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Genuinely noncyclic geometric gates in two-pulse schemes
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While most approaches to geometric quantum computation are based on geometric phases in cyclic evolution,
noncyclic geometric gates have been proposed to increase further the flexibility. While these gates remove the
dynamical phase of the computational basis, they do not, in general, remove it from the eigenstates of the time
evolution operator, which makes the geometric nature of the gates ambiguous. Here, we resolve this ambiguity
by proposing a scheme for genuinely noncyclic geometric gates. These gates are obtained by evolving the
computational basis along open paths consisting of geodesic segments, and simultaneously assuring that no
dynamical phase is acquired by the eigenstates of the time evolution operator. While we illustrate the scheme for
the simplest nontrivial case of two geodesic segments starting at each computational basis state of a single qubit,
the scheme can be straightforwardly extended to more elaborate paths, more qubits, or even qudits.
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I. INTRODUCTION

Quantum computation is a form of information processing
that uses quantum mechanical properties, such as superpo-
sition and entanglement, to perform calculations. Although
quantum computers of today do not have the number of qubits
required for realizing programmable large-scale computation,
progress towards this goal has been achieved [1] on different
experimental platforms [2–4].

It is not, however, enough to scale up quantum computers;
they also need to be resilient to noise and decoherence under
which qubits would lose their desired quantum mechanical
properties. The state within a quantum computer cannot be
completely isolated and decoherence is therefore inevitable.
It is possible to overcome this problem according to the
threshold theorem [5,6], which entails that an arbitrarily long
quantum computation can be sustained by error correction
techniques provided the error rate per gate is below a certain
threshold value.

One approach to reach below this threshold is to use
geometric quantum gates [7–13]. These are based on the
(Abelian) geometric phase (GP) of quantum systems [14,15].
When a quantum state undergoes a cyclic evolution it can gain
a phase factor. This phase factor can be split into a dynamical
part and a geometric part, where the geometric part is only
dependent on the path a quantum state takes through its state
space. By choosing an evolution for which the dynamical
phase effect is trivial, it is possible to implement quantum
logic gates that are purely dependent on the geometry of the
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path. This dependency on only geometry can be shown to be
resilient against certain types of noise [16–23].

While geometric quantum gates show promise in the im-
plementation of robust quantum computers, there are still
improvements to be made before they are fully operational.
One possible improvement is to reduce the number of pulses
and the run time needed to implement the gates, as this would
reduce the qubits’ exposure to the environment, thereby limit-
ing the effect of decoherence, as well as simplifying the pulse
schemes. To reduce the run time, noncyclic evolution in the
implementation of geometric quantum gates have been pro-
posed [24–31] and experimentally implemented [32]. These
gate are based on computational states evolving along open
paths while still only acquiring a GP in noncyclic evolu-
tion [33,34]. However, while the GP factors acquired by the
computational states are eigenvalues of the time evolution
operator when implementing cyclic geometric gates, this is
not so in noncyclic evolution since, in this case, the eigenstates
do not coincide with the computational states. This means that
the eigenstates may pick up additional nontrivial dynamical
phases also in cases where the noncyclic gates look geometric
in the computational basis. Thus, the geometric meaning of
these noncyclic gates is ambiguous.

Here, we propose precise conditions for geometric gates.
Under these conditions the meaning of noncyclic geomet-
ric gates become unambiguous. This provides a notion of
genuinely noncyclic geometric gates. Furthermore, geomet-
ric gates under cyclic evolution of the computational states,
which are gates that trivially satisfy these conditions, are
Abelian (they diagonalize in the computational basis) and
therefore fail universality. To complete the universal set, we
shall thus see that at least one genuinely noncyclic geometric
gate is needed.

II. CONDITIONS FOR GEOMETRIC GATES

We consider Schrödinger evolution ih̄|ψ̇ (t )〉 =
H (t )|ψ (t )〉, where H (t ) is the Hamiltonian of the system
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with Hilbert space H . Let U (t, 0) = Te− i
h̄

∫ t
0 H (t ′ )dt ′

be the
corresponding time evolution operator. We assume that
the computational system consists of n qubits with state
space M ⊆ H spanned by 2n � dimH predetermined
computational state vectors {| �q〉 = |q1, . . . , qn〉}q1,...,qn=0,1,
fixed by the final readout of the computation.

