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Sharing entanglement across quantum interconnects is fundamental for quantum information processing. We
discuss a practical setting where this interconnect, modeled by a quantum channel, is used once with the aim
of sharing high-fidelity entanglement. For any channel, we provide methods to easily find both this maximum
fidelity and optimal inputs that achieve it. Unlike most metrics for sharing entanglement, this maximum fidelity
can be shown to be multiplicative. This ensures a complete understanding in the sense that the maximum fidelity
and optimal inputs found in our one-shot setting extend even when the channel is used multiple times, possibly
with other channels. Optimal inputs need not be fully entangled. We find that the minimum entanglement in
these optimal inputs can even vary discontinuously with channel noise. Generally, noise parameters are hard to
identify and remain unknown for most channels. However, for all qubit channels with qubit environments, we
provide a rigorous noise parametrization, which we explain in terms of no cloning. This noise parametrization
and a channel representation that we call the standard Kraus decomposition have pleasing properties that make
them useful more generally.
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I. INTRODUCTION

Quantum computation and communication requires faith-
ful transmission of quantum information between various
separated parties. These parties may be closely separated
quantum computing nodes or widely separated receivers and
transmitters of quantum states. The former appear in models
of a quantum intranet [1] while the latter appear in discus-
sions of a quantum internet [2,3]. Noise in these and other
such setups hinders their use. A dominant source of noise
is the quantum interconnect carrying quantum information
between parties. This interconnect is modeled mathematically
by a quantum channel, a completely positive trace-preserving
map. Quantum information sent and processed across this
channel is equivalent to entanglement shared and processed
using the channel [4]. Without investigating methods, metrics,
protocols, and characteristics of sharing entanglement across
quantum channels, our understanding and ability to control
and scale quantum computation and communication remains
partial.

The most well-studied setting for sharing entanglement
allows asymptotically many channel uses [5,6]. Across all
channels used together, local pre- and postprocessing of en-
tanglement is allowed along with classical communication
from channel input to output. Using these allowed operations,
the largest number of fully entangled states, per channel use,
shared with asymptotically vanishing error defines the quan-
tum capacity of the channel. Studies of this metric reveal
that while theoretically beautiful [7–11], a channel’s quantum
capacity is hard to compute and nontrivial to understand in
general [12,13]. Both of these features come from super-
additivity. Superadditivity of quantum capacity implies that
the quantum capacity of several channels used jointly is not
completely specified by the quantum capacity of each channel
[14,15].

Asymptotic channel capacities provide rich conceptual and
practical difficulties. For these reasons, it is desirable to study
entanglement transmission with as little encoding and decod-
ing as possible. The simplest setting here is a single use of
a channel (which can itself be joint uses of many channels)
with no postprocessing. This setting need not allow sharing
of noiseless entanglement. Thus, one may define a metric for
sharing entanglement with some acceptable level of noise.
One such metric, called the one-shot quantum capacity, is
roughly the largest fully entangled state that can be shared
across a channel with at most a fixed but arbitrary error [16].
This one-shot capacity, its connection to asymptotic capaci-
ties, and a method for understanding and achieving these have
been recently explored [17–27]. However, we do not fully
understand notions of additivity for this capacity; ways of
computing and explicit protocols for achieving the one-shot
capacity are not completely known.

A key metric in the one-shot setting is the highest fidelity
between the state shared across the channel and a maximally
entangled state [5,28]. This fidelity characterizes the optimal
performance of various teleportation-based tasks [29]. The
optimal fidelity between a pure entangled state shared across
the channel and a maximally entangled state is known [30,31].
Surprisingly, the optimal pure state input need not be maxi-
mally entangled, which is consistent with fidelity not being an
entanglement monotone.

The one-shot setting is augmented by postprocessing using
one round of local operations and two-way classical com-
munication (2-LOCC) [31–34]. However, in this setting it is
unknown if the optimal fidelity is multiplicative (analog of
additivity in this setting). There is no known method for com-
puting or explicit protocol for achieving this optimal fidelity in
general. The only exception is qubit channels, where optimal
protocols use pure state inputs and do not require 2-LOCC
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FIG. 1. Diagram representing one-shot entanglement passing.

[32,34]. Surprisingly, the behavior of such optimal protocols
for the simplest of qubit channels is not fully known.

One way to understand a metric for sharing entanglement
across a specific channel is to study variation in the metric
with the amount of noise in the channel. Surprisingly, even
for the simplest qubit channels, noise parameters are only
partially understood.

Results

In this work, we introduce and solve the problem for
sharing entanglement in a one-shot setting where an arbitrary
mixed state ρRA may be prepared across a reference system R
and channel input A. This input is sent via a fixed channel N :
A �→ B (see Fig. 1) to achieve the maximum fidelity O(N )
between the channel output ρRB and a maximally entangled
state across R and B. We reformulate O(N ) via a semidefinite
program [35]. Our first main result is to express O(N ) in two
useful ways (see Sec. IV A with Theorem IV A): first, using
what we define (in Sec. III A) as a channel’s standard Kraus
decomposition, and second, in terms of the operator norm
of a channel’s Choi-Jamiołkowski operator. Next, we show
that the maximum fidelity O is multiplicative (see Theorem
IV B). Not only can O(N ) be achieved using pure states,
but, in certain cases, it can also be achieved using a variety
of mixed states. We give a recipe to construct these pure
and mixed states. For all extremal [see the definition below
Eq. (40)] qubit channels, we compute optimal inputs and the
minimum amount of entanglement E required to create these
inputs. Somewhat surprisingly, the minimum entanglement
E is found to be discontinuous in these noise parameters.
Typically, E is less than its maximal value of 1, but O is
high enough for the channel to be useful for teleportation,
even if the channel has no quantum capacity (see Sec. V A).
For very noisy qubit Pauli channels, we find separable inputs
that achieve the same fidelity as maximally entangled ones
found previously (see Sec. V B). We also find that optimal
inputs for qutrit channels have a much richer structure than
qubit channels (see Sec. V C). Noise parameters for general
channels remain unknown. We find rigorous noise parameters
for all extremal qubit channels (see Sec. III C), a result that
may be of independent interest.

Unlike other metrics in settings for entanglement sharing,
O is multiplicative. Thus, even when a channel N is used
multiple times, possibly with other channels, its maximum
fidelity O(N ) fully characterizes its ability for sharing high
fidelity entanglement without postprocessing. Our results also
give rigorous lower bounds on entanglement fidelities that can
be achieved when allowing for multiple rounds of 2-LOCC.
These bounds are tight for one round of 2-LOCC using qubit

channels. Characterization of the noise parameters for all
extremal qubit channels presented here paves the way for
a stronger understanding of quantum channels and quantum
protocols across channels.

II. PRELIMINARIES

Let x denote a vector in n-dimensional real space, Rn, let
xi denote the (i + 1)th coordinate of x, and let |xi| denote
its absolute value. Coordinates of x rearranged in decreas-
ing order give x↓, a vector satisfying x↓

0 � x↓
1 � · · · � x↓

n−1.

The Euclidean norm of x is |x| :=
√∑

i x2
i . Let |ψ〉 denote

a ket in a Hilbert space H of finite dimension d , and let
||ψ〉| := √〈ψ |ψ〉 denote its norm. A pure quantum state is
represented by a ket with unit norm. Let L(H) denote the
space of linear operators on H. For any two quantum states
|ψ〉 and |φ〉, the dyad |ψ〉〈φ| ∈ L(H) and the projector onto
|ψ〉, |ψ〉〈ψ | ∈ L(H). The Frobenius inner product between
two operators N and O in L(H) is

〈N, O〉 := Tr(N†O), (1)

where N† represents the adjoint (conjugate transpose) of N . A
Hermitian operator H ∈ L(H), satisfying H = H†, represents
an observable. This operator has an eigendecomposition,

H =
∑

i

xi|ψi〉〈ψi|, (2)

where xi ∈ R is an eigenvalue of H corresponding to eigen-
vector |ψi〉, and the collection of eigenvectors {|ψi〉} form an
orthonormal basis of H, 〈ψi|ψ j〉 = δi j , where δi j is the Kro-
necker delta function. Support of H is the subspace spanned
by its eigenvectors with nonzero eigenvalues. In (2), if xi � 0
for all i, then we say H is positive-semidefinite (PSD), H 	 0.
An optimization, over PSD matrices, of the form

maximize Tr(A0H )

subject to Tr(AiH ) = ci, ∀ 1 � i � n,

and H 	 0,

(3)

where Ai are Hermitian, is called a semidefinite program (see
Sec. 1.2.3 in [49] and citations to and within [35]). The square
root of a PSD operator H ,

