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We study the problem of measuring errors in non-trace-preserving quantum operations, with a focus on their
impact on quantum computing. We propose an error metric that efficiently provides an upper bound on the trace
distance between the normalized output states from imperfect and ideal operations, while remaining compatible
with the diamond distance. As a demonstration of its application, we apply our metric in the analysis of a lossy
beam splitter and a nondeterministic conditional sign-flip gate, two primary non-trace-preserving operations in
the Knill-Laflamme-Milburn protocol. We then turn to the leakage errors of neutral-atom quantum computers,
finding that these errors scale worse than previously anticipated, implying a more stringent fault-tolerant
threshold. We also assess the quantum Zeno gate’s error using our metric. In a broader context, we discuss
the potential of our metric to analyze general postselected protocols, where it can be employed to study error
propagation and estimate thresholds in fault-tolerant quantum computing. The results highlight the critical role
of our proposed error metric in understanding and addressing challenges in practical quantum information
processing.
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I. INTRODUCTION

Quantifying errors in quantum operations is crucial for
quantum information processing [1,2]. Remarkably, fault-
tolerant quantum computing necessitates the worst-case error
of a quantum gate to be below a certain threshold [3–5].
Though numerous distance measures exist to quantify these
errors [6,7], they primarily apply to completely positive trace-
preserving linear maps. Consequently, non-trace-preserving
errors, which are common in all realistic quantum systems,
remain under-addressed. One prominent example of such
errors is qubit leakage, observable across various quantum
computing platforms, including photonics [8–11], super-
conducting circuits [12–20], semiconductor spins [21–24],
neutral atoms [25,26], trapped ions [27–31], and topologi-
cal qubits [32,33]. Additionally, postselection (a technique
frequently employed in quantum algorithms where qubits
are manipulated based on measurement outcomes) often in-
volves non-trace-preserving channels. These include quantum
gate teleportation [34–38], heralded entanglement generation
[39–43], fusion gates [44–46], quantum Zeno gates [47–53],
linear optics quantum gates [54–57], measurement-based
quantum computing [58–61], and fault-tolerant quantum com-
putation [62–66], among others. The current inability to
quantify the imperfections of these channels using conven-
tional error measures designed for trace-preserving operations
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underscores the need for an error metric suitable for non-trace-
preserving operations.

Previous studies by Bongioanni et al. [8] and Kiesel et al.
[10] attempted to quantify the error of non-trace-preserving
operations by assessing the fidelity of their normalized pro-
cess matrices, a method suggested through channel-state
duality [6]. Nevertheless, this approach has its limitations.
Notably, normalized process matrices may exhibit negative
eigenvalues [10], devoid of a clear physical interpretation.
Additionally, this method primarily provides estimates for
average-case error in quantum operations, while fault-tolerant
quantum computing requires the quantification of worst-
case error thresholds [67,68]. It’s worth mentioning that the
success probability serves as another metric for non-trace-
preserving operations. Bongioanni et al. [8] also studied
this aspect, effectively characterizing it using a semidefinite
operator.

Recently, Regula and Takagi [69] investigated the trade-
off relations between success probability and transformation
accuracy in probabilistic distillation protocols employing
postselection. Concurrently, Gavorová [70] introduced a mod-
ified version of the diamond distance [7] for postselected
computations, additionally providing a metric to bound it.
However, the metric is constrained by two major limitations.
First, it can only calculate the distance between non-trace-
preserving and trace-preserving operations. Second, it fails to
converge to the conventional diamond distance when the oper-
ation is infinitesimally non-trace-preserving, thereby offering
only a loose bound on the distance.