Let U (τ, 0) be the desired gate realized during the time
interval t ∈ [0, τ ]. Consider the eigenvalue equation

U (τ, 0)|ψk〉 = eiϕk |ψk〉, k = 1, . . . , 2n. (1)

Here, {|ψk〉} is an orthonormal set of vectors since U (τ, 0)
is a normal operator [5]. We assume that U (τ, 0) preserves
M, i.e., |ψk〉 = ∑

�q c(k)
�q | �q〉, ∀k, even in the case where 2n <

dimH . Thus, U (τ, 0)U †(τ, 0) is a projection operator onM.
The action of U (τ, 0) on each computational state | �q〉 can

be understood in terms of its GP

��q = arg〈 �q|U (τ, 0)| �q〉 + i
∫ τ

0
〈 �q|U †(t, 0)U̇ (t, 0)| �q〉dt,

(2)

provided 〈 �q|U (τ, 0)| �q〉 is nonzero. ��q is real-valued and a
property of the path U (t, 0)| �q〉〈 �q|U †(t, 0) in state space, as
it is invariant under monotonic reparametrizations t 	→ s(t )
and time-local phase changes U (t, 0) 	→ ei f (t )U (t, 0) [34].
These ��q:s are generically noncyclic GPs as the paths in state
space are typically open. On the other hand, the eigenvectors
|ψk〉 of U (τ, 0) are the cyclic states of the evolution U (t, 0),
t ∈ [0, τ ], and may thus be analyzed by using the Aharonov-
Anandan GP [15]. In this framework, each cyclic phase ϕk

contains a geometric (γk) and a dynamical (δk) part, given by

γk = arg〈ψk|U (τ, 0)|ψk〉 + i
∫ τ

0
〈ψk|U †(t, 0)U̇ (t, 0)|ψk〉dt,

(3)

and

δk = −1

h̄

∫ τ

0
〈ψk|U †(t, 0)H (t )U (t, 0)|ψk〉dt, (4)

such that ϕk = γk + δk .
Based on the above, we can now define a genuinely non-

cyclic geometric gate (GNGG) as a unitary U (τ, 0) that
satisfies the following two conditions:

(i) ��q − ��0 = arg〈 �q|U (τ, 0)| �q〉 − arg〈�0|U (τ, 0)|�0〉,
mod 2π ,

(ii) δk − δ1 = 0, mod 2π ,
for all k and binary vectors �q. In essence, such a gate depends
only on GPs for both its eigenstates and the predetermined
computational states.

Before addressing the physical realization of GNGGs in
the next section, we consider some qubit gates assuming them
to be genuinely noncyclic to gain some further conceptual
insights. First, let us consider a genuinely noncyclic geometric
Hadamard gate H. Such a gate takes the form

H = 1√
2

(|0〉 + |1〉)〈0| + eiπ 1√
2

(|1〉 − |0〉)〈1| (5)

in the computational basis [35,36], and

H = |+〉〈+| + eiπ |−〉〈−| (6)

in the eigenbasis |±〉 = 1
4∓2

√
2
[|0〉 − (1 ∓ √

2)|1〉], with the

phase factor eiπ = −1 assumed to be geometric in both cases.
We thus see that the geometric phase difference for both forms
is π , i.e., �1 − �0 = γ2 − γ1 = π .

