized evolution with different
operation acting in different intervals. This also implies that
the system has actually reached a periodic steady state whose
temporal oscillations are more pronounced if τ is larger. From
Figs. 2(e), 2(f), 3(e), and 3(f) we also observe that the mag-
netization and current values approach more accurately the
expected value from the master equation only for very small
τ , which implies a much larger number of collisions. The
difference is more pronounced for the more weakly interacting
case 	 = 0.5 (for which a long chain would be ballistic),
Fig. 3, which we associate with the larger current present in
the system.

FIG. 4. This plot shows the evolution of the spin current on the
first bond as a function of the number of collisions, for different
magnitudes of noise. We consider the parameters of the system and
interaction Hamiltonians, as well as the reinitialization of the baths,
to be affected by Gaussian white noise with mean μ = 0 and differ-
ent values of standard deviation σ = 0 (continuous light green line),
10−2 (dashed dark green line), 10−1 (dotted black line). From the plot
we can see that up to σ = 10−2, the evolution can be robust to noise
and the current shows a good overlap with the noiseless scenario. All
lines are computed starting from a set of common parameters L = 4,
τ = 0.05 (θ = 0.22), dt = 0.01, hz = 0, 	 = 1.5, and γ = 1.

B. XXZ model with errors

An implementation of the collisional model on a quantum
computer cannot currently occur without errors. Here we are
considering that at each time step dt we add a random number
drawn from an unbiased normal distribution with standard
deviation σ to the terms J and 	 in the Hamiltonian. We also
add or subtract the modulus of a number drawn from the same
distribution to the coefficients λl which are meant to reset the
environment spins at sites 0 and L + 1. In particular we add
it for λL and subtract it for λ1 such that 0 � λl � 1. Further-
more, we also add a random number drawn from an unbiased
distribution with variance σ to the collision parameter θ . The
resulting current versus the number of collisions for different
values of the standard deviation σ are shown in Fig. 4. Here
we observe that one can obtain quantitatively accurate results
for σ = 10−2, 10−3, while it is difficult to observe even the
emergence of a steady state for σ = 10−1.

C. XXZ model plus nonuniform field

Here we consider the case of a system for which hl is
nonzero in a way that it leads to strong rectification. This
can occur when hl = h for the first half of the spins, and
hl = −h for the other half. In this case, for 	 and h large and
appropriately tuned [39], one can observe very little current
for λ1 = 1 and λL = 0, but a much larger current for the
opposite dissipatively boundary driving λ1 = 0 and λL = 1.
We refer to the second as forward bias and the first to reverse
bias. We can then define the rectification coefficient as the
ratio between the forward and reverse currents

R = − I f

Ir
, (11)

where R = 0 or ∞ for a perfect diode, and R = 1 if there is
no rectification. In all the computations below we use the state
ρ̂S = |↑↑↓↓〉 〈↑↑↓↓| as our initial condition for the forward
bias, and we changed the sign of the local field to −h for
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FIG. 5. This plot shows the cumulative forward and reverse cur-
rents and the magnetization profiles for τ = 0.05 (first row) and
τ = 0.2 (second row). The parameters of the system and interac-
tion Hamiltonians and the Suzuki-Trotter evolution are L = 4, hz =
4, 	 = 4, γ = 1, τ = 0.05 (τ = 0.2), dt = 0.01, θ = 0.222 (θ =
0.439) for the first (second) row. In all subplots the red lines refer
to the reverse direction and the blue lines to the forward direction.
In panels (a,c), the dotted lines refer to the collision model and the
continuous lines represent the results from the master equation. In
panels (b,d) the different shades of color indicate bonds 1 (lighter)
and 2 (darker), while the current for the third bond would overlap
with the first.

