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Deterministic realization of trace-preserving channels in linear-optical systems
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A quantum channel describes the general evolution of quantum systems, which is therefore a critical issue
for quantum simulation and a fundamental element of quantum information. To realize quantum channels, an
efficient method is to randomly implement Kraus operators, which does not require any ancillary quantum
system. For open systems, it is natural to extend the method from implementation of unitary Kraus operators
to nonunitary ones. However, when some Kraus operators are not proportional to unitary ones, this method
becomes probabilistic even if the channel is trace preserving. In this paper, to overcome this drawback, we
propose an algorithm to deterministically realize arbitrary trace-preserving channels with only one ancillary
qubit and finite iterations of evolutions of the combined states of the system and the ancilla. Moreover, to show
the validity of the method, we experimentally realize conventional and modified Landau-Streater channels based
on the algorithm. Our results shed light on quantum simulation of quantum channels for open systems.
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I. INTRODUCTION

Quantum simulation promises to be a near-term applica-
tion of quantum information science and technology [1–5].
This is because it focuses on simulating specific classi-
cally intractable systems and thereby significantly reduces
the onerous requirements of universal quantum computation.
Therefore, it is a pursuit encoded in the genes of quantum
simulation to reduce the use of quantum resources. When
simulating an open quantum system, the pursuit naturally
becomes using a smaller quantum system to act as its envi-
ronment. The dynamics of an open quantum system can be
described by a quantum channel [6], which is a mapping of
quantum systems from an initial state ρ to a final state ρ ′, i.e.,
E : ρ �→ ρ ′. In this paper, we consider the important issue of
efficiently realizing a general quantum channel, which plays a
key role in quantum information processing [6–13].

A straightforward method to realize quantum channels is
to embed the system into a larger closed system and then
implement unitary transformations to the whole system [14].
Many attempts in this area are to reduce the number or di-
mension of the ancillary quantum systems [15,16]. Among
these, an efficient and widely used method is based on Kraus
representation of the quantum channel, which does not require
any ancillary quantum system [17–23].

A quantum channel E is described in the Kraus representa-
tion as

E[ρ] =
r∑

i=1

KiρK†
i , (1)

*gnep.eux@gmail.com

where {Ki} are Kraus operators and the minimal number of r
is the Kraus rank of the channel. With this notation, the final
state of a channel is a mixture of states KiρK†

i /Tr[KiρK†
i ]

with probabilities Tr[KiρK†
i ]. For the trace-preserving chan-

nel (TC), these probabilities satisfy
∑r

i=1 Tr[KiρK†
i ] = 1. A

special case of TC is the trace-preserving random-unitary
channel (TRC), of which all Kraus operators are proportional
to unitary ones as Ki = √

piK̄i with K̄iK̄i
† = 1. For TRC, the

probabilities pi are independent of the initial state and satify∑r
i=1 pi = 1. Therefore, these channels can be deterministi-

cally realized by randomly implementing unitary operations
K̄i = Ki/

√
pi [see Fig. 1(a)].

Generally, a TC may have some Kraus operators that are
not proportional to any unitary operator, which we termed as a
trace-preserving but not random-unitary channel (TNRC). To
realize a TNRC, it is still possible to use the efficient method
above by randomly implementing operations K̄i = Ki/

√
qi

with probabilities pi [24–26]. Physically implementable oper-
ations K̄i should satisfy K̄iK̄

†
i � 1 [27–32], where the equality

holds when and only when K̄i is unitary. For TNRC, some
of the operations K̄i must be nonunitary, which result in
Tr[K̄iρK̄†

i ] < 1. Therefore, implementing these nonunitary
operations could result in the loss of the system [24–26]. For-
mally, the final state of the realized channel is

∑r
i=1 piK̄iρK̄†

i ,
of which the trace is

∑r
i=1 piTr[K̄iρK̄†

i ] <
∑r

i=1 pi = 1. Note
that this trace corresponds to the probability of obtaining a
final state for a given initial state. Therefore, the realized
channel is not a TC but a probabilistic simulation of the
TC [24–26]. To deterministically realize a TC, this probability
should be one.

The basic idea to efficiently and deterministically real-
ize arbitrary TC was first pointed out by Lloyd and Viola
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FIG. 1. (a) Schematic for realizing quantum channels via ran-
domly implementing the operation K̄i determined by a random
number generator (RNG). (b) Schematic of our method to implement
quantum channels, which uses an ancillary qubit initialized in state
|1〉 and iteratively implements unitary transformations Ui to the com-
posite system. After each Ui, the ancillary qubit is measured by Pauli
Z (not shown). If the outcome is 0, finish the process; otherwise,
the outcome is 1, the ancillary qubit collapses to state |1〉, and the
composite system moves to the next iteration. (c) Circuit for our
method, where the process ends (denoted by the black rectangle)
once the measurement outcome is 0. The inset shows the circuit for
each unitary transformation Ui.

(LV) [33], which we termed the LV method. In the LV method,
arbitrary TC can be realized by channels with Kraus rank
of 2 in an adaptive fashion. A channel with Kraus rank of
2 can be efficiently realized using the traditional method of
enlarging the system with an ancillary qubit [34,35]. The
ancillary qubit is initialized in state |1〉 and then a unitary
operation U is implemented to the composite system. After
tracing out the ancillary qubit, the final state of the system is
〈0|U (|1〉〈1| ⊗ ρ)U † |0〉 + 〈1|U (|1〉〈1| ⊗ ρ)U † |1〉, which is
equivalent to the result of a channel with two Kraus operators
〈0|U |1〉 and 〈1|U |1〉.

