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Quantum control plays an irreplaceable role in practical use of quantum computers. However, some challenges
have to be overcome to find more suitable and diverse control parameters. We propose a promising and
generalizable average-fidelity-based machine-learning-inspired method to optimize the control parameters, in
which a neural network with periodic feature enhancement is used as an ansatz. In the implementation of a
single-qubit gate by cat-state nonadiabatic geometric quantum computation via reverse engineering, compared
with the control parameters in the simple form of a trigonometric function, our approach can yield significantly
higher-fidelity (>99.99%) phase gates, such as the π/8 gate (T gate). Single-qubit gates are robust against
systematic noise, additive white Gaussian noise, and decoherence. We numerically demonstrate that the neural
network possesses the ability to expand the model space. With the help of our optimization, we provide
a feasible way to implement cascaded multiqubit gates with high quality in a bosonic system. Therefore,
the machine-learning-inspired method may be feasible in quantum optimal control of nonadiabatic geometric
quantum computation.
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I. INTRODUCTION

Multiqubit gates are widely used in quantum circuits
[1–3], quantum error correction [4–6], and other fields [7–10].
Single-shot multiqubit gates [11–13] specify quantum cir-
cuits that evolute in a well-controlled, uninterrupted, and
continuous-time way to implement the quantum computation
[14]. Compared to the cascaded gates, single-shot multiqubit
gates can greatly reduce the circuit depth and shorten the
implementation time, thus suppressing decoherence [15,16].
However, the single-shot method is difficult to realize in ex-
periments owing to the restricted conditions of simultaneously
manipulating multiple physical systems and building complex
couplings.

One of the ways to mitigate the above difficulty is the
application of single- and two-qubit gates to equivalently
implement the function of multiqubit gates [17–19], and the
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decomposition is guaranteed by the Solovay-Kitaev theorem
[20]. Although the decomposition method loses the upper
hand in terms of the circuit depth and the implementation
time, it has a wider scope of application due to direct exe-
cution on the quantum processing unit, namely, the brain of a
quantum computer [21]. The realization of the synthetic gates
depends on the universal single-qubit gates and a two-qubit
entangling gate with high fidelity [16]. However, statistical
imprecision in the experimental controls, interactions between
the system and the environment, and random driving forces
from the environment will cause a reduction in fidelity [22].

Universal single-qubit gates based on the geometric phase
in quantum systems have recently shown robustness against
control-parameter fluctuations [23]. An adiabatically evolv-
ing system driven by a nondegenerate Hamiltonian exhibits
geometric phase under cyclic evolution [24–26]. The geomet-
ric phase arising from cyclic evolution of quantum systems
is uniquely determined by the geometric structure of the
enclosed path in the parameter space [27], which is the well-
known analog of the rotational effect in differential geometry
when a vector is parallel transported [28,29]. However, the
strict condition of the adiabatic limit requires the evolution
time to be infinitely long, which inevitably gives rise to de-
coherence of the system [30]. The nonadiabatic geometric
phase gets rid of the bondage of the adiabatic condition,
making it possible to shorten the evolution time of the sys-
tem to a great extent. The nonadiabatic geometric phase
lays a solid foundation for nonadiabatic geometric quantum

2469-9926/2023/108(3)/032616(11) 032616-1 Published by the American Physical Society

https://orcid.org/0009-0004-9267-8384
https://orcid.org/0000-0002-4539-298X
https://orcid.org/0000-0002-8954-3233
https://orcid.org/0000-0003-1388-3861
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.032616&domain=pdf&date_stamp=2023-09-27
https://doi.org/10.1103/PhysRevA.108.032616
https://creativecommons.org/licenses/by/4.0/


MAO, CHENG, XIA, OLEŚ, AND YOU PHYSICAL REVIEW A 108, 032616 (2023)

computation (NGQC). Recently, NGQC has been executed
theoretically [31–34] and experimentally [35–39] in multiple
quantum systems. Later, NGQC has been further promoted
to NGQC+ [40]. The NGQC+ scheme loosens the condi-
tions for the realization of NGQC to a certain extent, which
becomes more compatible with optimal control methods. Sev-
eral schemes have been developed, including counteradiabatic
driving [41,42], dynamical decoupling [43,44], and machine-
learning-based optimization techniques [45,46].

Recent researches have shown that logical qubit encod-
ing is promising to protect quantum computation from errors
[47–49]. However, in standard logical qubit systems based on
multiple physical qubits [50–53], quantum error correction
and logical operations are difficult to achieve because the
number of error channels rapidly increases with the number of
qubits [54]. For the realization of logical qubits, bosonic sys-
tems are promising candidates, because the number of error
channels can dramatically drop [54,55] with taking advantage
of the infinite-dimensional Hilbert space of the harmonic os-
cillator. The cat states of bosons have been widely used in
quantum computation and quantum error correction [56–59].
Encoding in cat-state subspace via reverse engineering pro-
vides a feasible scheme for the realization of NGQC in a
bosonic system [60]. The application of reverse engineering,
which constructs the Hamiltonian based on the corresponding
invariant, makes it easier to find more free parameters to
control the evolution path [61,62]. Numerous studies have
demonstrated that the tentative form of control parameters
shapes the time evolution of quantum systems in a poten-
tially useful way [63–65]. Typical forms of control parameters
include polynomials of trigonometric functions [66,67], as
well as the product form of the trigonometric and complex
exponential functions [68,69]. In the system to be elucidated
subsequently, the control parameters are limited to simple
trigonometric functions. The adjustment of the evolution form
of control parameters is of great importance in quantum com-
putation.