√
H , is obtained by replacing xi in

(2) with
√

xi. For any operator O ∈ L(H),

||O|| := max
||ψ〉|�1

|O|ψ〉|,

||O||1 := Tr(
√

OO†), and ||O||2 :=
√

Tr(OO†), (4)

denote the spectral norm, the trace norm, and the Frobenius
norm, respectively. For H in (2),

||H || = |x↓
0 |, ||H ||1 =

∑
i

|xi|, and ||H ||2 = |x|. (5)

A density operator ρ ∈ L(H) is a positive-semidefinite
operator with unit trace, Tr(ρ) = 1, which represents a mixed
quantum state. Its von-Neumann entropy,

S(ρ) = −Tr(ρ log2 ρ), (6)
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where log is base 2. The fidelity between two density opera-
tors ρ and σ ,

F (ρ, σ ) := ||√ρ
√

σ ||1. (7)

Let HA and HB be two Hilbert spaces of dimensions dA and
dB, respectively, and let HAB denote the tensor product space
HA ⊗ HB. Given a pure state |ψ〉AB ∈ HAB, density operators

ψA = TrB(|ψ〉〈ψ |) and ψB = TrA(|ψ〉〈ψ |) (8)

denote the partial trace of |ψ〉〈ψ | over HB and HA, respec-
tively. The entanglement of formation of a pure state |ψ〉AB,

E f (|ψ〉AB) = S(ψA), (9)

and for a mixed state ρAB,

E f (ρAB) = min
∑

i

piE f (|ψi〉AB), (10)

is the minimum average entanglement E f over all pure state
decompositions, ρAB = ∑

i pi|ψi〉〈ψi|, pi � 0 and
∑

i pi = 1.
Let A = {|ai〉} and B = {|b j〉} be orthonormal bases, of HA

and HB, respectively, i.e.,

〈ai|a j〉 = 〈bi|b j〉 = δi j . (11)

Using these bases A and B we can represent any linear oper-
ator L : HA �→ HB as a matrix,

L =
∑

i j

[L]i j |bi〉〈a j |, (12)

with elements [L]i j . We can define two basis-dependent linear
maps,

L∗ =
∑

i j

[L]∗i j |bi〉〈a j | and LT =
∑

i j

[L]i j |a j〉〈bi|, (13)

representing complex conjugate and transpose, respectively.
In contrast to L∗ and LT , the adjoint L† = (L∗)T = (LT )∗ is
basis-independent. If HA and HB have the same dimension d ,
then one can choose A and B to be the same, say the standard
basis {|i〉}, and construct an identity map IA←B : HB �→ HA,

IA←B|i〉B = |i〉A. (14)

This subscript notation A ← B is dropped shortly after defin-
ing how the identity map above is used to map a ket |φ〉B ∈
HB, an operator OB ∈ L(HB), and part of an operator LAB ∈
L(HAB) to

|φ〉A = IA←B|ψ〉B, OA = IA←BOBIB←A, and

LAA = (IA←B ⊗ IA)LBA(IB←A ⊗ IA), (15)

respectively; here IA is the identity on the HA space. Later,
these mappings are done implicitly by simply replacing the
subscripts in an obvious way.

Operator-ket duality

Operator-ket duality is the concept of fixing an orthonor-
mal basis A = {|ai〉} of HA and using an unnormalized
maximally entangled state on HA ⊗ HA,

|γ 〉AA =
∑

i

|ai〉 ⊗ |ai〉, (16)

to associate with any linear operator K : HA �→ HB a ket,
|ψ〉AB = (IA ⊗ K )|γ 〉, obtained by acting K on one-half of
|γ 〉. Conversely, for fixed orthonormal basis A, one associates
with any ket |ψ〉AB a linear operator

K =
∑

i

|χi〉〈ai|, where |χi〉B = (〈ai|A ⊗ IB)|ψ〉AB.

(17)

In analogy to the discussion above, fixing an orthonormal
basis B = {|b j〉} of HB one associates with the ket |ψ〉AB

an operator L : HB �→ HA. This operator L = KT , where the
transpose operation is taken using basis A and B as described
in (13).

In what follows, we use the notation |K〉 ∈ HAB for a
ket associated with the operator K : HA �→ HB through the
operator-ket duality above where basis A is fixed. This ket
and operator pair satisfy

|K〉AB = (I ⊗ K )|γ 〉AA. (18)

For any two maps K and K ′ from HA to HB and associated
kets |K〉AB and |K ′〉AB, respectively, one can show that

〈K, K ′〉 = 〈K|K ′〉. (19)

Using the orthonormal basis B of HB, one can associate
with K† : HB �→ HA the ket |K†〉BA. In this ket, swapping
the spaces HA and HB [see the discussion below (14)] gives
|K†〉AB, which then satisfies

|K†〉AB = |K〉∗AB, (20)

where complex conjugation of any ket |χ〉AB = ∑
i j ci j |ai〉 ⊗

|b j〉 is defined using basis A and B as |χ〉∗AB = ∑
i j c∗

i j |ai〉 ⊗
|b j〉.

III. QUANTUM CHANNELS

Let HA, HB, and HC be three Hilbert spaces, and let
V : HA �→ HB ⊗ HC be an isometry, i.e., V †V = IA. This
isometry defines a pair of quantum channels N and N c, i.e.,
a pair of completely positive trace preserving (CPTP) maps
with superoperators

N (O) = TrC (V OV †) and N c(O) = TrB(V OV †), (21)

taking O ∈ L(HA) to be L(HB) and L(HC ), respectively.
The quantum channel N is called degradable and N c is an-
tidegradable if there exists a quantum channel D such that
D ◦ N = N c [11].

Let IA be the identity map from L(HA) to itself. Using an
unnormalized maximally entangled state |γ 〉AA (16) we define
the Choi-Jamiołkowski [36,37] operator of the linear map N
as

JN
AB = IA ⊗ N (|γ 〉〈γ |) =

∑
i j

|ai〉〈a j | ⊗ N (|ai〉〈a j |). (22)

This operator contains all information about N . For instance,

N (|ai〉〈a j |) = (〈ai| ⊗ IB)JN
AB(|a j〉 ⊗ IB), (23)

N is completely positive (CP) if and only if JN
AB is positive-

semidefinite, and

TrB
(
JN

AB

) = IA (24)
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if and only if N is trace-preserving; Tr(N (O)) = Tr(O) for
all O. Equivalently, a linear map N : L(HA) �→ L(HB) is CP
if and only if it can be written in the form

N (O) =
∑

i

KiOK†
i , (25)

where Ki : HA �→ HB is a linear operator, and the collection
{Ki} are called Kraus operators. The map in (25) is trace-
preserving when these Kraus operators satisfy

∑
i K†

i Ki = IA.
When N is unital, i.e., N (IA) = IB, the Kraus operators satisfy∑

i KiK
†
i = IB. If HA and HB have the same dimension, then

they are isomorphic to one another and can be denoted by
H. If these Kraus operators on H are Hermitian operators (or
normal operators), then the channel is automatically unital.

A. A standard Kraus decomposition

For a given channel N : L(HA) �→ L(HB), the set of
Kraus operators is not unique. However, one can construct
what can be called a standard Kraus decomposition with some
pleasing properties.

