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In some applications of quantum control, it is necessary to produce very weak excitation of a quantum system.
Such an example is presented by the concept of single-photon generation in cold atomic ensembles or doped
solids, e.g., by the Duan-Lukin-Cirac-Zoller (DLCZ) protocol, for which a single excitation is shared among
thousands and millions of atoms or ions. Another example is the possibility to create a huge Dicke state of N
qubits sharing a single or a few excitations. Other examples are using tiny rotations to tune high-fidelity quantum
gates, or using these tiny rotations to test high-fidelity quantum process tomography protocols. Ultrasmall
excitation of a quantum transition can be generated by either a very weak or far-detuned driving field. However,
these two approaches are sensitive to variations in the experimental parameters. Here we propose a different
method for generating a well-defined arbitrary preselected very small transition probability—in the range from
10−2 to 10−8—by using composite pulse sequences. Contrary to other methods, it features both high fidelity and
robustness to variations in the pulse area and the pulse duration.
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I. INTRODUCTION

In almost all applications of quantum control, the focus
is either on complete population inversion (known as an X
gate in quantum information) or half excitation (known as a
Hadamard or

√
X gate in quantum information). These are

produced most often by resonant excitation by π and π/2
pulses, but adiabatic and composite methods have also been
used. These methods have different advantages and shortcom-
ings. For instance, resonant excitation is the fastest method,
and it is very accurate if the parameter values are very precise
[1,2], but it is sensitive to parameter variations. Adiabatic
methods [3,4] are robust to experimental errors, but they are
slow and it is difficult to achieve high accuracy with them.
Nonetheless, they continue to be a viable approach to a va-
riety of problems [5–16]. Composite pulses—trains of pulses
with well-defined relative phases used as control parameters
[17,18]—sit somewhere in the “sweet spot” of quantum con-
trol, as they feature extreme accuracy and robustness while
being significantly faster than adiabatic methods (but slower
than resonant excitation by a factor of 2–3 or more).

Quantum control offers the opportunity for partial excita-
tion with any transition probability, rather than just 1 and 1

2 .
For instance, there are applications in which a very small tran-
sition probability is required. One prominent example is the
Duan-Lukin-Cirac-Zoller (DLCZ) protocol for single-photon
generation in an ensemble of ultracold atoms or in a doped
solid and its variations and extensions [19–25]. Single pho-
tons are the physical platform for such advanced technologies
as quantum communications [26–30] and photonic quantum
computing [31–34]. In this protocol, one of the crucial condi-
tions is to be able to produce only one shared excitation among
a large number of atoms N , i.e., a driving field that generates
a transition probability of 1/N is needed.

Another example is the possibility to create huge entangled
Dicke states [35]. These very special states share a fixed
number of excitations n evenly among N qubits, a special
case of which (for n = 1) is the W state. A prominent fea-
ture of Dicke states is that they are immune to collective
dephasing, which is ubiquitous in various systems. Therefore,
the Dicke subspace, which is N!/n!(N − n)!-dimensional,
can be used as a decoherence-free computational subspace
[36–38]. Dicke states possess genuine multipartite entangle-
ment [39,40], which is, moreover, very robust against particle
loss [41–43]: the loss of a qubit reduces the N-dimensional
Dicke state to an (N − 1)-dimensional one. Dicke states have
been proposed and demonstrated in various physical systems,
including ensembles of neutral atoms [44,45], trapped ions
[46–49], quantum dots [50], and using linear optics [45,51].
Many of these proposals and demonstrations have various
restrictions, e.g., they cannot create arbitrary but only par-
ticular Dicke states, individual qubit addressing is required,
the number of necessary physical interactions scales very fast
with N , a special initial (Fock) state is required, they are not
efficient enough, they have very long interaction times, etc.
Composite pulses of ultrasmall probability offer a direct path
toward the creation of large Dicke states as they can produce a
specific number of shared excitations among large ensembles
of qubits.