Adopting the machine-learning technology and optimiza-
tion theory has been proved to be applicable to optimizing
the control parameters of variational states in a variety of
interacting quantum many-body systems [70–74]. Although
designing control parameters to acquire high-fidelity quan-
tum gates by neural network has been extensively studied
for a long time [14,75], it is still a flourishing and attractive
research topic. Researchers designed dispersed and aperi-
odic control parameters by gradient ascent pulse engineering
(GRAPE) under the guidance of state fidelity in nuclear mag-
netic resonance [76]. Here we introduce this method into the
bosonic system, where the aperiodic discontinuous function
is generalized to the periodic continuous function. We find
that the incorporation of GRAPE enables the neural network to
possess a powerful representation ability, which can expand
the model space through the nonlinear activation function
to fit any smooth periodic function and aperiodic function
[77,78]. As a result, we optimize continuous and periodic
control parameters, which are easier to physically implement,
through the neural network with the enhancement of periodic
characteristics.

The rest of the paper is organized as follows. In Sec. II we
revisit the NGQC+ with cat states via reverse engineering.

Section III is devoted to the construction of the neural network
guided by the average fidelity with periodic feature en-
hancement to improve the performance of single-qubit gates.
In Sec. IV, we benchmark the optimization on the T gate
(π/8 gate) and demonstrate that the neural network can ef-
fectively expand the model space. Furthermore, we assess the
performance of the protocol under systematic noise, random
noise, and decoherence effect via numerical simulations. Fi-
nally, the conclusions and outlook are given in Sec. VI.

II. NGQC+ WITH CAT STATES BASED ON REVERSE
ENGINEERING

Applying reverse engineering to quantum computation not
only permits the Hamiltonian to be more physically realizable,
but also makes the implementation of quantum gates more
flexible [61,79,80]. Consider a time-dependent Hamiltonian
H (t ) and the corresponding dynamic invariant I (t ), which
satisfies the following equation [81] (h̄ = 1):

i
∂

∂t
I (t ) − [H (t ), I (t )] = 0. (1)

To realize NGQC+, we select a set of time-dependent eigen-
states |φl (t )〉 (l = 1, 2, . . . , d ) of I (t ) to span a d-dimensional
computational subspace S , which are supposed to satisfy the
three conditions below [40]. First, the computational basis
should satisfy the boundary conditions at times t = 0 and L,
i.e., |φl (0)〉 = |φl (L)〉, to ensure that the evolution is cyclic.
Here, L is the evolution period. Secondly, we can rewrite
Eq. (1) based on eigenvectors of I (t ) as

�̇l (t ) = −i[H (t ), �l (t )], (2)

where �l (t ) = |φl (t )〉〈φl (t )| is the projective operator of
|φl (t )〉. Finally, the cumulative dynamic phase of one cycle
needs to vanish:

�l (L) = −
∫ L

0
dt〈φl (t )|H (t )|φl (t )〉 = 0. (3)

This condition is the relaxation of parallel transportation
〈φl (t )|H (t )|φk (t )〉 = 0 in NGQC.

When the conditions of NGQC+ are all satisfied, the time
evolution operator at the final time t = L in subspace S can
be described as

U (L, 0) =
∑

l

exp[i�l (L)]�l (0), (4)

where �l (L) is the geometric phase, given by

�l (L) =
∫ L

0
dt〈φl (t )|i ∂

∂t
|φl (t )〉. (5)

Suppose a Hamiltonian can be represented as follows:

H (t ) =
g∑

j=1

λ j (t )Gj, (6)

where g is the rank of the group and {Gj} is a group of
Hermitian generators of Lie algebra [61,62,82], obeying the
following relations:

[Gi, Gj] = i
∑

k

μk
i jGk, (i, j, k ∈ {1, 2, . . . , g}), (7)
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where μk
i j is the corresponding structure constant. If an invari-

ant can be written as

I (t ) =
g∑

j=1

ξ j (t )Gj . (8)

According to Eq. (1), it yields

ξ̇k (t ) =
g∑

i, j=1

λi(t )ξ j (t )μk
i j . (9)

Once {ξ j (t )} are known, we can thus obtain {λ j (t )} according
to Eq. (9).

We consider a system in which a resonant single-mode
two-photon drive is applied to a Kerr nonlinear resonator. In
the rotating frame, the system Hamiltonian [79,83] can be
written by

Hcat = −Ka†2a2 + ε2(e2iξ a†2 + e−2iξ a2), (10)

where K is the Kerr nonlinearity, a† (a) is the creation (an-
nihilation) operator of the cavity mode, ε2 is the strength of
the two-photon driving, and ξ is the phase of the driving.
The coherent states | ± α〉 with α = √

ε2/K exp(iξ ) are the
degenerate eigenstates of Hcat, whose superpositions

|C±〉 = 1√
N±

(|α〉 ± | − α〉) (11)

are referred to as even (odd) cat states with the normaliza-
tion constants N± = 2 ± 2 exp(−2|α|2). We apply an external
single-photon drive [83]:

Hc(t ) = χ (t )a†a + ε(t )a† + ε∗(t )a, (12)

where χ (t ) and ε(t ) are the detuning and strength of the
driving, respectively. The total Hamiltonian is described by
Htot (t ) = Hcat + Hc(t ). If the constraint that the energy gaps
between cat states and other eigenstates are much larger
than χ (t ) and ε(t ) is satisfied, the Hamiltonian can be re-
duced to two-dimensional subspace spanned by cat states
|C±〉. The Pauli matrices defined by cat states can be chosen
as the Hermitian generators of the Lie group. The driving
Hamiltonian thus can be simplified as Hc = �(t ) · �σ , where
�(t ) = [x(t ),y(t ),z(t )] is a three-dimensional unit vec-
tor, and �σ = [σx, σy, σz].