Consider the eigendecomposition of the Choi-
Jamiołkowski operator in (22),

JN
AB =

∑
i

e↓
i |Li〉〈Li|, (26)

where eigenvalues e↓
0 � e↓

1 � · · · � e↓
dAdB−1 � 0 and eigen-

vectors {|Li〉} form an orthonormal basis of HAB,

〈Li|Lj〉 = δi j . (27)

Applying operator-ket duality using orthonormal basis A =
{|ai〉} to kets {|Li〉} results in a collection of orthonormal
operators {Li} that map HA to HB (see Sec. II A). Using these
operators, define Ki : HA �→ HB,

Ki :=
√

e↓
i Li, (28)

and notice from operator-ket duality we get

|Ki〉 :=
√

e↓
i |Li〉. (29)

Lemma 1. Operators {Ki} form a Kraus decomposition of
N ,

N (O) =
∑

i

KiOK†
i . (30)

Proof. In (26), use (18) to obtain

JN
AB =

∑
i

e↓
i (IA ⊗ Li )|γ 〉〈γ |(IA ⊗ Li )

† (31)

=
∑

i

(IA ⊗ Ki )|γ 〉〈γ |(IA ⊗ Ki )
†, (32)

where the second inequality uses (28). This second inequality,
together with (23), gives

N (|ak〉〈al |) =
∑

i

Ki(|ak〉〈al |)K†
i . (33)

This equality, together with linearity of N , proves this
lemma. �

Using (26), (27), (28), and (29), one can show that the
Kraus operators {Ki} satisfy

〈Ki, Kj〉 = 〈Ki, Ki〉δi j and 〈Ki, Ki〉 � 〈Kj, Kj〉, (34)

where i � j and we use 〈Ki, Ki〉 = e↓
i . In addition to being

orthogonal and ordered in the way captured by the above
equation, the Kraus operators {Ki} have several other useful
properties. The total number of nonzero operators {Ki} is the
rank of the Choi-Jamiołkowsi operator JN

AB . This rank is the
minimum number of Kraus operators required to represent
the channel N . When the eigenvalues of JN

AB are distinct, the
norm 〈Ki, Ki〉 of each Kraus operator is simply the (i + 1)th
largest eigenvalue of JN

AB . From these Kraus operators, one
can obtain the Choi-Jamiołkowsi operator (22),

JN
AB =

∑
i

|Ki〉〈Ki|, (35)

where we have applied operator-ket duality (see Sec. II A) to
convert operators Ki : HA �→ HB to kets |Ki〉 ∈ HAB using ba-
sis A = {|ai〉}. Notice that |Ki〉 is an unnormalized eigenvector
of JN

AB with eigenvalue 〈Ki, Ki〉. We call {Ki} in Lemma 1 a
standard Kraus decomposition.

B. Dual channel

Given a map N :L(HA) �→L(HB), its dual N † :L(HB) �→
L(HA) is defined via

Tr(N †(O)ρ) = Tr(ON (ρ)), (36)

where ρ ∈ L(HA) and O ∈ L(HB). (This definition of dual
map (36), common in quantum information [see Def. (6.2)
in [38] or below Eq. (1.44) in [39]], differs from another,
〈N †(O), ρ〉 = 〈O,N (ρ)〉, found in mathematics literature.
The two definitions coincide for maps satisfying N (ρ†) =
(N (ρ))

†
, but they can differ when this property is not satis-

fied. For example, if N (ρ) = cρ, and c is complex, then the
two definitions give different dual maps.) A quantum chan-
nel N evolves a quantum state ρ, and its dual channel N †

evolves an observable O. The right side of the above equality
represents the expectation value of the evolved quantum state
N (ρ) with respect to a fixed observable O, while the left side
of the equality gives the expectation value of a fixed state ρ

with respect to the evolved observable N †(O). If N is CP
and has Kraus decomposition (25), then N † is also CP with
Kraus operators {K†

i }, and if N is trace-preserving, then N †

is unital (see Chap. 6 in [38]). A CP map N with standard
Kraus operators {Ki} has dual map N † with standard Kraus
operators {K†

i } since

〈K†
i , K†

j 〉 = (〈Ki, Kj〉)∗. (37)

The Choi-Jamiołkowsi operator (22) of the dual channel,

JN †

BA =
∑

i

|K†
i 〉〈K†

i |, (38)

where {|K†
i 〉} in HBA are defined via operator-ket duality using

basis B = {|b j〉}. We aim to compare JN †

BA , an operator on
HBA, with JN

AB, an operator on a different space HAB. To carry
out the comparison, interchange B and A in (38) and use (20)
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and (35) to get

JN
AB = (

JN †

AB

)∗
. (39)

The Choi-Jamiołkowsi operator of a channel and its dual can
be taken to be complex conjugates of one another.

C. Extremal qubit channels

The set of quantum channels from L(HA) to L(HB) is
convex, i.e., if N and M are quantum channels, then

K = λN + (1 − λ)M (40)

is a quantum channel for any 0 � λ � 1. Any quantum chan-
nel K is extremal, i.e., it is an extreme point of the set of
quantum channels, if equality of the type (40) holds only when
λ = 0 or 1, or the only channels N and M satisfying the
equality both equal K.

A quantum channel N : L(HA) �→ L(HB) is called a qubit
channel when HA and HB are two-dimensional. For these two-
dimensional spaces, we can use the standard basis {|i〉}, where
i ∈ {0, 1}, to define Pauli operators,

X = |0〉〈1| + |1〉〈0|, Y = −i|0〉〈1| + i|1〉〈0|, and

Z = |0〉〈0| − |1〉〈1|. (41)

Extreme points of qubit channels are studied in various
works [40–44]. A qubit channel is extremal if it has a single
Kraus operator, given by a unitary operator, or it has two
Kraus operators, each not proportional to a unitary operator
(see Cor. 15 in [44]). Up to local unitaries at the channel input
and output, a qubit channel N with two Kraus operators can
be written as [42]

N (O) = K0OK†
0 + K1OK†

1 , (42)

where

K0 =
(

cos( v−u
2 ) 0

0 cos( v+u
2 )

)
,

K1 =
(

0 sin( v+u
2 )

sin( v−u
2 ) 0

)
, (43)

are expressed in the standard basis {|i〉} at HA and HB, u ∈
[0, 2π ] and v ∈ [0, π ).

While u and v parametrize the channel (42), they do not
necessarily represent noise parameters that have a monotonic
relationship with the amount of noise introduced by the chan-
nel. In certain special cases, noise parameters can be arrived
at intuitively. For instance, when u = 0,

N (O) = cos2

(
v

2

)
O + sin2

(
v

2

)
XOX (44)

is a qubit dephasing channel with dephasing probability
sin2(v/2). (Notice that the dephasing channel is not extremal
since each of its Kraus operators is proportional to a unitary
operator [see the discussion above (42)].) By performing a
unitary, X , at the input channel input HA, this dephasing
channel (44) can be converted to another dephasing channel
with dephasing probability 1 − sin2(v/2). Thus a dephasing
probability of half gives maximum dephasing. This dephasing
probability is an intuitive noise parameter in the sense that as

this probability is increased from zero to a half, the channel
becomes noisier.

Another special case is when u + v = 2π . Here, if kets
|0〉 and |1〉 are interchanged at the channel input and output,
N becomes a qubit amplitude damping channel. The qubit
amplitude damping channel fixes |0〉〈0| but |1〉〈1| decays to
|0〉〈0| with probability sin2 v. Intuitively, this damping prob-
ability is a noise parameter in the sense that as the damping
probability is increased from 0 to 1, the channel becomes nois-
ier. Except for these special cases of dephasing and amplitude
damping, suitable noise parameters are not necessarily easy to
guess.

As discussed above, when N represents amplitude damp-
ing noise, the noise parameter is the damping probability. In
all other cases, this qubit channel N can be generated from an
isometry (see the discussion in Sec. III) of a special form. An
isometry of this pcubed form [45],

V |αi〉 = |βi〉 ⊗ |γi〉, (45)

where i ∈ {0, 1}, takes some special input pure states {|αi〉}
that are not necessarily orthogonal but form a basis of HA,
to a product of pure states {|βi〉} at the HB output and {|γi〉}
at the HC output. The Gram matrices GA, GB, and GC of
{|αi〉}, {|β j〉}, and {|γk〉}, respectively, satisfy

[GA]i j = 〈αi|α j〉 = 〈βi|β j〉〈γi|γ j〉 = [GB]i j[GC]i j (46)

if and only if V is an isometry, i.e., V †V = IA [45]. These
matrices take the form

GA =
(

1 a
a 1

)
, GB =

(
1 b
b 1

)
, and GC =

(
1 c
c 1

)
,

(47)

where −1 < a < 1, −1 � b � 1, −1 � c � 1, and a = bc.
The parameters b and c completely specify the isometry V in
(45) and thus the channel N . One may parametrize |αi〉 using
the standard basis as

|αi〉 =
√

1 + a

2
|0〉 + (−1)i

√
1 − a

2
|1〉. (48)