A third example of when a well-defined small transition
probability is needed arises when fine-tuning quantum gates:
in order to reach ultrahigh gate fidelity, a rotation gate at a
well-defined tiny angle can be very useful. Moreover, such
small rotations alone can be used to test the accuracy and
reliability of various quantum process tomography protocols.

In this paper, we address this specific problem by designing
composite pulse sequences, which seem to be the only quan-
tum control technique capable of generating a tiny transition
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probability that is robust to variations of the experimental
parameters. The dominant majority of composite pulses in
the literature are designed to produce specific rotations on
the Bloch sphere, typically at angles π (generating complete
population transfer), π/2 (half population transfer), π/4, and
3π/4, as reviewed in Refs. [17,18]. There exist just a few
composite sequences that produce general rotations at arbi-
trary angles [52–57]. Some of them can be used for the present
task of ultrasmall probability, and they are listed below, along
with many composite sequences derived by us.

Composite rotations are broadly divided into two large
groups called variable and constant rotations. The variable
rotations [17,55,56] feature well-defined transition probability
but not well-defined phases of the propagator. Constant (or
phase-distortionless) rotations feature both well-defined pop-
ulations and well-defined phases of the propagator [52–54].
There are large markets for either of these, with only constant
rotations being suitable for quantum gates. However, they are
much more demanding to generate and much longer than vari-
able rotations, for the same order of error compensation. This
will be clearly seen below, where we consider both constant
and variable rotations.

After a description of the derivation method in the next sec-
tion, we present specific composite sequences of two, three,
and four pulses, many of which have analytic expressions
for the composite parameters, and then we proceed to longer
sequences.

II. THE METHOD

We wish to construct composite pulses, which produce a
very low probability of transition between two states, in an
efficient and robust manner. Such composite pulses are special
cases of the so-called θ -pulses, as they produce a transition
probability p = sin2(θ/2). In the NMR literature, one can find
a number of θ pulses for θ = π/4 (called 45◦ pulses), θ =
π/2 (called 90◦ pulses), and θ = 3π/4 (called 135◦ pulses).
Very few general formulas for an arbitrary value of θ exist in
the literature. In our case, we need composite pulses, which
produce transition probability p = 1/N � 1, which implies
θ � 1. Such composite pulses are designed here.

Each pulse in a composite sequence is considered resonant
and hence it generates the propagator

U(A, φ) =
[

cos(A/2) −ieiφ sin(A/2)
−ie−iφ sin(A/2) cos(A/2)

]
, (1)

where φ is the phase of the coupling. The overall propagator
for a sequence of n pulses,

(A1)φ1 (A2)φ2 · · · (An)φn , (2)

each with a pulse area Ak and phase φk , reads

Un = U(An, φn)U(An−1, φn−1) · · · U(A2, φ2)U(A1, φ1), (3)

which, by convention, acts from right to left. One of the phases
is irrelevant for the physically observed quantities (it is related
to the global phase of the wave function), and it can be set
to zero. As such, we always choose the first phase: φ1 = 0.
In other words, all other phases are relative phases of the
respective pulse with respect to the phase of the first pulse.

The pulse areas Ak and the phases φk are the control param-
eters, which are selected from the conditions that the transition
probability,

P = |U12|2, (4)

has a specific target value p and it is robust to variations ε in
the pulse area Ak (1 + ε). The error-free values of the pulse
areas Ak are called nominal values. The relative error ε is
assumed to be systematic, i.e., the same for all pulses in the
composite sequence. This is reasonable if they are derived
from the same source, which is usually the case.

The multiplication of the two-dimensional matrices in
Eq. (3) leads to rapidly growing expressions. Still, these are
far more manageable than the ones coming from the three-
dimensional matrices in the usual Bloch-vector derivation of
composite sequences in NMR. One can proceed in two direc-
tions:

(i) One possibility is to expand the transition probability of
Eq. (4) in a Taylor-Maclaurin series versus ε. The coefficients
in this series are functions of all Ak and φk (k = 1, 2, . . . , n).
We nullify as many of the first few such coefficients (i.e.,
derivatives versus ε) as possible, which generates a set of
equations for Ak and φk . The result is a transition probability
with a Taylor-Maclaurin series expansion

P(ε) = p + O(εm), (5)

where p is the target value. We say that the respective compos-
ite sequence has the error order O(εm). We shall first present
such composite sequences, which are known as variable rota-
tions in NMR and allow us to easily reach error compensation
of very high order.