Consider a dynamic invariant I (t ) = �ζ (t ) · �σ , where
�ζ (t ) = [ζx(t ), ζy(t ), ζz(t )]. Based on Eq. (9), we can get that
�̇ζ (t ) = 2 �(t ) × �ζ (t ) and |ζ (t )| is constant. For convenience,
we can let �ζ (t ) = (sin η sin μ, cos η sin μ, cos μ), where μ

and η are time-dependent control parameters. The eigenstates
of I (t ) in the cat-state representation are

|φ+(t )〉 = cos
μ

2
|C+〉 + i exp(−iη) sin

μ

2
|C−〉,

|φ−(t )〉 = i exp(iη) sin
μ

2
|C+〉 + cos

μ

2
|C−〉. (13)

According to Eqs. (3)–(5), we can calculate the geometric
phases

�±(L) = ±
∫ L

0
dt η̇ sin2 μ

2
, (14)

and the dynamic phases

�±(L) = ∓
∫ L

0
dt

(
1

2
η̇ sin2 μ + z

)
sec μ. (15)

In order to satisfy the conditions �±(L) = 0 and
�̇ζ (t ) = 2 �(t ) × �ζ (t ), we design �(t ) as

x(t ) = 1
4 [η̇ sin η sin(2μ) − 2μ̇ cos η],

y(t ) = 1
4 [η̇ cos η sin(2μ) + 2μ̇ sin η],

z(t ) = − 1
2 η̇ sin2 μ. (16)

Therefore, we set the parameters χ (t ) and ε(t ) as

χ (t ) = η̇ sin2 μN+N−
|α|2(N 2+ − N 2−)

,

Re[ε(t)] =
√
N+N−
4|α| (x cos ξ − e2|α|2y sin ξ ),

Im[ε(t)] =
√
N+N−
4|α| (x sin ξ + e2|α|2y cos ξ ), (17)

which are scarcely different from the forms presented in
Ref. [60]. Based on Eq. (4), the time evolution operator can
be represented as

U (L, 0)

=
[

cos θ + i cos μ0 sin θ exp(iη0) sin μ0 sin θ

− exp(−iη0) sin μ0 sin θ cos θ − i cos μ0 sin θ

]
,

(18)

where μ0 and η0 are the initial value of μ and η, respectively:

θ =
∫ L

0
dt η̇ sin2 μ

2
. (19)

If we choose different μ, η, and θ , we can implement an
arbitrary unitary single-qubit gate [60].

III. CONSTRUCTION OF A NEURAL-NETWORK ANSATZ
BASED ON THE AVERAGE FIDELITY

Recently a tentative scheme for the parameters is the usage
of trigonometric functions as [60]

μ = μ0 + � sin2

(
πt

L

)
, η = η0 + π

[
1 − cos

(
πt

L

)]
,

(20)

where � is an auxiliary parameter depending on the concrete
form of the desired gate. To facilitate the subsequent discus-
sion, the parameter selection scheme of Eq. (20) is referred to
as the trigonometric-function-based protocol. We can numer-
ically calculate the integral in Eq. (19) as

θ = π

{
1 −

√
π

2�

[
cos(μ0 + �)C

(√
2�

π

)

+ sin(μ0 + �)S

(√
2�

π

)]}
, (21)
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FIG. 1. The variation of θ with respect to � for μ0=0, π/2,
and π .

where

S(x) =
∫ x

0
dt sin(t2), C(x) =

∫ x

0
dt cos(t2)

are Fresnel integrals. It is obvious that θ is only dependent
on μ0 and �. We show the variation of θ with respect to
� for a few typical values of μ0 in Fig. 1. One observes
that θ exhibits a decaying oscillation with respect to � and
approaches π when � becomes sufficiently large. We find that
θ cannot take the entire parameter range between 0 and 2π ,
which implies that the trigonometric-function-based protocol
cannot implement arbitrary single-qubit gates. Especially it is
difficult to accurately obtain � by solving complex nonlinear
Eq. (19). Therefore, we improve the method of designing the
variational parameters μ and η by machine-learning-inspired
optimization based on GRAPE.

Subsequently, we employ the neural network under unsu-
pervised machine learning as an ansatz. The neural network
is composed of the input, hidden, and output layers. Two
adjacent layers are connected by the weights, biases, and
activation function. We choose one hidden layer and tanh(x)
as the activation function. Because it is assumed that μ and
η have nothing to do with each other, the neural network is
not fully connected. If the control parameters are not inde-
pendent of each other, the fully connected neural network
will be adopted. The final outputs are the specific function
expressions

μ =
N∑

i=1

W (2)
i tanh

(
W (1)

i τ (1) + B(1)
i

)
+ B(2),

η =
N∑

i=1

W (4)
i tanh

(
W (3)

i τ (2) + B(3)
i

)
+ B(4),

where N is the number of neurons in the hidden layer. Since
the constructions of μ and η are similar, we take μ as an
example. τ (1) is the input of the neural network. The output of

the neuron in the hidden layer is tanh (W (1)
i τ (1) + B(1)

i ) with
the weights W (1)

i and the biases B(1)
i . Similarly, the output of

the neural network is the specific function expression of μ

with the weights W (2)
i and the bias B(2)

i .

