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Microwave-driven iSWAP-like gate for fixed-frequency superconducting transmon qutrits
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High-fidelity two-qubit gates are crucial for the scalability of superconducting quantum processors. While
quantum information processing is typically based on qubits, qutrits (or qudits) provide a larger state space
for quantum information storage and processing. In this study, we analyze a high-fidelity two-qutrit gate using
microwave pulses on fixed-frequency superconducting transmon qutrits and show that a high-fidelity imaginary
swap-like (iSWAP-like) gate can be achieved. Perturbation theory is employed to derive an effective interaction
Hamiltonian, allowing us to estimate the gate time for the two-qutrit system. Moreover, by employing a
microwave-activation scheme, we can realize a high-fidelity iSWAP-like gate on different excited states of the
two qutrits. Our numerical results indicate that the proposed scheme can be readily extended to multiqutrit
scenarios. Additionally, we investigate the impact of microwave pulse ramp time and qutrit relaxation on gate
fidelity. The results demonstrate that, with a longer ramp time and the currently accessible qutrit relaxation time,
the gate error remains sufficiently small. This proposed gate scheme enables the implementation of qutrit-qutrit
entangling gates, providing a promising approach to realizing superconducting quantum computation.
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I. INTRODUCTION

To implement various quantum information tasks and
achieve universal quantum computing [1,2], precise control
of quantum systems is essential. Among the various quantum
physical platforms, superconducting quantum circuit systems
are considered one of the most promising candidates to real-
ize quantum computers [2]. This promise was demonstrated
by the success of a 53-qubit programmable superconducting
quantum processor [3], preparation of 20-qubit entanglement
[4], and simulation of quantum walk on a 62-qubit supercon-
ducting quantum information processor [5]. Quantum gates
are crucial to the above advancements in quantum infor-
mation processors, and any intricate quantum algorithm can
be broken down into single-qubit, two-qubit, or multi-qubit
operations [6]. In particular, a programmable or functional
quantum information processor requires high-fidelity single-
and two-qubit entangling gates such as controlled-Z (CZ)
and iSWAP gates. However, realizing high-fidelity two-qubit
entangling gates, which are essential for the realization of
fault-tolerant quantum computing and quantum error correc-
tion, is still challenging.

In the past few decades, several schemes have been pro-
posed to achieve high-fidelity quantum gate operations in
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superconducting quantum systems [7–12]. With significant
progress made in the number and quality of superconducting
qubits [13,14], quantum gate operations have been experimen-
tally demonstrated with good performance. However, most
of the gate schemes presented focused on the limitations of
the lowest two states defined as a qubit. In contrast, quan-
tum systems naturally possess multiple accessible quantum
states that will improve the efficiency of quantum computing.
For instance, qutrits (or qudits) can offer a three (or larger)
quantum state space to store and process quantum informa-
tion. Quantum information processors based on these larger
state-space systems have shown significant advantages over
qubit-based systems in quantum error correction [15–18] and
quantum cryptography [19,20]. The available qudit-based op-
erations can achieve higher encoding capabilities [21–26] and
improve qubit readout [27,28]. Additionally, quantum control
of high-dimensional states has been extensively exploited in
superconducting transmon qutrits, such as in metrological
algorithms [29], three-qutrit entanglement states [30], Tof-
foli gates [31], and more. In particular, the use of qutrit
gates [32–34] could enhance the efficiency of circuit decom-
positions [35], and thus could pave an alternative way to
extend quantum computing to three- or higher-level quantum
systems.

In this work, we present a theoretical exploration of how
to realize a two-qutrit entanglement gate based on a su-
perconducting quantum system. The system consists of two
fixed-frequency superconducting transmon qutrits coupled
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to a common superconducting resonator. In contrast to
frequency-tunable gate schemes, which require careful tuning
of qubit frequencies to mitigate undesired dispersive interac-
tions [36–43]. Here, we present a theoretical gate scheme for
the implementation of a two-qutrit entanglement operation
solely by microwave controls. This approach can poten-
tially address the problems of frequency of crowding in the
frequency-tunable gate schemes.

By combining virtual photon exchange with the resonator
and microwave drives, an effective two qutrits interaction can
be achieved. Therefore, depending on the drive parameters,
the interaction can be used to implement two-qutrit opera-
tions. In this study, we focus on the two-qutrit iSWAP-like
gate, defined in the second-excited states {|00〉, |20〉, |02〉,
|22〉} of the two-qutrit with the swap angle θ = π/2 and the
conditional phase φ of state |22〉. With the defined basis states,
the iSWAP-like gate can be written as [39]

iSWAPlike =

⎡⎢⎢⎣
1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 e−iφ

⎤⎥⎥⎦. (1)

Our proposal demonstrates a high-fidelity iSWAP-like gate
by controlling microwave pulse parameters. To gain further
insight into the gate operation, we performed a perturbative
analysis and derived an effective Hamiltonian for the two
transmon qutrits system. We show that a two-qutrit iSWAP-
like gate can be completed in 280 ns (including the pulse
ramp time) with an average fidelity exceeding 99.87%. By
prolonging the pulse ramp time, an intrinsic gate fidelity of
99.9% (or higher) can be achieved in 310 ns. Additionally,
logical operations on different excited states of qutrits, such
as population swapping between states |20〉 and |01〉, may
potentially simplify intricate quantum algorithms. We further
demonstrate that the high-fidelity iSWAP-like gate defined in
different excited states |20〉 and |01〉 of the two qutrits can be
implemented by applying a single microwave pulse to activate
the qutrit.

The paper is organized as follows. In Sec. II, we describe
the superconducting quantum model and present a simplified
analytic treatment. In Sec. III, we give a detailed discussion of
how to realize the iSWAP-like gate and present the numerical
results of the system dynamics during the gate operation. In
Sec. IV, we analyze the case of this gate scheme for different
excited states of the two transmon qutrits. In Sec. V, we
discuss the average gate fidelity versus different ramp times of
microwave pulses and the reduction due to relaxation. Finally,
we conclude in Sec. VI. Furthermore, in Appendix A, we give
out the analytical effective coupling strength through the per-
turbation theory. In Appendix B, we explore the possibilities
of an arbitrary two-qutrit iSWAP-like gate by expanding our
investigation to encompass the multi-qutrit scenario. Addi-
tionally, Appendix C provides a comprehensive discussion on
leakage errors for the two-qutrit gate operation.