In this paper, we propose a general metric designed to
compare two non-trace-preserving quantum operations. This
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metric offers an efficient means to compute a worst-case
error bound and addresses the previously mentioned limita-
tions. We demonstrate its utility by applying it to the analysis
of a lossy beam splitter and a nondeterministic conditional
sign-flip gate in the Knill-Laflamme-Milburn (KLM) proto-
col [54]. Furthermore, we use our metric to examine the
leakage errors in neutral-atom quantum computers, reveal-
ing a much worse error scaling than previously estimated
by the Pauli twirling approximation [25]. Such insight sug-
gests a tighter threshold for fault-tolerant quantum computing.
Additionally, we apply our metric to a quantum Zeno gate
on transmons [50] to quantify the error in the presence of
nonideal measurements. These applications underscore the
versatility and superiority of our metric. We further discuss the
potential of our metric for use in general postselected proto-
cols, focusing on its utility for studying error propagation and
estimating thresholds in fault-tolerant quantum computing.
Collectively, our findings not only broaden the scope of quan-
tifiable imperfections in quantum computers, but also aid in
designing more reliable and efficient quantum error-correcting
schemes.

II. REVIEW

A. Diamond distance

We begin by revisiting the essential properties a measure
should possess to effectively distinguish between different
quantum operations. A quantum operation E acts as a map
between input and output states, represented by ρout = E (ρin ).
The distance, denoted as �(E,F ) between quantum oper-
ations E and F , quantifies the differences in their output
states given identical input states. Any distance measure
should adhere to certain mathematical properties as outlined
by Gilchrist et al. [6].

(1) Metric. This property necessitates the fulfillment of
three conditions: (a) non-negativity, �(E,F ) � 0, becom-
ing zero exclusively when E = F ; (b) symmetry, �(E,F ) =
�(F , E ); and (c) triangle inequality, �(E,F ) � �(E,G) +
�(G,F ).

(2) Chaining. Represented as �(E2 ◦ E1,F2 ◦ F1) �
�(E1,F1) + �(E2,F2). Here, E2 ◦ E1 indicates a composite
process where operation E1 precedes operation E2

(analogously for F). This property ensures the cumulative
distance for combined operations remains less than the sum
of their individual distances.

(3) Stability. Defined by �(E ⊗ I,F ⊗ I ) = �(E,F ),
where I denotes the identity operation in an additional state
space. This property guarantees that the distance remains in-
variant when the operations act on a subsystem, even if this
subsystem is entangled with external systems.

In practical contexts, our primary interest often centers on
the deviation between an experimentally realized quantum
operation and its ideal counterpart, with the distance measure
serving as an error metric. Both the chaining and stability
properties are invaluable when assessing extensive quantum
information tasks composed of sequentially applied quantum
operations. By leveraging these properties, we can estimate
the error of a comprehensive process based on the cumulative
distances of its sequential individual operations.

The diamond distance [7] is a widely used measure to
distinguish between two quantum channels, i.e., completely
positive trace-preserving linear maps. It quantifies the maxi-
mum trace distance between the output states of two quantum
channels given the same input states. The diamond distance
d�(E,F ) between quantum channels E and F is defined as

d�(E,F ) = 1
2 max

ρ
‖(E ⊗ IR)(ρ) − (F ⊗ IR)(ρ)‖1. (1)

In the above equation, ‖ · ‖1 denotes the trace norm. The
quantum channels E and F map quantum states from input
space X to output space Y . IR represents the identity operation
on an auxiliary space R, and ρ stands for a density operator
on the composite space X ⊗ R. Significantly, the diamond dis-
tance satisfies all three requisite properties previously detailed
for an effective distance measure. Its metric property arises
directly from the trace norm. The chaining property can be
derived from the triangle inequality of the trace norm. The
stability property holds under the condition dim(X ) � dim(R)
[71]. Although deriving an analytical expression for the dia-
mond distance of general quantum channels is challenging, it
can be computed using convex optimization [72].

A natural extension of the diamond distance for non-
trace-preserving operations is to measure the maximum trace
distance between their normalized output states. This ex-
tended distance, referred to as the “general distance” and
denoted as dg, is defined by

dg(E,F ) = 1

2
max

ρ

∥∥∥∥ (E ⊗ IR)(ρ)

Tr[(E ⊗ IR)(ρ)]
− (F ⊗ IR)(ρ)

Tr[(F ⊗ IR)(ρ)]

∥∥∥∥
1

.