the reverse bias scenario. In Figs. 5(b) and 5(d) we observe
the value of the current at different bonds versus the number
of collisions for the forward bias (continuous blue lines) and
reverse bias (dashed red lines), while different bonds are dif-
ferentiated by different shades of the same color, lighter for
the first bond and darker for the second, while the current for
the third bond coincides with the first one. In Fig. 5(b) we
show the results for a smaller τ , while in Fig. 5(d) for a larger
value of τ . Similarly to the results shown in Figs. 2 and 3, for
larger τ one observes a faster convergence towards the steady
state. When analyzing the difference between the forward and
reverse bias currents we observe two striking results: (i) the
current in the forward bias is indeed significantly larger than
in the reverse bias and (ii) the reverse bias current converges in
a smaller number of steps compared to the forward one. The
later point is particularly important because the relaxation gap,
i.e., the rate of decay of the slowest eigenvalue of the master
equation (6), is smaller for the reverse bias. However, the
quantitative difference in the current is negligible on the scales
set by the forward current. Regarding the different magnitude
of the currents in the forward and reverse bias, if we consider
the smallest value of the current between the different bonds
in the forward bias, and the largest current in the reverse bias,
we find R = 186.4 for τ = 0.05 and R = 1219.2 for τ = 0.2.
In Figs. 5(a) and 5(c) we observe that, in the reverse bias the
steady-state magnetization from the collisional model (dotted
lines) and that from the master equation (6) (continuous lines)
match very well for small τ , Fig. 5(a), and larger τ , Fig. 5(c).
Interestingly, in the forward bias, for larger τ we observe a

good match of the magnetization with the one from the master
equation, and a not so good one for smaller τ . This is due
to the fact that for small τ the forward bias case has not
reached a steady state by the 300th collision. We conclude this
section by stating that, for this model with a clear rectification
effect, very few collisions are sufficient to tell that there is a
significant difference in the current from one bias to the other.

V. HARDWARE IMPLEMENTATION

We now go back to Fig. 1 to discuss an implementation on
a digital quantum computer. At a larger scale, each collision
can be implemented in two steps. For the first step, one resets
the baths and applies the unitary on the system, while in
the next step, the collision between the bath qubits and the
qubits at the extremities of the system takes place. However,
the unitary evolution of the system is composed of smaller
blocks, each consisting of an evolution for a time dt of the
bond Hamiltonian Ĥl . One needs to consider how both this
two-qubit evolution and the ˆiSWAP gates are implemented,
and this depends significantly on the native gates available.
For instance, the ˆiSWAP gate is native on some platforms
[28,31,32], and hence this operation can be done with depth
one. Interestingly, if we consider the Hamiltonian in Eq. (5)
with 	 = J , then also each unitary step can be done with
a depth of one on these machines. On a machine like IBM
Manila, though, the ˆiSWAP gate is not native and one would
need a depth of about 10 to produce both the ˆiSWAP and
the unitary evolution step for a time dt for two qubits, see
Appendix B.

Another important consideration when implementing this
circuit on a quantum computer is the duration of each opera-
tion, and compare this with the coherence time of the system.
For instance, if we consider the IBM Manila quantum proces-
sor, which has five aligned qubits, and the decomposition to
native gates of the unitary evolution depicted in Fig. 7, there
are nine layers of single-qubit gates and three layers of two-
qubit gates. Considering that on the IBM Manila QPU [43]
single-qubit operations take 35.5 ns (except R̂Z that comes
at zero cost) and that two-qubit operations take 576 ns, the
building block of unitary evolution described in Fig. 7 takes
1.9 μs. At the same time, the algorithm is also resetting the
bath qubits and flipping one of them. For the resetting we
first perform a measurement and then flip the spin. Since
the measurement and resetting takes, in IBM Manila, at least
5.3 μs [44]. These timings need to be compared with the
coherence times, for this setup the median coherence times
are T1 = 188.77 μs and T2 = 67.3 μs, and from here we can
deduce what is the limit of the circuit depth.

Considering a different platform, such as IonQ Harmony
[45], we would be dealing with a system with 11 physical
qubits with all-to-all connectivity. In this setup, the readout
time is 100 μs and the reset time is 25 μs. These times can be
faster than the one and two-qubit gates which are the building
blocks of the unitary evolution and the ˆiSWAPs, respectively,
10 μs and 210 μs, while the coherence times are T1 > 107 μs
and T2 = 2 × 105 μs. This would allow a sizable amount of
collisions to take place making approaching the steady-state
possible.
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We mentioned in the early parts of the paper that one can
reset the ancilla qubits so that it is no longer needed to keep
one ancilla qubit per collision. In a setup in which intermedi-
ate measurements are particularly time-consuming or can lead
to unwanted effects, it is, however, possible to also consider
what we refer to as a hybrid approach. In this case one would
use a certain number of available ancilla qubits to perform the
partial swaps, one ancilla qubit at the time. Then, one can reset
them all together once they have each gone through the partial
swap with the system qubits.