II. MODEL OF SUPERCONDUCTING
TRANSMON QUTRITS

In this section, we will introduce the architecture of the
superconducting quantum circuit. The system, as shown in

Ω ΩΩ

FIG. 1. (a) The proposed superconducting quantum circuit con-
sists of two superconducting qutrits, SQj , which are capacitively
coupled to a superconducting resonator. The ladder-type levels
of qutrit- j comprise four states and the computational states are
defined in the basis states |0〉, |2〉 of qutrits. The SQj transition
frequencies ω j (the transition frequency of the lowest two energy
levels), the anharmonicity α j , and the qutrit-resonator coupling
strength gj , are fixed. (b) The energy-level diagram of the sys-
tem shows that microwave pulses �d

1 (t ) and �d
2 (t ), performed on

the qutrits could induce effective interactions |200〉 ↔ |001〉 and
|020〉 ↔ |001〉, respectively. The black-dashed box on the left (right)
illustrates that the effective interaction strength J1 (J2) between the
states |200〉 ↔ |001〉 (|020〉 ↔ |001〉) could be obtained through
two evolution paths: 1© |200〉 ↔ |101〉 ↔ |001〉 (|020〉 ↔ |011〉 ↔
|001〉) indicated by solid double-arrows and 2© |200〉 ↔ |100〉 ↔
|001〉 (|020〉 ↔ |010〉 ↔ |001〉) presented by dotted double-arrows.
By exchanging the virtual photon with the resonator, one can realize
effective interactions between |200〉 and |020〉 with the strength J .

Fig. 1(a), consists of two fixed-frequency superconducting
transmon qutrits coupled to a superconducting resonator (SR).
Due to the larger state space of the superconducting qutrits,
the higher-energy levels have a nonnegligible effect, so the
closest higher-energy state |3〉 is also considered in the fol-
lowing discussions. As depicted in Fig. 1(a), both qutrits are
truncated to four levels (i.e., |0〉, |1〉, |2〉, and |3〉), the qutrits
can be modeled as a four-level anharmonic oscillator with
a negative anharmonicity. The resonator, on the other hand,
could be considered a simple four-level harmonic oscillator.
The transmon qutrits are capacitively coupled to the most
relevant single mode of the resonator, and the system can be
modeled by the Hamiltonian (hereafter h̄ = 1)

Hs =
∑

j

(
w jq

†
j q j + α j

2
q†

j q
†
j q jq j

)
+ wrc†c

+
∑

j

g j (q
†
j + q j )(c

† + c), (2)

where subscript j = 1, 2 represents the transmon qutrits
labeled as SQj with bare frequency ω j (the |0〉 → |1〉 tran-
sition frequency of qutrit- j) and anharmonicity α j . The q j
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(q†
j ) is the associated annihilation (creation) operator for SQj .

The c (c†) denotes the annihilation (creation) operator for
the resonator mode with a bare frequency of wr , and g j is the
coupling strength between SQj and SR. Throughout the paper,
we consider the full system state |SQ1, SQ2, SR〉, which cor-
responds to the states of qutrit-1, qutrit-2, and the resonator,
respectively. When confined to the qutrit subspace, we use the
notation |SQ1, SQ2〉.

For the fixed frequencies of the qutrits and the coupling
strength between the qutrits and resonator, perfect popula-
tion swaps between the specific states of the qutrits can be
challenging to achieve due to the complex system dynamics.
However, by exchanging the virtual photon with the resonator
which acts as an intermediary bus, an effective interaction
between the two qubits can be obtained [44–46]. In this study,
to realize the effective interaction between the second excited
states of the two qutrits, we apply two external microwave
pulses �d

1 (t ) and �d
2 (t ) to activate the qutrits SQ1 and SQ2,

respectively. The Hamiltonian for the microwave-activated
part is described by

Hd =
∑

j

� jcos
(
ωd

j t
)
(q†

j + q j ). (3)

The pulse amplitude is denoted as � j , while the pulse fre-
quency is represented by ωd

j . For simplicity, the initial phase
of the pulse is set to 0. When the pulse frequencies are set as
ωd

1 ≈ 2ω1 + α1 − ωr and ωd
2 ≈ 2ω2 + α2 − ωr , we can

obtain the effective interactions between the states |200〉 and
|020〉, as depicted in Fig. 1(b). There exist 12 evolution paths
connecting the states |200〉 and |020〉, facilitated by interme-
diate states |001〉, |111〉, and |110〉 (refer to Appendix A for a
comprehensive elucidation of these paths) [47].

Here, for example, we consider the contribution associated
with the intermediate state |001〉 to illustrate the main physics
behind the effective coupling between states |200〉 and |020〉.
As illustrated in the left black-dashed box of Fig. 1(b), when
the microwave pulse �d

1 (t ) is driven on SQ1, it activates
the effective interaction |200〉 ↔ |001〉 through two evolution
paths: |200〉 ↔ |101〉 ↔ |001〉 and |200〉 ↔ |100〉 ↔ |001〉.
Assuming that the qutrit interacts with the resonator and mi-
crowave pulse in the dispersive regime [44–46], where the
qutrit-resonator and qutrit-pulse detunings are far larger than
their coupling strength, the effective coupling strength J1 be-
tween |200〉 and |001〉 for the above two evolution paths can
be obtained according to the perturbation theory [47–49].

Likewise, by applying the microwave pulse �d
2 (t ) on

SQ2, we can also derive the effective interaction strength
J2 between the |020〉 ↔ |001〉 interaction via two evolution
paths, namely, |020〉 ↔ |011〉 ↔ |001〉 and |020〉 ↔ |010〉 ↔
|001〉, as illustrated in the right black-dotted box in Fig. 1(b).
The effective coupling strength Jj ( j = 1, 2) can be approxi-
mately expressed as [48]

Jj =
√

2g j� j

4

(
1

ωd
j − ω j

− 1

ωr − (ω j + α j )

)

+
√

2g j� j

4

(
1

ωr − ω j
− 1

ωd
j − (ω j + α j )

)
. (4)

In Eq. (4), the first line corresponds to the evolution path 1©
represented by the solid double-arrows, while the second line
corresponds to the evolution path 2© denoted by the dotted
double-arrows, as shown in the left and right black-dashed
box of Fig. 1(b). As a result, the above system can be reduced
to two effective two-level systems that interact with each
other through the resonator. If we assume that the reduced
two-level qutrit is still detuned from the resonator, such that
|2ω j + α j − 2ωr | � Jj , we can exchange virtual photons
with the resonator to realize effective interactions between
the states |200〉 and |020〉. Under the dispersive condition, the
resonator mode can be eliminated adiabatically [14], giving
rise to the following effective Hamiltonian:

HI = J001(|200〉〈020| + |020〉〈200|), (5)

with the coupling strength J001 = J1J2
2 ( 1

�′
1
+ 1

�′
2
). The de-

tuning term in the computational basis is given by �′
j ≈

2ω j + α j − ωr − ωd
j , taking into account the detuning of

both qutrits from the resonator and the driven pulse. As in
Appendix A, by considering all these evolution paths and
employing the fourth-order perturbation theory, the effective
coupling strength, denoted as J , for states |200〉, |020〉 is
obtained. Then, the gate speed for the iSWAP-like gate can be
estimated.

