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Data centers with quantum random access memory and quantum networks
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In this paper we propose the Quantum Data Center (QDC), an architecture combining Quantum Random
Access Memory (QRAM) and quantum networks. We give a precise definition of QDC and discuss its possible
realizations and extensions. We discuss applications of QDC in quantum computation, quantum communication,
and quantum sensing, with a primary focus on QDC for T -gate resources, QDC for multiparty private quantum
communication, and QDC for distributed sensing through data compression. We show that QDC will provide
efficient, private, and fast services as a future version of data centers.
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I. INTRODUCTION

As. a frontier subject of physics and computer science,
quantum information science is currently a rapidly developing
and highly valued research area, with wide applications in
computation [1–4], data science and machine learning [5,6],
communication [7–13], and sensing [14–16]. In the near fu-
ture, quantum computation may bring significant advantages
to some specific algorithms; Quantum communication will
strictly guarantee data security and privacy and boost trans-
mission efficiency based on the laws of physics; and quantum
sensing may boost the measurement precision significantly.

The generation, processing, and application of quantum
data, and the treatment of those data together with their clas-
sical counterparts, are currently challenging theoretical and
experimental problems in quantum science.

In this paper we propose the idea of the so-called Quan-
tum Data Center (QDC), a unified concept referring to some
specific quantum hardware that could efficiently deal with
the quantum data and would provide an efficient interface
between classical data and quantum processors. The key com-
ponent of the proposed QDC is a Quantum Random Access
Memory (QRAM) [17–25], which is a device that allows a
user to access multiple different elements in superposition
from a database (which can be either classical or quantum). At
minimum, a QDC consists of a QRAM coupled to a quantum
network.

We construct a theory of QDCs associated with original
applications. We propose explicit constructions of examples,
including QDCs as implementations of data-lookup oracles
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in fault-tolerant quantum computations; QDCs as mediators
of so-called multiparty private quantum communications (de-
fined below), which combines the Quantum Private Query
(QPQ) [26] and Quantum Secret Sharing [8,9] protocols; and
QDCs as quantum data compressors for distributed sensing
applications. These three examples demonstrate that QDCs
can provide significant advantages in the areas of quantum
computing, quantum communication, and quantum sensing,
respectively (see Fig. 1), with all other technical details and
extra examples in the Appendixes.

II. GENERAL THEORY

A minimal definition of a QDC is a quantum or classical
database, equipped with QRAM, connected to a quantum
(communication) network. The minimal function of a QDC
is that Alice (the customer) is able to upload and download
information (classical or quantum) by providing the address
to the database (Bob), and Bob will provide the information
to Alice through QRAM, sending it via the quantum network
(see Fig. 2).

About the role of QRAM, there are numerous quan-
tum algorithms that claim potential advantages against their
classical counterparts, but those algorithms often implicitly
require an interface between classical data and the quantum
processor. The advantages of the computational complexity
are estimated usually from the query complexity where the
oracle provides this interface (see, for instance, [5]). Quan-
tum Random Access Memory (QRAM, see [17,25,27]) is a
general-purpose architecture that could serve as a realization
of such oracles. More specifically, QRAM allows a user to
perform a superposition of queries to different elements of
a data set stored in memory. The data itself can be either
classical or quantum. In the case where the data are classical,
the user provides an arbitrary superposition of addresses as
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FIG. 1. A quantum data center (QDC) could potentially provide
services about generation, processing, and application of quantum
data, which could have wide applications in quantum computation,
quantum communication, and quantum sensing.

input, and the QRAM returns an entangled state where the
addresses are correlated with the corresponding data:

N−1∑
i=0

αi|i〉Q1 |0〉Q2 →
N−1∑
i=0

αi|i〉Q1 |xi〉Q2 . (1)

Here the superscripts Q1 and Q2, respectively, denote the input
and output qubit registers, xi denotes the ith element of the
classical data set, αi are generic coefficients, and N is the
size of the database. We emphasize the distinction between
QRAM, defined via Eq. (1), and so-called random-access
quantum memories [28–30]; the latter do not allow for ac-
cessing a superposition of multiple different data elements and
hence are not sufficient for our purposes. Indeed, the ability to
perform a superposition of queries as in Eq. (1) is crucial to the
applications we describe below. Moreover, in the Appendixes
we will discuss in detail a quantum version of QRAM and a
formal definition of QDCs.

Note that our definition means that a quantum architecture
could be qualified as QDC only if it has both QRAM and
quantum networks implemented. Thus, if a device does not
have either of them, it cannot be called a QDC according
to our definition. For example, a standard quantum memory,
as described in, e.g., Refs. [29,30], coupled to a quantum
network cannot be called a QDC. This is because QRAM is
more than just a quantum memory; QRAM requires that dif-
ferent elements of the memory can be queried in superposition
as in Eq. (1) (and the quantum version in the Appendixes).
Moreover, there are extended parameters we could choose

FIG. 2. The minimal definition of QDC contains the quantum
network and QRAM. The data stored in QRAM can be either classi-
cal or quantum.

when we choose the circuit depth or the width of the QRAM
implementation (see [22,24,25,31–35]), but for latter applica-
tions, we assume our QRAM circuits to be shallow. Further,
we assume that QRAM has been built in the fault-tolerant
way and has been error corrected. Building large-scale fault-
tolerant QRAM is, in fact, a primary challenge in experiments
[20].

About the role of the quantum networks, they might be
realizable in the future due to the fast development of quan-
tum communication technology in recent years. Here we are
considering the service provided by QDC is centralized and
has some physical distances from users. Thus, quantum states
are supposed to be teleported through the quantum network
from the user to the QDC or vice versa, where quantum
teleportation technology includes the technologies of quantum
satellites [36–38], quantum repeaters [10,12,13,39–41], etc.

III. QDC FOR QUANTUM COMPUTING:
FAULT-TOLERANT RESOURCE SAVINGS

As the first example about QDCs applied for quantum com-
puting, we show how a QDC can provide resource savings in
a fault-tolerant cost model to users running query-based quan-
tum algorithms. There are two aspects of resource savings
induced by QDC: hardware outsourcing and communication
costs (see the Appendixes for an unification of space and time
costs). The reason for the hardware outsourcing is simple.
Imagine that we are doing fault-tolerant quantum computation
with a significant amount of T gates in the queries, which are
considered to be expensive and require the magic-state distil-
lation [42,43]. Rather than preparing the requisite magic states
themselves, the user could instead ask the QDC to prepare the
magic states, thereby reducing the resources required of the
user. This naive approach, however, has a high communication
cost since each magic state would need to be sent over the
quantum network from the QDC to the user.

In contrast to this naive approach, we propose that the
user outsources entire oracle queries to the QDC. Outsourcing
entire queries provides a particularly efficient way for users to
offload large amounts of magic-state distillation to the QDC
with minimal communication cost.

More specifically, without the aid of a QDC, a user would
be required to distill at least O(

√
N ) [32] magic states in order

to query a data set of size N as in Eq. (1). In contrast, with a
QDC, a user can outsource the query to the QDC: the QDC
is responsible for implementing the query and distilling the
associated magic states, while the user incurs only a O(log N )
(In this paper, log indicates log2) communication cost. This
communication cost is due to the fact that the input and out-
puts of the query must be sent between the user and the QDC.
The user also benefits in that they are no longer responsible for
the potentially large amount of ancillary qubits needed to im-
plement a query [22,32,33]; this hardware cost is paid by the
QDC. Thus, this approach of outsourcing full queries to the
QDC is exponentially more efficient than naive the approach
described previously in terms of communication cost.

Both the savings from the hardware and the communi-
cation costs could quantify this benefit by the following
example. Suppose, a user wishes to run a 100-qubit algorithm
that requires 108 T gates when decomposed into Clifford +T
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operations. Further, suppose that the user has a device with
physical error rates of p = 10−3 and that the target failure
probability for the entire computation is <1%. To achieve this
failure probability, we assume error correction is used, and
that gates are implemented fault tolerantly. Non-Clifford gates
are implemented fault tolerantly with the aid of magic-state
distillation.

A resource estimate for exactly this situation is performed
in [44] for surface codes (see the Appendixes for a detailed
review). The outsourcing can enable resource savings for the
user (potentially in both the overall algorithm runtime and
hardware cost). To estimate these savings, we suppose that
these queries are responsible for 99% of the algorithm’s T -
state consumption (this is not an unreasonable supposition;
see, for instance, [33]). According to [44] and the Appendixes,
we observe that the user can now use a 15-to-1 magic-state
distillation scheme, as the user need only produce ∼106 magic
states, and the total probability that any such state is faulty
is 106 × 35p3 ∼ 0.01, which is within the allowed error tol-
erance. As described in [44], the number of surface code
tiles required for computation and distillation with the 15-to-1
scheme is 164. With the distillation scheme selected, we can
now estimate the required code distance d and algorithm run
time. The code distance must satisfy

(No. of tiles = 164) × [No. of code cycles × (1 + delay)]

× pL(p, d ) < 1% (2)

to guarantee that that the total error probability remains
below 1%. Here pL is the logical error probability of a
distance d surface code with physical error probability p,
which is approximately given by [45]. The parameter No. of
code cycles is the number of surface code cycles required
to distill 106 magic states, i.e., the minimum number of cy-
cles required to run the algorithm assuming instantaneous
data center queries. In practice, however, the data center
queries will not be instantaneous. Thus we add a delay factor
to the total number of cycles. This delay is related to the
QDC’s latency, τ , and the exact amount of the delay depends
not only on how the oracle is implemented by the QDC,
but also on the communication time overhead. Moreover,
with the

√
N → log N arguments from the communication

cost, we could use assumptions, delay factor∼O(
√

N ), or
delay factor∼O(log N ), respectively, referring to the proto-
cols where oracle queries are implemented by the user (with
magic states sent one-by-one from the QDC) or where full
queries are implemented by the QDC. In Fig. 3 we plot
the relative time costs depending on the data size N of
QDCs, where we show that QDCs provide significant time
savings in some ranges of data sizes, where the communi-
cation cost savings could be exponential. Finally, although
our calculation is query-based, there are proposals where a
query-based approach could provide a unified framework for
all quantum algorithms [46], despite that the circuit depth
for QRAMs should be shallow. Finally, we emphasize that
the advantage is only for outsourcing users instead of users
combined with QDC. Moreover, the exponential savings of
communication costs are from QRAM, instead of specific
quantum or classical algorithms. As a summary, combinations
of QRAM and quantum networks might lead to significant
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FIG. 3. The QDC-assisted relative time cost (the time cost from
the user side with QDCs, divided by the one without QDCs) depend-
ing on the size of the data N . The dashed lines represent the threshold
where QDC has the comparable performance as the situation without
QDC, with the relative ratio 0.1, 1, and 10. Different thresholds
correspond to prefactors relating the delay factor and the data N ,
and the relative ratio choices might correspond to different physical
hardware. We consider the situations where two different methods of
usages of QDCs, and both of them prepare the magic-state distillation
in the QDC side. We replace the delay factor by the function

√
N or

log N directly where N is the size of the data in those two methods.
For the solid lines from up to down, we have naive (blue) and smart
(black) usages of QDCs. Some sudden jumps in the plot are because
of the even integer values of the code distance, and we defer more
precise discussions to the Appendixes.

benefits for outsourcing costs for T -gate preparations and
magic-state distillations from unique features of QRAM,
leading to useful applications in quantum computing.