Shen et al. [36] proposed an explicit form of the LV
method based on a binary-tree construction scheme for re-
alizing positive operator-valued measurement (POVM) [37].
In this method, an ancillary qubit is introduced and a unitary
transformation on the composite system followed by a mea-
surement on the qubit is iteratively applied. In each iteration,
the outcome is fed back to control the unitary operation of the
next iteration. As a result, the binary outcomes create a binary
tree composed of unitary operations. Therefore, we term this
method the tree LV method.

In this paper, we propose and experimentally demonstrate
another explicit form of the LV method. Our protocol also
introduces an ancillary qubit and iteratively applies a uni-
tary transformation on the composite system followed by a
measurement on the qubit. The key difference is that the two
possible outcomes of the measurement determine whether to
apply the next iteration or to end the process. As illustrated
in Fig. 1(b), our protocol creates a path graph composed of
unitary operations, which we termed as the path LV method.

Importantly, our method incorporates the realization of spe-
cific unitary operators and is presented in an algorithmic
manner, making it highly convenient to use. We experimen-
tally demonstrate the application of our method in linear
optical systems.

This paper is organized as follows. In Sec. II, we introduce
our general protocol for realizing arbitrary TC. Section III
provides examples. In Sec. IV, we present our experimental
setup for realizing these example channels. The experimental
results are provided in Sec. V. Finally, we summarize and
discuss our results in Sec. VI.

II. PROPOSAL

A. Basic idea

Following the ideas in Refs. [33,36], our basic idea to real-
ize a TC is illustrated in Figs. 1(b) and 1(c). We introduce an
ancillary qubit initialized at state |1〉 and iteratively implement
unitary operation Ui. After each Ui, we measure the ancillary
qubit by Z in the basis {|0〉〈0|, |1〉〈1|}. If the outcome is 0, we
terminate the process; otherwise, we enter the next iteration.
Therefore, our protocol defines a path graph composed of
unitary operations, as shown in Fig. 1(b).

Let us first consider the action of each iteration. We con-
sider that the process moves to the next iteration only when
the measurement outcome is 1. In this case, the ancillary
qubit collapses to the state |1〉. Therefore, each iteration i
begins with the composite system at state |1〉〈1| ⊗ ρi−1. In
this iteration, the unitary operation Ui transforms the state into
Ui(|1〉〈1| ⊗ ρi−1)U †

i . Therefore, the measurement outcome is
0 or 1 with probability Tr[K ′

i ρi−1K ′
i
†] or Tr[L′

iρi−1L′
i
†], respec-

tively, where K ′
i = 〈0|Ui |1〉 and L′

i = 〈1|Ui |1〉. Moreover,
when the outcome is 0, the process terminates and generates a
final state K ′

i ρi−1K ′
i
†
/Tr[K ′

i ρi−1K ′
i
†]; when the outcome is 1,

the process moves to the next iteration with the composite sys-
tem at state |1〉〈1| ⊗ ρi = |1〉〈1| ⊗ L′

iρi−1L′
i
†
/Tr[L′

iρi−1L′
i
†].

Let us analyze the channel generated by this process. The
process terminates after iteration i when the measurement
outcome is 0 and all previous outcomes are 1. Therefore, it ter-
minates after first iteration with a probability Tr[K ′

1ρ0K ′
1

†] =
Tr[K1ρ0K1

†] or after iteration i � 2 with a probability

Tr[K ′
i ρi−1K ′

i
†]

i−1∏
i′=1

Tr[L′
i′ρi′−1L′

i′
†]

= Tr

⎡
⎣K ′

i

⎛
⎝ 1∏

i′=i−1

L′
i′

⎞
⎠ρ0

(
i−1∏
i′=1

L′
i′

†

)
K ′

i
†

⎤
⎦

= Tr[Kiρ0K†
i ], (2)

where Ki = K ′
i (

∏1
i′=i−1 L′

i′ ). Moreover, when the
process terminates after iteration i, the final state is
K ′

i ρi−1K ′
i
†
/Tr[K ′

i ρi−1K ′
i
†] = Kiρ0K†

i . Hence such a process
realizes a channel that transforms state ρ0 into Kiρ0K†

i with
probability Tr[Kiρ0K†

i ]. The crucial task is designing specific
unitary operations to let the operations Ki be desired ones.

A critical issue with our method is that the process appears
to be probabilistic since the termination condition depends
on the measurement outcomes. However, when the unitary

032611-2



DETERMINISTIC REALIZATION OF TRACE-PRESERVING … PHYSICAL REVIEW A 108, 032611 (2023)

operations are properly chosen to realize a channel with Kraus
rank of r, the process terminates and generates a final state
within r iterations with a probability of

∑r
i=1 Tr[Kiρ0K†

i ].
Therefore, when the desired channel is a TC, which ensures∑r

i=1 Tr[Kiρ0K†
i ] = 1 for arbitrary state ρ0, the process deter-

ministically yields a final state. We will further demonstrate
this determinism by showing that the measurement outcome
of the rth iteration must be 0. In this case, the final transfor-
mation must be a tenser product of σx on the ancillary qubit
and a unitary transformation of the d-dimensional system.