Moreover, the intrinsic properties of the quantum systems
also play a crucial role in achieving high-fidelity quantum gate
operations. For instance, weak anharmonicity in transmons
can induce a static ZZ coupling [42], leading to additional
phases that can affect gate fidelity. Therefore, it is imper-
ative to minimize this residual interaction. To this end, we
set the anharmonicities of transmons to α j/2π = −300 MHz,
the resonator frequency ωr/2π = 5.3 GHz, and the coupling
strength g j/2π = 80 MHz. Next, we investigate the ZZ cou-
pling strength in the first and second excited states of the
qutrits as a function of their frequencies, which are given by
the following expressions [42]

ζ1 = (E11 − E01) − (E10 − E00),

ζ2 = (E22 − E02) − (E20 − E00). (6)

Here, ζ1 and ζ2 represent the first and second excited states of
the system, respectively. The Emn denotes the eigenenergy of
the Hamiltonian Hs for the system, with the eigenstate |m̃n〉
confined to the qutrit subspace that is adiabatically connected
to the bare state |mn0〉 [50].

We numerically calculate the ZZ coupling strength as
a function of the transmon frequency ω j and present the
results in Fig. 2. For the first excited state, the static ZZ
coupling strength can be suppressed to less than 50 kHz,
as shown in Fig. 2(a). Similarly, the ZZ coupling strength
in the second excited state can be suppressed to as small
as 50 kHz, as shown in Fig. 2(b). We can observe from
Fig. 2 that chosen special values of the qutrit frequencies
can help minimize the residual ZZ interaction. However, due
to the original fixed coupling strength, the qutrit frequency
parameters cannot be arbitrarily chosen to obtain an affable
gate time. For example, selecting the frequencies ω1/2π =
4.5 GHz and ω2/2π = 6.5 GHz, which induce ZZ interaction
−16.2 kHz (−52.4 kHz) in the first (second) excited state,
results in a minimum iSWAP-like gate time of approximately
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FIG. 2. Numerical results show the ZZ coupling strength in the
first and second excited states. Panel (a) displays the log10|ζ1| cou-
pling strength in the first-excited states as a function of the two-qutrit
frequencies ω1 and ω2. Panel (b) shows the ZZ coupling log10|ζ2|
versus ω1 and ω2 in the second-excited states of the two-qutrit. The
anharmonicities α j/2π are set to −300 MHz, the coupling strengths
gj/2π to 80 MHz, and the resonator frequency ωr/2π to 5.3 GHz.
The magenta square in both (a) and (b) represents the selected fre-
quencies of the two-qutrit discussed in Sec. III.

∼300 ns using the presented method (details discussed in
Sec. III). To reduce the gate operation time, we increase
the coupling strength to g2/2π = 120 MHz, resulting in a
gate time of ∼220 ns. However, this increases the ZZ in-
teraction strength to −36.7 kHz (−114.7 kHz) in the first
(second) excited state. Hence, there is a trade-off between
the gate time and additional phases induced by the system
parameters. According to the practical parameters used in
the literature [13,25,48], we choose the values of qutrits fre-
quencies ω1/2π = 4.5 GHz and ω2/2π = 6.1 GHz, shown by
the magenta-square in Fig. 2, to make the system work in
the dispersive regime and suppress the effect of ZZ coupling
strength as much as possible. In the following, with system
parameters presented in Table I, we discuss how to realize the
two-qutrit iSWAP-like gate.

III. REALIZATION OF iSWAP-LIKE GATE

The iSWAP-like gate operation described in Eq. (1) enables
high-fidelity population swapping between the second excited
states of the two qutrits. We consider that the system pa-
rameters are fixed once the superconducting transmon qutrits
and resonator are fabricated. To prevent resonant interactions
between the qutrits and the resonator, it is necessary to in-
crease the detuning �′

j between them. In our study, we chose
to set this detuning to approximately 40 MHz. Given the
fixed system parameters values, we consider the microwave
pulses defined by Eq. (3) with a constant pulse amplitude
� j and assume that the frequency ωd

1 of the pulse applied
to SQ1 is fixed for simplicity. To achieve an accurate iSWAP-
like gate between the two qutrits, we need to determine the
precise value of the frequency wd

2 for the pulse applied to

TABLE I. System parameters for the two-qutrit iSWAP-like gate.

Bare frequency (GHz) Anharmonicity (MHz) Coupling (MHz)

SQ1 ω1/2π = 4.5 α1/2π = −300 g1/2π = 80
SR ωr/2π = 5.3 αc/2π = 0 g2/2π = 80
SQ2 ω2/2π = 6.1 α2/2π = −300

FIG. 3. The populations of the initial state |200〉 versus pulse
frequency ωd

2 and evolution time t under the full Hamiltonian (Hs +
Hd ) are shown in (a), while (b) displays the populations for the swap
state |020〉 after the evolution. The applied microwave-driven pulse
is described in Eq. (3), with a frequency of ωd

1 /2π � 3.348 GHz,
�0

1(2)/2π = 200 MHz, and �′
1(2)/2π = 40 MHz. The vertical cuts

in (a) and (b) represent the populations of states |200〉 and |020〉
with the chosen value of pulse frequency ωd

2 /2π � 6.587 GHz. The
system parameters are listed in Table I.