In this parametrization, replacing a with b gives |βi〉 and re-
placing a with c gives |γi〉. The parameters b and c are related
to u and v in (43) as follows:

sin2 v = 1 − c2

1 − (bc)2
and cos2 u = 1 − b2

1 − (bc)2
, (49)

where |bc| �= 1. The Kraus operators in (43) can be written as

K0 =
⎛
⎝

√
(1+b)(1+c)

2(1+bc) 0

0
√

(1−b)(1+c)
2(1−bc)

⎞
⎠ and

K1 =
⎛
⎝ 0

√
(1+b)(1−c)

2(1−bc)√
(1−b)(1−c)

2(1+bc) 0

⎞
⎠. (50)

While these Kraus operators look more complicated than
those in (43), several other channel properties simplify when
using the parameters b and c. For instance, the channel N
with parameters b and c is degradable if |b/c| < 1, otherwise
|b/c| � 1 and the channel is antidegradable [45].
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In general, −1 � b � 1 and −1 � c � 1, however one can
simplify the parameter space. In the discussion above, replac-
ing b with −b while keeping c fixed results in a new channel
Ñ which is equivalent to N up to local unitaries at the channel
input and output. To see this, notice this replacement defines
a new isometry Ṽ of the pcubed form,

Ṽ |α̃i〉 = |β̃i〉 ⊗ |γi〉, (51)

where |α̃i〉 and |β̃i〉 are kets obtained from |αi〉 and |βi〉 [see
the definition below Eq. (48)] by replacing a and b with −a
and −b, respectively. This new isometry Ṽ is related to V in
(45) via local unitaries as follows:

(IC ⊗ XB)Ṽ = V XA, (52)

where X is defined in (41). In a similar vein, a channel with
parameters b and c is equivalent up to local unitaries to a chan-
nel with parameters b and −c. These equivalences allow us to
restrict the parameter space −1 � b � 1 and −1 � c � 1 to
the positive quadrant 0 � b � 1 and 0 � c � 1.

We show that any channel N with parameters b and c can
simulate another channel N ′ with parameters b and c′ � c, in
the sense

N ′ = N ◦ M, (53)

where M is a quantum channel. Proof of the above equa-
tion is easy to see from a pcubed point of view. Let N :
L(HA) �→ L(HB) be generated by the isometry in (45),
let N ′ : L(HA) �→ L(HB) be generated by an isometry V ′ :
HA �→ HB ⊗ HC′ of the same form as V in (45), but

V ′|α′
i〉 = |βi〉 ⊗ |γ ′

i 〉, (54)

where c′ = 〈γ ′
0|γ ′

1〉 and a′ = 〈α′
0|α′

1〉 = bc′. The M :
L(HA) �→ L(HA) channel in (53) is generated by an isometry
W : HA �→ HA ⊗ HD of the form (45) with

W |α′
i〉 = |αi〉 ⊗ |δi〉, (55)

where d := 〈δ0|δ1〉 = c′/c takes values between 0 and 1 since
0 � c′ � c. The relationship in (53) ensures that N ′ is noisier
than N . As a result, for fixed b, if one decreases c then the
channel N becomes noisier.

This parameter c captures the lack of distinguishability
between pure states arriving at the environment. If c is de-
creased, more information flows to the environment. The
no-cloning theorem [46–48] indicates that such a flow to the
environment must come at the cost of information flow to the
output. Thus N becomes noisier with decreasing c. We shall
be interested in using c as the noise parameter with b fixed.
In the limiting b = 0 case, N becomes the qubit dephasing
channel (44) with dephasing probability (1 − c)/2. Here, de-
creasing c from 1 to 0 increases the dephasing probability
from 0 to half.

IV. OPTIMAL ENTANGLEMENT SHARING

A. High fidelity entanglement

Consider two parties, Alice and Bob, connected by some
quantum channel N : L(HA) �→ L(HB), where HA and HB

have the same dimension d . Suppose Alice has access to a
second d-dimensional system with Hilbert space HR. What

bipartite state ρRA should Alice prepare such that sharing with
Bob one half of this state across the channel N results in a
state ρRB with the highest fidelity F (ρRB, φRB) to a maximally
entangled state,

|φ〉RB = 1√
d

|γ 〉RB, (56)

between reference HR and output HB? The optimal state pre-
pared by Alice, which we denote by 
RA, and the maximum
fidelity,

O(N ) := F (
RB, φRB), (57)

have been characterized previously in terms of the channel’s
Choi-Jamiołkowski operator [30,31,34] when ρRA is pure. For
possibly mixed ρRA, our reformulation of these results in terms
of the standard Kraus decomposition of a channel and the
operator norm of the channel’s Choi-Jamiołkowski operator
agree with these previous characterizations. We extend these
results by finding families of mixed input states 
RB that
achieve O(N ). This reformulation and extension is used later
in our study. We begin our reformulation using a semidefinite
program

maximize F (ρRB, φRB)

subject to ρRB = IR ⊗ N (ρRA),

ρRA 	 0, Tr(ρRA) = 1. (58)

The optimum value of the above program gives O(N ), and
the density operator which achieves this optimum gives 
RA.
The following Theorem captures the solution to the above
problem:

Theorem 1. Given a channel N with standard Kraus oper-
ators {Ki},

O(N ) = 1

d
〈K0, K0〉 = 1

d

∣∣∣∣JN
RB

∣∣∣∣ = F (
RB, φRB), (59)

where the input 
RA has support in the span of {|K†
i 〉RA}

satisfying 〈Ki, Ki〉 = 〈K0, K0〉.
Proof. Using Eq. (7) along with the fact that φRB is a pure

state, one writes F (ρRB, φRB) as an inner product 〈ρRB, φRB〉.
This inner product is rewritten as 〈IR ⊗ N (ρRA), φRB〉 using
the first equality constraint in (58). This rewriting can be
reduced to 〈ρRA, (IR ⊗ N )†(φRB)〉 using definition (36) of the
dual channel. Using the discussion below (36), or otherwise,
one can show that the dual of the tensor product of two chan-
nels is the tensor product of the dual of individual channels.
Thus 〈ρRA, (IR ⊗ N )†(φRB)〉 = 〈ρRA, IR ⊗ N †(φRB)〉, where
we used the fact that I†

R is IR. Next, notice (IR ⊗ N †)φRB is
just JN †

RA /d (22). Using these observations, rewrite (58) as

maximize
1

d

〈
ρRA,JN †

RA

〉
subject to ρRA 	 0, Tr(ρRA) = 1. (60)

Solution to this semidefinite program is (1/d ) times the max-
imum eigenvalue of JN †

RA obtained by setting ρRA = 
RA,
where 
RA is any density operator with support on the
eigenspace of this maximum eigenvalue. This largest eigen-
value can be written as 〈K†

0 , K†
0 〉 = 〈K0, K0〉 using (34) and
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(37). The largest eigenvalue can also be written as the spec-
tral norm, ||JN

RB||, by applying definition (5). The support of
the largest eigenvalue, 〈K0, K0〉, of JN †

RA is the span of the
collection of eigenvectors corresponding to this value. This
collection contains eigenvectors |K†

i 〉 of JN †

RA [see (38)] with
eigenvalue 〈K†

i , K†
i 〉 equaling the largest eigenvalue 〈K†

0 , K†
0 〉.

The eigenvalues of JN †

RA can be shown to equal correspond-
ing eigenvalues of JN

RA using (39), i.e., one can show that
〈K†

i , K†
i 〉 = 〈Ki, Ki〉. �

The fidelity between a fixed state ρAB and a fully entangled
state, maximized over all possible fully entangled states, is
called the fully entangled fraction [5,29]

Fe(ρAB) = max
UA

F (ρAB, (UA ⊗ IB)φAB(UA ⊗ IB)†), (61)

where UA is a unitary operator on HA.
Lemma 2. The largest fully entangled fraction obtained by

sending one-half of a mixed state ρRA across the channel N
maximized over all ρRA equals O(N ) (57).