(ii) Alternatively, one can take the propagator elements
U11 = U ∗

22 and U12 = −U ∗
21, expand them in Taylor-Maclaurin

series versus ε, and carry out elimination of as many lowest-
order terms as possible. The result is a Taylor-Maclaurin
expansion of the propagator,

Un(ε) = Un + O(εl ). (6)

Obviously, with the same number of free parameters, one can
cancel of factor of 2 fewer terms now than in the expansion of
the probability P. However, the resulting composite sequences
will be stabilized with respect to both the amplitudes and the
phases of the overall propagator, rather than with respect to the
amplitudes only, as with Eq. (5). Such composite sequences
create constant rotations in NMR language, or, in quantum
information terms, quantum rotation gates.

We begin with the first approach, which delivers expres-
sions as in Eq. (5), and then we proceed with the second
approach, which delivers expressions of the type (6).

III. SMALL-PROBABILITY COMPOSITE SEQUENCES

A. Two-pulse composite sequences

We have derived two types of two-pulse composite se-
quences.

1. Symmetric sequence of pulses

In the first type, the two pulse areas are equal to π/2,

S2 :
(

1
2π

)
0

(
1
2π

)
π−θ

. (7)
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TABLE I. Pulse areas and phases (in units of π ) for the compos-
ite sequence (11) (in units of π ) for a few values of the transition
probability. All composite sequences have the error order O(ε3).

p A1 A2 φ

10−2 0.689806 0.741105 0.048767
10−3 0.707103 0.723255 0.015417
10−4 0.712599 0.717704 0.004875
10−5 0.714341 0.715956 0.001542
10−6 0.714894 0.715404 4.88 × 10−4

10−7 0.715068 0.715229 1.54 × 10−4

10−8 0.715123 0.715174 4.88 × 10−5

The transition probability is

P = cos2 πε

2
sin2 θ

2
. (8)

For

θ = arccos(1 − 2p) = 2 arcsin(
√

p), (9)

we find

P = p

(
1 − sin2 πε

2

)
= p[1 + O(ε2)]. (10)

This simplest composite sequence is accurate up to the first
order, i.e., its error is of the second order O(ε2). For example,
for probabilities p = 10−2, 10−3, 10−4, and 10−5 we find
θ = 0.0638π , 0.0201π , 0.0064π , and 0.0020π . These values
correspond to 11.48◦, 3.62◦, 1.15◦, and 0.36◦.

The advantage of these sequences is their extreme sim-
plicity and the analytic formula for the phase, which make
it possible to immediately write down the sequence for any
target transition probability. The disadvantage is the availabil-
ity of a single control parameter only, which limits the error
compensation to the first order only. This is still superior to a
single resonant pulse, which is accurate to zeroth order only.

2. Asymmetric sequence of pulses

In the second two-pulse sequence, the pulse areas are dif-
ferent,

A2 : (A1)0(A2)φ2 . (11)

Here we have three control parameters—two pulse areas and a
phase—which allow us to compensate higher orders of errors.
Now closed analytic expressions for the parameters are not
possible to derive. However, due to the fact that p � 1, we can
use perturbation theory, which gives us the approximations

A1 = x − y, A2 = x + y, φ2 = π − φ, (12)

with x ≈ 0.7151π , y ≈ 0.2553π
√

p, and φ ≈ 0.4875π
√

p.
All these are valid for p � 1. The pulse areas and the phases
for a few values of the transition probability are given in
Table I.

The advantage of the composite sequence (11) over the
symmetric one (7) is that it is accurate to the third order in
ε,

P = p[1 + O(ε3)]. (13)

FIG. 1. Performance of the two-pulse composite sequences (7)
(red dashed) and (11) (blue solid) for the transition probability p =
10−4. The dotted curves show the single-pulse excitation probability
for comparison.