As a second example, we consider rotation gates Uz(ϑz ) =
e−i ϑz

2 σz and Uy(ϑy) = e−i
ϑy
2 σy that can be used to describe an

arbitrary single-qubit rotation [37]. First, we note that Uz(ϑz )
is diagonal in the computational basis, i.e., the eigenbasis
coincides with the computational basis. This implies that
the gate is a standard cyclic geometric gate [8], for which
�1 − �0 = γ2 − γ1 = ϑz. More interesting is the genuinely
noncyclic geometric implementation of Uy(ϑy). We may write

Uy =
(

cos
ϑy

2
|0〉 + sin

ϑy

2
|1〉

)
〈0|

+
(

− sin
ϑy

2
|0〉 + cos

ϑy

2
|1〉

)
〈1| (7)

and

Uy = e−i
ϑy
2 |y+〉〈y+| + ei

ϑy
2 |y−〉〈y−|,

|y±〉 = 1√
2

(|0〉 ± i|1〉) (8)

in the computational basis and eigenbasis, respectively. Pro-
vided ϑy 
= π , we find �1 − �0 = 0 and γ2 − γ1 = ϑy, i.e.,
while the noncyclic GP difference of the computational basis
states is trivial, the cyclic GP difference is generally not. In the
case where ϑy = π , the noncyclic phases are not defined as the
computational states are each mapped on orthogonal states. It
follows, more generally, that π rotations around any axis in
the xy plane cannot be implemented in a genuinely noncyclic
manner. Curiously, this implies that there is no genuinely
noncyclic implementation of CNOT, while the GNGG scheme
can be used to realize other entangling two-qubit control gates
with noncyclic and cyclic GPs 0, 0, �10, �11 and 0, 0, γ3, γ4,
respectively. Similarly, the SWAP gate cannot be implemented
as a GNGG since it interchanges the computational states
|01〉 and |10〉, which are orthogonal in both qubits, while a
genuinely noncyclic realization of the

√
SWAP gate exists. The

latter takes the form

√
SWAP = |00〉〈00| + ei π

4
1√
2

(|01〉 − i|10〉)〈01|

+ ei π
4

1√
2

(−i|01〉 + |10〉)〈10| + |11〉〈11| (9)

in the computational basis and

√
SWAP = |e1〉〈e1| + |e2〉〈e2| + ei π

2 |e3〉〈e3| + |e4〉〈e4|
(10)

in the eigenbasis |e1〉 = |00〉, |e2〉 = 1√
2
(|01〉 + |10〉), |e3〉 =

1√
2
(|01〉 − |10〉), |e4〉 = |11〉. One finds the noncyclic and

cyclic GPs �00 = �11 = 0, �01 = �10 = π
4 and γ1 = γ2 =

γ4 = 0, γ3 = π
2 , respectively. Both these sets define nontrivial

GP differences.
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III. TWO-PULSE SINGLE-QUBIT GATES

A key point of the GNGG technique is that it can be used
to reduce the number of pulses to implement a universal set
of geometric gates. To make this point explicit, we shall now
examine the physical realization of arbitrary genuinely non-
cyclic single-qubit gates by using the simplest nontrivial case
of two pulses. To achieve universality with geometric gates
in such schemes, adhering to the proposed conditions (i) and
(ii) above, noncyclic geometric gates are required, as cyclic
gates are inherently Abelian in that they are by definition
diagonal in the computational basis and thus insufficient for
universality [38].

Let the two pulses be applied during [0, t1] and [t1, τ ],
respectively. By choosing the pulses such that they move the
computational basis along a pair of geodesic segments, the
corresponding dynamical phases vanish. After constructing
these gates, the dynamical phases of the eigenstates of the time
evolution operator are studied to find which gates are gen-
uinely geometric, i.e., satisfy the condition 2δ = 0, mod 2π ,
where we use that δ0 = −δ1 ≡ δ. As we shall see, this requires
a careful tuning of rotation axes and precession angles associ-
ated with the two pulses.