The tree LV method has a significant advantage in terms of
the required number of iterations, i.e., the level of the tree [36].
A tree with level l can realize a channel with Kraus rank
2l . In this case, it is necessary to determine 2l − 1 unitary
operations, which is similar to our method that requires 2l

unitary operations. It is worth mentioning that the choice of a
method should take into account the noise of the experimental
system.

Let us consider a simple case where each unitary transfor-
mation U is followed by a general Pauli channel as P (ρ) =∑d2−1

j=0 p jσ jρσ
†
j , where

∑d2−1
j=0 p j = 1 and σ j are Pauli oper-

ators of the d-dimensional system with σ0 being the identity.
In this case, the noise strength is ε = 1 − p0. We have sim-
ulated the effect of this noise on the realized channels with
Kraus rank 16 of a four-dimensional system. Specifically,
we randomly generate unitary transformations in a method
and obtain a channel E as the ideal one. For each case, we
obtain the noisy channel Ẽ for specific noise ε by randomly
generating p j for j = 1, . . . , 16 and then normalizing these to
εp j/

∑16
j=1 p j .

To compare the noise channel with the ideal one, we adopt
the Choi-Jamiołkowski representation [38,39] of a quantum
channel as

ϒE = E ⊗ I[|I〉 〈I|], (3)

where |I〉 = ∑d−1
k=0 |kk〉 is an unnormalized maximally en-

tangled state. With this representation, the action of channel
is E[ρ] = Tr2[(1d ⊗ ρT )ϒE ], where Tr2 denotes the partial
trace on the second d-dimensional system. It is to be noted
that the Choi matrix ϒE satisfies the same constraints as a
density matrix [40]. Using Choi-Jamiołkowski representation
of quantum channels, the fidelity between two channels E1

and E2 can be measured by the state fidelity between the Choi
matrices [41] as

F (ϒE1 , ϒE2 ) = 1

d
Tr[

√√
ϒE1ϒE2

√
ϒE1 ]. (4)

For each method, we have simulated 100 pairs of ideal and
noisy channels and calculated their fidelities for each ε. As
shown in Fig. 2, the path LV method appears to exhibit greater
robustness to small noise.

B. Specific protocol

Let us introduce our protocol for realizing arbitrary TC
using the iterative idea described above. Moreover, our pro-
tocol designs the unitary operations in an iterative manner,
as shown in Fig. 1(d). Therefore, our protocol includes two
iterative loops in total.

ε

F(
Υ

Ẽ,
Υ

E)

FIG. 2. Fidelities between a random channel E and its noisy
version Ẽ due to each unitary transformation suffering from a general
Pauli noise with strength ε. The scatter plots represent the results for
the tree LV method (blue dashed) or the path LV method (red solid)
and the corresponding lines show their average values.

To describe our protocol, we denote the Kraus operators
as Ki = ∑d−1

j=0 | j〉〈ψi, j |, where |ψi, j〉 are unnormalized states
and their normalized forms are |ψ̄i, j〉 = |ψi, j〉 /|| |ψi, j〉 ||. It
is worth mentioning that a Kraus operator Ki is proportional
to a unitary operator if and only if states |ψi, j〉 are mutually
orthogonal and their norms || |ψi, j〉 || are equal. With this
notation, our method works as follows.

(i) Initialize the ancillary qubit in the state |1〉 and set
iteration numbers as (i, j) = (1, 0).

(ii) Implement the unitary operation Bi, jAi, j to the compos-
ite system, where Ai, j and Bi, j will be introduced below.

(iii) If j < d − 1, update j = j + 1 and repeat step (ii);
otherwise, move to step (iv).

(iv) Measure the ancillary qubit in the basis {|0〉〈0|, |1〉〈1|}.
If the outcome is 0, finish the process; otherwise, set i = i + 1
and j = 0 and then repeat step (ii).

The unitary operations in step (ii) are ancilla-control-
system Ai j and system-control-ancilla operations Bi, j , respec-
tively, i.e.,

Ai, j = |1〉〈1| ⊗ Ci, j + |0〉〈0| ⊗ 1,
(5)

Bi, j = Si, j ⊗ | j〉〈 j| + 1 ⊗ (1 − | j〉〈 j|),
where Si, j = (ri, jσx − ti, jσz ) is a single-qubit operation. The
unitary operations Ci, j are chosen to satisfy

〈 j|Ci, j = 〈ψ̄i, j | L+
i, j−1

|| 〈ψ̄i, j | L+
i, j−1||

, (6)

where the superscript + denotes Moore-Penrose inverse [42],
and the real parameters ri, j and ti, j are determined as

ri, j = || |ψi, j〉 || × || 〈ψ̄i, j | L+
i, j−1||,

ti, j =
√

1 − r2
i, j . (7)

The operators Li, j are recursively defined as

Li, j = [1 − (1 − ti, j )| j〉〈 j|]Ci, jLi, j−1,

with L1,−1 = 1 and Li,−1 = Li−1,d−1. Note that there is only
one restriction of the jth row to the choice of Ci, j . Therefore,
the choice of Ci, j can be adjusted according to the features of
a specific experimental system.
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C. Proof of the protocol

Now, let us show how this procedure deterministically re-
alizes the desired channel. After step (ii) of the procedure, the
state of the composite system is |�i, j〉 /|| |�i, j〉 ||, where

|�i, j〉 = |0〉 ⊗
j∑

l=0

ri,l 〈l|Ci,l Li,l−1 |ψ〉 |l〉 + |1〉 ⊗ Li, j |ψ〉 .