Proof. Notice that the largest fully entangled fraction
can be found by modifying the optimization problem (58)
as follows: replace φRB with χRB = (UR ⊗ IB)φRB(UR ⊗ IB)†

and optimize over both unitary matrices UR and density
operators ρRA. Notice, in this larger optimization prob-
lem, one can simplify the objective function F (ρRB, χRB) =
F (ρ ′

RB, φRB), where ρ ′
RB = (UR ⊗ IB)†ρRB(UR ⊗ IB). Since

ρ ′
RB = I ⊗ N (ρ ′

RA), where ρ ′
RA = (UR ⊗ IA)†ρRA(UR ⊗ IA),

one can rephrase this optimization at hand purely in terms of a
single new variable ρ ′

RA, satisfying ρ ′
RA 	 0 and Tr(ρ ′

RA) = 1.
In this rephrasing variable, UR no longer participates. How-
ever, the new problem in terms of ρ ′

RA is identical to (57). �
The above result generalizes to a mixed state that was

implicitly found for pure states in the proof of Lemma 2 in
[31].

Let 
RA be the state in Theorem 1. We are interested in the
minimum amount of entanglement over all states of this type.
To capture this minimum, we use entanglement of formation
(10). When 
RA is a unique pure state, we write the input
entanglement

E (N ) = S(σA), (62)

and when 
RA can be chosen to be mixed, we write

E (N ) = min

RA

E f (
RA), (63)

where 
RA are states in Theorem 1. When 
RA can be chosen
to be a separable state, E (N ) = 0.

B. Multiplicativity

Suppose Alice and Bob are connected by two independent
channels, which may be the same or different. What state
should Alice prepare such that sending one-half of it across
the joint channel results in Alice and Bob sharing a joint
state with maximum fidelity to a fully entangled state? What
is this maximum fidelity? Can one hope to use correlations
across the two channels connecting Alice and Bob to get more
fidelity than what can be achieved without using any correla-
tion across the channels? Variants of these natural questions
have been asked about the transmission of information across

asymptotically many uses of quantum channels. Those ques-
tions have been hard to answer. Here we mathematically
formulate and answer the questions we posed above.

Let the two channels connecting Alice and Bob be N1 :
L(HA1) �→ L(HB1) and N2 : L(HA2) �→ L(HB2); here dA1 =
dB1 and dA2 = dB2. For each channel input HA1 and HA2, de-
fine auxiliary spaces HR1 and HR2. Let IR1 and IR2 be identity
maps on these auxiliary spaces, L(HR1) and L(HR2), respec-
tively, HA := HA1 ⊗ HA2,HB := HB1 ⊗ HB2,HR = HR1 ⊗
HR2, N = N1 ⊗ N2, and IR = IR1 ⊗ IR2. If Alice prepares
a state that does not correlate inputs to the two channels
IR1 ⊗ N1 and IR2 ⊗ N2, then the maximum fidelity with a
fully entangled state across auxiliary space HR and the chan-
nel output HB can be found as follows:

maximize F (ρRB, φRB)

subject to ρRB = (IR ⊗ N )ρRA,

ρRA = ρR1A1 ⊗ ρR2A2,

ρRA 	 0, Tr(ρRA) = 1. (64)

The optimum of the above problem is simply O(N1)O(N2). It
is obtained at 
RA = 
R1A1 ⊗ 
R2A2, where 
R1A1 and 
R2A2

are optima to optimizations of the form (58) for N1 and N2,
respectively. On the other hand, if Alice prepares a state that
may correlate the inputs to IR1 ⊗ N1 and IR2 ⊗ N2, then the
maximum fidelity O(N1 ⊗ N2) is found by solving (64) with-
out the product constraint, ρRA = ρR1A1 ⊗ ρR2A2. This fidelity
maximum O(N1 ⊗ N2) can be higher,

O(N1 ⊗ N2) � O(N1)O(N2), (65)

since the optimum O(N1)O(N2) of (64) bounds from below
the optimum of (64) without the product constraint, ρRA =
ρR1A1 ⊗ ρR2A2.

Theorem 2. The maximum fidelity O(N1 ⊗ N2) is multi-
plicative, i.e., equality holds in (65),

O(N1 ⊗ N2) = O(N1)O(N2). (66)

Proof. Let N1 and N2 have standard Kraus decomposition
{Jq} and {Kr}, respectively. Using Theorem 1, we write

O(N1) = 1

dA1
〈J0, J0〉 and O(N2) = 1

dA1
〈K0, K0〉. (67)

A standard Kraus decomposition {Lp} for N1 ⊗ N2 can be
chosen such that each Lp is of the form Jq ⊗ Kr for some q
and r. When q = r = 0, then p can be chosen to be 0,

L0 = J0 ⊗ K0, (68)

since

〈L0, L0〉 = 〈J0, J0〉〈K0, K0〉 � 〈Jq, Jq〉〈Kr, Kr〉 = 〈Lp, Lp〉
(69)

for all q, r and corresponding p. Using (68) and Theorem 1 on
N1 ⊗ N2 gives

O(N1 ⊗ N2) = 1

dA1dA2
〈L0, L0〉. (70)

The above equality, together with (67) and (69), proves the
result.
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Alternatively, notice

JN
RB =

∑
p

|Lp〉〈Lp| =
∑

qr

|Jq〉〈Jq| ⊗ |Kr〉〈Kr |

= JN1
R1B1 ⊗ JN2

R2B2, (71)

where the first equality follows from (35). Using Theorem 1,
write

O(N1) = 1

dA1

∣∣∣∣JN1
R1B1

∣∣∣∣,
O(N2) = 1

dA2

∣∣∣∣JN2
R2B2

∣∣∣∣, and

O(N1 ⊗ N2) = 1

dA

∣∣∣∣JN
RB

∣∣∣∣, (72)

where dA = dA1dA2. The operator norm is submultiplicative
(see Sec. 1.1.3 in [49]),

||AB|| � ||A|| × ||B||, (73)

which implies

||A ⊗ B|| � ||A|| × ||B||. (74)

Using the above equation along with (65) and (72) also proves
the result. �

V. APPLICATIONS

A. Extremal qubit channels

A qubit channel N has dA = dB = 2. If the channel has
one Kraus operator, then the channel is simply a conjugation
with a unitary matrix and O(N ) = 1. The next simplest qubit
channel has two Kraus operators, given in (42). One special
case of this channel is the qubit amplitude damping channel.
Kraus operators for this amplitude channel can be written as

K0 =
(

1 0
0

√
1 − p

)
and K1 =

(
0

√
p

0 0

)
, (75)

where 0 � p � 1 is the probability that the state |1〉〈1| damps
to |0〉〈0|. A simple calculation shows that these Kraus oper-
ators constitute a standard Kraus decomposition of N . Using
this decomposition in Theorem 1, we find

O(N ) = 1 − p/2 and 
RA = |K0〉〈K0|
〈K0, K0〉 , (76)

a result that agrees with [33]. In general, the amount of en-
tanglement generated at the input [see the definition in (62)],

E (N ) = h

(
1

2 − p

)
, (77)

where h(x) := −x log x − (1 − x) log(1 − x) is the binary en-
tropy function, with log base 2. This value is nonzero unless
p = 1, where E (N ) = 0 and 
RA in (76) is a product state.

When the qubit channel N with two Kraus operators is not
an amplitude damping channel, the channel Kraus operators
take the form (50). These Kraus operators {K0, K1} have two
parameters 0 � b � 1 and 0 � c � 1. If b is fixed and c
is decreased from 1, the channel becomes more noisy [see
the discussion containing (53)]. Operators {K0, K1} form a

FIG. 2. Plot of E (M) as a function of c for various b values. The
open circle indicates that the value is zero.

standard Kraus decomposition. Using them in Theorem IV A
gives

O(N ) = (1 + c)(1 − b2c)

2(1 − b2c2)
and


RA =
⎧⎨
⎩

|K†
0 〉〈K†

0 |
〈K†

0 ,K†
0 〉 if b �= 1 and c �= 0,∑

i j fi j |K†
i 〉〈K†

j | if b = 1 or c = 0,
(78)

where complex numbers fi j are free except that they result
in a valid density operator 
RA (see Fig. 3). At b = 1 or c =
0, 
RA is supported on a two-dimensional space spanned by
{|K†

0 〉RA, |K†
1 〉RA}. This two-dimensional space is a subspace of

a two-qubit space HRA. Quite generally, such a subspace has at
least one product state (see the Lemma in [50]), but typically
there are two [42,45]. In the c = 0 case, these product states
take the simple form

|+〉R ⊗ |ψ+〉A and |−〉R ⊗ |ψ−〉A, (79)

where |ψ+〉A = 1√
2
(
√

1 + b|0〉 + √
1 − b|1〉), |ψ−〉A = 1√

2

(
√

1 + b|0〉 − √
1 − b|1〉), |+〉A = 1√

2
(|0〉 + |1〉), and |−〉A =

1√
2
(|0〉 − |1〉).
At b = 1 or c = 0 one can choose 
RA to be a projector

onto a product state. As a result, at b = 1 or c = 0, the input

FIG. 3. Plot of O(M) as a function of c for various b values.