IV. QDC FOR QUANTUM COMMUNICATION:
MULTIPARTY PRIVATE QUANTUM COMMUNICATION

Quantum Private Query (QPQ) [26], a protocol combining
QRAM and quantum networks, could already serve as an
important application of QDC for quantum communication.
Furthermore, the application of QDCs could be much broader
to provide the users with fast and secure service. Based on
QPQ and Quantum Secret Sharing from [8,9], we propose
an original protocol, so-called multiparty private quantum
communication, as an example of applications of QDCs. We
provide discussions of QPQ and related concepts in the Ap-
pendixes as well as [47].

We present a protocol for multiparty private quantum com-
munication using QDCs. We consider the situation in Fig. 4,
where many sending users (denoted A1, A2, etc.) want to com-
municate privately to a set of receiving users (denoted B1, B2,
etc.; Ai communicates with Bj , where i �= j in general). The
communication occurs through two or more untrusted (but
noncooperating) QDCs. Importantly, it is assumed that the
users do not share any initial secret keys or entangled qubits,
and that the users do not possess any secure communication
links between them (either classical or quantum); all com-
munication takes place over the untrusted quantum network
shared with the QDCs.
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Quantum secret 
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FIG. 4. Multiparty private quantum communication protocol. A
set of sending users Ai communicates privately to a set of receiving
users Bi through untrusted, noncooperating QDCs. The use of quan-
tum secret sharing and quantum private queries guarantees that no
QDC can learn what information was communicated or where the
information was sent.

The protocol is as follows. First, each sending user Ai

takes their quantum message, and decomposes it into several
distinct parts using a quantum secret sharing protocol [8,9].
In isolation, each part of the secret message looks like a
maximally mixed state, but when sufficiently many parts are
assembled together, the original message can be perfectly
recovered. Second, each sending user Ai sends parts of their
secrets to the QDCs, where they are stored in QRAM at
a publicly announced address. No one QDC should receive
enough parts of a secret to reconstruct the original message.
Finally, the receiving users interrogate the QDCs using the
quantum private queries protocol. Each user Bj interrogates
sufficiently many QDCs in order to retrieve enough parts of
the secret to reconstruct A′

is original message. Advantages
of this protocol is explained in the Appendixes. Moreover,
a final note is that our protocol does not offer the commu-
nication between Ak and Bk protection from interception by
Bj �=k , rather it only provides privacy from untrusted QDCs. As
a summary, combinations of QRAM and quantum networks
could lead significant benefits for secure and private quantum
communications, where quantum secret sharing and quantum
private queries could serve as components.

V. QDC FOR QUANTUM SENSING: DATA COMPRESSION
AND DISTRIBUTIVE SENSING

In the context of quantum sensing, QDCs can be used to
compress quantum data and signals, enabling more efficient
communication in distributed sensing tasks (see Fig. 5).

FIG. 5. Illustration of QDC for quantum sensing: we use QDCs
to perform quantum data compression that enables distributive
sensing.

To start, we illustrate how QDCs can be used to compress
quantum data through a simple example. Suppose that the
quantum data held by the QDC is confined to the single-
expectation subspace, spanned by states where only one of
the N qubits in the QDC’s quantum memory is in the |1〉 state
and all others are in |0〉. The state of the memory can then be
written as

|ψunary〉 =
N−1∑
i=0

αi

N⊗
j=1

|δi j〉Dj , (3)

where Dj indicates the jth qubit in the N-qubit quantum
memory, and δi j is the Kronecker delta (δi j = 1 for i = j and
δi j = 0 otherwise). Though the entire Hilbert space of the
N-qubit quantum memory has the dimension 2N , the single-
excitation subspace has only dimension N . Thus, one could
equivalently represent the above state using only log N qubits,
as

|ψbinary〉 =
N−1∑
i=0

αi|i〉Q1 , (4)

where Q1 denotes a log N-qubit register, and |i〉Q1 denotes
the ith basis state of this register. The two states |ψunary〉 and
|ψboth〉 contain the same quantum information (the N complex
coefficients αi) but encode this information in different ways.

A QDC can be used to realize the unary-to-binary compres-
sion described above, where the precise form implemented
using QRAM is originally constructed in our work. The com-
pression proceeds in two steps: first, the QDC performs an
operation U (defined below) that encodes the location of the
single excitation into a log N-qubit address register, then a
single QRAM query is performed in order to extract the ex-
citation from the memory. In detail, the unitary U enacts the
operation

U

⎛
⎝|0〉Q1

N−1∑
i=0

αi

⎡
⎣ N⊗

j=1

|δi j〉Dj

⎤
⎦

⎞
⎠ =

N−1∑
i=0

αi|i〉Q1

⎡
⎣ N⊗

j=1

|δi j〉Dj

⎤
⎦.

(5)

We note that the operation U is not equivalent to a QRAM
query, so U falls outside the scope of operations that a QDC
can perform per the minimal definition. As we describe in
the Appendixes, however, the operation U can be straight-
forwardly implemented using only minor modifications to
standard QRAM architectures. Next, a QRAM query extracts
the single excitation from the quantum memory and stores it
in an output register Q2,

N−1∑
i=0

αi|i〉Q1 |0〉Q2

⎡
⎣ N⊗

j=1

|δi j〉Dj

⎤
⎦

→
N−1∑
i=0

αi|i〉Q1 |1〉Q2

⎡
⎣ N⊗

j=1

|0〉Dj

⎤
⎦. (6)

After this step, the Q2 and Dj registers are disentangled from
the Q1 register. The state of the Q1 register is |ψbinary〉, which
constitutes the compressed representation of the quantum data
originally stored in the QDC’s memory. This compressed
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data may subsequently be stored, transmitted, or measured,
depending on the application [48]. Thus, QDCs can be used
to reduce the entanglement cost for distributed sensing ap-
plications. See details in the Appendixes for explanations.
As a summary, combinations of QRAM and quantum net-
works could lead significant benefits for distributed quantum
sensing, where QRAM designs could be helpful to perform
quantum data compression and benefit entanglement cost
reduction in distributive sensing applications.

VI. OUTLOOK AND CONCLUSION

Our research on QDCs opens up a promising direction in
quantum information science (see details in the Appendixes
for more applications). Recently we have analyzed the favor-
able error scaling of QRAM that only scales poly-log with the
size of the database [24], which implies that QDC might be an
intermediate-term application without the requirement of full
error correction. QDC provides an example of application-
specific efficient architectural design, taking full advantage
of shallow QRAM circuits and small overhead in quantum
communication. Given the treelike structure of QRAM, it will
be interesting to explore the future possibility of distributed
QDC so that we may decentralize the QRAM and perform the
entire QRAM over the distributed quantum networks.
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APPENDIX A: MORE ABOUT QDCs

In these Appendixes we provide necessary information and
related results about QDCs. Their structure is the following. In
Appendix A we give an introduction on several basic aspects
of QDCs. Specifically, in Sec. A 3 we give some perspectives
about the writing function in QDCs. In Appendixes B, C,
and D, we discuss several explicit examples of QDCs ap-
plied in quantum computing, quantum communication, and
quantum sensing, including Secs. B 1 and B 2 with a review
of quantum simulation and qubitization algorithms [57–59]
where QDCs are used to provide the oracle, Sec. B 3 with
QDCs for computing with multiple users, Sec. B 4 with a
short introduction of the surface code and T -gate counting
formalism developed in [44] and used in the T -gate example

FIG. 6. QDCs could allow quantum cloud computing on the
server.

in the main text, Secs. C 1 and C 2 with details of Quantum
Private Query and blind quantum computing, Sec. D 1 with
some details of quantum data compression, and Sec. D 2 with
channel discrimination in quantum sensing and QDCs.

1. Comments

Here we comment on some general perspectives about
QDCs. We note also that some architectures without either
QRAM or quantum networks could still be defined as QDCs.
In Sec. D 2 we describe an application in quantum sensing
where QRAMs are not necessarily used, but one could still
use QDC architectures to realize it.

One might be curious about how QDCs are different from
a generalized version of quantum computers. Here we should
clarify that, of course, we could develop a universal quan-
tum computing (UQC) device that is associated with QDC.
However, it is not necessary, and our QDC construction could
directly serve remote users with their own quantum computa-
tion architectures. In fact, some of our examples do not require
UQC power for QDC, for instance, QDCs for the T -gate
counting that have been discussed in the main text.

Moreover, QDCs could take not only just the above min-
imal definition, but also more general forms. For example,
QDCs equipped with UQC could also perform quantum cloud
computation (see Fig. 6). Quantum computers are hard to
realize, and it is natural to consider remote cloud services
running in QDCs and provide the results of computations to
remote users. Moreover, if users wish to keep the privacy,
quantum blind computation [60,61] could be performed in
QDCs with the help of quantum networks [61]; see further
discussion in Section C.

Finally, we also note that our proposal is also closely re-
lated to the idea of disposable quantum software proposed
in [62] by Preskill. This is a fragile quantum state that is
hard to maintain by users, so they prefer to buy such a
state through the quantum network. The early quantum tele-
portation scheme based on [63] provides significant power
for quantum devices by combining UQC and quantum com-
munication, inspiring the observation in [62] for quantum
software. Our definition of QDC, including the functioning
of UQC, could be a particular realization of disposable quan-
tum software systems. However, we are more emphasizing
the ingredient from QRAM, enabling extra capabilities for
computation, communication, and sensing.
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Finally, we give an explicit definition of QRAM for quan-
tum data and provide a formal definition of QDCs. In this
case, the user provides an arbitrary superposition of addresses
as input, but the QRAM now returns the quantum state that
was stored in the memory location specified by the address.
More precisely, if the QRAM holds an arbitrary product state,⊗N

j=1 |ψ j〉Dj , where Dj denotes the jth cell of the memory,
then a QRAM query enacts the operation

N−1∑
i=0

αi|i〉Q1 |0〉Q2

⎡
⎣ N⊗

j=1

|ψ j〉Dj

⎤
⎦

→
N−1∑
i=0

αi|i〉Q1 |ψi〉Q2

⎡
⎣ N⊗

j=1

∣∣ψ (i)
j

〉Dj

⎤
⎦, (A1)

which, conditioned on register Q1 being in state |i〉, swaps the
state of register Q2 and the ith cell of the quantum memory.