(8)
Therefore, if the outcome is 0 in step (iv), the state of the
system undergoes a transformation as

Ti =
d−1∑
l=0

ri,l |l〉〈l|Ci,lLi,l−1

=
d−1∑
l=0

ri,l

|| 〈ψ̄i, j | L+
i, j−1||

|l〉〈ψ̄i, j |L+
i, j−1Li, j−1

=
d−1∑
l=0

|l〉〈ψi,l | = Ki. (9)

Here the second equality is due to the choice of Ci, j in Eq. (6)
and the third equality is due to the choice of ri, j in Eq. (7) and
a condition (C1) |ψ̄i,l〉 ∈ supp(L+

i, j−1) = supp(Li, j−1).
We now show the condition (C1) and another one

(C2) ri, j � 1, which ensures the process being a well-
defined one. Given a TC with Kraus operators Ki =∑d−1

j=0 | j〉〈ψi, j |, one can construct a POVM with elements
|ψi, j〉〈ψi, j | [43]. This POVM satisfies

∑
all |ψi, j〉〈ψi, j | =∑

< |ψk,l〉〈ψk,l | + Li, jL
†
i, j = 1, where

∑
all denotes summa-

rization over all i ∈ {1, . . . , r} and j ∈ {0, . . . , d − 1} and∑
< is over k < i with l ∈ {0, . . . , d − 1} and k = i with l <

j. Thus we have |ψ̄i,l〉 ∈ supp(Li, j−1) and r2
i, j = || |ψi, j〉 ||2 ×

||L+†
i, j−1 |ψ̄i, j〉 〈ψ̄i, j | L+

i, j−1|| � 1. That is, Eq. (9) holds and the
process is well defined.

According to the above, the process ends with state
Ki |ψ〉 /||Ki |ψ〉 || if the measurement outcome at step (iv) is 0
with the iteration number (i, d − 1). In step (iv), the outcome
is 0 with probability P′

i = ||Ki |ψ〉 ||2/|| |�i,d−1〉 ||2 =
1 − ||Li,d−1 |ψ〉 ||2/|| |�i,d−1〉 ||2. Since step (ii) only
implements unitary operations to the system, it is
obvious that || |�i, j〉 || = ||Li,−1 |ψ〉 ||. Therefore, for
i � 2, we have || |�i,d−1〉 ||2 = ||Li−1,d−1 |ψ〉 ||2 = (1 −
P′

i−1)|| |�i−1,d−1〉 ||2 = || |�i−1,d−1〉 ||2 − ||Ki−1 |ψ〉 ||2 =
· · · = || |�1,d−1〉 ||2 − ∑i−1

l=1 ||Kl |ψ〉 ||2. Note that
|| |�1,d−1〉 ||2 = 1 and the trace preservation implies∑r

i=1 ||Ki |ψ〉 ||2 = 1, so we have || |�i,d−1〉 ||2 =∑r
l=i ||Kl |ψ〉 ||2. Therefore, the probabilities satisfy

P′
i = ||Ki |ψ〉 ||2/∑r

l=i ||Kl |ψ〉 ||2.
Let us consider the probability Pi that the process ends

with iteration number (i, d − 1). For i = 1, it is simply P1 =
P′

1 = ||K1 |ψ〉 ||2. The process ends with iteration number
(i, d − 1) only when outcomes of previous measurements are
1. Therefore, for i > 1, the probability is Pi = P′

i

∏i−1
l=1(1 −

P′
l ) = ||Ki|ψ〉||2∑r

k=i ||Kk |ψ〉||2
∏i−1

l=1(
∑r

k=l+1 ||Kk |ψ〉||2∑r
k=l ||Kk |ψ〉||2 ) = ||Ki |ψ〉 ||2. Hence

the process successfully realizes the channel by output state
Ki |ψ〉 /||Ki |ψ〉 || with probability ||Ki |ψ〉 ||2.

In the last iteration with iteration number (r, d −
1), the probability of obtaining outcome 0 is P′

r =
||Kr |ψ〉 ||2/||Kr |ψ〉 ||2 = 1; that is, the outcome has to be 0.
Hence our method is deterministic.

III. EXAMPLES: LANDAU-STREATER CHANNELS

As an example, we experimentally realize the Landau-
Streater channel (LSC), which was originally proposed as
an example of both unital channel (UC) and TNRC [44,45].
Here, a channel E is UC if E[1] = 1. Therefore, all TRCs are
UC but not vice versa, due to counterexamples as LSC.