(2)

The parameters here have the same definitions as in Eq. (1),
with the distinction that quantum operations E and F can
be non-trace-preserving. This means that Tr[E (ρ)] � 1 and
Tr[F (ρ)] � 1. When quantum operations E and F are trace-
preserving, the equalities hold, and the general distance
reduces to the conventional diamond distance. However, ap-
plying the general distance in practice presents a challenge.
Unlike the diamond distance, which can be computed effi-
ciently, evaluating Eq. (2) is not straightforward since it does
not represent a convex problem. Consequently, there is a need
for a metric that provides an upper bound for the general
distance.

B. Gavorová’s metric

Gavorová [70] studied Eq. (2) in the context of postselected
computations and proposed an upper bound that serves as a
metric

dg(E,F ) � 2d�

( E
‖E‖1

,F
)

, (3)

where ‖E‖1 is the induced trace norm [71] of operation E . The
term d�( E

‖E‖1
,F ) represents the diamond distance between

operations without normalizing their output states. This metric
is computable using convex optimization. Nonetheless, it has
two main limitations. First, Eq. (3) requires operation F to
be trace-preserving. As a result, it cannot be applied to com-
pute the general distance between two non-trace-preserving
operations. Second, as operations E and F approach the
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asymptotic limit of being trace-preserving, an ideal metric
should converge to the diamond distance d�(E,F ). However,
Eq. (3) does not meet this expectation, providing a rather loose
bound on the general distance even when an operation is only
infinitesimally non-trace-preserving.

III. MAIN RESULT

Inspired by renormalization techniques [73–76], we de-
velop a metric that provides an upper bound on the general
distance, as defined in Eq. (2). Let us consider two quantum
operations expressed in the operator-sum representation

E (ρ) =
∑

i

AiρA†
i ,

F (ρ) =
∑

j

B jρB†
j ,

where Ai and Bj are Kraus operators that map the quantum
state vector from input space X to output space Y . These oper-
ators adhere to the conditions

∑
i A†

i Ai � I and
∑

j B†
j B j � I .

We define the dimension of X as m, the dimension of Y as
n, and the cardinalities of sets {Ai} and {Bj} as k and k′,
respectively.

The derivation of our metric begins by representing these
quantum operations using the Stinespring dilation [77]

E (ρ) = TrZ{ÂρÂ†},
F (ρ) = TrZ{B̂ρB̂†}.

Here, vectors ei and e j denote the bases on the environ-
mental space Z . The isometries Â and B̂ are defined by
Â = ∑

i ei ⊗ Ai and B̂ = ∑
j e j ⊗ Bj , respectively. Given that

Eq. (2) maximizes over a quantum state on the composite
space X ⊗ R, it is necessary to extend both isometries to
Â ⊗ IR and B̂ ⊗ IR. This extension ensures that the isometries
capture the dynamics of the entire system, mapping quantum
states from input space X ⊗ R to output space Z ⊗ Y ⊗ R. As
detailed in Appendix A, we demonstrate that Eq. (2) satisfies
the stability property, such that dg(E ⊗ I,F ⊗ I ) = dg(E,F )
if dim(X ) � dim(R). Under this condition, the optimization
variable can be simplified from a density operator to a pure
state. Consequently, we can reformulate Eq. (2) as

dg(E,F ) = 1

2
max

ψ

∥∥∥∥∥TrZ

{
Âψψ†Â†

ψ†Â†Âψ
− B̂ψψ†B̂†

ψ†B̂†B̂ψ

}∥∥∥∥∥
1

, (4)

where ψ is a pure state on the extended input space X ⊗ R.
For conciseness, we use Â as a shorthand for Â ⊗ IR and B̂ for
B̂ ⊗ IR.