032617-8



OPTIMAL ONE-SHOT ENTANGLEMENT SHARING PHYSICAL REVIEW A 108, 032617 (2023)

entanglement, defined in (9), is zero. In general,

E (N ) =
{

0 if b = 1 or c = 0,

h
( (1+b)(1−bc)

2(1−b2c)

)
otherwise,

(80)

where the expressions for E (N ) at b �= 1 and c �= 0 come
from using the form of 
RA in (78). In Fig. 2 we fix b
and plot E (N ) as a function of c; increasing c makes N
less noisy [see the discussion containing Eq. (53)]. In these
plots, as c is increased from zero, the value of E (N ) in-
creases discontinuously from 0, at c = 0, and continues to
increase monotonically until c = 1, where N becomes a per-
fect channel. Across various plots with fixed b, we notice that
increasing b decreases E (N ), which ultimately goes to zero as
b �→ 1 for all bc �= 1.

All these features mentioned above are intriguing. In the
parameter range 0 < c < 1, one finds an expected result [34]
that the minimum amount of entanglement needed at the in-
put to have maximum fidelity with a fully entangled output
is strictly less than 1. In particular, if one generates more
than E (N ) < 1 entanglement at the input, the fidelity with a
maximally entangled output is strictly less. The key addition
here is the quantification of the amount of entanglement and a
parametrization of the channel in such a way that the amount
of entanglement is monotone in the noise parameters of the
channel.

Next, at c = 0, there is a discontinuous change in E (N )
which starts at zero and then takes a large finite value �
h((1 + b)/2). From a mathematical standpoint, the discon-
tinuity arises because the solution to the optimization (58)
becomes degenerate and this degeneracy allows more freedom
in choosing optimum inputs. Due to the structure of qubit
channels, this input can be chosen to be separable, as men-
tioned in the discussion containing (79).

B. Qubit Pauli channels

A qubit Pauli channel N : HA �→ HB can be written as

N (ρ) =
∑

i

piσiρσ
†
i , (81)

where pi � 0,
∑

i pi = 1, and the Kraus operators {√piσi},
σi : HA �→ HB, are proportional to Pauli matrices. These ma-
trices can be written in the standard {|0〉, |1〉} basis of HA and
HB as

σ0 = I =
(

1 0
0 1

)
, σ1 = X =

(
0 1
1 0

)
,

σ2 = Y =
(

0 −i
i 0

)
, and σ3 = Z =

(
1 0
0 −1

)
. (82)

Without loss of generality, we can assume p0 � pi for all
i ∈ {1, 2, 3}. This assumption comes from the following argu-
ment. Assume pi � p j for some i �= 0 and all j ∈ {0, 1, 2, 3}.
Then conjugating the input ρ with σi will still result in a
Pauli channel (81). However, this resulting channel will have
p0 � pi for all i ∈ {1, 2, 3}.

For qubit Pauli channels, the value of O(N ) and the fact
that it can be achieved using a maximally entangled input state

RA was found in [34]; however, we note later that one can
also achieve O(N ) using a separable pure state when N is

very noisy. Since the Pauli matrices are orthogonal to each
other, in a standard Kraus decomposition, {Ki}, of N we can
always choose each Ki to be

√
p jσ j for some j. As p0 � pi,

K0 = √
p0σ0, and from Theorem 1 we get

O(N ) = p0. (83)

When p0 > p j for all j, 
RA = |σ †
0 〉〈σ †

0 |/2, i.e., 
RA is a pro-
jector onto a maximally entangled state and thus E (N ) = 1.
However, if for some i, p0 = pi then 
RA is any density
operator with support in a space spanned by {|σ †

0 〉RA, |σ †
i 〉RA}.

This space is a two-dimensional subspace of a two-qubit space
HRA. Following the discussion containing (79), this subspace
contains at least one product state. As a result, for any i if
p0 = pi we can choose 
RA to be a product state and thus
E (N ) = 0. Consequently,

E (N ) =
{

1 if p0 > pi ∀i,
0 if p0 = pi for some i.

(84)

When p0 = pi, the best fidelity with a maximally entangled
state at the output is achieved by sending a separable input

RA. Consequently, the output 
RB is also separable. This
separable output is expected to have a small fidelity with a
fully entangled state. This expectation is met, the condition
p0 = pi together with

∑
i pi = 1 forces p0 � 1/2, and thus

O(N ) � 1/2. Such a value of half for fidelity with a max-
imally entangled state |φ〉AB is considered small since this
value of half can be achieved by a simple separable state
ρRB = 1

2 (|00〉〈00| + |11〉〈11|).
One may wonder which qubit Pauli channels satisfy p0 =

pi � p j . Any qubit Pauli channel of this type is antidegrad-
able. In general, N in (81) with p0 � pi is antidegradable
[50–52] if and only if

p1 + p2 + p3 + √
p1 p2 + √

p1 p3 + √
p2 p3 � 1/2. (85)

We are interested in the case where p0 = pi for some i.
The above condition remains unaffected when permuting pi

and p j , thus we let p0 = p1 = p, denote p2 by q, and then
p3 = 1 − 2p − q. Using these substitutions on the left side
of (85), together with 1 � p � q � 0 and p � 1 − 2p − q,
we find that the above inequality (85) is always satisfied.
Thus p0 = pi � p j implies that the qubit Pauli channel N is
antidegradable.

Pauli channels (81) have a key property: up to local uni-
taries at the channel input and output, any unital qubit channel
can always be written as a Pauli channel [42]. An interesting
observation about qubit channels is that 
RA in Theorem 1 can
be chosen to be a maximally entangled state if and only if N
is unital [34]. It is interesting for that reason to ask if such a
result holds in higher dimension. In this next section, we find
that it does not.

In the case of qubit Pauli channels, but also for extremal
qubit channels, we found that it is possible to find separable
input states 
RA that achieve the most fidelity with a fully
entangled state at the channel output. This separable state
appeared when a qubit channel N ′s standard Kraus decom-
position {Ki} satisfied the condition 〈K0, K0〉 = 〈Kj, Kj〉 for
at least one j �= 0. Using Eq. (35), this condition reduces to
the channel’s Choi-Jamiołkowsi operator JN

RB having its largest
eigenvalue be degenerate. In general, we have the following
lemma.
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Lemma 3. If N is a qubit channel and the largest eigenvalue
of JN

RB is degenerate, then 
RA in Theorem 1 can be chosen to
be separable.

Proof. Let {Ki} be a standard Kraus decomposition of N .
Since JN

RB is degenerate, 〈K0, K0〉 = 〈K1, K1〉 and 
RA has
support in the span of {|K†

0 〉, |K†
1 〉}. This support is a two-

dimensional subspace of a two-qubit space, and thus contains
a product state. Hence 
RA can be chosen to be a projector
onto this product state. �

While it may be tempting to conjecture that the above result
holds in higher-dimensional channels, we show in the next
section that it does not.

C. Some qutrit channels

We construct two qutrit channels. The first channel, M, is
not unital but its optimal input state 
RA, defined in Theorem
1, is unique and maximally entangled. The second channel,
P , is unital, however its optimal input state 
RA is neither
maximally entangled nor separable. Using the second chan-
nel, we demonstrate that when the largest eigenvalue of JN

RB
is degenerate, 
RA can still be entangled. The demonstration
contrasts with Lemma 3.

Let HA and HB be three-dimensional Hilbert spaces. Let
M : L(HA) �→ L(HB) be a channel with Kraus operators

K0 =
√

λI, K1 = √
1 − λ(|0〉〈1| + |1〉〈0|), and

K2 = √
1 − λ|1〉〈2|, (86)

where 0 � λ � 1. This channel M is not unital, except when
λ = 1. When 2/5 < λ < 1, {Ki} is a standard Kraus decom-
position of M with 〈K0, K0〉 > 〈Ki, Ki〉 for all i �= 0. From
Theorem 1 we find

O(M) = λ, 
RA = 1
3 |I〉〈I|, and E (M) = log2 3.