VI. CONCLUSION

We analyzed the performance of using a collisional model
to study a dissipative boundary-driven system, with a steady
state with nonzero current on a quantum computer. This is
possible in setups that allow partial measurements on the
system without affecting the rest of the setup. This can be
done, for instance, on some trapped ions realizations of digi-
tal quantum computers [46,47], and also on superconducting
chips [48], provided the time to execute a measurement is
short enough.

From our computations, we observe that it is possible to
reach steady states with a limited number of collisions, which
could be possible to observe in near-term simulators or digital
computers. However, to observe quantitative matches between
results expected from a master equation one would need a
significant number of collisions. For more complex scenarios,
like systems that have strong rectification, the forward bias
seems much harder to observe as it requires even more col-
lisions to reach a steady regime, however, one can observe a
significantly different dynamics already after a few collisions
from the forward to the reverse bias. This could be used as an
indicator of a potential strong rectifier.

Another important matter is the scalability of this ap-
proach. We thus also tested the effectiveness of this method
for systems with only two spins, see Appendix B. We ob-
served that the system converges to a steady state significantly
faster than for four spins, after about 25 collisions which cor-
respond to about 50 implementations of macro gates like the
unitaries on the system qubits and the swaps, for the case with
	 = 1.5, hz = 0, and τ = 0.2. These macro gates would be
implemented by a series of native gates, see, for instance, Ap-
pendix B, however, an ion-trap setup because of the speed of
measurement and of the large coherence times, could be able
to approach the steady state. A practical implementation for
larger systems would also depend on the specific Hamiltonian
model analyzed and the dissipative driving. While the depth
of the circuit would typically increase polynomially with the
system size, see Appendix B, an exponential advantage, com-
pared to classical simulations, can still be achieved by the
memory gain of representing a quantum state on a quantum
computer. Future work could consider different implemen-
tations of master equations on a quantum computer, such as
variational approaches [49], or using finite-size baths [50,51].
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APPENDIX A: DERIVATION OF THE MASTER EQUATION
IN A COLLISIONAL MODEL WITH

A MARKOVIAN ENVIRONMENT

1. Derivation of the GKSL master equation in a
collisional model

In this section, we show that in the limit of instantaneous
and infinitesimal collisions, and non-Markovian interactions,
the evolution of the system can be reduced to that of one gov-
erned by a GKSL master equation [9,33,52]. Let us consider
a system described by a density matrix ρS and a set of K iden-
tical and uncorrelated ancillae described by ρ̂A = ⊗M

m=1 ρ̂m.
If one assumes the system to be initially uncorrelated to the
environment, their joint density matrix at time step 0 is

ρ̂SA(0) = ρ̂S (0) ⊗ ρ̂A, (A1)

where ρS represents the density matrix of the system. The
system then evolves under a unitary operator ÛS for a certain
time τ , after which it interacts with the mth ancilla via ÛSAm .
Then it evolves again with ÛS and interacts with the (m + 1)th
ancilla via the unitary operator ÛSAm+1 , and so forth. After the
collision with the mth collision, where each interaction lasts a
time τ , the state of the marginal density matrix of the system
is

ρ̂S (mτ ) = trAm{ÛSAm [ ˜̂ρS ((m − 1)τ ) ⊗ ρ̂Am ]Û †
SAm

}, (A2)

where ˜̂ρS[(m − 1)τ ] = ÛS (τ )ρ̂S[(m − 1)τ ]Û †
S (τ ),

ÛSAm = e−igĤSAm τ = e−iθ Ŝ, (A3)

with ĤS the Hamiltonian that describes the free evolution
of the spin chain and ĤI refers to the interaction Hamilto-
nian between the system and baths. Here τ is the unitary
evolution time as well as the interaction time and g is the
interaction strength. If, as it is in our numerical simulations,
the system interacts with the ancillae through a partial ˆiSWAP,
then ĤSAi = Ŝ and θ = gτ .

It is easy to see that to derive a GKSL-type master equa-
tion, one needs to expand Eq. (A3) to second order in θ

ÛSA = 1̂ − iθ Ŝ − θ2

2
Ŝ2 + O(θ3). (A4)

To derive the evolution of ρ̂S (mτ ) in time, we insert Eq. (A4)
in Eq. (A2) and obtain

ρ̂S (mτ ) − ρ̂S[(m − 1)τ ]

τ
= θ2

τ
trAm [Ŝ(ρ̂S ⊗ ρ̂Ai )Ŝ

− 1

2
{Ŝ2, ρ̂S[(m − 1)τ ] ⊗ ρ̂Am}],

(A5)

where we applied the stability condition

trAi (Ŝ{ρ̂S[(m − 1)τ ] ⊗ ρ̂Am}) = 0 (A6)

to remove any correction coming from the system-baths inter-
action to ĤS .