Here |ψ (i)
j 〉 = |0〉 for i = j and |ψ (i)

j 〉 = |ψ j〉 otherwise. By
linearity, this definition also defines the query operation when
the QRAM holds an entangled state. Note that, when the data
are quantum, a QRAM query generally leaves the Q1 and Q2

registers entangled with the data. The difference between the
classical and quantum operations will be manifest when we
try to “write” the data in QDCs (see Appendix A for a detailed
discussion).

We now give a formal definition of a QDC, and we expand
on aspects of this definition below.

Definition 1. A QDC, D = {R, I}, consists of a QRAM,
R, coupled to a quantum communication network, I, and
queries to the QDC can be performed in three steps: (1) a
remote user uses I to send a quantum query to the QDC; (2)
the QDC executes query using R, as in either classical (in the
main text) or Eq. (A1); and (3) the QDC uses I to send input
and output qubit registers, Q1 and Q2, back to the user. D is
characterized by four key parameters: the size of the database
N , the error in the query ε, the latency τ (time cost of a single
query), and the throughput T (number of queries performed
per unit time).

2. Cost estimation for QDCs

For QDCs defined above, how could we estimate the cost
of time and hardware with a given requirement of error and
privacy? Here we establish a general theory to estimate the
hardware-time cost for QDCs and determine the optimal pa-
rameters according to the cost function.

In general, we define a cost function F QDC
cost for a given QDC

architecture. The cost function could be written as

F QDC
cost = F QDC

cost (Ttotal, Ntotal, Ptotal ). (A2)

Here the cost function F QDC
cost includes the time cost Tcost,

space (hardware) cost Ncost, and the privacy cost Ptotal. (The
privacy cost here means a quantity the represents the level of
consumption for the QDC users. We will provide an example
in the situation of Sec. C 1.) For instance, one could simply
assume that the above cost function is linear,

F QDC
cost = αT Ttotal + αN Ntotal + αPPtotal, (A3)

with fixed positive coefficients αT , αN , and αP. More gen-
erally, F QDC

cost could be defined as a monotonic function of
Tcost, Ncost, and Ptotal. Moreover, Tcost, Ncost, and Ptotal are
given by one collection of throughput parameters and the
other collection of hyperparameters (latency) θ . The optimal
hyperparameters could be determined by

θ∗ = argminθF QDC
cost (A4)

for given requirements of hardware. Similar analysis could be
done for their counterparts without QDC, with the cost func-

tion F QDC
cost , and if QDCs have advantages, we want F QDC

cost >

F QDC
cost .

The cost analysis examples discussed later could be under-
stood as precise instances of the above framework. In Sec. B
we understand the hardware cost as the qubit cost, and we
manifest the contribution of both Ttotal and Ntotal. In the T -gate
example, we understand the entanglement cost as another
form of the hardware cost, and we find significant advantages
of QDCs in some cases. In Sec. C 1 we emphasize Ttotal, Ntotal,
and Ptotal, the privacy cost in quantum communication. In
general QDCs, all terms might be included based on the prac-
tical usage, time cost, and hardware. For a more systematic
mathematical treatment of privacy in the complexity theory,
see differential privacy discussed in the machine learning
community [64].

3. Writing data in QRAM

In this section we more precisely define what it means to
write data to QRAM. The definition of writing depends on
whether the data being written are classical or quantum, and
also on whether the addressing scheme is classical or quan-
tum. We elaborate on these four different situations below.

a. Classical data, classical addressing

In this situation the QRAM holds a classical data vector
x, and the writing operation consists of specifying a classical
address i and a new classical value yi, then overwriting the
value ith cell of the QRAM’s memory, xi → yi. This writing
process is entirely classical; it can be implemented simply by
performing classical operations on the classical data.

Even though this definition of writing to QRAM is com-
pletely classical, it is still useful in the context of quantum
algorithms. In particular, after writing, the modified classical
data in the QRAM can subsequently be read in superposition
(i.e., with quantum addressing). For example, if each element
in the database is replaced as xi → yi, then reading the QRAM
consists of the operation

N−1∑
i=0

αi|i〉Q1 |0〉Q2 →
N−1∑
i=0

αi|i〉Q1 |yi〉Q2 ; (A5)

cf. Eq. (1). Thus, the same QRAM can be reused to perform a
superposition of queries to a different data set. This is partic-
ularly useful in the context of QDCs, as multiple users could
be running different algorithms that require access to different
classical data sets. The QDC can cater to all of these users by
overwriting the QRAM’s classical data between queries from
different users.
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b. Classical data, quantum addressing

In contrast to the previous definition, writing to QRAM for
the case of classical data and quantum addressing is not well
defined. To illustrate this, we propose a possible definition for
writing in this situation, then show that it ultimately reduces
to a probabilistic version of the classical writing procedure
described above.

We suppose that the QRAM’s classical data are stored in
a quantum memory, i.e., each classical datum xi ∈ {0, 1} is
encoded in a qubit as |xi〉, so that the full database consists of
the product state

⊗
i |xi〉Di , where Di denotes the ith cell of the

memory. The writing procedure consists of first specifying a
quantum address

∑
i αi|i〉Q1 . Then, coherently conditioned on

the state of the Q1 register, one prepares another qubit Q2 in
the state |yi〉 with yi ∈ {0, 1}, then swaps this state with the ith
cell of the memory,

∑
i

αi|i〉Q1 |yi〉Q2

⎡
⎣ N⊗

j=1

|x j〉Dj

⎤
⎦

→
∑

i

αi|i〉Q1 |xi〉Q2

⎡
⎣|yi〉Di

⊗
j �=i

|x j〉Dj

⎤
⎦. (A6)

In general, this operation leaves the data registers entangled
with the Q1 and Q2 registers. As such, tracing out the Q1 and
Q2 registers leaves the database in a mixed state, where with
probability |αi|2 one finds that ith entry has been overwritten
as xi → yi. To achieve the same result, one could instead
simply have randomly chosen to overwrite the ith element ac-
cording to the distribution |αi|2. Therefore, the use of quantum
addressing and classical data does not confer an advantage
over the case of classical addressing and classical data.

c. Quantum data, classical addressing

In this situation the QRAM holds quantum data, i.e., an
N-qubit quantum state. The writing operation consists of spec-
ifying a classical address i and a new single-qubit state |φ〉Q2 ,
then swapping this state with the ith qubit in the QRAM’s
memory. In particular, if the QRAM initially holds a product
state

⊗
j |ψ j〉Dj , then this writing procedure enacts the opera-

tion

|φ〉Q2

⎡
⎣⊗

j

|ψ j〉Dj

⎤
⎦ → |ψi〉Q2

⎡
⎣|φ〉Di

⊗
j �=i

|ψ j〉Dj

⎤
⎦. (A7)

Note that in the case where the quantum data consists of a
product state, this operation does not entangle the Q2 and Di

registers. For general quantum data, however, this operation
may leave these registers entangled, such that the data can be
left in a mixed state when the Q2 register is traced out.

d. Quantum data, quantum addressing

In this situation the QRAM holds quantum data, i.e., an
N-qubit quantum state. The writing operation consists of first
specifying a quantum address

∑
i αi|i〉. Then, coherently con-

ditioned on the state of the Q1 register, one prepares another

FIG. 7. QDC for a general algorithm U . In this example, QDC
could serve as a pool of the explicit oracle construction that is needed
for the algorithm U .

register Q2 in the state |φi〉, then swaps this state with the ith
cell of the memory. In the case where the QRAM initially
holds a product state

⊗
j |ψ j〉Dj , then this writing procedure

enacts the operation

∑
i

αi|i〉Q1 |φi〉Q2

⎡
⎣⊗

j

|ψ j〉Dj

⎤
⎦

→
∑

i

αi|i〉Q1 |ψi〉Q2

⎡
⎣|φi〉Di

⊗
j �=i

|ψ j〉Dj

⎤
⎦. (A8)

We note that reading quantum data is a special instance of
the above process where |φi〉 = |0〉 for all i. This operation
generally leaves the Q1 and Q2 registers entangled with the
data registers Di.

APPENDIX B: COMPUTING

1. General discussions about oracles

One of the most important applications of QDC is quantum
computation. In the minimal definition of QDCs, we could use
the QRAM as a remote service center providing oracles for
the user. Many famous quantum algorithms, such as Quantum
Principle Component Analysis, require the construction of
oracles to reach the quantum advantage [65]. QRAM could
provide substantial benefits regarding interfaces between the
classical and the quantum world, serving as a natural hard-
ware realization of the quantum oracle. Moreover, a hybrid
QRAM-QROM construction will provide an optimal choice
of the hardware-time overhead. Thus, one could imagine that
the quantum computation is performed on the user side, and
QDCs will serve as the source of the oracle. Connected by
quantum networks, the user will call QDCs multiple times to
complete the algorithm.

Here we will give a general discussion about the hardware-
time cost of using QDC as a resource of oracle in a minimal
setup (see Fig. 7).

If we assume that a general quantum algorithm U has the
time cost and the qubit cost given by

TU = TU (L, ε, θ0, θU ),

NU = NU (L, ε, θ0, θU ), (B1)
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depending on the problem size L, the precision ε, and the col-
lections of other hyperparameters θU and problem parameters
θ0. Say that the time cost of the algorithm itself is expressed
by the query complexity, and the corresponding oracle is pre-
pared by QRAM itself multiple times. We assume the QRAM
cost as

TQ = TQ(L, ε, θQ),

NQ = NQ(L, ε, θQ), (B2)

with the QRAM parameter θQ. Finally, we define the quantum
network cost

TI = TI (L, ε, Ltot, θI ),

NI = NI (L, ε, Ltot, θI ), (B3)

with the total length Ltot and the quantum network parame-
ter θI . Here we are assuming that the oracles are prepared
remotely with the total length Ltot, and transformed to the user
with the quantum network. So the total cost is given by

Ttotal(L, ε, θ0, Ltot, θU , θQ, θI )

= TU (L, ε, θU ) × (TQ(L, ε, θQ) + TI (L, ε, Ltot, θI )),

Ntotal(L, ε, θ0, Ltot, θU , θQ, θI )

= NU (L, ε, θU ) + NQ(L, ε, θQ) + NI (L, ε, Ltot, θI ). (B4)

Note that TU is the query complexity for the quantum algo-
rithm U . The time cost is a product, and the qubit cost is
additive. Thus, for given L, ε, and θ0, we could determine the
optimal choice of QDC by

(L∗
tot, θ

∗
U , θ∗

Q, θ∗
I )L,ε,θ0 = argmin(Ltot,θU ,θQ,θI )Fcost, (B5)

where

Fcost = Fcost(Ttotal, Ntotal ) (B6)

is a given cost function based on the architecture of QDC.
This is a specific example of the cost function algorithm
equation (A2) for quantum computation.