(87)

Thus when 2/5 < λ < 1, the input 
RA is unique, and it is
maximally entangled, however the channel M is not unital.

Let P : L(HA) �→ L(HB) be a qutrit channel with Kraus
operators

L0 =
√

z + 2

4
(|0〉〈1| + |1〉〈0|),

L1 =
√

1 − z

2
(|1〉〈2| + |2〉〈1|),

L2 =
√

1 − z

2
(|0〉〈2| + |2〉〈0|), and

L3 =
√

z

4
(|0〉〈0| + |1〉〈1| − 2|2〉〈2|), (88)

where 0 � z � 1. Since each Kraus operator Li is Hermitian,
P is unital [see the discussion below (25)]. Kraus opera-
tors {Li} are standard and thus Theorem 1 immediately gives
O(M) = (z + 2)/6. When z �= 0,


AR = |L†
0〉〈L†

0|, (89)

where |L†
0〉RA = 1√

2
(|01〉 + |10〉) is not a maximally entangled

state of two qutrits. When z = 0, L3 = 0, 〈L0|L0〉 = 〈L1|L1〉 =

〈L2|L2〉 and thus largest eigenvalue of JM
RB has a degener-

ate spectrum. In this case, 
RA has support in a subspace
S spanned by {|L†

0〉RA, |L†
1〉RA, |L†

2〉RA}. This subspace only
contains nonproduct vectors, i.e., it is completely entangled
in the sense of Parthasarathy (see Definition 1.2 in [53]).
Consequently, any density operator 
RA supported on this
subspace is entangled.

VI. DISCUSSION

In this work, we considered a one-shot setting where one-
half of any bipartite mixed state may be sent across a single
use of a fixed channel N . The goal in this setting is to share a
state with maximum fidelity O(N ) to a fully entangled state.
Interestingly, maximum fidelity O defined in the one-shot set-
ting fully characterizes the ability of any channel to share high
fidelity entanglement over multiple channel uses, possibly
used in parallel with other channels. This extension follows
from the multiplicative nature of O, proved in Sec. IV B.

Using a semidefinite program, we reformulate the max-
imum fidelity, found previously for pure state inputs
[30,31,34]. The first reformulation, see Theorem 1 and its
proof, makes greater use of a channel’s Kraus operators rather
than its Choi-Jamiołkowski operator, as done previously. In
particular, optimal input(s) achieving O(N ) are simply linear
combinations of flattened versions of a channel’s standard
Kraus operators with the largest norm, and the optimal value
O(N ) is this largest norm itself. These two channel rep-
resentations are formally equivalent (see Sec. III for brief
discussion), however the Kraus decomposition can sometimes
be easier to work with and can provide different insights when
discussing maximum fidelity O(N ), but perhaps in other
cases as well. In the present case, the standard Kraus operators
(see Sec. III A for definition) simplifies the search for and
broadens the types of channel inputs 
RA which achieve O.

One way in which we have broadened the search for op-
timal inputs 
RA is to identify channels N for which 
RA

can be chosen to be separable. This choice appears in two
notable cases. The first case is when N is an extremal qubit
channel. Here, separability of 
RA leads to a discontinuous
jump in the minimal amount of entanglement E (N ) generated
to achieve maximum fidelity with a fully entangled state (see
the discussion with Fig. 2). A second notable case where 
RA

can be chosen to be separable is for noisy unital qubit channels
where the input may be ordinarily chosen to be fully entan-
gled [see the discussion containing Eq. (84)]. These findings
motivate a characterization of channels N for which 
RA is
possibly separable, i.e., E (N ) = 0. One typically expects such
channels not to be useful for sharing entanglement in the type
of one-shot setting discussed in Sec. IV A. One example of
such channels is in Lemma 3. The lemma extends to channels
with Choi-Jamiołkowsi operator JN

AB having a greater than
(d − 1)2-fold degeneracy in their largest eigenvalue. The sup-
port of this largest eigenvalue subspace always has a product
state (proof for this can be constructed using Prop 1.4 in
[53]), and thus 
RA can be chosen to be a product state and
E (N ) = 0. On the other hand, we also find a channel whose
Choi-Jamiołkowsi operator has a degeneracy in its largest
eigenvalue, but the optimal input for the channel must be
entangled.
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Another way in which we have broadened the search for
optimal inputs 
RA is to consider an extension of results found
previously. For qubit channels, a fully entangled input was
known to achieve O if and only if the channel was unital. In
higher dimensions, we find this result no longer holds. We
construct a unital qutrit channel for which the optimal input
must be less than fully entangled. We also construct a qutrit
channel that is not unital, but for which a fully entangled input
is necessary to obtain the largest overlap.

Our second reformulation of O(N ) in Theorem 1 notes
that it equals the operator norm of the channel’s Choi-
Jamiołkowski operator, up to normalization. This observation
can not only simplify discussions about O(N ) (for instance,
see the proof of Theorem 2), it also gives the operator norm of
the Choi-Jamiołkowski operator a simple interpretation.

The single channel use setting discussed here can be ex-
tended by allowing the reference system and the channel
output system to be processed using local operations and one-
way or two-way classical communication, labeled 1-LOCC
and 2-LOCC, respectively. Building on ideas in [32,54], it
has been shown for qubit channels that a maximum fully
entangled fraction allowing a single round of 2-LOCC, O′,
equals O [34]. Understanding O′ in higher-dimensional chan-
nels while exploring optimal protocols and multiplicativity
of O′ may form an interesting direction of future work. Ex-
tending our work to a setting where the reference system
also becomes noisy may be interesting. Prior discussions
[56,57] on this setting connect with entanglement annihilating

channels [55]. Another direction can come from extending
results in Sec. V B where we show that that a set of qubit Pauli
channels with E (N ) = 0 also have no quantum capacity Q. It
could be interesting to study the relation of O and E to Q.

Along the way to analyzing the maximum fidelity, we
found it useful to study extremal qubit channels. These simple
channels can be considered the most basic qubit channels.
However, to our knowledge, noise parameters for these chan-
nels have not been adequately discussed. In Sec. III C, we
show that the pcubed point of view allows one to identify
noise parameters for this channel in such a way that the
channel becomes demonstrably noisier as a parameter is var-
ied monotonically. The hope is that such an identification
makes this channel class a better understood and nontrivial
testbed for ideas in quantum information science. We also
flesh out two useful properties of general channels. First,
in Sec. III A, we show the existence of a standard Kraus
decomposition where the Kraus operators are orthogonal
and their norm is ordered. Second, in Sec. III B, we show
how the Choi-Jamiołkowski operator of a channel and its
dual can always be taken to be complex conjugates of each
other.

ACKNOWLEDGMENTS

V.S. thanks Felix Leditzky for helpful discussions, Sergey
Filippov for bringing Refs. [56,57] to his attention, and Chloe
Kim and Dina Abdelhadi for useful comments.

[1] J. M. Chow, Quantum intranet, IET Quantum Commun. 2, 26
(2021).

[2] H. J. Kimble, The quantum internet, Nature (London) 453, 1023
(2008).

[3] S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A
vision for the road ahead, Science 362, eaam9288 (2018).

[4] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,
and W. K. Wootters, Teleporting an Unknown Quantum State
via dual Classical and Einstein-Podolsky-Rosen Channels,
Phys. Rev. Lett. 70, 1895 (1993).

[5] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Mixed-state entanglement and quantum error correc-
tion, Phys. Rev. A 54, 3824 (1996).

[6] M. M. Wilde, Quantum Information Theory, 2nd ed. (Cam-
bridge University Press, Cambridge, 2017).

[7] S. Lloyd, Capacity of the noisy quantum channel, Phys. Rev. A
55, 1613 (1997).

[8] P. W. Shor, Quantum error correction, Nov. (2002), http://www.
msri.org/workshops/203/schedules/1181.

[9] N. Cai, A. Winter, and R. W. Yeung, Quantum privacy and
quantum wiretap channels, Probl. Inf. Transmiss. 40, 318
(2004).

[10] I. Devetak, The private classical capacity and quantum capacity
of a quantum channel, IEEE Trans. Inf. Theor. 51, 44 (2005).

[11] I. Devetak and P. W. Shor, The capacity of a quantum channel
for simultaneous transmission of classical and quantum infor-
mation, Commun. Math. Phys. 256, 287 (2005).