Comparing Eq. (A5) to the standard GKSL master equa-
tion, we can derive the expression of the system-ancilla
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coupling strength γ , in the limit of instantaneous collisions
and infinite g

γ = lim
g→∞,τ→0

g2τ = lim
g→∞,θ→0

gθ. (A7)

Note that, unless one is interested in studying the correlations
between the system and all the ancillae it has interacted with,
they can use a single ancilla but then reset it to its initial value
after the collision. In this framework, one does not need to
rely on the Born and Markov approximation since, in our
collisional model, the ancillae are initially uncorrelated and
are immediately reinitialized after each interaction with the
system. Because each collision is a CP operation, the secular
approximation is also not needed to guarantee the complete
positivity of the dynamical evolution, unlike in typical micro-
scopic derivations of the master equation.

2. Amplitude damping in a collisional model

To compare the results obtained with a collisional model
in the limit of instantaneous collisions, to those of a GKSL
master equation, one needs an expression linking the time τ

of the unitary evolution and the system-bath coupling strength
γ , to θ [33,34]. Here we are going to first give an expression
of how a qubit changes under the effect of an amplitude
damping channel. Then we show the connection between this
perspective and that of using a GKSL master equation. Last
we show how a partial SWAP can correspond to an amplitude
damping channel and thus connect the partial SWAP with the
GKSL master equation.

In a collisional model, the role of an amplitude damping
channel is taken by the partial ˆiSWAP operator defined in
Eq. (A3), which models the loss of energy of the system due
to its interaction with the baths [53].

As every CPTP map admits a Kraus decomposition, i.e., it
can be cast to the operator-sum representation

Ê (ρ̂) =
∑

k

M̂k ρ̂M̂†
k with

∑
k

M̂†
k M̂k = 1̂, (A8)

we can consider the Kraus operators of the amplitude damping
channel on a two-level system

M̂0 =
(

1 0
0

√
1 − λ

)
, M̂1 =

(
0

√
λ

0 0

)
, (A9)

with λ ∈ [0, 1]. The effect of ÊAD(ρ) on a general density
matrix ρ is

ρ̂ =
(

p q
q∗ 1 − p

)
−→ ρ̂ ′

=
(

λ + p(1 − λ) q
√

1 − λ

q∗√1 − λ (1 − p)(1 − λ)

)
, (A10)

where p and q refer to the population and coherence. Starting
from a generic form of the GKSL master equation, we can
now derive an expression of λ as a function of γ

d ρ̂

dτ
= γ [σ̂+ρσ̂− − 1

2
{σ̂−σ̂+, ρ̂}], (A11)

from which we obtain
d p

dτ
= γ (1 − p),

dq

dτ
= −γ

q

2
, (A12)

with solutions

p(t ) = p0e−γ τ + (1 − e−γ τ ), (A13)

q(t ) = q0e−γ τ/2, (A14)

and if we compare them to ρ̂ ′ in Eq. (A10), we finally get

λ = 1 − e−γ τ , (A15)

which gives the probability of losing a photon to the envi-
ronment. Then, the action of the amplitude damping channel
is stronger when λ is closer to 1, and its effect is that of
diagonalizing ρ̂, i.e., destroying its coherences, and bringing
the system close to the |0〉 〈0| state.

The last step is that of introducing parameter θ of the
collisional model into this setting. This is readily done by
considering the effect of the partial ˆiSWAP channel on the joint
density matrix of the system ρ̂, defined in Eq. (A10), and an
ancilla initialized in the down state, i.e.,

ρ̂SA = ρ̂S ⊗ | ↓〉〈↓ |A. (A16)

The unitary evolution on the system and ancilla ÛSA hence
becomes

ÛSA = e−iθ Ŝ = 1̂ cos(θ ) − iŜ sin(θ ) (A17)

=

⎛
⎜⎜⎝

1 0 0 0
0 cos(θ ) −i sin(θ ) 0
0 −i sin(θ ) cos(θ ) 0
0 0 0 1

⎞
⎟⎟⎠, (A18)

with

Ŝ = 1
2 (1̂ ⊗ 1̂ + Ẑ ⊗ Ẑ + X̂ ⊗ X̂ + Ŷ ⊗ Ŷ ). (A19)