Here we maintain the quantum algorithm mentioned here
to be abstract. All quantum algorithms with the oracle re-
quired in the QRAM form could be adapted here. In Sec. B 2
we discuss a specific quantum algorithm, quantum signal
processing (QSP) for Hamiltonian simulation [57–59], where
quantum oracles are needed to address the information of the
Hamiltonian. According to Sec. B 2, if we use the qubitization
algorithm, and L is the number of Pauli terms appearing in the
Hamiltonian, we have

QDChardware cost

QDChardware cost

= O(log L) + O(log maxi dim 	i )

O(log L) + O(log maxi dim 	i ) + O
(

L
M + log L

)

≈ O(M log L)

O(L)
. (B7)

We are comparing the hardware cost completely from the user
side: in the QDC case, since the user does not have QDC,
the user has to implement QRAM or QROM by himself or
herself. M is the parameter for the hybrid QRAM or QROM
architecture. Moreover, we assume that L is large (note that
this will happen if we are assuming nonlocal Hamiltonians
and the Hamiltonian might be dense, which is not always true
in the quantum chemistry tasks). In this case, using QDC, we
could provide a significant hardware cost saving from the user
side: when M does not scale with L, the saving could be even
exponential.

Moreover, we make some discussions about QDCs used
for multiple users in Sec. B 3. Furthermore, another potential
saving of the hardware could come from the fact that the
entanglement cost of accessing an N-element data set with
a QDC is only log N , where we have implicitly used in the
above example, and it has been already manifest in the T -gate
example.

2. Quantum simulation and oracles from QDCs

A perfect example of running QDCs as oracle resources
could be the quantum simulation algorithm, which has
wide applications in quantum many-body physics, quantum
field theory, and quantum computational chemistry with po-
tential advantages compared to classical computers. Aside
from the so-called Trotter simulation scheme [66–68], many
quantum simulation algorithms are oracle-based, such as algo-
rithms based on quantum walks [69,70], multiproduct formula
[71,72], Taylor expansion [73,74], fractional-query models
[75], and qubitization and quantum signal processing (QSP)
[57–59]. Those oracles could naturally be implemented by the
QRAM model (see, for instance, [25]).

We will give a short introduction to the qubitization and
QSP algorithms and discuss their costs. We will consider
the linear combination of unitaries (LCU) decomposition as
the input. We assume that the Hamiltonian is given by the
following unitary strings:

H =
L∑

i=1

αi	i. (B8)

For simplicity, we will assume that αi > 0. This is called the
LCU model, and 	is are usually the Pauli matrices. We intro-
duce the ancilla states |i〉 : i = 1, 2, . . . , L with the number of
qubits log L. Furthermore, we implement the following state
|G〉:

|G〉 =
L∑

i=1

gi|i〉, |gi|2 = αi

λ
, λ =

L∑
i=1

αi (B9)

and

R = 2|G〉〈G| − I,

U =
L∑

i=1

|i〉〈i| ⊗ 	i,

W = RU . (B10)
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One could show that

H

λ
= (〈G| ⊗ I )U (|G〉 ⊗ I ),

〈G|W n|G〉 = Tn

(
H

λ

)
, (B11)

where Tn is the nth Chebychev polynomial. The Hamiltonian
evolution e−iHt could be given by

e−iHt = J0(−λt ) + 2
+∞∑
n=1

inJn(−λt )Tn

(
H

λ

)
. (B12)

Namely, one could separately add all terms together, and it
requires

O

(
λt log

1

ε

)
, (B13)

number of queries to the operation U and |G〉. Here t is the
Hamiltonian evolution time, and ε is the error. Implementing
|G〉 is a quantum oracle operation, which could be operated
by QRAM or QROM. For simplicity, we will mostly discuss
the query complexity made by |G〉, and U itself would cost
O(LC1) primitive gates, where C1 is the maximal complexity
of implementing a single Pauli term 	i. In terms of gate
counting, G itself would cost O(L) primitive gates. A more
complicated construction, which is called the quantum signal
processing (QSP) [57], could reduce the above product in
query complexity to addition

O

(
λt + log

1

ε

)
. (B14)

Another ingredient of our analysis would combine the
quantum network. Quantum network, based on hardware real-
izations of quantum teleportation and quantum cryptography,
is expected to be efficient for transferring quantum states and
their associated quantum data across long distances with guar-
anteed security [10]. Specifically, we will discuss the quantum
repeaters, architectures that could significantly overcome the
loss errors and depolarization errors for quantum communica-
tion with photons (see, for instance, [12]). For cost estimation,
we will follow the discussion in [13]. There are three different
generations of quantum repeaters, and we will, for simplicity,
discuss them together. A universal measure of cost overhead
for those quantum repeaters is the cost coefficient C2 (C′ used
in [12]), which could be understood as the qubit × time cost
for the transmission of one Bell pair per unit length. Now,
we will assume that for the quantum teleportation task of the
data center, we use Ltot length. The characteristic time is given
by tch (which is different from three different generations of
quantum repeaters).

For our minimal definition of the quantum data center,
with QDCs serving as the remote oracle resources, one could
compute the total time cost Ttotal and the qubit cost Ntotal as the
following:

Ttotal = O

(
λt + log

1

ε

)
× [O(LC1) + O(M log2 L) + tch],

Ntotal = O(log L) + O(log max
i

dim 	i ) + O

(
L

M
+ log L

)

+ O

(
log L × C2

tch
Ltot

)
. (B15)

We will give the following explanations to the above formula:
(1) The first term in the time cost, O(λt + log 1

ε
), is

exactly the query complexity of QSP. Based on our mini-
mal definition of the quantum data center, the cost of each
query, including the quantum communication cost and the
QRAM/QROM cost.

(2) The term O(LC1) in the time cost corresponds to the
cost of each U in the QSP algorithm.

(3) The parameter M corresponds to the parameter of the
hybrid QRAM-QROM construction [24,25], which is a way to
unify the hardware-time cost. A pure QRAM would cost O(L)
qubits in O(log L) time, while QROM would cost O(log L)
qubits in O(L log L) time. With the tunable parameter M, the
hybrid construction would cost O(log L + L/M ) qubits within
O(M log L) time, which could reduce to QRAM with M = 1
and QROM with M = L. This is how the O( L

M + log L) term
comes in the second term.

(4) The form of the oracle |G〉 is identical to the amplitude
encoding oracle, which could reduce to the QRAM definition
(the data-lookup oracle) with O(log L) time cost overhead
(without postselection) or O(1) time cost overhead (with post-
selection) [25]. Here, for simplicity, we are using the case
without postselection. Thus, aside from the hybrid QRAM-
QROM time cost O(M log L), we have an extra O(log L)
factor, which gives the O(M log2 L) factor in Ttot.

(5) The term O(log L × C2
tch

Ltot ) comes from the definition
of C2 in quantum repeaters, followed by the actual qubits and
the corresponding maximal possible Bell pairs we are using
when doing teleportation [13].

As long as we know the exact setups of QDCs, we could
decide the resources easily based on our requirement as de-
scribed by the general setup. Assuming a cost function Fcost,
one could determine the set of hyperparameters both in quan-
tum communication and quantum simulation by

M∗, L∗
tot, other hyperparameters, . . . = arg min Fcost. (B16)

Finally, we mention that QDCs could potentially provide
transducers to transform different types of quantum data, for
instance, from digital qubits to analog qubits. Since various
different forms of qubits have their own advantages and chal-
lenges, it is necessary to consider hybrid quantum systems.
For example, if we wish to combine quantum computation
performed in the superconducting qubit systems, and quan-
tum communication provided by transformations of optical
photons across long distances in QDC and its users, quantum
transducers might be necessary; see, for instance, [76]. In
this example, since the quantum simulation algorithms could
be performed by superconducting qubits, while the quantum
network could be realized by optical photons, the quantum
transducer is needed.

Finally, we consider the case where we count only the
hardware cost from users. In the case where we do not have
QDCs, the users have to implement QRAM or QROM by
themselves in the quantum simulation algorithm. Thus, in the
case where users have access to QDCs, we could subtract
the hardware contribution from QDC. We could compute the
hardware cost ratio between the case where we have QDCs,
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and the case where we do not have QDCs (QDC). The answer
is

QDChardware

QDChardware

= O(log L) + O(log maxi dim 	i )

O(log L) + O(log maxi dim 	i ) + O
(

L
M + log L

)

≈ O(M log L)

O(L)
, (B17)

where we take the large L limit. Thus the L-dependent term
will be dominant. We could see that, especially when M is
not scaling with L, this will be an exponential saving of the
hardware cost for QDC users.

3. QDC for computing: Multiple users

In this section we discuss a simple situation where QDC
has multiple users and discuss its usage.

Consider the case where multiple users want the same
answer of a quantum algorithm. For simplicity, we assume
the answer should be classical such that it is able to be
copied to multiple users (the result could also be quantum,
but then we have to use approximate quantum cloning). We
define the hardware cost of the quantum algorithm U for a
single user as fU (θ0, θU ) where θ0 is the problem parameter,
and θU is the hyperparameter of the algorithm. Say that we
have k users, and for each user, the network cost of the
hardware is fI (θ0, θI ) where θI is the hyperparameter of the
algorithm. Thus, without QDC, calculations are performed
independently from each user, and the total hardware cost
scales as

f (θ0, θU ) = k fU (θ0, θU ). (B18)

With the QDC, the hardware cost will scale as

f (θ0, θU , θI ) = fU (θ0, θU ) + k fI (θ0, θI ). (B19)

Thus, the condition of the advantage of QDC is given by

fI (θ0, θU )

fU (θ0, θI )
� k − 1

k
, (B20)

and so we could define the ratio

r = k

k − 1

fI (θ0, θI )

fU (θ0, θU )
. (B21)

The smaller r is, the more useful QDC should be. The optimal
r could be given by

r∗(θ0, k) = k

k − 1
min
θU ,θI

fI (θ0, θU )

fU (θ0, θI )
. (B22)

Here we make some comments about the above calcula-
tion. The observation of comparing the communication cost
and the computational cost is one of the original motivations
of QDCs: using teleportation, one could save computational
costs for multiple users. The r coefficient we defined here,
and its possible variant, could serve as a generic measure for
such observations. However, the task we described before is
not using the full features of QDCs. If we teleport quantum
states using the quantum network, the state itself is not copi-
able to multiple users (even though we could copy the state

approximately, but the error might be significant). One could
use classical networks instead, or encode the classical output
to quantum repeaters and make use of quantum networks.
Thus, in this case, the quantum network may not necessar-
ily be needed. It could serve as a version of QDC where
QRAM is used, but the quantum network is not (see another
example where we use the quantum network but not QRAM
in Sec. D 2). Moreover, we expect that the above generic
protocol could be improved and extended to more practical
applications in the real science or business situation, and the
simple analysis presented here could be general guidance
towards those applications.