To bound Eq. (4), we employ the singular value decompo-
sition (SVD). By applying SVD to B̂Â−1, we obtain B̂Â−1 =
UMV †. Here, U and V are isometries mapping from input
space X to output space Z ⊗ Y . Specifically, U is of dimension
k′n × m, V is kn × m, and M is a nonnegative diagonal opera-
tor with a dimension of m × m. Building on these isometries,
we introduce two renormalized trace-preserving operations

U (ρ) = TrZ{UρU †},
V (ρ) = TrZ{V ρV †}, (5)

and a normalization operation defined as

M(ρ) = MρM

Tr[MρM]
. (6)

With these definitions in place, we illustrate in Appendix B
that Eq. (4) can be bounded by

dg(E,F ) � d�(U ,V ) + dg(I,M). (7)

Here, d�(U ,V ) denotes the conventional diamond distance,
which can be computed using convex optimization. On the
other hand, dg(I,M) represents the general distance between
an identity operation and the normalization operation, termed
the normalization distance. Analytically, this distance is given
by

dg(I,M) = λmax − λmin

λmax + λmin
, (8)

where λmax and λmin are the maximum and minimum eigen-
values of M, respectively. (See Appendix C for a detailed
derivation.) Thus, Eq. (7) provides an efficiently computable
upper bound for the general distance, serving as a metric for
quantifying errors in non-trace-preserving operations.

While our bound might not always be tight in all cases,
we advocate its efficacy as an error metric for non-trace-
preserving quantum operations for several reasons. (a) It
provides an upper bound on the worst-case error, aiding in
determining thresholds for fault-tolerant quantum computing
and evaluating quantum system performance. (b) The bound
can be efficiently computed and applied to compare any two
non-trace-preserving quantum operations. (c) The discrep-
ancy between our metric and the exact distance remains within
the same order of magnitude. Moreover, this gap diminishes
as physical imperfections vanish. (d) The gap arises from
applying the triangle inequality to the sum of the distances
for two sequential operations, which is consistent with the
chaining property expected of a robust distance measure. In
the context of large quantum systems, this suggests that the
total distance can be approximated by the sum of individual
steps. (e) If the operations under comparison exhibit only
infinitesimal deviations from being trace-preserving, the gap
vanishes. Given these advantages, we are confident in the
potential of our metric for analyzing quantum operations.

IV. APPLICATIONS

In this section, we explore several concrete examples
to clarify the utility of our metric. First, we analyze the
two primary non-trace-preserving mechanisms for the Knill-
Laflamme-Milburn (KLM) protocol [54]: the unbalanced
lossy beam splitter, used for single-qubit rotation, and the
nondeterministic conditional sign-flip (NS) gate, operating
in the presence of detector dark counts. When combined
with trace-preserving mechanisms like phase instability, these
results provide a complete error analysis for linear optical
quantum computing. Second, we apply our metric to examine
the detect-and-reset method intended for leakage reduction in
neutral-atom quantum computers [25]. Contrary to previous
beliefs, our findings indicate that this approach fails to fully
mitigate the leakage effect, thus necessitating a stricter fault-
tolerant threshold. Third, we direct our attention to a recent

032609-3



YU SHI AND EDO WAKS PHYSICAL REVIEW A 108, 032609 (2023)

quantum Zeno gate proposed by Blumenthal et al. [50] for
transmons. Our metric presents an exact error measure for the
imperfect quantum Zero gate, substantially outperforming the
ad hoc metric in the original paper. Additionally, we discuss
the application of our metric in other postselected protocols,
such as quantum teleportation and cluster state quantum com-
puting, with details further elaborated in Appendix D. For our
analyses, we employ numerical simulations using the PICOS

[78] convex optimization package in PYTHON.