A. Feature enhancement

In parallel, we impose some restrictions on the varia-
tional parameters. To meet the cycle evolution condition
|φ±(0)〉 = |φ±(L)〉, the control parameters μ and η should
be periodic and L is an integer multiple of the corresponding
periods of μ and η. Considering the period of μ is Tμ and the
period of η is Tη, it is supposed that Tη = mTμ with m being
any real number. To be noticed, the periodicity of μ and η is
aimed at the real time t . For simplicity, we set Tη = 2Tμ = L.
The initial values of the control parameters μ0 and η0 can be
determined by Eq. (18) for a target single-qubit quantum gate.

To summarize, the control parameters should meet three
requirements below.

(1) μ and η are periodic functions.
(2) μ and η have initial value μ0 and η0, respectively.
(3) Tη = 2Tμ = L.
The second condition can be satisfied easily. In particu-

lar, B(2) and B(4) can be set depending on μ(0) = μ0 and
η(0) = η0. To achieve the goal that μ and η are periodic
functions, we ought to make periodic feature enhancement.

Without loss of generality, we take the construction of a
multilayer neural network as an example. Considering the
lemma that if ι(x) is a given smooth periodic function with
period L and ϒ(·) is a smooth function, then ϒ[ι(x)] is still
a periodic function with period L [77]. To proceed, we apply
the sinusoidal functions

β(x) = A cos(ωx + φ) + c (22)

in the first hidden layer with ω = 2π/L. We choose a non-
linear activation function for the sake of guaranteeing the
periodicity of the output and generating higher-frequency
terms to expand the model space in training the neural net-
work. For other hidden layers, the normal linear superposition
of neurons in the former layer and nonlinear activation can
be used. In this paper, we find that utilizing a small-scale
neural-network ansatz with a single hidden layer is sufficient
in optimizing the performance of target gates, which shows
the superiority of our method. However, it is worth noting that
increasing the number of hidden units or incorporating addi-
tional hidden layers may yield improved behavior at the cost
of increased computational time and more difficult physical
realization. In this respect, the final representations of μ and η

of the neural network with the sole hidden layer are given by

μ =
N∑

i=1

W (2)
i tanh

[
W (1)

i cos
(
ω(1)τ (1) + φ

(1)
i

) + B(1)
i

] + B(2),

(23)

η =
N∑

i=1

W (4)
i tanh

[
W (3)

i cos
(
ω(2)τ (2) + φ

(2)
i

) + B(3)
i

] + B(4).

(24)

Here, τ (1) = 2πt/L, τ (2) = πt/L, and ω(1) = ω(2) = 1. φ
(1)
i

and φ
(2)
i are learnable parameters of the neural network, which

will effectively expand the model space and satisfy the peri-
odic relationship between μ and η.

B. Backpropagation guided by the average fidelity

The average fidelity is the benchmark to assess the perfor-
mance of the quantum gates in the closed system and proves
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to be more effective than assessing the fidelity of specific
states, especially in improving the performance of synthetic
multiqubit gates, given the uncertainties introduced by the
preceding gate in the circuit. We thus choose the average
fidelity as the objective function, which is defined as [84]

F (t ) = 1

D(D + 1)
{Tr[M(t )M(t )†] + |Tr[M(t )]|2}, (25)

where D is the dimension of the computational subspace,
M(t ) = PcU

†
GU1(t )Pc, and Pc is the projective operators of

the subspace, while UG and U1(t ) respectively stand for the
matrix representations of the ideal and actual gates. The
application of Eq. (25) as the objective function instead of
Eq. (19) offers two distinct advantages. First, Eq. (25) takes
into consideration the leakage to unwanted levels, making it
a more realistic measure of the performance of the scheme
compared to θ , which is defined in the two-dimensional cat-
state subspace. Secondly, while both the average fidelity and
θ are nonconvex functions [85] due to the complex inter-
actions among multiple parameters and the utilization of a
nonlinear activation function, it is crucial to emphasize that
there exists a clear global maximum for the average fidelity,
which is unity. This allows for straightforward determination
of when to finalize the neural network’s learning process. On
the other hand, θ encompasses infinite ideal values, which
may potentially confuse the network. Therefore, considering
the aforementioned factors, employing the average fidelity as
the objective function for neural network training is a more
suitable choice compared to utilizing θ and the fidelity of
specific states.