4. Surface code and the T -gate counting

First, we give a brief comment on the alternative “smart”
usage of QDC-assisted quantum computing. In fact, the native
approach would incur a prohibitive O(

√
N ) communication

cost per query. In contrast, by outsourcing entire queries to
the QDC, one effectively funnels a large amount of “magic”
[the O(

√
N ) magic states required to implement a query] into

a very small number of transmitted qubits [the O(log N ) qubits
comprising the query’s output]. In this way, the user receives
maximal assistance from the QDC at minimal communication
cost.

Moreover, we give a brief review of the T -gate count-
ing techniques that are developed in [44] about surface-code
quantum computation. Those techniques are based on a
formalism of executions in a fault-tolerant surface-code ar-
chitecture from a given quantum circuit (quantum algorithm).
Estimations of hardware-time trade-off for given quantum al-
gorithms, using this formalism, are based on the hardware and
algorithm assumptions, which might be different compared to
other protocols (see, for instance, [77]). Further details can be
found in [44].

The formalism is established from making assumptions
about basic qubit manipulations. Simple operations such as
qubit initializations and single-patch measurements can be
regarded as easy, and they will cost 0 , while operations like
two or multiple-qubit measurements and patch deformation
will cost 1 . Here, the time unit 1 might be based on the

real hardware. In the examples of [44] we can set 1 = 1 µs.
The procedure of estimating the hardware-time cost for a

given quantum circuit is the following. First, we decompose
the target unitary operation as Clifford +T -gates. Usually,
we assume that the Clifford gates are cheap and T gates are
expensive. In fact, T gates could be regarded as classical
operations, but a given T -gate will require consumption of a
single magic state, |0〉 + eiπ/4|1〉. We need to use magic-state
distillation [42] to generate high-quality magic states in the
large-scale quantum computation.

Further treatment of a series of Clifford +T gates will
contain designing data blocks (blocks of tiles where the data
qubits live), distillation blocks (blocks of tiles to distill magic
states), and their combinations. In [44], several protocols
are concretely discussed for hardware-time costs. Finally, for
given large-scale quantum algorithms, precise designs are
presented to minimize the hardware-time cost, especially the
costs from T gates and magic-state distillation, and the costs
could be pinned down to the number of qubits, gates, and even
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FIG. 8. Dependence of the total error on the physical error rate
p for different magic-state distillation schemes according to the ap-
proximation in [44]. One could use this dependence to determine
the optimal magic-state distillation scheme for a given number of
T -gate costs. In our example we want the total error to be smaller
than 10−2 (desired). Following the orders from up to down, we have
14-2 (blue), 15-1 (red), 116-12 (brown), and 225-1 (green) different
distillation protocols showing in the plot as solid lines, compared to
the dashed line 10−2.

hours of time costs from assumptions of . In the T -gate
example in the main text, we point out that QDCs could
serve as a T -gate factory and could reduce the T -gate counts
significantly.

Moreover, we discuss some details about the calculation in
the main text with the help of [44]. Based on the setup of qubit
numbers and the required target failure probability, the main
takeaways from this analysis are as follows. First, a 116-to-12
magic-state distillation scheme is sufficient, as the probability
of logical error in the distilled magic state is <10−10, hence
the total probability that any of the 108 magic states is faulty is
<1%. Once the distillation scheme is chosen, the total number
of surface code tiles (210) and cycles (11d × 108) required
by the algorithm can be determined, and hence the minimum
code distance can be calculated. For the above parameters,
a distance d = 27 is required to keep the total logical error
probability below 1%. This translates into a cost of 306 000
physical qubits and a runtime of 7 h (assuming each surface
code cycle takes 1 µs). These costs constitute a baseline for
our later comparisons. In Fig. 8 we are presenting the total
failure probability of computations for different magic-state
distillation schemes, depending on different error rates of de-
vices p. Following [44], we are using the following formulas
to estimate the total error:

total error(p)14−2 ≈ 7p2,

total error(p)15−1 ≈ 35p3,

total error(p)116−12 ≈ 41.25p4,

total error(p)225−1 ≈ 35(35p3)3, (B23)

before the total error meets 1. This figure could directly reveal
the proper choice of the magic-state distillation schemes. For
instance, in our case, we are demanding the total error to be
smaller than 10−2. When the number of T gates is 108, the
116-to-12 magic-state distillation scheme is sufficient.

Now, in the same situation of the main text, we make
an analysis on the pure hardware savings depending on the

FIG. 9. QDC-assisted code distance (a) and the relative running
time (b) depending on the delay time. The relative quantities are
measured against the situation without QDC. The red dashed line
represents the threshold where QDC has the same performance as
the situation without QDC.

delay factor and the delay time. In Fig. 9 we investigate
the code distance d , the hardware cost ratio (the number of
qubits used in the QDC situation divided by the one without
QDC), and the time cost ratio (the time cost used in the QDC
situation divided by the one without QDC), depending on the
delay factor or the actual delay time, assuming 1 µs per code
cycle. Since the delay factor is not related to the choice of
magic-state distillation schemes, in the QDC situation, we
keep the scheme the same (the 15-1 protocol). We could see
that when the delay factor is high, namely, we have a relatively
large waiting time from the quantum communication, we are
not able to obtain a significant advantage from using QDC.
However, if we assume that the quantum communication is
fast and the delay factor is small, we are able to save more
hardware and time by using QDC. For instance, when the
delay factor � 21 [� O(10 µs) for the delay time], we could
set the code distance from d = 27 to d = 25. When the delay
factor � 1910 (� O(1 ms) for the delay time), the QDC could
outperform the situation without QDC measured by hardware
overhead. When the delay factor � 83 [� O(100 µs) for the
delay time], the QDC could outperform the situation without
QDC measured by time overhead.

APPENDIX C: COMMUNICATION

In the context of quantum communication, QDCs can be
used to guarantee privacy, with a variety of potential appli-
cations. The essential feature of the QDC that enables this
privacy is the ability of QRAM to perform queries to data
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in superposition. By secretly choosing to perform classical
queries or superposed queries, then examining the results,
users can determine whether other parties (including the
QDC) may have tampered with the queries.

This basic idea is operationalized in the Quantum Private
Queries (QPQ) protocol of [26], which we describe below.
This protocol allows users to access classical data with privacy
guarantees, and this same idea can be applied to enable effi-
cient blind quantum computation [60] (also described below).
Both of these protocols can be directly implemented using a
QDC.

1. Quantum Private Queries

A QDC can be directly used to implement the quantum
private queries protocol of [26]. In the protocol, a user (Alice)
wants to access some classical data that is stored in a remote
database (held by Bob). Alice wishes to access the data with-
out revealing to Bob which data elements she has accessed.
At the same time, Bob wants to maintain the privacy of his
database, sending Alice only the information she requests.

The protocol of [26], Quantum Private Query (QPQ), guar-
antees both user and database privacy by storing the data in
QRAM. To access the ith element of a length-N database,
Alice prepares a log N-qubit register in the state |i〉 and trans-
mits this state to Bob. Then Bob uses this state as input to
a QRAM query, so that the corresponding classical data, xi,
are encoded in an output qubit register. Both the input and
output registers are then returned to Alice. As such, database
privacy is guaranteed because Bob must transmit only one
element of the data back to Alice. To guarantee user privacy,
Alice randomly chooses to send either initial state |i〉 or a lure
state (|i〉 + |0〉)/

√
2 to Bob (which she chooses is unknown to

him). By performing measurements on the states Bob returns,
Alice can ascertain whether or not Bob has attempted to learn
the value of i. Thus, Alice can guarantee her privacy.

The implementation of this protocol with a QDC is not
hard. The QDC consists of a QRAM, so the QDC simply
plays the role of Bob in the protocol. Moreover, QDC pro-
vides an application of the QPQ protocol through the quantum
network.

Now we quantify the protocol more precisely. In fact, in-
stead of considering the states |i〉 and (|i〉 + |0〉)/2, we could
consider more general states [26]. Bob needs to make choices
in one of the two following scenarios:

|SA〉 = | j〉Q1
⊗ 1√

2
(| j〉Q2

+ |r〉Q2
),

|SB〉 = 1√
2

(| j〉Q1
+ |r〉Q1

) ⊗ | j〉Q2
, (C1)

where SA,B are made by the joint states of two queries: Q1 and
Q2. All possible operations from Bob could be summarized
by two unitaries: U1 and U2. U1 (U2) acts on the query space
Q1 (Q2), the associated register system R1 (R2), and Bob’s
ancillary system B (now we could understand it as Bob’s
QDC). If Bob is honest, the algorithm of Bob is to make use of
QRAM, uploading the information from Q2 to registers, and
the states in Q2 will not be changed. If not, Bob’s remaining
system Q2 will be entangled with the rest at the end. One could

compute the final state of Alice:

ρ
( j) ≡ TrB[U2U1|�
( j)〉〈�
( j)|U †
1 U †

2 ], (C2)

where 
 = A, B, and

|�
( j)〉 = |S
〉Q1Q2
|0〉RB. (C3)

Moreover, the final state of Q2 is given by

σ
( j) ≡ TrQ1Q2R1R2 [U2U1|�
( j)〉〈�
( j)|U †
1 U †

2 ]. (C4)

One could quantify the amount of information Bob could ob-
tain from Alice by the mutual information IB. We will use the
Holevo information associated with the ensemble {pj, σ ( j)},
where pj = 1/N is the probability for choosing j, and σ ( j) =
[σA( j) + σB( j)]/2 is the final state of Q2, since Alice has an
equal probability to choose 
 = A, B. Thus one could obtain
[78]

IB � cε1/4
p log2N. (C5)

Here c is a constant, c � 631, and εp is the maximal probabil-
ity where Alice finds that Bob is not cheating. Namely, if we
use 1 − P
( j) to denote the probability where Bob will pass
Alice’s test, then P
( j) � εp. As a summary, I is a measure of
how honest Bob could actually be, and εp is a result of Alice’s
test. The above inequality is originated from the information-
disturbance trade-off and the Holevo bound [27]. The ε1/4

p
dependence is coming from repetitively taking the square root
between amplitudes and probabilities in quantum mechanics.