The disadvantage is that it requires a larger total pulse
area, about 1.43π compared to just π for the symmetric
sequence (7).

The performance of the two sequences is compared in
Fig. 1. Both sequences (7) and (11) outperform significantly
the conventional single-pulse excitation probability, which is
very sensitive to pulse area errors. The asymmetric sequence
A2 of Eq. (11), with its three control parameters and error or-
der O(ε3), outperforms the symmetric sequence S2 of Eq. (7),
which has only a single control parameter and error order
O(ε2).

B. Three-pulse composite sequences

We have derived two three-pulse composite sequences: one
symmetric and one asymmetric.

1. Symmetric sequence of pulses

The symmetric sequence of pulses reads

S3 :
(

1
2π

)
0πα+β

(
1
2π

)
2β

, (14)

where

α = θ/2, (15a)

β = arccos(sin α − cos α), (15b)

θ = arccos(1 − 2p) = 2 arcsin(
√

p). (15c)

The transition probability reads

P = [1 − sin4(ε/2)] sin2(θ/2). (16)

It is obviously accurate up to the error order O(ε4).
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TABLE II. Pulse areas and phases (in units of π ) for the compos-
ite sequences of three pulses (22) for a few values of the transition
probability p. All composite sequences have the error order O(ε5).

p A1 A2 A3 φ2 φ3

10−2 0.5682 1.2436 0.6292 1.1533 0.2546
10−3 0.5904 1.2276 0.6232 1.0785 0.1405
10−4 0.6001 1.2229 0.6184 1.0419 0.0785
10−5 0.6049 1.2214 0.6151 1.0229 0.0441
10−6 0.6074 1.2209 0.6131 1.0126 0.0248
10−7 0.6087 1.2208 0.6119 1.0070 0.0139
10−8 0.6094 1.2207 0.6113 1.0039 0.0078

The sequence (14) is derived as follows. First, we calculate
the overall propagator of Eq. (3) for N = 3 pulses. Numerical
evidence suggests that the pulse areas could be taken as in
Eq. (14), i.e., a π pulse in the middle sandwiched by two half-
π pulses. We take the first phase to be 0, and we are left with
two phases φ2 and φ3 to be determined. The overall three-
pulse transition probability for zero error is readily calculated
to be

P(ε = 0) = |U21|2 = sin2(φ2 − φ3/2). (17)

If we set P = sin2(θ/2) (as for a resonant θ pulse), we find
φ3 = 2φ2 − θ . Next we calculate the first few derivatives of P
with respect to the error ε and find

P′(ε = 0) = 0, (18)

P′′(ε = 0) = [1 + 2 cos(θ ) + 2 cos(φ2)

+ 2 cos(θ − φ2) + cos(θ − 2φ2)]π2/8, (19)

P′′′(ε = 0) = 0. (20)

The vanishing of the odd-order derivatives follows from the
choice of symmetric pulse areas in Eq. (14). By setting φ2 =
θ/2 + β, the equation for P′′(ε = 0) reduces to

2 cos β cos(θ/2) + cos2 β + cos θ = 0. (21)

It has four solutions—two complex and two real—of which
one is positive and one is negative. The real positive solution
is given by the expression listed in Eq. (15). The first nonzero
derivative is P(4)(ε = 0). As for the symmetric two-pulse se-
quence S2, the availability of analytic formulas for the phases
allows us to find their values for any value of the transition
probability.

2. Asymmetric sequence of pulses

The most general three-pulse composite sequence has the
form

A3 : (A1)0(A2)φ2 (A3)φ3 . (22)

The pulse areas and the phases computed numerically are
given in Table II. Although the composite sequence (22) costs
more total pulse area (≈2.44π ) than the symmetric one S3, it
is accurate to the higher error order O(ε5).