The Kraus representation of LSC of the d-dimensional
(d � 3) system is

�d [ρ] = 4

d2 − 1
(JxρJx + JyρJy + JzρJz ), (10)

where Jx, Jy, and Jz are spin projection operators of spin-d
particles. For qutrit (d = 3), the spin operators are

Jx = (|0〉〈1| + |1〉〈0| + |1〉〈2| + |2〉〈1|)/
√

2,

Jy = i(−|0〉〈1| + |1〉〈0| − |1〉〈2| + |2〉〈1|)/
√

2,

Jz = |0〉〈0| − |2〉〈2|. (11)

For the qudit (d = 4), the operators are

Jμ =
2∑

j=0

aμ

√|λ jλ j+1|(| j〉〈 j + 1| + bμ| j + 1〉〈 j|),

Jz =
3∑

j=0

λ j | j〉〈 j|, (12)

where μ = x, y, ax = bx = 1, ay = i, by = −1, λ0 = −λ3 =
3/2, and λ1 = −λ2 = 1/2.

Using our method, we can determine a choice of oper-
ations to realize these two channels (see the Appendixes).
It is worth noting that, for all Kraus operators in the �4

channel, interference happens within two subspaces spanned
by {|0〉 , |2〉} and {|1〉 , |3〉}. Moreover, using suitable phase-
tuning and permutation operations, Kraus operators on these
two subspaces can be identical. Therefore, we can simplify
the procedure by simultaneously implementing operations on
the two subspaces.

Different from TRC, there are TNRCs that are nonunital
channels. A more interesting difference arises when applying
different unitary transformations to Kraus operators. After the
transformation, any TRC is still a TRC, which is still UC, but a
TNRC that was a UC may become not a UC. For example, we
consider a channel �′

3 with Kraus operators UuJu, where Ju are
Kraus operators of �3, Uu = 1√

2
(|0〉〈0| + cu|0〉〈2| + |2〉〈0| −

cu|2〉〈2|) + |1〉〈1|, with cx = −cy = 1 for u = x, y and Uz =
1 (see the Appendixes).

IV. EXPERIMENTAL SETUP

A. Optical realization of our method

Let us first consider the general idea for realizing our
method using a linear optical system. A d-dimensional qudit
is encoded in d optical modes of a single photon, which
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FIG. 3. Illustration of optical realization of our method. (a) The
entire optical circuit comprises r unitary operations and r output
ports. (b) Each unitary operation Ui can be decomposed into d
d-dimensional unitary operations Ci, j and d splitters Si, j . (c) Each
d-dimensional unitary operation Ci, j can be achieved through inter-
actions between neighboring modes.

we denoted as |1, j〉 for j = 0, . . . , d − 1. To introduce an
ancillary qubit, it is easy to use another d mode denoted as
|0, j〉 for j = 0, . . . , d − 1. In our method, the state of the
ancillary qubit before each iteration is |1〉, meaning that the
photon is distributed in the original modes |1, j〉 as shown in
Figs. 3(a) and 3(b). After each transformation Ui, the photon
is distributed in 2d modes. We output the photon in modes
|0, j〉 while applying the next iteration to the photon in modes
|1, j〉.

The whole process is shown in Fig. 3(a), where there are
r output ports. In principle, one can incoherently mix these
ports [34] or realize the iterations with loop structures [46].
For simplicity, we realize such a mixture by simultaneously
implementing identical operations and measurements on these
ports and then discarding the information about in which port
the photon is detected.

In our method, each unitary operation Ui is realized by
iteratively implementing transformations Ai, j and Bi, j . As
shown in Fig. 3(b), each transformation Ai, j corresponds to
a d-dimensional unitary transformation Ci, j on the original
modes |1, j〉 and each transformation Bi, j corresponds to a
qubit operation Si, j that splits the mode |1, j〉 into modes |1, j〉
and |0, j〉. According to Eq. (6), the transformation Ci, j is only
required to transform a desired state into |1, j〉. Therefore, it
can be realized by interferences between neighboring modes
as shown in Fig. 3(c).

B. Experimental setup for LS channels

We experimentally realize these channels using heralded
single photons and linear optical elements (see Fig. 4). Previ-
ous experiments in a linear optical system have demonstrated
the realization of either TRC [18,21] or TNRC with Kraus
rank of 2 [22,23]. Here, our proof-of-principle experiments
demonstrate the realization of TNRCs with higher Kraus rank
using our method.

In our experiments, a photon pair is generated via type-I
spontaneous parametric down-conversion (SPDC) by pump-
ing a 0.5-mm-thick nonlinear β-barium-borate crystal with a
400.8 nm cw diode laser. One of the photons is detected by
an avalanche photondiode (APD) to serve as a trigger that
heralds the other photon as our single photon source. A qutrit
or qudit is encoded in hybrid degrees of freedom (spatial
and polarization modes) of the photon. Transformations are
realized by optical interferometers in arrays of wave plates
(WPs) and polarization-dependent beam displacers (BDs).

The ancillary qubit is encoded in additional spatial modes.
Then the operations in step (ii) can be realized as follows. The
ancilla-control-system operations Ai, j are realized by imple-
menting unitary operations to the original spatial modes while
leaving the additional modes unchanged. The system-control-
ancilla operations Bi, j are realized by partially splitting a
photon in an original spatial mode to an additional mode and
maintaining the other modes unchanged. The measurement in
step (iv) with outcomes 0 or 1 corresponds to finding the pho-
ton in these additional or original spatial modes, respectively.
After that, the additional spatial modes serve as output ports.