Now we relate εp by the number of queries appearing in
the QPQ protocol. Let us assume that Alice has Q queries
independently sent to Bob. Note that for multiple queries,
if there is at least one time when Alice finds that Bob is
cheating, Alice will know that privacy is not guaranteed. So
the probability of Alice cannot find Bob is cheating among QB

times in all Q times, is given by (1 − εp)QB , where εp is the
maximal probability where Alice finds that Bob is cheating in
a single time. When QB increases, (1 − εp)QB = a will decay
from 1 to an O(1) number a where 1 − a is not ignorable, and
we assume that QB � 1/εp. In this case, we have

QB = log a

log(1 − εp)
≈ log 1

a

εp
= O

(
1

εp

)
. (C6)

Now, we get

IB � O
(
Q−1/4

B log N
)
. (C7)

Thus, we see that for larger QB, if Alice does not find Bob
is cheating, then Alice could be more confident that Bob has
less mutual information. One can also assume that Bob picks
a cheating strategy by QB ∼ Qα , where 0 � α � 1 will imply
how many times Bob is cheating during the whole process. So
we have

IB � O(Q−α/4 log N ). (C8)

When designing the QDC associated with QPQ, we could
introduce a joint cost measurement among time, space, and
privacy. Similar to the analysis about quantum signal process-
ing, we write the costs for the QDC when implementing QPQ
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as

Ttotal = O(QM log N ) + O(Qtch ),

Ntotal = O

(
N

M
+ log N

)
+ O

(
log N × C2

tch
Ltot

)
, (C9)

where N is the number of qubits, Q is the total number of
queries Alice has sent, M is the parameter in the hybrid
QRAM/QROM construction, tch is the teleportation time per
query, C2 is the teleportation qubit × time cost for the trans-
mission of one Bell pair per unit length, and Ltot is the total
length during teleportation. For the mutual information IB, one
could understand IB as the privacy cost, by defining Ptotal as a
monotonically decreasing function of IB, since the smaller IB,
the larger privacy we are requiring. For simplicity, we could
define Ptotal = 1/IB. It does not matter how we choose the
monotonic function, since a redefinition of the function could
be absorbed to the definition of the cost function Fcost. More-
over, one could also understand IB as part of the hardware and
the time cost, since we could write

Q = O
(
I−4/α
B log4/αN

)
. (C10)

If we demand a fixed value of IB, we could adapt Q into the
hardware and the time cost. The larger Q is, the higher costs
are required:

Ttotal = O
(
M × I−4

B log4/α+1N
) + O

(
tch × I−4

B log4/αN
)
,

Ntotal = O

(
N

M
+ log N

)
+ O

(
log N × C2

tch
Ltot

)
. (C11)

The total cost estimation of QDC associated with QPQ will be
a joint measurement among Ttotal, Ntotal, and Ptotal.

Note that in the main text, we discuss the combination
of QPQ with the quantum secret sharing protocol. The orig-
inal proposal about quantum secret sharing given in [9]
is based on the entanglement property of the Greenberger-
Horne-Zeilinger (GHZ) state, and it is a quantum scheme for
sharing classical data since it relies on the measurement result.
Moreover, in [8], a quantum scheme for sharing quantum data
has been proposed, which is more suitable in our context.
The paper [8] constructs a [(k, n)] threshold scheme, where
a quantum state is divided into n shares, while any k of them
could completely reconstruct the state, but any k − 1 of them
cannot. It was shown that as long as n < 2k, the construction
is possible, and the explicit scheme has been constructed. In
our case, a single Alice could divide the information to n
QDCs. We could assume arbitrary k such that n < 2k. Based
on the practical purposes, a more specific setup of k might be
used. A joint analysis of the multiparty quantum communica-
tion parameters might set the security standard for a given set
of hardware, which we defer for future research.

Finally, we mention that there are studies about limitations
and insecurity concerns about concepts that are related to
QPQs. In fact, there are no-go theorems [49–51] about the
imperfection of certain quantum computation and communi-
cation schemes. The QPQ protocol does not violate the no-go
theorems [51] since the setup is different. In QPQ, we do not
have the security requirement required for the no-theorem,

where the user Alice cannot know the private key of QDCs,
since QDCs do not have private keys. On the other hand, it will
be interesting to understand better how those studies could
potentially improve the capability of QDCs.

2. Efficient blind quantum computation

A QDC can be directly used to implement the efficient
blind quantum computation protocol of [60]. In blind quantum
computation, a user, Alice, wants to perform a quantum com-
putation using Bob’s quantum computer without revealing to
Bob what computation has been performed. Reference [60]
shows how this is possible through a simple application of
the QPQ protocol. Bob holds a length-N database stored in
QRAM, where each entry in the database corresponds to a
different unitary operation that he can perform on his quan-
tum computer. Alice tells him which operation to perform
by sending a log N-qubit quantum state |i〉, indicating that
Bob should apply the ith unitary operation, Ui. Bob applies
the operation without measuring the register (i.e., he applies
a coherently controlled operation UBob = ∑

i |i〉〈i| ⊗ Ui) and
then sends the state back to Alice. To protect her privacy, Alice
periodically sends lure states and measures the states returned
to her. If Bob attempts to cheat, Alice will be able to detect it.

The implementation of this protocol with a QDC is simple,
as we have already shown that a QDC can implement the
QPQ protocol. In this case, though, the QDC also requires a
universal quantum computer in order to perform the computa-
tion. Thus, the efficient blind quantum computation protocol
could be understood as an extension of QPQ with extra powers
in quantum computation. When estimating the computational
cost for QDC, one should include the computational complex-
ity of the quantum operation Ui, while other analyses stay the
same as QDC associated with QPQ.

3. Final comments on multiparty private
quantum communication

Private quantum communication refers to the possibil-
ity of transmitting quantum information without revealing
this information to eavesdroppers. If multiple parties are
communicating over a quantum network, eavesdroppers may
nevertheless be able to learn who has sent information and
who has received it, even if they cannot determine what that
information was. Multiparty private quantum communication
refers to a stronger notion, where eavesdroppers can neither
learn what information was communicated nor which users
were communicating to which others. To our knowledge, this
notion of multiparty private quantum communication and the
corresponding protocol is unique in our paper.

This protocol constitutes private multiparty quantum com-
munication because (1) the use of secret sharing means that
no QDC can learn what information is being communicated,
and (2) the use of Quantum Private Queries means that no
QDC can learn which user Bj is accessing the information
transmitted by Ai. A crucial assumption in the protocol is that
the QDCs are noncooperating. If the QDCs cooperate, they
could work together to reconstruct the secret. To mitigate this
problem, the number of parts each secret is divided into can
be increased (along with the number of QDCs). In this way,
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FIG. 10. Quantum compression with QRAM. (a) Compression procedure. The bucket-brigade QRAM consists of a binary tree of quantum
routers [24], with the N-qubit quantum memory located at the bottom of the tree. An excitation initially stored in the memory is routed up and
out of the tree, such that its initial position is first encoded in the states of the quantum routers, then in the state of an external register. The
excitation is routed up through the tree using the routing circuit shown in (b). The action of this circuit is shown diagrammatically in (c). We
note that this compression procedure is a straightforward extension of the routing procedure described in Ref. [24], which provides a more
detailed description of QRAM and quantum routing.

revealing the secret would require cooperation between an
increasingly large number of QDCs. We comment on the dif-
ference between multiparty private quantum communication
and so-called covert quantum communication [79]. Covert
quantum communication refers to a stronger notion, where
eavesdroppers cannot even detect whether any information
has been transmitted in the first place. In the protocol of [79],
Alice and Bob are assumed to share a random, secret key,
and the quantum information is sent via optical photons from
Alice to Bob at one of N times specified by the key. The
probability that an eavesdropper can distinguish between this
situation and that where no information is communicated at all
(i.e., when no photons are sent) is shown to decrease as 1/

√
N .

In the limit of large N , the eavesdropper cannot determine
whether any information has been sent.

Note that the multiparty private quantum communication
scheme is teleporting quantum states, not classical informa-
tion. Those quantum states are naturally merged with quantum
private queries where the security is guaranteed quantumly,
making the usage of superposition of addresses in QRAM.
Moreover, an important technicality regarding the last step
of the protocol is that the QDCs are storing quantum data,
and, in general, the act of accessing these data can perturb the
quantum database (a consequence of the no-cloning theorem).
The QDC could, in principle, detect this perturbation and use
this information to infer which user Bj is accessing the infor-
mation transmitted by Ai. To prevent this, we suppose that the
quantum data are accessed as follows. In addition to sending a
state |i〉 specifying which element to access, each user Bj also
sends a quantum state ρ j to the QDC. The QDC then swaps ρ j

with the state stored at location i in the memory. If ρ j is chosen
to be a maximally mixed state, this data access procedure has
no backreaction on the database; from the perspective of each
QDC, the states stored in the database always look maximally
mixed.

APPENDIX D: SENSING

1. Quantum data compression

In this section we describe how QRAM architectures can
be used to implement the unary-to-binary compression de-
scribed in our main text, which could be used for quantum
sensing. In particular, we show that the compression oper-
ation can be implemented using a modified version of the
bucket-brigade QRAM archiecture [17,18]. In the following,
we assume familiarity with this QRAM architecture; we refer

unfamiliar readers to Ref. [24], which provides a recent, self-
contained review.

The basic compression scheme is illustrated in Fig. 10.
Suppose a single excitation is stored in one of N different
cells in the QRAM’s quantum memory (or in a superposition
of multiple different cells). The procedure in the figure allows
one to coherently extract the position of the excitation using
a modified version of the bucket-brigade QRAM’s binary-tree
routing scheme. Specifically, the excitation is routed upward
from the quantum memory at the bottom of the tree to the
root node at the top. As the excitation is routed upward, its
original position is encoded into the states of the quantum
routers comprising the tree. This encoding is accomplished
using a simple modification to the quantum routing circuit of
Ref. [24], shown in Figs. 10 (b) and 10(c). Subsequently, the
position information is extracted from the routers and stored
in an external log N-qubit register, exactly as in the usual
bucket-brigade approach [17,18,24].

In this way, QRAM enables us to convert the unary infor-
mation of the photon’s position into a more compact binary
representation of log N qubits. That is, the scheme in Fig. 10
implements the mapping |ψunary〉 → |ψbinary〉 described in this
Appendix. As a result, the state of N-mode memory (as-
sumed to lie within the single-excitation subspace) can be
compressed to log N qubits. Generalization to multiexcitation
subspaces is straightforward; the procedure can be repeated
to extract multiple excitations from the memory, such that the
k-excitation subspace can be compressed into k log N qubits.