A. Lossy beam splitter

We begin by examining the single-qubit rotation, which
is implemented using a beam splitter. Faulty beam splitters,
characterized by state-dependent photon loss, can reduce the
success probability of the KLM protocol and also induce in-
correct rotations to the quantum state. The operator associated
with a beam splitter, denoted as Bθ,φ , is expressed by

U
(
Bθ,φ

) =
(

γt cos θ −γr sin θeiφ

γr sin θe−iφ γt cos θ

)
, (9)

where γr and γt represent the photon loss rates for reflection
and transmission, respectively. If γr, γt = 1, the operator cor-
responds to an ideal beam splitter, denoted as Uid. Conversely,
we denote the operator associated with a faulty beam splitter
as Ur . The distance between the ideal and faulty beam split-
ters, after postselecting the nonloss instances, is

dg(Uid,Ur ) = 1

2
max

ρ

∥∥∥∥∥UidρU †
id − UrρU †

r

Tr
[
UrρU †

r
]
∥∥∥∥∥

1

, (10)

where we abbreviate Uk ⊗ I as Uk for conciseness. Using
Eq. (7), we compute this distance to be

dg(Uid,Ur ) = |γr − γt | cos θ sin θ√
γ 2

t cos2 θ + γ 2
r sin2 θ

. (11)

Note that the above metric is exact, rather than an up-
per bound. This is because the normalization operator M =√

γ 2
r +γ 2

t

2 I leads to a normalization distance of zero, as indi-
cated by Eq. (8).

Figure 1 depicts the general distance between the ideal
and faulty beam splitters, with the solid red line represent-
ing the distance calculated by Eq. (11) for θ = π/4. This
condition corresponds to a 50/50 beam splitter in the ideal
scenario. The general distance is plotted as a function of

 = γr/γt , signifying the ratio of photon loss between re-
flection and transmission. As anticipated, the distance attains
an ideal value of zero when the loss is balanced (γr = γt ).
To ascertain that the calculated distance is exact, we com-
pare it with a Monte Carlo simulation. In this simulation,
we apply operator U (Bπ/4,0) to randomly generated input
states and compute the trace distance between the normalized
output states from both the ideal and faulty beam splitters.
The blue violin plots in Fig. 1 illustrate the statistics of these
trace distances. The vertical segments of the plots delineate
the range of trace distances, while their width reveals the
probability distribution. Most of the simulated trace distances
are concentrated near their maximum, corresponding to the
value calculated by Eq. (11). This alignment indicates that the

FIG. 1. Distance between ideal and faulty beam splitters as a
function of photon loss ratio 
 = γr/γt . The solid red line represents
our metric, the dashed green line indicates Gavorová’s bound, and
the blue violin plots depict trace distance statistics from the Monte
Carlo simulation.

theoretical calculation is accurate and robust. Furthermore, we
make a comparative assessment of our metric against the one
proposed by Gavorová, as computed by Eq. (3). This metric is
plotted as the dashed green line in Fig. 1, demonstrating that
it approximates twice the actual general distance.

B. Nondeterministic conditional sign-flip gate

We next analyze the nondeterministic conditional sign-flip
(NS) gate, a quantum gate that applies a nonlinear phase shift
to a single photonic mode by utilizing two ancilla modes. We
investigate a system where the initial state is prepared in the
form |ψin〉 ⊗ |10〉A, where |ψin〉 = ( α0|0〉 + α1|1〉 + α2|2〉)
represents the input state in the photon number basis, and
|10〉A signifies the state of the two ancilla modes. The NS
gate, upon applying linear optical transformations and de-
tecting the ancilla modes in state |10〉A, yields the output
state |ψout〉 = (α0|0〉 + α1|1〉 − α2|2〉). However, this gate is
susceptible to errors due to detector dark counts, which can
result in incorrect detection events.

To employ our metric in this specific context, we define
the state space for |ψin〉 as X = {|0〉, |1〉, |2〉} and for |ψout〉 as
Y = {|0〉, |1〉, |2〉, |3〉}. The inclusion of an additional photon
in the output space is necessary, as the ancilla photon might
mistakenly exit into the output port due to dark counts trigger-
ing a detection event in the first ancilla mode. The ideal NS
gate transforms the input state as

NS id(ρ) = E10ρE†
10

Tr[E10ρE†
10]