For channels �3 and �′
3, the qutrit bases |0〉, |1〉, and

|2〉 are initially represented by three optical modes, |P0V 〉,
|P1H〉, and |P0H〉, where Pi denotes the ith spatial mode and
H (V ) denotes horizontal (vertical) polarization. In principle,
to realize an arbitrary unitary transformation of this photonic
qutrit requires three BDs. However, only one row of Ci, j is
specified, so this transformation can be realized with only two
BDs. Moreover, by properly defining the basis and omitting
identity operations, the optical circuits are finally simplified to
one with only seven BDs as shown in Fig. 4(a). In each output
port, the bases of the qutrit states are reencoded by optical
modes as |P1H〉, |P0H〉, and |P0V 〉. The changes of the bases
can be restored by unitary transformations if necessary.

For the channel �4, the unitary operations are identical in
two subspaces after permutation. Therefore, we use a ver-
tically placed BD (VBD), which transmits the horizontally
polarized photon and shifts the vertically polarized photon to a
lower mode, to split the photon into two vertically distributed
spatial modes denoted as upper |U 〉 and lower |L〉 modes. The
basis of the initial state |0〉, |1〉, |2〉, and |3〉 are encoded by
|LH〉, |UH〉, |LV 〉, and |UV 〉, respectively. The transforma-
tions are realized by interferometers with horizontally placed
BDs and HWPs, which implement identical operations to
upper and lower modes. After phase tuning to the output ports,
the basis states of the output are reencoded as |UV 〉, |LH〉,
|UH〉, and |LV 〉. The phase tuning between spatial modes
in output ports is realized by tilting the BD in measurement
devices when combining the two modes.

As shown in Figs. 4(c) and 4(d), optical circuits for mea-
surements of the qutrit and qudit have the same structure but
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FIG. 4. Optical circuits to realize channels (a) �3 and �′
3 (by removing the two HWPs in the ellipses) and (b) �4. A heralded single

photon with horizontal polarization is generated via the spontaneous parametric down-conversion (not shown) and sent to the circuits. The
photon is prepared in qutrit or qudit states encoded in hybrid optical modes. Then the photon is iteratively transformed by unitary operations
U1, U2, and U3, which are realized by optical interferometers, each with an output port. For each input or output port, the state of the ancillary
qubit is labeled as |0〉a or |1〉a. Each photon is detected in one and only one of the three output ports. In these ports, we implement the
same measurements to act as mixing them. The setups for measurements of qutrit and qudit are shown in (c) and (d), respectively. The third
measurement in (b) is marked upside down to indicate that it is implemented in an opposite direction to eliminate a swap operation of spatial
modes. HWP: half wave plate; QWP: quarter wave plate.

with BDs being placed in different directions. We adopt this
setup to improve the stability of the circuit via sharing the
same WPs by two spatial modes. Therefore, the circuit real-
izes projective measurements (POVM) on the qudit (qutrit)
system. The same idea to share WPs is also adopted in the
preparation of the qudit state.

All these measurement modules project the photon into
four spatial modes, which are finally collected by APDs. In
our experiments, we only record the clicks in coincidence
with the trigger with a coincident window of 3 ns. Over the
exposure time of 10 s, the total coincidence counts are about
1.1 × 105.

V. EXPERIMENTAL RESULTS

To determine the performance of our experiments, we im-
plement quantum process tomography [47,48] to reconstruct
the experimental channels. The reconstructed Choi matrix of
experimental channels is shown in Fig. 5. We have calcu-
lated the fidelities between these experimental channels ϒexpt

versus the corresponding intended one ϒ theor. In our experi-
ment, the channels �3, �4, and �′

3 are realized with fidelities
0.9810(9), 0.9509(11), and 0.9831(6), respectively.

To quantify the agreement of a channel ϒexpt with UC,
we calculate the fidelity between states 1/d and ϒexpt(1/d )
as FUC =

√√
1/dϒexpt(1/d )

√
1/d . For channels �3, �4,

and �′
3, the experimental values of FUC are 0.999976(6),

0.999960(7), and 0.97709(95), respectively. These results
agree with theoretical predictions that �3 and �4 are UC
with FUC = 1 and �′

3 is nonunital with FUC = (2 + √
2 +√

6)/6 ≈ 0.977284. Here, the accuracies for �3 and �4 are
surprisingly good. We conjecture that this occurs because
the noise typically present in experiments causes the quan-
tum state to degenerate into a maximally mixed state, which

coincides precisely with the final state of a maximally mixed
state after undergoing a UC.

An interesting feature of LSC �d is that it is globally
unitarily covariant if and only if d = 3 [45]. A channel �

is globally unitarily covariant if there exists a unitary oper-
ation V such that for an arbitrary unitary operation U the
equality �[UρU †] = V �[ρ]V † holds for all states ρ [49].
This strict definition is difficult to satisfy by experimental
channels. However, one can estimate a feature implied by
the globally unitary covariant; that is, the final states of
such channels �[U |ψ〉〈ψ |U †] and �[|ψ〉〈ψ |] have identical

theor expt expt

FIG. 5. Theoretical (first column) and experimental (second and
third columns) Choi matrices of channels �3 (upper layer), �4 (mid-
dle layer), and �′

3 (lower layer). The imaginary parts of theoretical
Choi matrices are all zero.
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spectra for arbitrary U and |ψ〉. Therefore, these channels
induce decoherence to pure states with a state-independent
strength.