Additionally, the scheme in Fig. 10 can also be used to im-
plement the operation U that coherently extracts the address of
an excitation stored in the QRAM’s quantum memory. To do
so, first, the compression of procedure in Fig. 10(a) is applied:

N−1∑
i=0

αi|i〉Q′
1 |0〉Q2

⎡
⎣ N⊗

j=1

|δi j〉Dj

⎤
⎦

→
N−1∑
i=0

αi|i〉Q′
1 |1〉Q2

⎡
⎣ N⊗

j=1

|0〉Dj

⎤
⎦, (D1)

where here the labels Q1, Q2, and Dj , respectively, denote the
external log N-qubit register, an external qubit used to hold
the extracted excitation (not shown in Fig. 10), and the jth
cell of the quantum memory. Then a series of CNOT gates are
used to copy the address information stored in register Q1 into
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another external log N-qubit register, denoted Q1,

→
N−1∑
i=0

αi|i〉Q1 |i〉Q′
1 |1〉Q2

⎡
⎣ N⊗

j=1

|0〉Dj

⎤
⎦. (D2)

Finally, the compression procedure is run in reverse in order
to return the excitation to its original location in memory:

→
N−1∑
i=0

αi|0〉Q1 |i〉Q′
1 |0〉Q2

⎡
⎣ N⊗

j=1

|δi j〉Dj

⎤
⎦. (D3)

The Q′
1 and Q2 registers can subsequently be discarded.

Finally, we comment on how QDC-assisted distributed
sensing could provide benefits on the entanglement cost.
Suppose that two or more physically separated users probe
some system, such that a quantity of interest is encoded in
an entangled state shared between them. If local operations
do not suffice to measure this quantity, then quantum in-
formation must be transmitted between the users. If each
user has N qubits of quantum data, then N entangled pairs
will be required to transmit the information in general. In
certain situations, this entanglement cost can be greatly re-
duced using a QDC. For example, if the N-qubit states are
guaranteed to lie in the single-excitation subspace, then they
can be transmitted using only log N entangled pairs using the
unary-to-binary compression described above. This is the case
for quantum-assisted telescope arrays [80], where quantum
networks are used to enable optical interferometry. In this
context, a single optical photon arrives at one of multiple
telescopes in superposition, with its arrival time and frequency
unknown. Supposing that the photon arrives at one of N
unknown time-frequency bins, Refs. [81,82] show that unary-
to-binary compression enables the optical phase difference to
be extracted using only log N entangled pairs. QDCs could
be directly used to implement this compression. In fact, using
a QDC to implement the compression is more hardware ef-
ficient than the approach proposed in Ref. [82]. In that work
the authors consider the case where a photon arrives at one
of Tbin different time bins and in one of R different frequency
bands, and they describe a procedure that uses O(R log Tbin)
qubits to compresses the photon’s arrival time and frequency
information. The same compression can be achieved with
a QDC using only O(R) + O(log Tbin) qubits as follows. At
each time step, any incoming photon is stored in one of
R different memory qubits according to its frequency band.
These R qubits constitute the QDC’s quantum memory, and
the QDC performs unary-to-binary compression scheme de-
scribed above to compress this which-frequency information.
If the photon arrived at the present time step, it is now stored
at a definite location [namely, register Q2 in Eq. (6)]. The
presence of this photon can then be used to control the binary
encoding of the which-time information, as in Ref. [81]. Alto-
gether, this procedure requires O(R) qubits for the QDC and
its quantum memory, plus an additional O(log Tbin) qubits to
hold the compressed which-time information, hence the total
hardware cost is O(R) + O(log Tbin) qubits. When counting
the communication time cost, the savings will be more drastic.
More sophisticated compression protocols can enable further
reduction in entanglement cost. If each mode of an M-mode

system is populated with a photon with probability p, then
the quantum data can be transmitted as few as MH (p) qubits,
where H (p) is the binary entropy, using a scheme for Schu-
macher coding [52]. Such schemes would further reduce the
entanglement cost. Moreover, a QDC equipped with quantum
sorting networks (a generalization of QRAM) can implement
Schumacher coding in polylogarithmic time [56], enabling
improved detector bandwidth.

2. Channel discrimination using QDCs

In the main text, we discuss various aspects of QDC re-
alizations with both QRAM and quantum communications.
However, QDCs could still be made without either QRAM
or quantum communications. Here we give a simple exam-
ple from quantum sensing, where QRAM is not necessarily
needed.

The estimation and discrimination of quantum channels are
natural problems in quantum sensing (see [83–87]). Following
[87], one of the simplest problems is the following channel
discrimination problem: say that we have two distributions �b

with b = 0, 1. For a given b, we wish to find out the value of
b by accessing the quantum channel

Eb = exp(iθbH ) θb ∼ �b, (D4)

with minimal numbers of times. (For the qubit setup in this
paper, we could specify H as Pauli X . For higher dimen-
sional channel discrimination, see [85].) One could define
the channel discrimination protocol by the following circuits.
The quantum (coherent) protocol corresponds to the following
circuit:

Q = Eb,N

N−1∏

=1

(V
Eb,
), (D5)

where N is the total number of queries, and Eb,
 corresponds to

th copy of the channel Eb. A series of unitaries V
 will define
the protocol (one could specify it by QSP angles; see [87]).
Say that we define the input state to be |ψinput〉 and the output
state to be |ψoutput〉, the success probability is

p = max
V,ψinput,ψoutput

|〈ψoutput|Q|ψinput〉|2. (D6)

For the incoherent (classical) protocol, we could perform N
different measurement. Say that for the 
th measurement, we
expect the input |ψinput,
〉 and the output |ψoutput,
〉, and we
will have the 
th probability,

p
 = |〈ψoutput,
|V
Eb,
|ψinput,
〉|2, (D7)

and the protocol could be specified by the majority vote
[87]. Moreover, one could specify the ξ -hybrid protocol as
performing a length-ξ coherent protocol N/ξ times, and the
result could be determined by the majority vote of N/ξ tri-
als. It is shown that when the channel is noiseless (�′

bs are
Dirac function distributions), coherent protocols always have
the advantage over incoherent protocols. However, when the
channel is too noisy, incoherent protocols might be better
[87]. Thus, the hybrid protocols might be useful when we
increase N .

If the user wants the quantum sensing to have high pre-
cision, they might have to go to the large N regime. In the
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above example, precision δ is the difference between the mean
of the distribution �1 and �2. It is proved that [87] in the
noiseless case, the optimal N scales as 1/δ. Moreover, the
unitaries V = {V
} might be hard to construct and design. In
those cases, QDC might be useful.

The protocol with QDC could be defined as the follow-
ing. On the user side, the user could generate the channel
Eb, j , and the user could also send the information about the
distribution �b to a QDC. The QDC could generate a series
of unitaries {V
} and design the optimal hybrid ξ protocol.

Each time when the state passes through the channel Eb, j ,
one could teleport the state by the quantum network to the
QDC, and QDC will apply V
 on the state and teleport it
back. The measurement could be done either by the QDC or
by the user. The majority vote could either be done classi-
cally with O(N/ξ ) complexity, or quantumly by measuring
O(N/ξ ) times in the computational basis. The QDC-assisted
channel discrimination protocols will have advantages when
the user finds it hard to design the optimal circuits
V = {V
}.

[1] R. P. Feynman, in Feynman and Computation (CRC Press,
2018), pp. 133–153.

[2] P. W. Shor, SIAM Rev. 41, 303 (1999).
[3] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
[4] J. Preskill, Quantum 2, 79 (2018).
[5] P. Wittek, Quantum Machine Learning: What Quantum Com-

puting Means to Data Mining (Academic Press, 2014).
[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,

and S. Lloyd, Nature (London) 549, 195 (2017).
[7] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.

Phys. 74, 145 (2002).
[8] R. Cleve, D. Gottesman, and H.-K. Lo, Phys. Rev. Lett. 83, 648

(1999).
[9] M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829

(1999).
[10] H. J. Kimble, Nature (London) 453, 1023 (2008).
[11] M. Caleffi, A. S. Cacciapuoti, and G. Bianchi, Quantum In-

ternet: From Communication to Distributed Computing!, in
Proceedings of the 5th ACM International Conference on
Nanoscale Computing and Communication, NANOCOM ’18
(Association for Computing Machinery, Reykjavik, Iceland,
2018), pp. 1–4.

[12] S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and
L. Jiang, Phys. Rev. Lett. 112, 250501 (2014).

[13] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin,
and L. Jiang, Sci. Rep. 6, 20463 (2016).

[14] C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys.
89, 035002 (2017).

[15] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96,
010401 (2006).

[16] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222
(2011).

[17] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 100,
160501 (2008).

[18] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. A 78,
052310 (2008).

[19] F.-Y. Hong, Y. Xiang, Z.-Y. Zhu, L.-Z. Jiang, and L.-N. Wu,
Phys. Rev. A 86, 010306(R) (2012).

[20] S. Arunachalam, V. Gheorghiu, T. Jochym-O’Connor, M.
Mosca, and P. V. Srinivasan, New J. Phys. 17, 123010 (2015).

[21] C. T. Hann, C.-L. Zou, Y. Zhang, Y. Chu, R. J. Schoelkopf, S. M.
Girvin, and L. Jiang, Phys. Rev. Lett. 123, 250501 (2019).

[22] O. Di Matteo, V. Gheorghiu, and M. Mosca, IEEE Trans.
Quantum Eng. 1, 4500213 (2020).

[23] A. Paler, O. Oumarou, and R. Basmadjian, Phys. Rev. A 102,
032608 (2020).

[24] C. T. Hann, G. Lee, S. M. Girvin, and L. Jiang, PRX Quantum
2, 020311 (2021).

[25] C. Hann, Practicality of quantum random access memory, Ph.D.
thesis, Yale University (2021).

[26] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 100,
230502 (2008).

[27] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information 10th Anniversary Edition (Cambridge University
Press, Cambridge, 2010).

[28] R. Naik, N. Leung, S. Chakram, P. Groszkowski, Y. Lu, N.
Earnest, D. McKay, J. Koch, and D. Schuster, Nat. Commun.
8, 1904 (2017).

[29] N. Jiang, Y.-F. Pu, W. Chang, C. Li, S. Zhang, and L.-M. Duan,
npj Quantum Inf. 5, 28 (2019).

[30] S. Langenfeld, O. Morin, M. Körber, and G. Rempe,
npj Quantum Inf. 6, 86 (2020).