, (12)

and the faulty NS gate transforms the state as

NSr (ρ) = E10ρE†
10 + μE00ρE†

00

Tr[E10ρE†
10 + μE00ρE†

00]
, (13)

where μ represents the dark count rate. The operators E10 and
E00, conditioned on the measurement outcomes of the ancilla
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FIG. 2. Distance between ideal and faulty nondeterministic con-
ditional sign-flip (NS) gates as a function of dark count rate. The
solid red line represents our metric, the dashed green line indicates
Gavorová’s bound, the blue violin plots depict trace distance statis-
tics from the Monte Carlo simulation, and the dash-dotted blue line
highlights the maximal trace distance obtained from the simulation.

modes |10〉A and |00〉A, respectively [54], are given by

E10 =

⎛
⎜⎜⎝

1
2 0 0
0 1

2 0
0 0 − 1

2
0 0 0

⎞
⎟⎟⎠,

E00 =

⎛
⎜⎜⎜⎝

0 0 0
1

21/4 0 0

0 −2+√
2

21/4 0
0 0

√
6
(

3
23/4 − 23/4

)

⎞
⎟⎟⎟⎠.

Within these parameters, the general distance between an
ideal NS gate and a faulty one, in the presence of detector
dark counts, can be expressed as

dg(NS id,NSr ) = 1
2 max

ρ
‖NS id (ρ) − NSr (ρ)‖1, (14)

where NSk ⊗ I is abbreviated as NSk for conciseness.
Figure 2 depicts the distance as a function of the dark count

rate. The solid red line represents our metric for the quantum
operation distance between the ideal and faulty NS gates,
as calculated by Eq. (7). The blue violin plots illustrate the
statistics of the trace distance between the output states from a
Monte Carlo simulation. In this simulation, we apply the ideal
and faulty NS gate to randomly generated input states and cal-
culate the trace distance between the normalized output states.
Most of the probability is concentrated around the median of
the distribution. The dash-dotted blue line signifies the maxi-
mal trace distance from the Monte Carlo simulation, reflecting
the actual general distance. While Eq. (7) indeed provides
an upper bound on the distance in this case, the bound is
no longer tight. The lack of tightness can be discerned from
the gap between the dash-dotted and solid lines. Finally, the
dashed green line illustrates the metric by Gavorová, also
standing as an upper bound on the actual error but being even
looser than our result.

C. Leakage in neutral atoms

In our third example, we turn our attention to the analysis
of leakage errors in neutral-atom quantum computers. Leak-
ages occur when qubits leave the computational subspace.
In neutral-atom quantum computers, qubits are encoded in
metastable states. To entangle qubits, the atoms are typically
driven to highly excited Rydberg states, which can spon-
taneously decay to irrelevant low-energy states and lead to
leakages. Such leakages constitute the dominant errors of neu-
tral atoms [25,26] and are highly problematic. They corrupt
the subspace encoding and invalidate the standard quantum
error-correcting codes with syndrome measurements, which
only provide information about error events restricted to a
subspace [24].

One strategy to address leakage errors involves employing
the detect-and-reset method [12,79,80]. Within this approach,
each qubit undergoes repeatedly monitoring for leakages. If
a leak event is detected, the affected qubit is discarded, re-
placed with an initialized state in the computational subspace,
and subsequently recovered using a standard error-correcting
scheme. This method was examined by Wu et al. [25] in the
context of neutral-atom quantum computers. They assumed
that each atom was subject to a leakage probability of p. When
a leak event was detected, they reset the qubit to state |0〉
and recover it by the XZZX surface code [81]. However, if
a no-leak event was detected, the qubit was subjected to a
non-trace-preserving operation defined as

EK (ρ) = KρK†

Tr[KρK†]
, (15)

where K = I + (
√

1 − p − 1)|1〉〈1| represented the no-leak
operator. By applying the Pauli twirling approximation [82]
to operator K , the authors approximated the operation as a
channel imposing a Pauli-Z error at a rate proportional to
p2. The error is then assumed to be negligible because it
scales quadratically, while other leakage errors due to detec-
tion inefficiencies scale linearly. With this approximation, Wu
et al. concluded that 98% of leakage errors could be cor-
rected. However, the Pauli twirling approximation is typically
applicable only to trace-preserving linear maps (as detailed
in Appendix E), highlighting the need to reexamine this
analysis using a metric compatible with non-trace-preserving
operations.