SQ2. In the following, we use the estimated frequency value
ωd

2 ≈ 2ω2 + α2 − ωr − �′
2 as a reference to obtain the good

microwave pulse frequency value.
To determine the precise value of the pulse frequency ωd

2
required for the iswap-like gate operation, we perform numer-
ical calculations of the populations P200 and P020 (correspond-
ing to the states |200〉 and |020〉, respectively) as a function of
ωd

2 and time t with the full system initialized in state |200〉,
microwave pulse amplitude �1(2)/2π = 200 MHz, driving
frequency ωd

1 /2π of approximately 3.348 GHz, and qutrits-
resonator detuning �′

1(2)/2π = 40 MHz. As shown in Fig. 3,
by combining the valley and peak populations of |200〉 and
|020〉, we find that a proper swap operation is achievable
at a specific value of the pulse frequency ωd

2 . We select
the frequency ωd

2/2π � 6.587 GHz, indicated by the vertical
magenta-dashed lines in Fig. 3, which is close to the estimated
value of 6.585 GHz discussed earlier. Moreover, one can find
that an almost completed population swap between states
|200〉 and |020〉 can be successfully executed within ∼200 ns,
which agrees well with an estimation based on the effective
coupling strength of J/2π ≈ 1.217 MHz, as deduced from
Eq. (A4).

In the following, we analyze the dynamics using the op-
timal pulse frequency ωd

2 /2π � 6.587 GHz. With the initial
state |200〉 and the microwave pulses defined in Eq. (3), we
plot the system evolution under the full Hamiltonian (Hs +
Hd ) in Fig. 4(a), which corresponds to the vertical magenta-
dashed cuts in Figs. 3(a) and 3(b). However, the plot shows
that the population swap between states |200〉 and |020〉 is not
achieved completely. This is because the applied microwave
pulses �d

1(2)(t ) defined in Eq. (3) are square pulses. To achieve
the two-qutrit iSWAP-like gate, we need to consider the mi-
crowave pulse shape with a Gaussian form

Gd
j (t ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e−(t−tr )2/(2δ2 )−e−t2

r /(2δ2 )

1−e−t2
r /(2δ2 )

, t � tr,

1, tr < t < tp − tr,
e−(t−(tp−tr ))2/(2δ2 )−e−t2

r /(2δ2 )

1−e−t2
r /(2δ2 )

, t − tr � t � tp,

0, others,

(7)
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FIG. 4. System dynamics during the gate operation and the
corresponding microwave pulses. (a) The populations of states
|200〉 and |020〉 correspond to the vertical cuts in Fig. 3, with
applied microwave pulses defined in Eq. (3) and the pulse pa-
rameters �0

1(2)/2π = 200 MHz, ωd
1 /2π � 3.348 GHz, and ωd

2 /2π �
6.587 GHz. (b) Populations of the states |200〉 and |020〉 during the
iSWAP-like gate operation, with applied pulse drivings performed
on the qutrit given in Eq. (8). These pulses have the parameters
�1(2)/2π = 200 MHz, δ = 30 ns, tr = 2.1δ, tp = 280 ns, ωd

1 /2π �
3.348 GHz, and ωd

2 /2π � 6.587 GHz. The other system parameters
are presented in Table I. Considering the pulse shape, the drive
microwaves �d

1 (t ) (red line) performed on SQ1 and �d
2 (t ) (blue line)

performed on the SQ2 are shown in the top and bottom of (c).

where the microwave pulse is shape-controllable and is con-
fined by the ramp time tr , the variance δ of the Gaussian
pulse, and the total time tp. It is worth noting that there are
subtle relationships among the pulse parameters tr , δ, and
tp. For simplicity, we assume that the ramp time is related
to the variance by tr = 2.1δ. Consequently, we redefine the
shape-controllable microwave pulse as

�d
j (t ) = � jG

d
j (t )cos

(
ωd

j t
)
. (8)

We begin by considering the Gaussian pulse with ramp-up
and ramp-down times of tr each. With the given system pa-
rameters and chosen pulse frequencies, we then investigate the
system dynamics further by varying tp for each value of δ. To
do this, we select δ = 30 ns and tg = 280 ns which is chosen
from the time region shown in Fig. 3. Using these parameters,
we investigate the dynamics during the implementation of
an iSWAP-like gate operation, as displayed in Fig. 4(b). Our
results show that by considering the pulse shape, a complete
swap can be achieved. The slower speed (larger δ with ramp
time tr = 2.1δ) can prevent leakage to the noncomputational

TABLE II. System parameters for the two-qutrit iSWAP-like gate
defined in different excited states.

Bare frequency (GHz) Anharmonicity (MHz) Coupling (MHz)

SQ1 ω1/2π = 4.9 α1/2π = −250 g1/2π = 120
SR ωr/2π = 5.3 αc/2π = 0 g2/2π = 120
SQ2 ω2/2π = 5.7 α2/2π = −240

states. The selection of δ value will be discussed in Sec. V.
Considering the pulse shape, we demonstrate the microwave
pulses �d

1 (t ) and �d
2 (t ) correspond to the top and bottom of

Fig. 4(c), respectively. This further emphasizes the importance
of the pulse shape in achieving a high-fidelity iSWAP-like gate.
Additionally, one can first fix the frequency ωd

2 and then find
the frequency value of ωd

1 following the above discussions.
Furthermore, through the presented gate scheme, we verify
that one can also find the exact parameter values of microwave
pulses to realize the high-fidelity iSWAP-like gate defined in
different excited states of the two qutrits.

IV. ANALYSIS OF THE iSWAP-LIKE GATE FOR
DIFFERENT EXCITED STATES OF THE TWO-QUTRIT

The superconducting quantum system offers optimism for
large-scale and complex quantum computing, thanks to its
ability to perform quantum operations on diverse energy lev-
els. As shown in Fig. 1, the transmon qutrits possess multiple
energy levels, and the presented scheme can also realize the
iSWAP-like gate between different excited states of the two
qutrits. For instance, we assume that the computational sub-
space is {|00〉, |20〉, |01〉, |21〉}, where the state |21〉 denotes
the SQ1 in the second excited state and SQ2 in the first excited
state. Based on the above discussions, the |20〉 → |01〉 transi-
tion can be realized by applying only one microwave pulse on
SQ1. To illustrate the generality of the gate scheme, we apply
different qutrit parameter values displayed in Table II. In this
case, a microwave pulse drive is only applied to qutrit-1.