[12] G. Smith and J. Yard, Quantum communication with zero-
capacity channels, Science 321, 1812 (2008).

[13] T. Cubitt, D. Elkouss, W. Matthews, M. Ozols, D. Pérez-García,
and S. Strelchuk, Unbounded number of channel uses may be
required to detect quantum capacity, Nat. Commun. 6, 6739
(2015).

[14] V. Siddhu, Entropic singularities give rise to quantum transmis-
sion, Nat. Commun. 12, 5750 (2021).

[15] F. Leditzky, D. Leung, V. Siddhu, G. Smith, and J. A.
Smolin, Generic Nonadditivity of Quantum Capacity
in Simple Channels, Phys. Rev. Lett. 130, 200801
(2023).

[16] F. Buscemi and N. Datta, The quantum capacity of channels
with arbitrarily correlated noise, IEEE Trans. Inf. Theor. 56,
1447 (2010).

[17] N. Datta and M.-H. Hsieh, The apex of the family tree of
protocols: optimal rates and resource inequalities, New J. Phys.
13, 093042 (2011).

[18] N. Datta and M.-H. Hsieh, One-shot entanglement-assisted
quantum and classical communication, IEEE Trans. Inf. Theor.
59, 1929 (2013).

[19] W. Matthews and S. Wehner, Finite blocklength converse
bounds for quantum channels, IEEE Trans. Inf. Theor. 60, 7317
(2014).

[20] S. Beigi, N. Datta, and F. Leditzky, Decoding quantum infor-
mation via the Petz recovery map, J. Math. Phys. 57, 082203
(2016).

[21] M. Tomamichel, M. Berta, and J. M. Renes, Quantum coding
with finite resources, Nat. Commun. 7, 11419 (2016).

[22] C. Pfister, M. Adriaan Rol, A. Mantri, M. Tomamichel, and
S. Wehner, Capacity estimation and verification of quantum

032617-11

https://doi.org/10.1049/qtc2.12002
https://doi.org/10.1038/nature07127
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.55.1613
http://www.msri.org/workshops/203/schedules/1181
https://doi.org/10.1007/s11122-005-0002-x
https://doi.org/10.1109/TIT.2004.839515
https://doi.org/10.1007/s00220-005-1317-6
https://doi.org/10.1126/science.1162242
https://doi.org/10.1038/ncomms7739
https://doi.org/10.1038/s41467-021-25954-0
https://doi.org/10.1103/PhysRevLett.130.200801
https://doi.org/10.1109/TIT.2009.2039166
https://doi.org/10.1088/1367-2630/13/9/093042
https://doi.org/10.1109/TIT.2012.2228737
https://doi.org/10.1109/TIT.2014.2353614
https://doi.org/10.1063/1.4961515
https://doi.org/10.1038/ncomms11419


VIKESH SIDDHU AND JOHN SMOLIN PHYSICAL REVIEW A 108, 032617 (2023)

channels with arbitrarily correlated errors, Nat. Commun. 9, 27
(2018).

[23] A. Anshu, R. Jain, and N. A. Warsi, Building blocks for commu-
nication over noisy quantum networks, IEEE Trans. Inf. Theor.
65, 1287 (2019).

[24] X. Wang, K. Fang, and R. Duan, Semidefinite programming
converse bounds for quantum communication, IEEE Trans. Inf.
Theor. 65, 2583 (2018).

[25] F. Salek, A. Anshu, M.-H. Hsieh, R. Jain, and J. R. Fonollosa,
One-shot capacity bounds on the simultaneous transmission of
classical and quantum information, IEEE Trans. Inf. Theor. 66,
2141 (2020).

[26] Y. Nakata, E. Wakakuwa, and H. Yamasaki, One-shot quantum
error correction of classical and quantum information, Phys.
Rev. A 104, 012408 (2021).

[27] S. Khatri and M. M. Wilde, Principles of quantum communica-
tion theory: A modern approach (2020), arXiv:2011.04672.

[28] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A.
Smolin, and W. K. Wootters, Purification of Noisy Entangle-
ment and Faithful Teleportation via Noisy Channels, Phys. Rev.
Lett. 76, 722 (1996).

[29] M. Horodecki, P. Horodecki, and R. Horodecki, General
teleportation channel, singlet fraction, and quasidistillation,
Phys. Rev. A 60, 1888 (1999).

[30] F. Verstraete and H. Verschelde, On quantum channels,
arXiv:quant-ph/0202124.

[31] R. Pal and S. Bandyopadhyay, Entanglement sharing via qudit
channels Nonmaximally entangled states may be necessary for
one-shot optimal singlet fraction and negativity, Phys. Rev. A
97, 032322 (2018).

[32] F. Verstraete and H. Verschelde, Optimal Teleportation with a
Mixed State of Two Qubits, Phys. Rev. Lett. 90, 097901 (2003).

[33] S. Bandyopadhyay and A. Ghosh, Optimal fidelity for a quan-
tum channel may be attained by nonmaximally entangled states,
Phys. Rev. A 86, 020304(R) (2012).

[34] R. Pal, S. Bandyopadhyay, and S. Ghosh, Entanglement sharing
through noisy qubit channels: One-shot optimal singlet fraction,
Phys. Rev. A 90, 052304 (2014).

[35] L. Vandenberghe and S. Boyd, Semidefinite programming,
SIAM Rev. 38, 49 (1996).

[36] A. Jamiołkowski, Linear transformations which preserve trace
and positive semidefiniteness of operators, Rep. Math. Phys. 3,
275 (1972).

[37] M.-D. Choi, Completely positive linear maps on complex ma-
trices, Lin. Alg. Appl. 10, 285 (1975).

[38] A. S. Holevo, Quantum Systems, Channels, Information: A
Mathematical Introduction (De Gruyter, Berlin, Boston, 2013),
Vol. 16.

[39] M. M. Wolf, Quantum Channels and Operations–Guided
Tour, Lecture Notes, 2012, https://www.math.cit.tum.de/math/
forschung/gebiete/mathematical-physics/.

[40] A. Fujiwara and P. Algoet, Affine parameterization of quantum
channels, in Proceedings of the 1998 IEEE International Sympo-
sium on Information Theory (Cat. No. 98CH36252), Cambridge,
1998 (IEEE, Piscataway, NJ, 1998), p. 87.

[41] C.-S. Niu and R. B. Griffiths, Two-qubit copying machine for
economical quantum eavesdropping, Phys. Rev. A 60, 2764
(1999).

[42] M. Beth Ruskai, S. Szarek, and E. Werner, An analysis of
completely-positive trace-preserving maps on m2, Lin. Alg.
Appl. 347, 159 (2002).

[43] M. M. Wolf and D. Pérez-García, Quantum capacities of chan-
nels with small environment, Phys. Rev. A 75, 012303 (2007).

[44] S. Friedland and R. Loewy, On the extreme points of quantum
channels, arXiv:1309.5898.

[45] V. Siddhu and R. B. Griffiths, Degradable quantum channels
using pure-state to product-of-pure-state isometries, Phys. Rev.
A 94, 052331 (2016).

[46] J. L. Park, The concept of transition in quantum mechanics,
Found. Phys. 1, 23 (1970).

[47] D. Dieks, Communication by epr devices, Phys. Lett. A 92, 271
(1982).

[48] W. K. Wootters and W. H. Zurek, A single quantum cannot be
cloned, Nature (London) 299, 802 (1982).

[49] J. Watrous, The Theory of Quantum Information, 1st ed.
(Cambridge University Press, Cambridge, 2018).

[50] C.-S. Niu and R. B. Griffiths, Optimal copying of one quantum
bit, Phys. Rev. A 58, 4377 (1998).

[51] N. J. Cerf, Pauli Cloning of a Quantum Bit, Phys. Rev. Lett. 84,
4497 (2000).

[52] T. S. Cubitt, M. B. Ruskai, and G. Smith, The structure
of degradable quantum channels, J. Math. Phys. 49, 102104
(2008).

[53] K. R. Parthasarathy, On the maximal dimension of a com-
pletely entangled subspace for finite level quantum systems,
Proc. Math. Sci. 114, 365 (2004).

[54] F. Verstraete and H. Verschelde, Fidelity of mixed states of two
qubits, Phys. Rev. A 66, 022307 (2002).
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