The workflow of the machine-learning-inspired optimiza-
tion is illustrated in Fig. 2. In the neural-network ansatz, there
are three layers with two input units, N hidden units, and
two output units. The final-state average fidelity F ≡ F (L)
measured at the final moment depends crucially on the spe-
cific evolution details of each previous moment. Considering
the nonlinear relationship between the external single-photon
drive in Eq. (17) and the control parameters, it is challeng-
ing to directly derive the variation of F with respect to the
neural-network parameters. Alternatively, we use the greedy
algorithm, in which the temporal period L can be divided into
n discrete time slices during an evolution cycle of realizing
a single-qubit gate. Optimizing the average fidelity at each
time slice can lead to a substantial reduction in complexity,
ultimately resulting in a higher overall average fidelity F for
single-qubit gates. It is obvious that the evolution between
two contiguous moments is described by the Schrödinger
equation [76]. To this end, we calculate all the gradients of the
average fidelity F (t ) with respect to parameters by the chain
rule at each time slice. In order to obtain the maximum of
average fidelity F (t ), we adopt the gradient ascent algorithm
to update all the parameters

W (a) ← W (a) + l (a)
W

∂F (t )

∂W (a)
, a = 1, 2, 3, 4,

B(b) ← B(b) + l (b)
B

∂F (t )

∂B(b)
, b = 1, 3,

φ(c) ← φ(c) + l (c)
φ

∂F (t )

∂φ(c)
, c = 1, 2, (26)

FIG. 2. The workflow of the machine-learning-inspired opti-
mization based on the average fidelity. For a temporal cycle between
t1 = 0 and tn = L (red dots), which is divided into n − 2 slices
{ti}n−1

i=2 (blue dots), we should perform the variation and update all
parameters at each time slice to ensure that the neural network
captures the information at each moment effectively. Two adjacent
dots are connected by the Schrödinger equation, denoted as U (t, 0).
We choose the neural network with one hidden layer. τ (a) (a = 1, 2)
is the linear transformation of ti as the input and the output μ and
η are functions of τ (a). Each neuron in the hidden and output layers
has a corresponding weight and bias. The trigonometric functions
cos(ωτ (a) + φ) with different phases can be used as the inputs of the
neurons in the hidden layer to ensure the output of the neural network
is a periodic function, and ω is determined by the period of μ and η.
Adjusting the bias of the output is useful to make μ and η possess
the fixed initial value. At the t = L moment, the average fidelity is
calculated according to the existing parameters to judge whether it is
good enough to end the training.

for the next variation. Here, the learning rates l (a)
W , l (b)

B , and
l (c)
φ are the adjustable parameters, depending on the impact

of the corresponding parameters on the average fidelity F (t ).
We calculate the final-state average fidelity F corresponding
to the current parameters to judge whether the neural network
has been well trained. The process of the above operations
is defined as one variational process. After performing the
variational processes NVP times, we consider the training to be
complete when F approaches 1 with high precision. Note that
the neural-network ansatz for the machine-learning-inspired
method allows us to avoid solving Eq. (19), which has been
assumed to be automatically met when the final-state average
fidelity tends to unity. In this case, it is inevitable that we
should verify whether Eq. (19) is valid or not according to
the specific form of μ and η.

IV. NUMERICAL RESULTS AND DISCUSSION OF
SINGLE-QUBIT GATES

The Gottesman-Knill theorem [86] tells us that a circuit
using only Clifford gates and Pauli measurements [20] is
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FIG. 3. The training results of the T gate. The final-state average
fidelity F (red solid line) and θ (blue dash-dot line) change with the
number of variational processes NVP.

insufficient for the universal quantum computation. T gate[
1 0
0 eiπ/4

]
(27)

is the most natural and easiest single-qubit non-Clifford gate,
which supplements the set of Clifford gates to achieve uni-
versal quantum computation [87,88]. The implementation of
the T gate in the trigonometric-function-based protocol is not
perfect. To realize the T gate, we should make the off-diagonal
elements of the evolution U (T, 0) in Eq. (18) vanish. Thus,
we set μ0 = 0. In this case, U (T, 0) has nothing to do with
η0. We choose η0 = 0 for simplicity. For the diagonal el-
ements, it is readily yielded that 2kπ − 2θ = π/4, namely,
θ = kπ − π/8, where k is an arbitrary integer.

In the neural network, there are six hidden units. μ and
η use half of the hidden units, respectively, as shown in
Fig. 2. We pretrain the neural network according to the
trigonometric-function-based protocol to obtain the initial
parameters. Take a time series with n = 1000 data points
evenly spaced between the time duration t = 0 and L. Then,
we set l (2)

W = l (4)
W = 10−4, l (a)

W = l (b)
B = l (c)

φ = 10−5, a = 1, 3,
b= 1, 3, c = 1, 2 for the first 1240 iterations of variational
processes, and l (2)

W = l (4)
W = 10−5, l (a)

W = l (b)
B = l (c)

φ = 10−6,
a = 1, 3, b = 1, 3, c = 1, 2 for the last 1890 iterations of
variational processes. The learning rates of W (2) and W (4)

are ten times more than those of other parameters, because
the impact of W (2) and W (4) on the average fidelity F (t ) is
much larger than other parameters. In the NGQC+, the am-
plitude of coherent states is |α| = 0.5, the Kerr nonlinearity is
K = 2π × 12.5 MHz, the energy gap is Egap = 4Kα2 =
78.5 MHz [83], and the total interaction time is T = 1 μs. For
simplicity, we refer to our scheme as the machine-learning-
inspired protocol.