Based on the analysis above, we begin by applying the
microwave pulse defined in Eq. (3) with the given param-
eters �1/2π = 200 MHz and �′

1(2)/2π = 40 MHz. We then
numerically calculate the populations of states |200〉 and |010〉
as a function of ωd

1 and time t , shown in Figs. 5(a) and 5(b).
By inspecting the system dynamics, one can obtain the drive
parameters for implementing an iSWAP-like gate. To investi-
gate the dynamics without considering the pulse shape, we
cut the three-dimensional Figs. 5(a) and 5(b) at the microwave
pulse frequency point ωd

1 /2π � 3.758 GHz and plotted the
change of the populations. From Fig. 5(c), we observe that
the population swap cannot be completed without considering
the pulse shape. However, by using the microwave pulse de-
fined in Eq. (8) and initializing the system in the state |200〉,
we simulate the system dynamics with the pulse frequency
value ωd

1 /2π � 3.758 GHz and the other pulse parameters
�1/2π = 200 MHz, δ = 30 ns, tr = 2.1 δ, and tp = 287 ns,
as shown in Fig. 5(d). We find that the perfect population
swap between |200〉 and |010〉 is achieved. While the system
parameters tabulated in Table II may indicate that the system
does not work in the dispersive regime, where the detuning
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FIG. 5. The iSWAP-like gate for different excited states of two
qutrits. Populations of quantum state (a) |200〉 and (b) |010〉 are
shown as a function of microwave pulse frequency and time.
(c) Dynamics of state transitions |200〉 → |010〉 with microwave
pulse frequency ωd

1 /2π � 3.758 GHz without considering the pulse
shape. The populations of states |200〉 and |010〉 correspond to the
magenta-dotted vertical cuts in (a), (b), respectively. (d) The dynamic
evolution of quantum states |200〉 and |010〉 with the applied mi-
crowave pulse defined in Eq. (8) and parameters �0

1/2π = 200 MHz,
δ = 30 ns, tr = 2.1δ, tp = 287 ns, ωd

1 /2π � 3.758 GHz. The param-
eter values for qutrits and resonator are provided in Table II.

is much larger than the interaction strength, our gate scheme
demonstrates that the high-fidelity iSWAP-like gate can still be
achieved.

V. DISCUSSION OF FIDELITY

We now aim to quantify the fidelity of the iSWAP-like gate
for the two-qutrit system. The unitary operation governing
the iSWAP-like gate can be succinctly expounded utilizing a
general two-qubit formalism [51] (here the basis is {|00〉, |20〉,
|02〉, |22〉})

U = e−i(IZ−ZI )ϕ1/4e−i(XX+YY )θ/2e−i(ZZ )φ/4

× e−i(IZ−ZI )ϕ2/4e−i(IZ+ZI )ϕ3/4, (9)

where specifying the swap angle θ , conditional phase φ,
and the single-qubit phases ϕ1,2,3. Assuming the ideal swap
with θ = π , we quantify the performance of the implemented
iSWAP-like gate using the state-average gate fidelity metric
defined in [52]

F (ϕ1, φ, ϕ2, ϕ3) = [Tr(U †
realUreal ) + |Tr(U †Ureal )|2]

20
, (10)

where Ureal is the actual evolution operator projected to the
computational subspace (without considering the effect of
decoherence). This is evaluated based on the system dynam-
ics under the full Hamiltonian. For the single-qubit phases
ϕ1,2,3, one can implement the single-qubit phase operations
before and after the iSWAP-like gate to correct the local phases

of the single qubits [53–55]. For the two-qutrit iSWAP-like
gate, we optimized the single-qubit phases ϕ1 � 0.222 rad,
ϕ2 � 0.422 rad, ϕ3 � 0.020 rad, and conditional phase φ �
1.366 rad to obtain a numerically calculated average gate fi-
delity F of 99.87%. For different excited states of two qutrits,
the average fidelity of the iSWAP-like gate between states |200〉
and |010〉 can reach F = 99.99% with the single-qubit phases
ϕ1 � 0.536 rad, ϕ2 � −0.827 rad, ϕ3 � 0.334 rad, and condi-
tional phase φ � 2.418 rad.

Generally, achieving high-fidelity microwave-activated
quantum gates typically requires longer pulse ramp time as
this can mitigate off-resonant errors [56–58] during the gate
operation. This is because there exists a delicate balance be-
tween the control error and ramp time. To investigate the effect
of pulse ramp time on the isolated two-qutrit iSWAP-like gate
discussed in Sec. III, we numerically calculated the gate error
with different ramp times (tr = 2.1δ) of the driven pulse, as
shown in Fig. 6(a) (with the corresponding pulse parameter tp

shown in the inset). Our results indicate that the gate error de-
creases as the pulse ramp time increases. To be more explicit,
for a gate pulse with a shorter ramp time, the off-resonant
interactions can induce control error and population leakage
(see Appendix C for more detail). To mitigate off-resonant
errors, a longer ramp time is generally preferred. Indeed, our
simulations suggest that the gate fidelity can be improved to
99.9% or higher by increasing the ramp time.

It is widely and generally known that to achieve high-
fidelity gate operations, leakage errors can be a dominant error
source and thus should be mitigated. The leakage errors occur
when the quantum system leaks out of a defined computa-
tional subspace to occupy a noncomputational subspace. The
subspace containing the system’s energy levels where ideal
dynamics take place is denoted as the computational subspace,
represented by V1 and characterized by a dimensionality of d1.
Additionally, we define the leakage subspace, denoted as V2,
which encompasses the d2-dimensional space. Consequently,
the overall state space of the system can be described as a
direct sum V = V1 ⊕ V2 with dimensions (d1 + d2). For a
quantum system in state ρ, the leakage can be defined as [59]

L(ρ) = Tr[A2ρ] = 1 − Tr[A1ρ], (11)

where A1 and A2 denote the projectors onto the subspaces V1

and V2, respectively.
In this context, we delve into the topic of leakage errors,

which pertain to the populations that have leaked from the
computational subspace. Leakage errors are defined as fol-
lows [59]:

Lε =
∫

dV1L(|V1〉〈V1|) = L

(
V1

d1

)
, (12)

where the integrals are evaluated over all states within the
computational subspace |V1〉. Based on Eq. (12), we perform
numerical calculations to determine the leakage errors, and the
corresponding results are presented in Fig. 6(b). Our findings
reveal that longer ramp times lead to a decrease in the magni-
tude of leakage errors. By conducting numerical simulations
and assessing the populations that leaked into noncomputa-
tional subspaces, we identify that the primary contributors
to the leakage errors were the states |200〉, |020〉, and |220〉.
Notably, for the state |000〉, we observe that the leakage errors
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FIG. 6. Analysis of gate error for the two-qutrit iSWAP-like gate.
(a) Gate error for different pulse ramp times, tr = 2.1δ. The inset
shows the corresponding microwave pulse parameter tp = (220, 250,
280, 310, 340) ns for different δ. The longer ramp time ensures
a higher fidelity of the iSWAP-like gate. (b) Leakage errors after
the two-qutrit iSWAP-like gate operation. The results demonstrate
that extending the ramp time significantly reduces leakage errors.
(c) Change in gate error due to qutrit relaxation with the parameter
δ = 30 ns, corresponding to the third point in (a). Here, we assume
that all transmon qutrits have identical relaxation rates. The resonator
decay rate is fixed as κ = ωr/Q, with three different quality factor
values assumed for the qutrits having identical relaxation times. The
results show that the gate error can be suppressed below 0.003 when
the qutrit coherence time is over 500 µs. When the resonator quality
factor surpasses 106, the reduction in gate fidelity becomes smaller.
(d) The gate error as a function of the qutrits dephasing time Tφ

(white noise). We consider two transmon qutrits to have the same
dephasing time. Here, the resonator quality factor is Q = 106, qutrits’
relaxation time is 200 µs, and δ = 30 ns corresponds to the third data
point depicted in (a).

could be minimized to below 10−5 all the time. In contrast,
for the states |200〉 (or |020〉) and |220〉, the leakage errors
are 0.06 and 0.04 with δ = 10 ns, respectively. However, by
increasing the ramp time to δ = 40 ns, the leakage errors
associated with |200〉 (or |020〉) and |220〉 diminish to values
below 10−3. A comprehensive analysis of the leakage errors
is provided in Appendix C.

The above analysis of gate performance was conducted
without considering the system decoherence process. We will
now examine the effects of relaxation on gate performance,
which arise from two main sources: the transmon qutrits and
the resonator relaxation processes. Currently, experimental
superconducting resonators with internal quality factors above
106 have been demonstrated [60–62], providing sufficient
coherence times for present technology. Therefore, we only
consider three different values of the resonator’s quality factor.
Taking the qutrits’ decoherence process into account, we can

express the master equation as [63]

ρ̇(t ) = −i[Hs + Hd , ρ] +
∑
k= j,r

D[Ck]ρ, (13)

with D[C]ρ = CρC† − (C†Cρ + ρC†C)/2 and Cj,r =
{
√

1/Tjq j ,
√

κc,
√

2/Tpj q
†
j q j }. Here, Tj and Tφ j signify,

respectively, the relaxation and dephasing times of qutrit- j,
while κ = ωr/Q represents the resonator decay rate, where Q
stands for the quality factor of the resonator.

Based on Eqs. (10) and (13), Fig. 6(c) shows the gate
error as a function of the relaxation time T1 of the qutrits
with three different values of the resonator quality factor.
With the consideration of the relaxation process, the gate
error will increase to 0.053. Meanwhile, an iSWAP-like gate
with an error below 0.01 can be achieved with the relaxation
time exceeding 100 µs. Compared to the qutrits relaxation
process, the gate error caused by the resonator decay process
can be omitted when the resonator quality factor reaches 106

or higher. Moreover, in Fig. 6(d), we also show the gate error
as a function of dephasing time (white noise) by assuming
equal dephasing rates for the qutrits (Tφ1,2 = Tφ). Given the
state-of-the-art coherence time of transmon [64,65], we expect
that the iSWAP-like with the gate fidelity above 99% could be
achieved.

VI. CONCLUSION

In this study, we propose a microwave-driven scheme for
implementing an iSWAP-like gate using fixed-frequency su-
perconducting transmon qutrits. The qutrits are coupled to
a common resonator with a constant coupling strength. By
using a microwave drive, we demonstrate the possibility of
achieving an intrinsic average fidelity of 99.8% with ex-
perimentally accessible parameters. The gate error can be
substantially reduced by increasing the ramp time, suggesting
the potential for further improving the gate fidelity and saving
gate time. We also investigate the influence of qutrit decoher-
ence on gate performance and find that relaxation times of
100 µs can effectively suppress the gate error to below 0.01.
Additionally, through numerical simulations with Gaussian
pulses, we further demonstrate the gate operation with perfect
population swap between the different excited states |20〉 and
|01〉. Furthermore, the versatility of the presented gate scheme
extends to � type (or other types) of superconducting qutrits
with different anharmonicities. We expect that the application
of this protocol to scenarios involving multiple qutrits and
diverse excited states will facilitate the construction and sim-
plification of complex superconducting quantum computing
architectures.
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APPENDIX A: TOTAL EVOLUTION PATHS
AND COUPLING STRENGTH

As mentioned in the main text, according to the fourth-
order perturbation theory, there exist 12 evolution paths
connecting the states |200〉 and |020〉, facilitated by interme-
diate states |001〉, |111〉 and |110〉. For the intermediate state
|001〉, the four paths are

|20011〉 ↔ |10111〉 ↔ |00121〉 ↔ |01021〉 ↔ |02020〉,
|20011〉 ↔ |10111〉 ↔ |00121〉 ↔ |01120〉 ↔ |02020〉,
|20011〉 ↔ |10021〉 ↔ |00121〉 ↔ |01120〉 ↔ |02020〉,
|20011〉 ↔ |10021〉 ↔ |00121〉 ↔ |01021〉 ↔ |02020〉,

(A1)

for state |111〉, the paths are

|20011〉 ↔ |10111〉 ↔ |11110〉 ↔ |01120〉 ↔ |02020〉,
|20011〉 ↔ |10111〉 ↔ |11110〉 ↔ |12010〉 ↔ |02020〉,
|20011〉 ↔ |21010〉 ↔ |11110〉 ↔ |12010〉 ↔ |02020〉,
|20011〉 ↔ |21010〉 ↔ |11110〉 ↔ |01120〉 ↔ |02020〉,

(A2)

and for state |110〉, the paths are

|20011〉 ↔ |10111〉 ↔ |11011〉 ↔ |01021〉 ↔ |02020〉,
|20011〉 ↔ |10111〉 ↔ |11011〉 ↔ |12010〉 ↔ |02020〉,
|20011〉 ↔ |10021〉 ↔ |11020〉 ↔ |01120〉 ↔ |02020〉,
|20011〉 ↔ |21010〉 ↔ |11020〉 ↔ |01120〉 ↔ |02020〉.