The performance of the three-pulse sequences is illustrated
in Fig. 2. Both sequences (14) and (22) outperform both the

FIG. 2. Performance of the three-pulse composite sequences (14)
(red dashed) and (22) (blue solid) for the transition probability p =
10−4. The dotted curves show the single-pulse excitation probability
for comparison.

conventional single-pulse excitation probability and the two-
pulse composite sequences (7) and (11) of Fig. 1. Moreover,
the asymmetric sequence A3 of Eq. (22), which is of error
order O(ε5), clearly outperforms the symmetric sequence S3
of Eq. (14), which is of error order O(ε4).

Because the three-pulse sequences seem to be the “sweet
spot” in terms of performance (error order and high-fidelity
window width) versus cost (total pulse area and control
complexity), they deserve some discussion. There are clear
advantages and disadvantages of each of these two sequences.
The S3 sequence has a nice analytic form and a total pulse
area of 2π . However, it has lower error order than A3. The
real advantage of the sequence S3 is its analytic form, which
makes it very easy to calculate the composite phases for any
target transition probability p. The A3 sequence looks less
attractive as neither the pulse area nor the phases are rational
numbers and they are all numerical, but this sequence has the
higher order of error compensation, although at the expense
of the larger pulse area of about 2.44π . Its real inconvenience
is in the fact that for target transition probabilities not listed in
Table II, one has to calculate them numerically, although this
is not a very difficult task.

C. Four-pulse composite sequences

The most general four-pulse composite sequence has the
form

(A1)0(A2)φ2 (A3)φ3 (A4)φ4 . (23)

We present three sets of four-pulse composite sequences: two
symmetric and one asymmetric.
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TABLE III. Pulse areas and phases (in units of π ) for the com-
posite sequences of four pulses (28). All composite sequences have
the error order O(ε7).

p A1 A2 A3 A4 φ2 φ3 φ4

10−2 0.5367 1.1586 1.1360 0.5833 0.8499 1.5547 0.4360
10−3 0.8685 1.0434 0.3702 0.5174 1.0634 0.8847 0.0128
10−4 0.8165 0.9044 0.5579 0.6423 1.0362 0.9682 0.0146
10−5 0.7854 0.8335 0.6433 0.6905 1.0207 0.9856 0.0090
10−6 0.7669 0.7937 0.6875 0.7141 1.0118 0.9926 0.0052
10−7 0.7551 0.7698 0.7108 0.7255 0.9933 1.0042 1.9972
10−8 0.7494 0.7578 0.7244 0.7328 0.9962 1.0022 1.9984

1. Symmetric sequences of pulses

The first symmetric sequence consists of identical nominal
π/2 pulses (but with different phases) [55],

S4a :
(

1
2π

)
0

(
1
2π

)
1
2 π

(
1
2π

)
3
2 π−θ

(
1
2π

)
π−θ

, (24)

where θ = 2 arcsin
√

p. Its total pulse area is just 2π . The
overall transition probability reads

P = p[1 − sin4(πε/2)]. (25)

Obviously, it has the error order O(ε4).
The other symmetric sequence of pulses reads [55]

S4b :
(

1
2π

)
0π 2

3 ππ 5
3 π−θ

(
1
2π

)
π−θ

. (26)

The overall transition probability reads

P = p[1 − sin6(πε/2)]. (27)

Obviously, in return to the larger total pulse area of 3π

compared to the previous sequence (24), it is accurate up to
the higher order O(ε6). These sequences are very convenient
as the availability of exact analytic formulas for the phases
allows us to find their values for any value of the transition
probability.

2. Asymmetric sequences

The most general four-pulse composite sequence has the
form

A4 : (A1)0(A2)φ2 (A3)φ3 (A4)φ4 . (28)

All pulse areas and phases are free control parameters, which
allow one to compensate for a higher error order. The pulse
areas and the phases are computed numerically and are listed
in Table III. The asymmetric composite sequence (28) is ac-
curate to order O(ε7).