FIG. 6. (a), (c) Magnetization profile and (b), (d) spin current for
a spin chain with L = 2 spins, coupled to a left and right bath in the
up and down states, respectively. The parameters of the system and
interaction Hamiltonians and the Suzuki-Trotter evolution are (a), (b)
hz = 0, 	 = 1.5, γ = 1, dt = 0.01, τ = 0.05, i.e., θ = 0.222 and
(c), (d) τ = 0.2, i.e., θ = 0.439.
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FIG. 7. Example of decomposition of a quantum circuit for a collisional model with m = 1 on two sites and two baths, in terms of
gates directly implementable on the quantum processor IBM Manila. For simplicity, here the unitary evolution is computed via second-order
Suzuki-Trotter with dt = τ .

Then we have that the updated density matrix of the system
plus ancilla becomes

ρ̂ ′
SA = ÛSAρ̂SAÛ †

SA, (A20)

and tracing out the environment results in the updated density
matrix of the system

ρ̂ ′
S =

(
p + (1 − p) sin2(θ ) q cos(θ )

q∗ cos(θ ) (1 − p) cos2(θ )

)
, (A21)

which, compared to Eq. (A10) and using Eq. (A15), finally
gives

θ = asin(
√

1 − e−γ τ ). (A22)

Hence, in the limit of instantaneous collisions, one can use
Eq. (A22) to reproduce the results of the standard GKSL
master equation, in the setting of a collisional model.

APPENDIX B: TWO-SPIN SYSTEM

It is important to check how the collisional model performs
differently for different system sizes. Here we analyze the
simplest case of a dissipative boundary-driven system with
transport, which we take as a two-spin system. In Fig. 6
we observe that for similar parameters as Fig. 2, the system
reaches a steady state in a much smaller number of steps, for
example in Figs. 2(c) and 2(d) it takes about 25 collisions.

However, implementing each collision requires a circuit
depth that depends on the processor used. If we consider, for

instance, IBM Manila, both the unitary evolution and the par-
tial swaps are implemented with a depth ≈10, see Fig. 7. Note
that here, for clarity of illustration, we picture the ancillae
reset and the unitary evolution as happening consecutively,
but they can, in principle, be performed simultaneously. This
implies that, to reach the 25 collisions needed to approach the
steady state, one would need a circuit depth of about 500. It
is thus important to use a processor in which the ˆiSWAP gate,
or any other gate which preserves the total magnetization, is
native as this can reduce the depth of the circuit significantly.

An estimate of the number of collisions needed can be
obtained by studying the relaxation gap of the superoper-
ator from the master equation. Here by relaxation gap we
mean the smallest nonzero real part of any of the eigen-
values of the superoperator. In general, the relaxation gap g
scales polynomially with the system size g ∼ 1/Lα which im-
plies a polynomial number of steps to accurately distinguish
the steady state and thus a polynomial scaling of the number
of collisions. For instance, in [54] the authors displayed the
results of numerical derivations of the scaling of the spectral
gap for the case of an XXZ model and show that, with bound-
ary magnetization driving and no external field, g scales with
the inverse of the cubic power of the spin chain length L, i.e.,
g ∼ 1/L3, in both the gapped (	 > 1) and gapless (	 < 1)
phases, while if one adds a nonuniform local magnetic field,
the scaling is g ∼ 1/L (g ∼ 1/L2) in the gapless (gapped)
phase. Hence, one can preserve the memory exponential ad-
vantage from encoding a state with qubits, while the depth of
the circuits grows, often, polynomially with the system size.
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Thermalizing Quantum Machines: Dissipation and Entangle-
ment, Phys. Rev. Lett. 88, 097905 (2002).

[12] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, Quan-
tum and Information Thermodynamics: A Unifying Framework
Based on Repeated Interactions, Phys. Rev. X 7, 021003
(2017).

[13] D. Karevski and T. Platini, Quantum Nonequilibrium Steady
States Induced by Repeated Interactions, Phys. Rev. Lett. 102,
207207 (2009).

[14] S. Seah, S. Nimmrichter, and V. Scarani, Nonequilibrium dy-
namics with finite-time repeated interactions, Phys. Rev. E 99,
042103 (2019).