[31] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean,
A. Paler, A. Fowler, and H. Neven, Phys. Rev. X 8, 041015
(2018).

[32] G. H. Low, V. Kliuchnikov, and L. Schaeffer,
arXiv:1812.00954.

[33] D. W. Berry, C. Gidney, M. Motta, J. R. McClean, and
R. Babbush, Quantum 3, 208 (2019).

[34] O. Di Matteo, Methods for Parallel Quantum Circuit Synthesis,
Fault-Tolerant Quantum RAM, and Quantum State Tomography
(University of Waterloo, 2019).

[35] K. C. Chen, W. Dai, C. Errando-Herranz, S. Lloyd, and
D. Englund, PRX Quantum 2, 030319 (2021).

[36] J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q.
Cai, W.-Y. Liu, B. Li, H. Dai et al., Science 356, 1140 (2017).

[37] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J.
Yin, Q. Shen, Y. Cao, Z.-P. Li et al., Nature (London) 549, 43
(2017).

[38] Y.-A. Chen, Q. Zhang, T.-Y. Chen, W.-Q. Cai, S.-K. Liao, J.
Zhang, K. Chen, J. Yin, J.-G. Ren, Z. Chen et al., Nature
(London) 589, 214 (2021).

[39] H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.
81, 5932 (1998).

[40] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature
(London) 414, 413 (2001).

[41] W. J. Munro, K. Azuma, K. Tamaki, and K. Nemoto, IEEE J.
Sel. Top. Quantum Electron. 21, 78 (2015).

[42] S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
[43] S. Bravyi and J. Haah, Phys. Rev. A 86, 052329 (2012).
[44] D. Litinski, Quantum 3, 128 (2019).
[45] A. G. Fowler and C. Gidney, arXiv:1808.06709.

032610-16

https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/nature23474
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/PhysRevLett.83.648
https://doi.org/10.1103/PhysRevA.59.1829
https://doi.org/10.1038/nature07127
https://doi.org/10.1103/PhysRevLett.112.250501
https://doi.org/10.1038/srep20463
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevA.78.052310
https://doi.org/10.1103/PhysRevA.86.010306
https://doi.org/10.1088/1367-2630/17/12/123010
https://doi.org/10.1103/PhysRevLett.123.250501
https://doi.org/10.1109/TQE.2020.2965803
https://doi.org/10.1103/PhysRevA.102.032608
https://doi.org/10.1103/PRXQuantum.2.020311
https://doi.org/10.1103/PhysRevLett.100.230502
https://doi.org/10.1038/s41467-017-02046-6
https://doi.org/10.1038/s41534-019-0144-0
https://doi.org/10.1038/s41534-020-00316-8
https://doi.org/10.1103/PhysRevX.8.041015
http://arxiv.org/abs/arXiv:1812.00954
https://doi.org/10.22331/q-2019-12-02-208
https://doi.org/10.1103/PRXQuantum.2.030319
https://doi.org/10.1126/science.aan3211
https://doi.org/10.1038/nature23655
https://doi.org/10.1038/s41586-020-03093-8
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1038/35106500
https://doi.org/10.1109/JSTQE.2015.2392076
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.22331/q-2019-03-05-128
http://arxiv.org/abs/arXiv:1808.06709


DATA CENTERS WITH QUANTUM RANDOM ACCESS … PHYSICAL REVIEW A 108, 032610 (2023)

[46] J. M. Martyn, Z. M. Rossi, A. K. Tan, and I. L. Chuang, PRX
Quantum 2, 040203 (2021).

[47] There are studies about limitations and insecurity concerns
about concepts that are related to QPQs. In fact, there are no-go
theorems [49–51] about the imperfection of certain quantum
computation and communication schemes. The QPQ protocol
does not violate the no-go theorems [51] since the setup is
different. In QPQ we do not have the security requirement
required for the no-theorem, where the user Alice cannot know
the private key of QDCs, since QDCs do not have private keys.
On the other hand, it will be interesting to understand better how
those studies could potentially improve the capability of QDCs.

[48] Moreover, we remark that numerous extensions of this simple
unary-to-binary compression are possible. For example, it is
straightforward to generalize the above procedure to the case of
multiple excitations, such that a QDC can be used to compress
multiexcitation subspaces as well (see related discussions in
the Appendixes about quantum data compression). QDCs could
even be used for Schmacher coding [52], universal source cod-
ing [53–55], or other quantum compression tasks. The ability
to efficiently compress quantum data using QRAM and related
architectures is studied more thoroughly in [56].

[49] D. Mayers, Phys. Rev. Lett. 78, 3414 (1997).
[50] H.-K. Lo and H. F. Chau, Phys. Rev. Lett. 78, 3410

(1997).
[51] H.-K. Lo, Phys. Rev. A 56, 1154 (1997).
[52] B. Schumacher, Phys. Rev. A 51, 2738 (1995).
[53] R. Jozsa, M. Horodecki, P. Horodecki, and R. Horodecki, Phys.

Rev. Lett. 81, 1714 (1998).
[54] M. Hayashi and K. Matsumoto, Phys. Rev. A 66, 022311

(2002).
[55] C. H. Bennett, A. W. Harrow, and S. Lloyd, Phys. Rev. A 73,

032336 (2006).
[56] C. T. Hann et al. (unpublished).
[57] G. H. Low and I. L. Chuang, Quantum 3, 163 (2019).
[58] G. H. Low, T. J. Yoder, and I. L. Chuang, Phys. Rev. X 6,

041067 (2016).
[59] G. H. Low and I. L. Chuang, Phys. Rev. Lett. 118, 010501

(2017).
[60] V. Giovannetti, L. Maccone, T. Morimae, and T. G. Rudolph,

Phys. Rev. Lett. 111, 230501 (2013).
[61] J. F. Fitzsimons, npj Quantum Inf. 3, 23 (2017).
[62] J. Preskill, Nature (London) 402, 357 (1999).
[63] D. Gottesman and I. L. Chuang, Nature (London) 402, 390

(1999).
[64] S. Vadhan, in Tutorials on the Foundations of Cryptography

(Springer, 2017), pp. 347–450.

[65] S. Lloyd, M. Mohseni, and P. Rebentrost, Nat. Phys. 10, 631
(2014).

[66] S. Lloyd, Science 273, 1073 (1996).
[67] M. Suzuki, Commun. Math. Phys. 51, 183 (1976).
[68] A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu, Phys.

Rev. X 11, 011020 (2021).
[69] A. M. Childs and R. Kothari, in Theory of Quantum Compu-

tation, Communication, and Cryptography, edited by W. van
Dam, V. M. Kendon, and S. Severini (Springer, Berlin, 2011),
pp. 94–103.

[70] D. W. Berry, A. M. Childs, and R. Kothari, in Foundations of
Computer Science (FOCS), 2015 IEEE 56th Annual Symposium
on (IEEE, New York, 2015), pp. 792–809.

[71] G. H. Low, V. Kliuchnikov, and N. Wiebe, arXiv:1907.11679.
[72] A. M. Childs and N. Wiebe, Quantum Info. Comput. 12, 901

(2012).
[73] D. W. Berry and A. M. Childs, Quantum Info. Comput. 12, 29

(2012).
[74] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D.

Somma, Phys. Rev. Lett. 114, 090502 (2015).
[75] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D.

Somma, Exponential improvement in precision for simulating
sparse Hamiltonians, in Proceedings of the forty-sixth annual
ACM symposium on Theory of computing, STOC’14 (Associa-
tion for Computing Machinery, New York, 2014), pp. 283–292.

[76] M. Zhang, C.-L. Zou, and L. Jiang, Phys. Rev. Lett. 120, 020502
(2018).

[77] D. Herr, F. Nori, and S. J. Devitt, New J. Phys. 19, 013034
(2017).

[78] V. Giovannetti, S. Lloyd, and L. Maccone, IEEE Trans. Inf.
Theory 56, 3465 (2010).

[79] J. M. Arrazola and V. Scarani, Phys. Rev. Lett. 117, 250503
(2016).

[80] D. Gottesman, T. Jennewein, and S. Croke, Phys. Rev. Lett. 109,
070503 (2012).

[81] E. T. Khabiboulline, J. Borregaard, K. De Greve, and M. D.
Lukin, Phys. Rev. Lett. 123, 070504 (2019).

[82] E. T. Khabiboulline, J. Borregaard, K. De Greve, and M. D.
Lukin, Phys. Rev. A 100, 022316 (2019).

[83] A. Acín, Phys. Rev. Lett. 87, 177901 (2001).
[84] R. Duan, Y. Feng, and M. Ying, Phys. Rev. Lett. 98, 100503

(2007).
[85] R. Duan, Y. Feng, and M. Ying, Phys. Rev. Lett. 103, 210501

(2009).
[86] S. Zhou and L. Jiang, PRX Quantum 2, 010343 (2021).
[87] Z. M. Rossi, J. Yu, I. L. Chuang, and S. Sugiura, Phys. Rev. A

105, 032401 (2022).

032610-17

https://doi.org/10.1103/PRXQuantum.2.040203
https://doi.org/10.1103/PhysRevLett.78.3414
https://doi.org/10.1103/PhysRevLett.78.3410
https://doi.org/10.1103/PhysRevA.56.1154
https://doi.org/10.1103/PhysRevA.51.2738
https://doi.org/10.1103/PhysRevLett.81.1714
https://doi.org/10.1103/PhysRevA.66.022311
https://doi.org/10.1103/PhysRevA.73.032336
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1103/PhysRevX.6.041067
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.111.230501
https://doi.org/10.1038/s41534-017-0025-3
https://doi.org/10.1038/46434
https://doi.org/10.1038/46503
https://doi.org/10.1038/nphys3029
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1007/BF01609348
https://doi.org/10.1103/PhysRevX.11.011020
http://arxiv.org/abs/arXiv:1907.11679
https://doi.org/10.26421/QIC12.11-12-1
https://doi.org/10.26421/QIC12.1-2-4
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.120.020502
https://doi.org/10.1088/1367-2630/aa5709
https://doi.org/10.1109/TIT.2010.2048446
https://doi.org/10.1103/PhysRevLett.117.250503
https://doi.org/10.1103/PhysRevLett.109.070503
https://doi.org/10.1103/PhysRevLett.123.070504
https://doi.org/10.1103/PhysRevA.100.022316
https://doi.org/10.1103/PhysRevLett.87.177901
https://doi.org/10.1103/PhysRevLett.98.100503
https://doi.org/10.1103/PhysRevLett.103.210501
https://doi.org/10.1103/PRXQuantum.2.010343
https://doi.org/10.1103/PhysRevA.105.032401