(A3)

Here, the notation |SQ1, SQ2, SR, M1, M2〉 which denotes the
states of qutrit-1, qutrit-2, the resonator, and two drive modes
applied to qutrit-1 and qutrit-2, respectively [47]. Accord-
ingly, the above transition paths give rise to the effective
coupling between states |200〉, |020〉 with the strength J [66]

J =
√

2g1

√
2�1g2

√
2�2

4(ωr − ω1 − α1)�′
1(ω2 − ωr + �′

2)
+

√
2g1

√
2�1�2

√
2g2

4(ωr − ω1 − α1)�′
1(ωr − ω2 − α2)

+ 2�1g1�2

√
2g2

4(ω1 − ωr + �′
1)�′

1(ωr − ω2 − α2)

+ 2�1g1g2

√
2�2

4(ω1 − ωr + �′
1)�′

1(ω2 − ωr + �′
1)

+
√

2g1�2

√
2�1

√
2g2

4(ωr − ω1 − α1)
(
ω2 + �1 − α1 − ωd

2

)
(ωr − ω2 − α2)

+
√

2g1�2

√
2g2

√
2�1

4(ωr − ω1 − α1)
(
ω2 + �1 − α1 − ωd

2

)(
ω1 − ωd

1

) + �2

√
2g1

√
2g2

√
2�1

4
(
ω2 − ωd

2

)(
ω2 + �1 − α1 − ωd

2

)(
ω1 − ωd

1

)
+ �2

√
2g1

√
2�1

√
2g2

4
(
ω2 − ωd

2

)(
ω2 + �1 − α1 − ωd

2

)
(ωr − ω2 − α2)

+
√

2g1g2

√
2�1

√
2�2

4(ωr − ω1 − α1)(ω2 − ω1 − α1)(ω2 − ωr + �′
1)

+
√

2g1g2

√
2�2

√
2�1

4(ωr − ω1 − α1)(ω2 − ω1 − α1)
(
ω1 − ωd

1

) + 2�1�2g1

√
2g2

4(ω1 − ωr + �′
1)(ω1 − ω2 − α2)(ωr − ω2 − α2)

+ �22�1g1

√
2g2

4
(
ω2 − ωd

2

)
(2ω1 − ω2 − α2)(ωr − ω2 − α2)

, (A4)

where � j = ωr − ω j is the detuning between resonator and
qutrit- j, ωd

j is the frequency of driving mode applied to the
qutrit- j.

APPENDIX B: iSWAP-LIKE GATE
FOR THE THREE-QUTRIT CASE

In this Appendix, we give an analysis of the two-qutrit
iSWAP-like gate for three qutrits model and demonstrate that
a high-fidelity two-qutrit iSWAP-like gate can be achieved.
Particularly, the proposed gate scheme is useful for realizing
arbitrary two-qutrit iSWAP-like gates with multiple qutrits cou-
pled to the single resonator which could significantly enhance
the scalability of superconducting quantum computing.

The proposed gate scheme can be extended to the case
of multiple qutrits. As an example, we consider the case of

three qutrits (SQ1,2,3) and discuss the iSWAP-like gate be-
tween the states |2000〉 and |0200〉. Here, the state |2000〉
represents the first qutrit SQ1 in the state |2〉, both SQ2

and SQ3 in the state |0〉, with the SR in state |0〉. Simi-
larly, the quantum state |0200〉 denotes the SQ1 in the |0〉
state, SQ2 in the |2〉, SQ3 in the state |0〉 and the SR in
state |0〉. By controlling the driven pulses performed on
the target qutrits, the proposed gate scheme can be gen-
eralized to the three-qutrit case, allowing for high-fidelity
iSWAP-like gates between any two qutrits. During the im-
plementation of the gate, only two microwave pulses are
applied to drive the related qutrits. Assuming that the
lowest-energy frequencies for the three qutrits are w1/2π =
4.5 GHz, w2/2π = 6.1 GHz, and w3/2π = 6.9 GHz, with
the same anharmonicity α(1,2,3)/2π = −0.3 GHz and the
resonator frequency is wr/2π = 5.3 GHz, the coupling
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FIG. 7. The iSWAP-like gate for the three-qutrit case. The evo-
lution of |2000〉 → |0200〉 for the multiqutrit case during the gate
operation. The microwave pulse parameters are choosen as fol-
lows: �1(2)/2π = 200 MHz, δ1(2) = 29 ns, tr1(2) = 2.1δ, tp1(2) =
280 ns, ωd

1 /2π � 3.353 GHz, and ωd
2 /2π � 6.592 GHz. For further

details on the qutrits and resonator parameter values, please refer to
Appendix B.

strength between the three qutrits and resonator is fixed at
g(1,2,3)/2π = 80 MHz. The qutrits-resonator detuning is set
as �′

1(2)/2π = 40 MHz, and the pulse amplitude is fixed at
�1(2)/2π = 200 MHz.

After analyzing the data, we can calculate the pulse
frequency ωd

1 /2π � 3.353 GHz. To determine the exact fre-
quency value of ωd

2 and the gate operation time, we conducted
a parameter scan to identify the minimal and maximal popula-
tions of the initial and target states. We found that the optimal
parameters for complete population swap between states
|2000〉 and |0200〉 are approximately ωd

2 /2π � 6.592 GHz
and tp � 280 ns. With these chosen parameters, we inves-
tigated the dynamics during the gate operation, as shown
in Fig. 7. Using Eq. (10), we calculated that the iSWAP-like
gate fidelity is F = 99.74%, with single-qubit phases ϕ1 �
2.140 rad, ϕ2 � 0.174 rad, ϕ3 � 0.920 rad, and conditional
phase φ � 1.372 rad. Compared to the isolated two qutrits
case [see Fig. 4(b)], the value of the driven microwave pulse
frequency ωd

2 required to implement the iSWAP-like gate has
been slightly affected by the third qutrit. However, using the
presented method, it is still possible to determine the good
pulse parameter values and achieve a high-fidelity iSWAP-like
gate for the multiqutrit case.

APPENDIX C: ANALYSIS OF LEAKAGE ERRORS
BASED ON FLOQUET THEORY

As mentioned in the main text, reducing the ramp time
can lead to an increase in leakage, potentially compromising
gate fidelity. In this study, both the qutrits and resonator have
been truncated to four levels, resulting in a 64-dimensional
complete state space for the system with d1 = 4 and d2 = 60.
The presence of two driving pulses applied to the qutrits adds
complexity to analyzing the system dynamics. To simplify
the analysis, we employed the rotating wave approximation
(RWA). Additionally, we chose a rotating coordinate sys-
tem with the driving pulse frequency ωd

1 , allowing us to
condense the two time-dependent drives into a single one.