A path is geodesic on the Bloch sphere when the axis n of
rotation is orthogonal to the initial Bloch vector. Since the first
pulse acts on the computational basis {|q〉}q=0,1, it should thus
correspond to a rotation around any axis n1 in the xy plane,
as this would result in evolution of these states along parts of
a great circle that pass through the poles of the Bloch sphere.
Choosing one axis over another only changes the eigenvector
of the complete evolution by a rotation around the z axis. We
can therefore limit ourselves to one specific axis of rotation
and later generalize to other axes in the xy plane by simply
rotating the gate. We choose the y axis, i.e., n1 = ey, which
defines the Hamiltonian

H1 = 1
2 h̄ω σy, (11)

with corresponding time evolution operator

U1(t, 0) = e− i
2 ωt |y+〉〈y+| + e

i
2 ωt |y−〉〈y−|. (12)

At the final time t1 of the first pulse, the qubit has rotated an
angle θ1 = ωt1. This rotation can be seen in the upper panel
of Fig. 1.

For the second pulse, the axis of rotation must be orthogo-
nal to the final state of the first pulse to move the qubit state
along a geodesic. Starting at |0〉, the final state of the first pulse
can be described by the Bloch vector r1 = sin θ1ex + cos θ1ez,
which serves as initial state for the second pulse. The axis of
rotation can therefore be taken as

n2 = − cos θ1 cos φ ex + sin φ ey + sin θ1 cos φ ez. (13)

This lies in the plane spanned by the vector − cos θ1 ex +
sin θ1 ez, orthogonal to r1, and the y axis. φ is the rotational
angle around r1 relative to the xz plane, see the lower panel
of Fig. 1. With the axis of rotation defined, the Hamiltonian
becomes

H2 = h̄ω

2
(− cos θ1 cos φ σx + sin φ σy

+ sin θ1 cos φ σz ), (14)

FIG. 1. The rotation of the qubit during the first pulse (upper
panel). θ1 is the rotational angle and n1 is the axis of rotation. The
rotation of the qubit during the second pulse (lower panel). θ2 is
the rotational angle and φ determines the axis of rotation n2. n2 is
orthogonal to the final state (with Bloch vector r1) of the first pulse.
The paths gradually shifts from black (dark) at the start to yellow
(bright) at the end.

with eigenvalues and eigenvectors

λ± = ±1

2
h̄ω,

|κ±〉 =
√

cos2 θ1 cos2 φ + sin2 φ

2 ∓ 2 sin θ1 cos φ

×
[
|0〉 + ∓1 + sin θ1 cos φ

cos θ1 cos φ + i sin φ
|1〉

]
. (15)

The time evolution operator of the second rotation is

U2(t, t1) = e− i
2 ω(t−t1 )|κ+〉〈κ+| + e

i
2 ω(t−t1 )|κ−〉〈κ−|, (16)

which rotates the qubit an additional angle θ2 = ω(τ − t1).
This rotation is the geodesic path connecting r1 and r2 in the
lower panel of Fig. 1. The time evolution during the full time
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interval [0, τ ] can be written as

U (t, 0) =
{

U1(t, 0), 0 � t � t1,

U2(t, t1)U1(t1, 0), t1 � t � τ,
(17)

with the gate U (τ, 0) = U2(τ, t1)U1(t1, 0) being characterized by the angles θ1, θ2, and φ, i.e., U (τ, 0) ≡ U (θ1, θ2, φ).
By inserting Eqs. (12) and (16) into Eq. (17), we find the eigenvalues and eigenvectors of U (θ1, θ2, φ):

λ± = cos

(
θ1

2

)
cos

(
θ2

2

)
− sin

(
θ1

2

)
sin

(
θ2

2

)
sin φ ± i

√
1 −

[
cos

(
θ1

2

)
cos

(
θ2

2

)
− sin

(
θ1

2

)
sin

(
θ2

2

)
sin φ

]2

,

|ψ±〉 = N±

⎧⎪⎨
⎪⎩|0〉 +

sin
(

θ1
2

)
sin

(
θ2
2

)
cos φ ±

√
1 − [

cos
(

θ1
2

)
cos

(
θ2
2

) − sin
(

θ1
2

)
sin

(
θ2
2

)
sin φ

]2

eiφ cos
(

θ1
2

)
sin

(
θ2
2

) + i sin
(

θ1
2

)
cos

(
θ2
2

) |1〉

⎫⎪⎬
⎪⎭, (18)

with normalization factors

1

N±
=

√√√√
1 +

2
(

sin
(

θ1
2

)
sin

(
θ2
2

)
cos φ ±

√
1 − [

cos
(

θ1
2

)
cos

(
θ2
2

) − sin
(

θ1
2

)
sin

(
θ2
2

)
sin φ

]2
)2

1 − cos θ1 cos θ2 + sin θ1 sin θ2 sin φ
. (19)