To quantify the discrepancy between spectra of two states
ρ1 and ρ2, we adopt the Jensen-Shannon (JS) distance [50]
between two distributions as DJS[Spec(ρ1), Spec(ρ2)], where
Spec(ρi ) denotes the list of eigenvalues of ρi sorted from
largest to smallest. Here, the JS distance DJS(P, Q) is a
statistical metric for measuring the similarity between two
probability distributions P and Q with the same length d as

DJS(P, Q) =
√

DKL(P, M ) + DKL(Q, M )

2
, (13)

where M = (P + Q)/2 and DKL(P, Q) = ∑d
x=1 Px log2

Px
Qx

is
the Kullback-Leibler divergence. The JS distance ranges from
0 for identical distributions to 1 for perfect mismatch. For a
channel �, the maximal divergence is

D(�)= max
|ψ1〉,|ψ2〉

DJS(Spec(�[|ψ1〉〈ψ1|]), Spec(�[|ψ2〉〈ψ2|])).

Using the reconstructed Choi matrix, the maximal divergences
for ϒ

expt
�3

and ϒ
expt
�4

are 0.0134(27) and 0.1322(41), respec-

tively. These indicate that the decoherence by ϒ
expt
�4

is more

state dependent than that by ϒ
expt
�3

, which agrees with the
theoretical prediction with D(�3) = 0 and D(�4) = 0.1258.
Besides, we can roughly estimate the divergences to circum-
vent the maximization via comparing spectra of the final states
obtained in quantum processing tomography. Among these,
the largest distances for three- and four-dimensional cases are
0.0140(14) and 0.1107(141), respectively, which also support
the decoherence by ϒ

expt
�4

being more state dependent.

VI. CONCLUSION AND DISCUSSION

In summary, we have proposed a general method to de-
terministically realize arbitrary TC. This method is simple
with parameters determined in an algorithmic way instead of
purification of the problem. The method requires only one
ancillary qubit and classical controls. Note that the method of
randomly implementing operations also requires a qubit when

realizing TNRC, since realizing each nonunitary evolution
requires a qubit [28]. Therefore, our method is very efficient
in using quantum resources. Moreover, the simulator is in a
versatile form of a “digital” one, where unitary evolution can
be realized by a sequence of quantum gates [2,21,51,52]. We
also experimentally demonstrate the method in realization of
both unital and nonunital channels. Our results shed light on
quantum simulation of quantum channels for open systems
and pave the way for further experimental investigations of
quantum channels.

It is worth mentioning that our experimental setup is appli-
cable for adopting other forms of the LV method in a linear
optical system. To use our method and other forms of the
LV method, it is necessary to have the ability to reuse the
postmeasurement state of the ancillary qubit. Otherwise, one
should reinitialize the ancillary qubit at each iteration. In this
paper, we have demonstrated the method for realizing the
ancillary qubit and reusing its postmeasurement state in linear
optical systems.

Our method is based on the Kraus representation of a quan-
tum channel and the number of iterations is exactly the Kraus
rank. The Kraus representation of a channel with minimum
Kraus rank can be obtained from other representation via
various procedures [6,38,53,54]. It is worth mentioning that
the minimum Kraus rank of a channel of a d-dimensional
system is no larger than d2 [38].

Though our method is proposed for TC, it is also applicable
to trace-nonincreasing channels [15] by using partial itera-
tions of realizing a TC. Moreover, the iterations from (i, j) =
(1, 0) to (1, d − 1) provide a general, simple, and efficient
method for realizing arbitrary nonunitary evolution [29,55].
Considering the similarity between implementing channels
and implementing POVM [37,56], our method can also be
used to implement POVMs. By implementing projective mea-
surements | j〉〈 j| on the system and considering the iteration
number i, the POVM elements |ψi, j〉〈ψi, j | are realized.
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APPENDIX A: OPERATIONS FOR REALIZING �3, �′
3, AND �4 CHANNELS

A choice of Ci, j and ri, j for realizing the �3 channel is

C1,0 =
(

σx

1

)
, C1,1 =

(
1

H

)
, C1,2 =

(
σx

1

)
,

C2,0 =
( −σx

1

)
, C2,1 =

(
1

σx

)
, C2,2 =

(
1

−σx

)
,

C3,0 =
(−H

1

)
, C3,1 = 1, C3,2 =

(
1

−σx

)
,

where H denotes the Hadamard gate and

r1,0 = 1

2
, r1,1 = 1√

2
, r1,2 = 1√

3
, r2,0 = r2,1 = 1√

2
, r2,2 = r3,0 = r3,2 = 1, r3,1 = 0.
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A choice of Ci, j and ri, j for realizing the �′
3 channel is

C1,0 =
(

σx

1

)
, C1,1 =

(
1

H

)
, C1,2 = 1,

C2,0 = 1, C2,1 =
(

1
σx

)
, C2,2 =

(
1

−σx

)
,

C3,0 =
(

H ′
1

)
, C3,1 = 1, C3,2 =

(
1

−σx

)
,

where H ′ = (1 −1
1 1 )/

√
2, and

r1,0 = r1,1 = r2,1 = 1√
2
, r1,2 = r2,2 = r3,1 = 0, r2,0 = r3,0 = r3,2 = 1.