The performance of the four-pulse sequences is illustrated
in Fig. 3. All of them significantly outperform the single pulse
profile and provide considerable stabilization at the target
transition probability value. The best performance is delivered
by the asymmetric sequence A4, which has the error order
O(ε7), followed by S4b, with the error order O(ε6), and then
S4a, with the error order O(ε4). Note that the error order O(ε4)
for S4a is the same as the one for the three-pulse sequence
S3, and one can verify that they generate similar excitation
profiles.

FIG. 3. Performance of the four-pulse symmetric composite se-
quences (24) (red dashed), (26) (purple long-dashed), and the
asymmetric sequence (28) (blue solid) for the transition probability
p = 10−4. The dotted curves show the single pulse excitation proba-
bility for comparison.

D. Higher number of pulses

A higher number of pulses presents the opportunity for
an error compensation of a higher order. There exist analytic
symmetric composite sequences for arbitrary rotations, which
can be used for small p, too [55]. They are constructed as
follows. We can use a composite π/2 pulse to derive a com-
posite θ -pulse by applying a composite π/2 pulse sequence
C, followed by the composite sequence CR

θ , which is the time-
reversed sequence C, with all its phases shifted by the same
phase shift π – θ ,

C0C
R
π – θ , (29)

an idea introduced by Levitt and Ernst [58]. Moreover, if the
sequence C has the error order O(εn), then the composite θ

sequence (29) has the error order O(ε2n) [55]. A few examples
follow.

The composite sequence S2 of Eq. (7) becomes a compos-
ite π/2 pulse for θ = π/2, which can be used in the twinning
construction (29),

(
1
2π

)
0

(
1
2π

)
1
2 π

(
1
2π

)
3
2 π−θ

(
1
2π

)
π−θ

, (30)

which is the same as the sequence S4a of Eq. (24). Because
the sequence S2 has the error order O(ε2), the composite se-
quence S4a has the error order O(ε4), as found in the previous
subsection.

The composite sequence S3 of Eq. (14) for θ = π/2 reads
(

1
2π

)
0π 3

4 π

(
1
2π

)
π
, (31)
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and it has the error order O(ε4). By using the twinning con-
struction (29), we find a θ composite sequence of order O(ε8),

(
1
2π

)
0π 3

4 π

(
1
2π

)
π

(
1
2π

)
2π−θ

π 7
4 π−θ

(
1
2π

)
π−θ

. (32)

One can build θ composite sequences of arbitrary length
and arbitrary error order compensation by twinning the π/2
composite sequences [55]

(π/2)0πφ2πφ3 · · ·πφN−1 (π/2)φN , (33)

composed of a sequence of N − 2 nominal π pulses, sand-
wiched by two pulses of areas π/2, with phases given by the
analytic formula

φk = (k − 1)2

2(N − 1)
π (k = 1, 2, . . . , N ). (34)

It is easy to verify that the sequences (30) and (32) (after trivial
population-preserving transformation of the phases) belong to
such a family of sequences. Because the sequence (33) has the
error order O(ε2(N−1)), the corresponding twinned sequence
(29) will have the error order O(ε4(N−1)).

Another asymmetric family of π/2 composite sequences
can be used too [55],

(π/2)0πφ2πφ3 · · ·πφN−1 (π )φN , (35)

composed of a sequence of N − 1 nominal π pulses, preceded
by a nominal π/2 pulse, with phases given by the analytic
formula

φk = 2(k − 1)2

2N − 1
π (k = 1, 2, . . . , N ). (36)

It has the error order O(ε2N−1). Hence the twinning method
(29) generates θ sequences of the error order O(ε2(2N−1)). For
instance, for N = 3 we find by twinning the θ sequence

(
1
2π

)
0π 2

5 π
(π ) 8

5 π
(π ) 3

5 π−θ
π 7

5 π−θ

(
1
2π

)
π−θ

, (37)

which has the error order O(ε10).
Regarding the asymmetric composite sequences of two,

three, and four pulses, presented above and derived numer-
ically, it is computationally much harder to derive similar
sequences for more than four pulses. Moreover, the advantage
they deliver in terms of error order compensation for a given
number of pulses compared to the symmetric sequences seems
to decrease with the number of pulses N and approaches the
point when the results are not worth the cost.