The training results of the T gate through the code in
Ref. [89] are shown in Fig. 3. The final-state average fidelity
is 0.9999. According to Eq. (19), we get θ = 2.7332, and the
error from the theoretical value (θ = 7π/8) is 0.0156. It can
be seen that the trends of the final-state average fidelity and
θ are different. During the initial several hundred iterations
of the variational processes, the final-state average fidelity
is moderately high, with the corresponding θ value already

FIG. 4. The comparison between the initial and the final forms
of (a) μ and (c) η. The initial forms take trigonometric functions,
and the final forms are the outputs of the neural network. The
first derivatives with respect to the inputs of the neural network
(b) dμ/dτ (1) and (d) dη/dτ (2) are also compared.

nearing another ideal value of −π/8. The final-state average
fidelity will approach unity and simultaneously the actual
value of θ converges to the ideal value as the variational
iterations progress. More importantly, Fig. 3 illustrates the
advantage of employing unsupervised learning in this paper.
Unsupervised learning does not rely on a predefined set of
labeled data for guidance, unlike supervised learning. Instead,
it relies solely on gradients for learning, without the notion
of right or wrong during the initial stages. As a result, it
may initially go in the wrong direction. However, with proper
initialization, it can eventually find the correct direction for
learning. One can infer that the average fidelity is superior
to the imposed constraint of θ in Eq. (19). Thus, it is wise
to choose the average fidelity instead of θ as the objective
function.

As such, we show the comparison between the initial and
final points of μ(t ) and η(t ) in Figs. 4(a) and 4(c). The initial
forms take trigonometric functions, which are the outcomes of
pretraining the neural network. The final forms are obtained
by the outputs of the neural network. One finds that the final
form has a clear deviation in the amplitude and the structure
symmetry from the initial form after the entire training of
the neural network. The final forms are no longer simple
trigonometric functions, which can be clearly revealed by the
derivatives of μ(t ) with respect to τ (1) and η(t ) with respect
to τ (2) shown in Figs. 4(b) and 4(d). The introduction of the
neural network can broaden the model space, in which the
control parameters can take more extensive and feasible trial
forms.

To get more insights into the behaviors of μ(t ) and η(t )
at the initial and final points of the training, we plot the
trajectories of the eigenstates |φ±(t )〉 on the Bloch sphere in
Fig. 5:

�r±(t ) =
∑

k=x,y,z

Tr[|φ±〉〈φ±|σk]�ek, (28)
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FIG. 5. Map of the changes of μ and η into the changes of
the evolution path of the eigenstates |φ±(t )〉 on the Bloch sphere.
The blue line is the evolution paths of |φ+(t )〉. The red line is the
evolution path of |φ−(t )〉. |C±〉 are the initial states of the evolution
of |φ±(t )〉. (a) The evolution path corresponds to the initial μ and η.
(b) The evolution path corresponds to the final μ and η.

where �ek is the unit vector along the k axis. The differences
between the initial and final μ(t ) and η(t ) are magnified on
the Bloch sphere. It can be seen that the evolution path varies a
lot during the entire training. Thus, the neural-network ansatz
shows unique advantages in quantum optimal control, which
can obtain a more complex ansatz for possible control param-
eters.

Noise robustness

Next, we evaluate the performance of our scheme under
different noisy circumstances. First, we consider the system-
atic noise effect, such as instrument defects and imperfection
operations. Systematic errors can cause the average value of
measured data to deviate significantly from the ideal value.
The influence of systematic errors may be present in the
parameters of the control Hamiltonian that can be written as
e

k = (1 + δk )k , k = x, y, z, where δk is the error coefficient.
We plot the final-state average fidelity F of the T gate with
respect to the error coefficient δk in Fig. 6. We can find
that when δx ∈ [−0.1, 0.1] (δy ∈ [−0.1, 0.1]), the final-state
average fidelity F remains higher than 0.9986 (0.9984), while
we can only obtain F � 0.9611 when δz ∈ [−0.1, 0.1]. It is
obvious that the noise in the z-axis direction will cause more
catastrophic decline in the final-state average fidelity than
that in x and y axes. This effect can be understood because
according to Eq. (3) the fluctuation in z will cause persis-
tent adverse effects on the dynamic phase. The unidirectional
offset of z will make the dynamic phase not vanish after a
cycle, and then spoils the conditions of NGQC+.

We also consider the random noise effect, in which the
amplitude, waveform, and phase are random at any time. Each
random noise is still subject to certain statistical distribution.
If the amplitude distribution of a noise follows Gaussian
distribution and its power spectral density is uniformly dis-
tributed, this noise is called additive white Gaussian noise,
AG[k (t ), SNR] is one of the typical random noise models.

FIG. 6. The variation of final-state average fidelity F of the T

gate with respect to the systematic error coefficient δk , k = x, y, z.

Therefore, we take AG[k (t ), SNR] as an example to ana-
lyze the robustness of our method to random processes and
compare the robustness of the machine-learning-inspired and
trigonometric-function based protocols. We add it to control
parameters as


q
k (t ) = k (t ) + AG[k (t ), SNR], (29)

where q represents each random generator AG[k (t ), SNR].
It is a function that generates AG[k (t ), SNR] for
the original signal k (t ) with signal-to-noise ratio
SNR = 10 log10(Psignal/Pnoise), and Psignal and Pnoise are the
power of signal and noise, respectively. Due to the random
generation of AG[k (t ), SNR], we perform a large amount
of numerical simulations to estimate the random noise effect.
The logarithms of the deviations δF of the mean values of
final-state average fidelities of the T gate from the ideal value
of 50p (p = 1, 2, 3, . . .) iterations of numerical simulations
are plotted in Fig. 7 with SNR = 10. When p tends to infinity,
the simulation consequence is pretty close to the actual impact
of the random noise. The ideal value of the final-state average

FIG. 7. The logarithms of the deviations δF of the mean values
of final-state average fidelities of the T gate from the ideal value
with respect to simulation times R under the random noise effect
with SNR = 10 in the machine-learning-inspired (purple solid line)
and trigonometric-function based (blue dash-dot line) protocols. The
dotted lines represent the convergence values of the two protocols.
Here, R = 50p, (p = 1, 2, 3, . . .).
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TABLE I. Parameters and corresponding final-state average fi-
delities for the implementation of single-qubit gates. The rightmost
three columns are to verify whether Eq. (19) is satisfied. We calculate
θactual with the output of the neural network, and the relative error
between θactual and θideal.