To simplify the realization of the �4 channel, one can first implement a permutation as

P0 =

⎛
⎜⎜⎝

1
1

1
1

⎞
⎟⎟⎠.

Then one can simplify the procedure by simultaneously implementing transformations to two subspaces, after which permutation
and phase tuning should be added to each output. One can realize the procedure with two iterations of j for each i; that is, for
each j = 0, 1, one implements Bi, jAi, j , where

Ai, j = |1〉〈1| ⊗ 1 ⊗ Ci, j + |0〉〈0| ⊗ 1, Bi, j = (ri, jσx − ti, jσz ) ⊗ 1 ⊗ | j〉〈 j| + 1 ⊗ (1 − 1 ⊗ | j〉〈 j|).

Here the operations can be chosen as

C1,0 = 1, C1,1 =

⎛
⎜⎝−

√
3
8

√
5
8√

5
8

√
3
8

⎞
⎟⎠,

C2,0 =

⎛
⎜⎝−

√
7

32

√
25
32√

25
32

√
7

32

⎞
⎟⎠, C2,1 =

⎛
⎜⎝

√
4
13

√
9
13√

9
13 −

√
4
13

⎞
⎟⎠,

C3,0 =

⎛
⎜⎝

√
1

13

√
12
13√

12
13 −

√
1

13

⎞
⎟⎠, C3,1 = σz,

and

r1,0 = 1√
5
, r1,1 =

√
8

15
, r2,0 =

√
3

7
, r2,1 =

√
13

4
, r3,0 = r3,1 = 1.

If the procedure stops with i, an additional operation PHi should be implemented to the output, where

PH1 =

⎛
⎜⎜⎝

1
1

1
1

⎞
⎟⎟⎠, PH2 =

⎛
⎜⎜⎝

−1
−1

1
1

⎞
⎟⎟⎠, PH3 =

⎛
⎜⎜⎝

−1
1

−1
1

⎞
⎟⎟⎠.
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APPENDIX B: STATE PREPARATIONS AND MEASUREMENTS FOR QUANTUM PROCESS TOMOGRAPHY

In quantum process tomography, we choose states and measurements that are suitable for our setup. For the channel �3, we
prepare the qutrit system in nine states as

⎛
⎝0

1
0

⎞
⎠,

⎛
⎜⎝

1√
2

1√
2

0

⎞
⎟⎠,

⎛
⎜⎝

−i√
2

1√
2

0

⎞
⎟⎠,

⎛
⎜⎝

0
1√
2

1√
2

⎞
⎟⎠,

⎛
⎜⎝

0
1√
2

i√
2

⎞
⎟⎠,

⎛
⎝0

0
1

⎞
⎠,

⎛
⎝1

0
0

⎞
⎠,

⎛
⎜⎝

1√
2

0
i√
2

⎞
⎟⎠,

⎛
⎜⎝

1√
2

0
−1√

2

⎞
⎟⎠.

The measurements are POVMs {|mk〉〈mk|,1 − |mk〉〈mk|}, where the element |mk〉〈mk| corresponds to APD D3 and |mk〉 are
chosen as follows:

⎛
⎝0

1
0

⎞
⎠,

⎛
⎜⎝

0
1√
2−i√
2

⎞
⎟⎠,

⎛
⎜⎝

0
1√
2

1√
2

⎞
⎟⎠,

⎛
⎝−1/2

1/2
1/2

⎞
⎠,

⎛
⎝−i/2

1/2
−i/2

⎞
⎠,

⎛
⎝1

0
0

⎞
⎠,

⎛
⎝0

0
1

⎞
⎠,

⎛
⎜⎝

1√
2

0
1√
2

⎞
⎟⎠,

⎛
⎜⎝

1√
2

0
−i√

2

⎞
⎟⎠.

For the channel �4, the qudit system is prepared in 16 states as

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠,

⎛
⎜⎜⎜⎝

0
1√
2

0
i√
2

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

0
1√
2

0
1√
2

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

−1√
2

0
1√
2

0

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

i√
2

0
1√
2

0

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎜⎝

0
1√
2

1√
2

0

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

1√
2

0
0
1√
2

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎝

i/2
1/2
1/2
i/2

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

−1/2
1/2
1/2
1/2

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

i/2
1/2
−i/2
1/2

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

1/2
1/2
−/2
i/2

⎞
⎟⎟⎠,

⎛
⎜⎜⎜⎝

1√
2

0
0
i√
2

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

0
1√
2−i√
2

0

⎞
⎟⎟⎟⎠.

The measurement corresponding to APD D3 is projective measurement |mi〉〈m1| with the 16 |mi〉 as

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠,

⎛
⎜⎜⎜⎝

0
1√
2

0
−i√

2

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

0
1√
2

0
1√
2

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

1√
2

0
−1√

2
0

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

1√
2

0
−i√

2
0

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎜⎝

1√
2

1√
2

0
0

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

0
0
1√
2

1√
2

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎝

1/2
1/2
−i/2
−i/2

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

1/2
1/2

−1/2
−1/2

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

i/2
1/2
−i/2
1/2

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

i/2
1/2
1/2
−i/2

⎞
⎟⎟⎠,

⎛
⎜⎜⎜⎝

0
0
1√
2−i√
2

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

i√
2

1√
2

0
0

⎞
⎟⎟⎟⎠.
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