IV. QUANTUM GATES FOR ULTRASMALL ROTATIONS

Ultrasmall rotation gates are more demanding to construct
due to the necessity to have both the probabilities and the
phases error-compensated. Mathematically, this is equivalent
to expanding the propagator of the gate in a Taylor-Maclaurin
series versus the error ε and setting to zero the first few
terms to the same error order O(εm) in all propagator matrix
elements. Below we present several sequences, which produce
high-fidelity rotation gates, two of which are known in the
literature and one is derived here.

TABLE IV. Parameters of the composite sequence G3 of Eq. (39)
for different transition probabilities p.

Rotation gate G3: ( 1
2 π + x)φ1ππ+y( 1

2 π + x)φ1

p x φ1 y
10−2 2.5 × 10−3 2.492 × 10−2 5.672 × 10−2

10−3 2.5 × 10−4 7.904 × 10−3 1.797 × 10−2

10−4 2.5 × 10−5 2.500 × 10−3 5.683 × 10−3

10−5 2.5 × 10−6 7.906 × 10−4 1.797 × 10−3

10−6 2.5 × 10−7 2.500 × 10−4 5.684 × 10−4

A. First-order error compensation

The three-pulse rotation gate has been derived by Wimperis
[52],

W 3 : θ0πφπ3φ, (38)

with θ = arccos(1−2p) = 2 arcsin
√

p and φ = arccos (−θ/

(2π )) ≈ 1
2π + √

p. It is accurate up to order O(ε2). It is a
phase-distortionless sequence and hence suitable for a rotation
gate.

Another three-pulse rotation gate has the form [57]

G3 : αφ1πφ2αφ1 , (39)

where α is determined from the equation

π sin(α)

α
= 2 cos(θ/2). (40)

Given α, we can find φ1 and φ2 from

2α cos(φ1 − φ2) + π = 0, (41a)

sin(φ1 − φ2) = sin(θ/2) cos(φ1). (41b)

This composite sequence is related to the SCROFULOUS
composite pulse [59] and it is accurate to the error order
O(ε2). The values of the pulse area and the composite phases
for a few selected values of the transition probability p are
given in Table IV.

B. Second-order error compensation

A well-known composite sequence, which compensates
the second-order error, is the BB1 sequence of Wimperis [54],

BB1 : (π/2)0πχ (2π )3χπχ , (42)

with χ = arccos(−θ/4π ). It produces arbitrary phase-
distortionless rotations at the angle θ with the error order
O(ε3).

V. CONCLUSIONS

We presented a solution to the problem of generating
well-defined very small excitation of a two-state quantum
transition. The method uses composite pulse sequences of
two, three, four, and more pulses. Both symmetric and asym-
metric, and analytic and numeric classes of sequences have
been presented and analyzed in detail.

The results in this paper can be useful in applications
such as single-photon generation by a cold atomic ensemble
of N atoms. A composite sequence producing a transition
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probability of 1/N will make sure that only one excitation is
shared within the ensemble, to be subsequently released by
a scheme like DLCZ. Another possible application is fine-
tuning of quantum gates, in which accurate small adjustments
of the rotation angle are needed in order to reach high fidelity.
Moreover, such tiny rotations can be used to test the accuracy
and reliability of various quantum tomography protocols. Yet
another application is the generation of huge Dicke states in
cold atomic ensembles or trapped ions by global collective
addressing.

In conclusion, our recommendation is as follows: (i) if a
gate sequence is needed, use one of the three sequences in
Sec. IV; (ii) if only the probability value is of interest and it
is different from the values 10−N (with N integer) in Tables I,

II, and III, use the symmetric sequences S2, S3, S4a, or S4b,
which provide the phases for any (small) transition probabil-
ity; (iii) if the most efficient error compensation for a minimal
total pulse area is required, use the numerical sequences A2,
A3, or A4, with the parameters in Tables I, II, and III; (iv) if
extremely high error compensation is needed, use the twinned
sequences of Sec. III D.
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