Next, we find the dynamical phases of the evolution by using Eq. (4), yielding

δ± = −1

h̄

∫ t1

0
〈ψ±|H1|ψ±〉dt − 1

h̄

∫ τ

t1

〈ψ±|U †
1 (t1, 0)H2U1(t1, 0)|ψ±〉dt, (20)

where we have taken into account that H1 and H2 commute with U1 and U2, respectively. Explicitly,

U †
1 (t1, 0)H2U1(t1, 0) = h̄ω

2
(− cos φ σx + sin φ σy). (21)

This shows that both integrands on the right-hand side of Eq. (20) are time-independent, which implies

δ± = −θ1

2
〈ψ±|σy|ψ±〉 − θ2

2
〈ψ±|(− cos φ σx + sin φ σy)|ψ±〉 = ±δ. (22)

To find geometric gates, we need to solve for which choices of θ1, θ2, and φ the dynamical phases become trivial, i.e., satisfy the
condition 2δ = 0, mod 2π . We thus look for numerical solutions of

θ1〈ψ±|σy|ψ±〉 + θ2〈ψ±|(− cos φ σx + sin φ σy)|ψ±〉 = 0, mod 2π. (23)

We restrict to 2δ = 0 in the following.

It is possible to find any number of roots for the same set of
{θ1, φ}. In Fig. 2, the roots are shown for when 0 < θ1 < 2π

and 0 < θ2 < 3π as functions of φ. A positive θ1 (θ2) cor-
responds to a clockwise rotation driven by the first (second)
pulse. Roots can be found for counterclockwise rotations to
have the same shape but reflected or inverted. For θ1 > 0,
θ2 < 0, the roots are inverted through the point (φ, θ2) =
(π, 0); for θ1 < 0, θ2 > 0, on the other hand, they are reflected
in the line φ = π . When both rotations are counterclockwise
the roots are reflected in the line θ1 = 0. In Fig. 3, the GPs
corresponding to these roots are shown. For both counter-
clockwise rotations where θ1 > 0, θ2 < 0 and θ1 < 0, θ2 > 0
the GPs are reflected in the line φ = π and for the case when
both rotations are counterclockwise the GPs are the same as
in Fig. 3.

In the upper panel of Fig. 2, one can see that there are
three different choices of θ2 that give a trivial dynamical phase
for θ1 = 0.9π . They can be found in narrow φ intervals near
φ ∼ 1.15π and φ ∼ 1.85π , in between the two sets of dashed
lines in the figure. As can be seen in the upper panel of
Fig. 3, these choices correspond to different GPs and would
thus result in different GNGGs. Furthermore, the width of

the φ intervals increases when θ1 approaches π , until the
curve splits into two for θ1 = π , where the first rotation flips
the computational states |0〉 and |1〉: one concave curve with
minimum at (φ, θ2) = (1.5π, π ) (truncated at θ2 = 3π ) and
one horizontal line at θ2 = π that corresponds to an “orange
slice” shaped loop [39,40]. This loop is the special case where
the computational basis and the eigenbasis coincide. In this
cyclic case, the GP will be a linear function of the opening
angle φ [41], which is indeed visible as straight lines in Fig. 3.

One motivating aspect of noncyclic geometric schemes is
that they may shorten the exposure to decoherence effects
by shortening the run time of the gates. To test this in the
two-pulse realization of GNGGs, we use the total precession
angle θ1 + θ2 as a natural measure of run time. A closer
inspection of Fig. 2 entails that this angle is at least 2π for
all roots. It thus appears that the run time cannot be shortened
in the two-pulse noncyclic scheme, as compared to cyclic
geometric gates with the pulse pair driving the computational
basis states along the “orange slice” shaped loops on the Bloch
sphere [39,40].