[15] G. Guarnieri, D. Morrone, B. Çakmak, F. Plastina, and S.
Campbell, Non-equilibrium steady-states of memoryless quan-
tum collision models, Phys. Lett. A 384, 126576 (2020).

[16] S. Seah, M. Perarnau-Llobet, G. Haack, N. Brunner, and S.
Nimmrichter, Quantum Speed-Up in Collisional Battery Charg-
ing, Phys. Rev. Lett. 127, 100601 (2021).

[17] S. Seah, S. Nimmrichter, D. Grimmer, J. P. Santos, V. Scarani,
and G. T. Landi, Collisional Quantum Thermometry, Phys. Rev.
Lett. 123, 180602 (2019).

[18] A. Shu, Y. Cai, S. Seah, S. Nimmrichter, and V. Scarani, Almost
thermal operations: Inhomogeneous reservoirs, Phys. Rev. A
100, 042107 (2019).

[19] G. T. Landi, E. Novais, M. J. de Oliveira, and D. Karevski,
Flux rectification in the quantum XXZ chain, Phys. Rev. E 90,
042142 (2014).

[20] E. Pereira, Heat, work, and energy currents in the
boundary-driven XXZ spin chain, Phys. Rev. E 97, 022115
(2018).

[21] G. D. Chiara, G. Landi, A. Hewgill, B. Reid, A. Ferraro,
A. J. Roncaglia, and M. Antezza, Reconciliation of quantum
local master equations with thermodynamics, New J. Phys. 20,
113024 (2018).

[22] P. P. Hofer, M. Perarnau-Llobet, L. D. M. Miranda, G. Haack, R.
Silva, J. B. Brask, and N. Brunner, Markovian master equations
for quantum thermal machines: Local versus global approach,
New J. Phys. 19, 123037 (2017).

[23] U. Korkmaz and D. Türkpençe, Quantum collisional classifier
driven by information reservoirs, Phys. Rev. A 107, 012432
(2023).

[24] Á. Cuevas, A. Geraldi, C. Liorni, L. D. Bonavena, A. De
Pasquale, F. Sciarrino, V. Giovannetti, and P. Mataloni, All-
optical implementation of collision-based evolutions of open
quantum systems, Sci. Rep. 9, 3205 (2019).

[25] G. García-Pérez, M. A. C. Rossi, and S. Maniscalco, IBM Q
Experience as a versatile experimental testbed for simulating
open quantum systems, npj Quantum Inf 6, 1 (2020).

[26] A. Burger, L. C. Kwek, and D. Poletti, Digital quantum simu-
lation of the spin-boson model under markovian open-system
dynamics, Entropy 24, 1766 (2022).

[27] M. Cattaneo, M. A. C. Rossi, G. García-Pérez, R. Zambrini, and
S. Maniscalco, Quantum simulation of dissipative collective
effects on noisy quantum computers, PRX Quantum 4, 010324
(2023).

[28] X. Mi, A. A. Michailidis, S. Shabani, K. C. Miao, P. V. Klimov,
J. Lloyd, E. Rosenberg, R. Acharya, I. Aleiner et al., Stable
quantum-correlated many body states via engineered dissipa-
tion, arXiv:2304.13878.

[29] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely
positive dynamical semigroups of N-level systems, J. Math.
Phys. 17, 821 (1976).

[30] G. Lindblad, On the generators of quantum dynamical semi-
groups, Commun. Math. Phys. 48, 119 (1976).

[31] F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Campbell,
T. P. Orlando, S. Gustavsson, and W. D. Oliver, Tunable
Coupling Scheme for Implementing High-Fidelity Two-Qubit
Gates, Phys. Rev. Appl. 10, 054062 (2018).

[32] Google AI Quantum, B. Foxen, C. Neill, A. Dunsworth,
P. Roushan, B. Chiaro, A. Megrant, J. Kelly, Z. Chen, K.
Satzinger, R. Barends, F. Arute, K. Arya, R. Babbush, D.
Bacon, J. C. Bardin, S. Boixo, D. Buell, B. Burkett, Y. Chen
et al., Demonstrating a Continuous Set of Two-Qubit Gates for
Near-Term Quantum Algorithms, Phys. Rev. Lett. 125, 120504
(2020).

[33] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, New York, 2007).

[34] G. T. Landi, Lecture Notes on Quantum Information and Quan-
tum Noise (2019).

[35] G. Benenti, G. Casati, T. Prosen, D. Rossini, and M.
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