Gate μ0 η0 Fidelity θactual θideal Error

T 0 0 0.9999 2.7332 7π/8 0.0157
X 3π/2 π/2 0.9999 1.5459 π/2 0.0249
H π/4 π/2 0.9997 1.5738 π/2 0.0030
T† 0 0 0.9999 0.3569 π/8 0.0338
Rx(π/4) π/2 −π/2 0.9992 3.6019 9π/8 0.0676

fidelity in the machine-learning-inspired protocol is 0.9999,
while that in the trigonometric-function-based protocol is
0.8894. It is observed that our scheme performs significantly
better in the presence of random noise. Compared to the
trigonometric-function-based protocol, the mean value of
the final-state average fidelities under random noise in the
machine-learning-inspired scheme exhibits fewer fluctuations
with respect to p and approaches 1–7.84 × 10−4, with
a smaller deviation from the ideal value as p becomes
sufficiently large. It is thus acknowledged that our scheme
is robust against the random noise, and enhancing the
performance of the gate can improve the robustness to a
certain degree.

As the system cannot be completely isolated from the en-
vironment, the inevitable interactions between the system and
the environment will also lead to the decoherence. We mainly
consider two dissipation factors, such as a single-photon loss
and dephasing [47]. The evolution of the system can be de-
scribed by the Lindblad master equation [47,90]:

ρ̇(t ) = −i[Hcat + Hc(t ), ρ(t )]

+�L[a]ρ(t ) + �φL[a†a]ρ(t ). (30)

Here, � and �φ are the dissipation coefficients of a single-
photon loss and dephasing, respectively, and the Lindblad
superoperator L acting on arbitrary operator o produces
L[o]ρ(t ) = oρ(t )o† − o†oρ(t )/2 − ρ(t )o†o/2. In the pres-
ence of decoherence, the evolution is no more unitary. We
can no longer use Eq. (25) to measure the performance of the
quantum gates. Therefore, we take the evolution with initial
state |C+〉 as an example and evaluate the fidelity of the T gate
as

FT = 〈
C+|U †

T ρ(T )UT |C+
〉
. (31)

In our numerical simulation, we set � = �φ = 0.05 MHz, and
we can obtain the fidelity of the T gate as FT = 0.9803. This
means the leakage to unwanted levels outside the subspace is
still very small, and our scheme is insensitive to decoherence.

The implementations of the NOT gate (X gate), Hadamard
gate (H gate), T† gate, and Rx(π/4) gate are listed in Table I.
Here, Rx(φ) = exp(− i

2φσx ) is a rotation gate around the x
axis [21]. It can be seen that the machine-learning-inspired
protocol excels for almost all kinds of single-qubit gates. Es-
pecially, our scheme shows superiority in phase gates, whose
average fidelities can reach 0.9999, much higher than those in
the trigonometric-function-based protocol. The performance

FIG. 8. The Toffoli gate (T) is composed of the CNOT gate, H gate,
T gate (π/8), and T†(−π/8) gate.

of the X gate in the two protocols is equally remarkable.
Through the neural network, we can implement the rotation
gates which are unrealizable in the trigonometric-function-
based protocol. For the H gate, the obtained results are not
very accurate, and more sophisticated neural networks are
awaited. Furthermore, we realize the modified controlled-NOT

(CNOT) gate with the final-state average fidelity 0.9996. Here,
UCNOT = |C+〉〈C+| ⊗ I + |C−〉〈C−| ⊗ (−iσx ) and I is the unit
matrix acting on the cat-state subspace. The execution of a
two-qubit controlled gate is shown in the Appendix. It is clear
that for each gate, the higher the final-state average fidelity is,
the smaller the error is.

To conclude, through the introduction of the neural net-
work, we can lift the restrictions imposed on θ to a certain
extent. We can realize arbitrary θ by adjusting the initial
parameters and the structure of the neural network.

V. REALIZATION OF THE TOFFOLI GATE

In the trigonometric-function-based protocol, it is scarcely
possible to execute the single-shot multiqubit gates, and the
final-state average fidelity of synthetic multiqubit gates by
combining high-fidelity single- and two-qubit gates will be
rather low. The Toffoli gate [20]⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is composed of the CNOT gate, H gate, T gate, and T† gate,
as is shown in Fig. 8. The final-state average fidelity of
Toffoli gate is 0.5169, when all gates in Fig. 8 are realized
in the trigonometric-function-based protocol, and the main
limitation is due to the bad performance of the T gate. In
the machine-learning-inspired protocol, we can realize higher-
fidelity multiqubit gates in the cascaded mode. The finally
modified Toffoli gate can be synthesized by H gate and CNOT

gate implemented in the trigonometric-function-based proto-
col and T gate and T† gate shown in Table I, and the final-state
average fidelity of such a three-qubit entangling gate increases
to 0.9976, with improved performance of the T and T† gates.
However, we find that, although the final-state average fideli-
ties of T and T† gates are up to 0.9999, it is still challenging to
synthesize a high-fidelity multiqubit gate, which is seriously
hindered by the lowest-fidelity quantum gates. When all gates
in Fig. 8 are realized in the machine-learning-inspired pro-
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tocol, the final-state average fidelity can further increase to
0.9981. Thus, our scheme can provide a feasible routine to
realize multiqubit gates in bosonic systems.