To implement a specific gate, both eigenvalues and eigen-
vectors must match the desired gate. We show that it is
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FIG. 2. The roots of 2δ = 0 (trivial dynamical phase). θ1 (θ2) is
the first (second) rotation angle, and φ is the angle determining the
axis of rotation for the second rotation. In the upper panel, two sets
of dashed lines are shown, marking where there are three different
choices of θ2 that give zero dynamical phase for θ1/π = 0.9. The
width of these intervals increases when θ1/π → 1, until the curve
splits into two for θ1 = π : one concave curve with minimum at
φ/π = 1.5 and one horizontal line at θ2/π = 1, the latter corre-
sponding to the special case of cyclic geometric gates.

possible to find any eigenvalue but it is also necessary to find
the corresponding eigenvectors. To demonstrate this, eigen-
vectors corresponding to 2γ = π are displayed in Fig. 4.
These eigenvectors cover the entire z axis. Keep in mind that
only a first rotation around the y axis has been considered
so far. GNGGs with the same eigenvalue and an eigenvector
only differing by a rotation around the z axis can be found by
changing the first axis of rotation to another in the xy plane,
while keeping the relation between the first and the second
axis. With this finding any GNGGs with eigenvalue 2γ = π ,
such as the Hadamard gate H, can be realized with only two
pulses and it can similarly be shown for other γ as well.

To give an example, we show how a Hadamard gate can be
implemented. For this, 2γ = π and eigenvectors correspond
to ± ex+ez√

2
on the Bloch sphere. These eigenvectors are not

present in Fig. 4, but can be found by a suitable rotation
around the z axis. Figure 5 illustrates this Hadamard gate act-
ing on the computational state |0〉 and one of the eigenstates.

FIG. 3. GP corresponding to the roots of 2δ = 0. θ1 (θ2) is the
first (second) rotation angle and φ is the angle determining the axis
of rotation for the second rotation.

IV. CONCLUSION

We proposed a notion of noncyclic geometric gates in
which both the computational basis and the eigenbasis ac-
quire purely geometric phases. These two conditions require
as precise control of pulse lengths as in the case of cyclic
geometric gates, where cyclic evolution of the computational

FIG. 4. Continuous set of eigenvectors of gates with 2γ = π

with the first rotation taken around the y axis. The eigenvectors are
swept so as to form surfaces inside the Bloch sphere of the qubit.
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FIG. 5. The path of the |0〉 state (upper panel) and one of the
eigenstates (lower panel) when acted upon by a geometric Hadamard
gate. The paths gradually shift from black (dark) at the start to yellow
(bright) at the end. The computational state evolves along geodesic
segments.

states needs to be ensured. We demonstrated a physical re-
alization of such genuinely noncyclic geometric gates in the
single-qubit case. This is achieved by using pulse pairs that
drive the computational states along pairs of geodesic seg-
ments on the Bloch sphere, and simultaneously make the
dynamical phase difference of the eigenstates vanish. The pro-
posed concept removes the ambiguity of standard noncyclic
geometric gates [24–31], in which the computational basis
undergoes purely geometric evolution, while the eigenstates
generally do not. Our scheme takes advantage of noncyclic
geometric phase to achieve universality.

While the analysis focuses on gates using only two pulses,
it can straightforwardly be extended to three or more pulses.
This may open up for reduction of accumulated rotation an-
gle as well as more elaborate paths of the computational
states, so as to reduce the detrimental effect of noise and
decoherence. The scheme may further be extended to non-
geodesic evolution of the computational basis to further
improve the error resilience of the gates. This extension would
require the simultaneous removal of the dynamical phase ef-
fects of the computational basis and the eigenstates of the
gates. While in this work we focused on the single-qubit
case, the genuinely noncyclic geometric scheme can be ex-
tended to more general gates involving many qubits or even
qudits.
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