Consequently, the following Hamiltonian is obtained:

HF (t ) =
∑

j

[(
w j − ωd

1

)
q†

j q j + α j

2
q†

j q
†
j q jq j

]
+(

wr − ωd
1

)
c†c

+
∑

j

g j (q
†
j c + q jc

†) + �1

2
(q†

1 + q1)

+ �2

2
(e−i�′

d t q†
2 + ei�′

d t q2), (C1)

where �′
d = ωd

2 − ωd
1 . To identify the leakage states more

accurately, we employ the Floquet theory [67,68], which en-
ables us to obtain the eigenstates of HF (t ), commonly referred
to as Floquet states [69–72]. Given the periodic nature of
the driving pulse, we can express the Hamiltonian HF (t ) as
HF (t + 2π/�′

d ) [72]. Consequently, we solve for the eigen-
states using the following procedure:

[HF (t ) − i∂t ]|φm(t )〉 = κm|φm(t )〉. (C2)

FIG. 8. Numerical calculations of quasienergies from the Flo-
quet theory and leakage errors after the gate operation. (a) The
quasienergies in descending order correspond to the states |020〉,
|200〉, |303〉, and |001〉. (b) Leakage errors originating from state
|200〉 were evaluated for various ramp times. The solid-dark orange
line (marked with an up triangle) represents leakage to the noncom-
putational space, while the dashed-green line (marked with a down
triangle) represents leakage to state |001〉. These results confirm that
the main sources of leakage errors for states |200〉 arise from the
interaction between |200〉 and |001〉. (c) The quasienergies of the
states {|311〉, |220〉, |201〉, |002〉, |110〉, |021〉} provide insights into
the locations of potential crossings. (d) Numerical results for the
leakage errors originating from state |220〉 for different ramp times.
The solid-black line with a right triangle marker represents leakage
to the noncomputational space, while the dashed-blue (left triangle
marker) and dashed-red (star marker) lines correspond to leakage to
states |201〉 and |311〉, respectively.
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The solutions to Eq. (B2) yield quasienergies κm, ac-
companied by corresponding eigenvectors representing the
Floquet modes, with m ranging from 1 to 64. It is im-
portant to note that the solutions in Eq. (B2) are defined
within an integer multiple k of the drive frequency �′

d .
In other words, if {κm, |φm(t )〉} is a valid solution, then
{κmk ≡ κm + k�′

d , |φmk (t )〉 = e−i�′
d t |φm(t )〉} is also a solu-

tion, as a direct consequence of the periodicity exhibited by
the Floquet modes.

This study focuses on the main leakage from states |200〉
(or |020〉) and |220〉. Employing the Floquet theory, we are
able to determine the quasienergies of the states |200〉 (or
|020〉) and |220〉 and their neighboring states that are prone to
interaction, as illustrated in Figs. 8(a) and 8(c). By leveraging
the relation κmk ≡ κm + k�′

d , we can make a rough assess-
ment of the other states in proximity to |200〉 and |220〉. As de-
picted in Fig. 8(a), the quasienergies of the states indicate that
the primary sources of leakage errors are the interactions be-
tween |200〉 and |303〉, as well as |200〉 and |001〉. To confirm
these leakage occurrences, we conducted numerical calcula-
tions to determine the leakage from state |200〉 to the noncom-
putational space and the leakage to the state |001〉 after the
gate operation. As shown in Fig. 8(b), the solid-dark orange
line (with an up triangle marker) represents leakage to the
noncomputational space, while the dashed-green line (marked
by a down triangle marker) indicates leakage to the state |001〉.
We can find that the leakage predominantly occurs due to the
interaction between |200〉 and |001〉, and, by extending the
ramp time, the leakage errors can be suppressed heavily. As
shown in Fig. 8(a), the main physics behind this is that during
the gate operations, the qubit system will sweep through or ap-
proach multiple avoid-crossings. The nonadiabatic transitions,
i.e., leakages, can be suppressed by slowing down the sweep
speed according to the Landau-Zener transitions theory [73].
Additionally, Fig. 8(a) provides evidence that the leakage
from the |020〉 state primarily occurs through the interaction

between |020〉 and |001〉. As shown in Fig. 8(a), though the
states |200〉 and |303〉 are very close, the transition between
them is a high-order multiphoton process, resulting in a very
weak coupling between them. By contrast, the transition be-
tween states |200〉 and |001〉 results from a second-order
process, giving a large (transition rate) coupling. Thus, here,
the leakage mainly happens to state |001〉, rather than |303〉.

Next, we examine the leakage errors for the qubit system
initialized in the state |220〉. Using the Floquet theory, we
obtained the quasienergies for state |220〉 and its surround-
ing states {|311〉, |201〉, |002〉, |110〉, |021〉}, as depicted in
Fig. 8(c). To determine the main leakage from the |220〉 state,
we numerically calculated the leakage errors to the noncom-
putational space and the primary states shown in Fig. 8(c). As
illustrated in Fig. 8(d), the solid-black line with a right triangle
marker represents the errors associated with leakage to the
noncomputational space, while the dashed-blue (left triangle
marker) and dashed-red (star marker) lines correspond to the
errors resulting from leakage to states |201〉 and |311〉, re-
spectively. The dashed-blue line demonstrates that the primary
leakage state is |201〉 (while for a ramp time of δ = 40 ns, the
dominant leakage state is |311〉).

Note that, from Fig. 8(d), one can find that the primary
leakage source changes with varied ramp times, especially
for the ramp time of δ = 40 ns. This can be explained by the
following two facts: (1) As shown in Fig. 8(c), during the gate
operations, the system will sweep through or approach mul-
tiple avoided crossings (due to couplings among qubit states,
such as the interactions |220〉 → |201〉 and |220〉 → |311〉);
(2) for a given avoided crossing, by extending the ramp times,
the nonadiabatic transition can be suppressed, thus mitigating
the associated leakage. Overall, during the gate operations, the
adiabatic conditions for all these avoided crossings cannot be
satisfied at the same time for a given ramp time. Thus, for
the different ramp times, the dominant leakage channel can be
different.
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