VI. CONCLUSION AND OUTLOOK

In this paper, we present a machine-learning-inspired
method of optimizing the performance of the imperfect
gates with cat-state NGQC+ via reverse engineering. By
utilizing periodic feature enhancement and corresponding bi-
ases, we can obtain a periodic function as an output of a
neural-network ansatz with fixed initial values. The machine-
learning-inspired protocol allows us to not have to solve the
difficult nonlinear equation [Eq. (19)], which can be auto-
matically satisfied when the final-state average fidelity tends
to be 1. Through analyzing the variational forms of the con-
trol parameters and comparing with the simple trigonometric
functions, we prove that the neural network can greatly ex-
pand the model space and realize a more complex ansatz for
possible control parameters. We find the final-state average
fidelities of the phase gates and NOT gate can reach 0.9999,
and those of the Hadamard gate and CNOT gate can be up to
0.9996. In order to improve the performance of the Hadamard
gate, we can expand the scale of the neural network by in-
creasing the number of hidden units and hidden layers. We
can also adjust the periodic relationship between μ and η and
the initial parameters in the hope of obtaining better results.

An alternative approach in the neural network is to use
multiobjective optimization. Meanwhile, we show that we
developed an approach for implementing high-fidelity rota-
tion gates that are challenging to realize using trigonometric
function-based protocol. Our scheme demonstrates robustness
against various types of decoherence effects. Additionally, we
observe that once the average fidelities of single- and two-
qubit gates surpass a certain threshold the average fidelities
of the synthetic gate may not be significantly compromised.
Combining high-fidelity single- and two-qubit gates, we can
implement the Toffoli gate with high fidelity, which cannot
be simply realized in trigonometric-function-based protocol.
In order to further improve the performance of the synthetic
gate, we can use the average fidelity of the synthetic gate to
guide the variational learning of the neural network, instead
of only optimizing the single and two-qubit gates, and the
improved scheme is left for a future study. We thus provide
an alternative method of designing the control parameters.
The machine-learning-inspired scheme paves the way for
the optimization of continuous and periodic parameters in the
quantum control, and can be generalized to more intricate
neural networks featuring a substantial number of optimizable
parameters, targeting increasingly complex quantum systems
[66–69].
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APPENDIX: REALIZATION OF THE TWO-QUBIT
CONTROLLED GATE

The Hamiltonian of two cavity modes driven by two Kerr-
nonlinear resonators can be described as

Hcat,2 =
∑

n=1,2

[ − Ka†2
n a2

n + ε2
(
e2iξ a†2

n + e−2iξ a2
n

)]
. (A1)

Here, an (a†
n) is the annihilation (creation) operator of the

nth mode. The product states of two-mode coherent states
{|α〉1 ⊗ |α〉2}, with α = ±√

ε2/K exp(iξ ), are fourfold de-
generate eigenstates of Hcat2. {|C±〉1 ⊗ |C±〉2} can span the
four-dimensional subspace S2 to implement the two-qubit
gates. The control Hamiltonian [90–92] is given by

Hc2(t ) = χ12(t )a†
1a1a†

2a2 + a†
1a1[λ∗(t )a2 + λ(t )a†

2]

+ ε∗(t )a2 + ε(t )a†
2 +

∑
n=1,2

χn(t )a†
nan. (A2)

Here, χ12(t ) is the cross-Kerr parameter, λ(t ) is the lon-
gitudinal interaction strength between modes 1 and 2, ε(t )
is the strength of the extra driving of mode 2, and χn

(n = 1, 2) is the detuning of the nth mode. Similarly, it
is assumed that the parameters of Hc2 should be much
smaller than the energy gaps between cat states and other
eigenstates of Hcat,2. To realize the two-qubit controlled
gate U2(T, 0) = |C+〉1〈C+| ⊗ I2 + |C−〉1〈C−| ⊗ Us(T, 0), the
parameters of Hc2 are set as follows:

χ12(t ) = −2zN 2
+N 2

−
| α |4 (N 2+ − N 2−)2

,

χ1(t ) = −| α |2 (N 2
+ + N 2

−)

2N+N−
χ12(t ),

χ2(t ) = − | α |2 N−
N+

χ12(t ),

Re[λ(t)] = (N+N−)
3
2

4(N 2+ − N 2−) | α |3 (x cos ξ − ye2|α|2 sin ξ ),

Im[λ(t)] = (N+N−)
3
2

4(N 2+ − N 2−) | α |3 (x sin ξ + ye2|α|2 cos ξ ),

Re[ε(t)] = − | α |2 N−
N+

Re[λ(t)],

Im[ε(t)] = − | α |2 N−
N+

Im[λ(t)], (A3)

which are slightly different from the parameters chosen in
Ref. [60]. The optimization of two-qubit controlled gates in
the neural networks is similar to that of single-qubit gates.
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