We proceed to apply our metric to this model. The unde-
tected leakage channel can be expressed as

Eleak (ρ) = KρK† + LρL†, (16)

where K represents the no-leak operator and L = √
p|e〉〈1|

represents the operator associated with the leakage of a qubit
from computational state |1〉 to an irrelevant state |e〉. The
error of this undetected leakage channel can be quantified by
the diamond distance dleak = d�(Eleak, I ), where I denotes
the identity channel, resulting in dleak = p. When applying
the detect-and-reset method with a detection efficiency of
γ , the postselected channel is described as

Epost (ρ) = KρK† + (1 − γ )LρL†

Tr[KρK† + (1 − γ )LρL†]
. (17)
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FIG. 3. Error reduction rate as a function of leakage probability
for different detection efficiencies.

The corresponding error should be evaluated by the general
distance dpost = dg(Epost, I ). In the limit of perfect detection
efficiency (γ = 1), Epost aligns with the no-leak channel solely
described by operator K . We can calculate the distance by
Eq. (6), yielding

dpost = 1 − √
1 − p

1 + √
1 − p

. (18)

Notably, this distance is proportional to p rather than p2.
Therefore, it cannot be regarded as negligible and must be
included in the error analysis.

For a comprehensive analysis that accounts for both de-
tection inefficiencies and errors due to the no-leak evolution,
we define the error reduction rate η = 1 − dpost

dleak
. Figure 3 il-

lustrates this rate as a function of leakage probability across
various detection efficiencies. These plots establish a lower
bound on the error reduction for the given detection efficiency
(refer to Appendix F for detailed calculations). Specifically,
the calculated error reduction rate with ideal detection effi-
ciency is exact. Therefore, it imposes a stringent upper limit
on all potential error reductions attributable to the detect-and-
reset method, resulting in an optimal rate of 75%. This finding
contrasts to the 98% reduction predicted by the authors of
[25], which was presumed to be constrained solely by detec-
tion inefficiencies.

D. Imperfect quantum Zeno gates

In the final example, we explore the application of our
metric to quantum Zeno gates, a prominent example of post-
selected protocols. The quantum Zeno effect [83] confines
a quantum system within selected subspaces through mea-
surement, thereby generating nontrivial multiqubit dynamics.
Ideally, a quantum Zeno gate would achieve a success prob-
ability of 1, assuming continuous measurements. However,
measurements are not always present in practice, rendering
the gate probabilistic. These nonideal conditions can cause
non-trace-preserving errors, emphasizing the need for a com-
prehensive analysis.

As a concrete example, we analyze a protocol recently
proposed by Blumenthal et al. [50], which demonstrates an
entangling gate on transmons (superconducting qubits) using

FIG. 4. Distance between ideal and imperfect quantum Zeno
gates as a function of 
R



. The solid blue line represents our metric

and the dashed red line depicts the bound by Blumenthal et al.

the quantum Zeno effect. They consider two transmons with
eigenstates |g〉 and |e〉, representing the computational bases.
Additionally, the first transmon possesses an extra eigenstate
| f 〉 as an ancillary state. The entangling gate between the
two transmons is implemented by driving the first transmon
at a Rabi frequency 
R between states |e〉 and | f 〉, with the
Hamiltonian expressed as

H = 1
2 i
R(|e〉〈 f | − | f 〉〈e|) ⊗ I, (19)

where I represents the identity operator on the second trans-
mon. Meanwhile, rapid measurements are applied to the two
transmons using the projector P0 = I − | f e〉〈 f e|. In the limit
of infinitely rapid projections, the Zeno effect dressed Hamil-
tonian P0HP0 is expressed as

HZ = i

R

2
(|eg〉〈 f g| − | f g〉〈e f |), (20)

resulting in a unitary of UZ (t ) = P0e−itHZ P0. At t = 2π

R

, the
unitary is a controlled-phase gate given by

UZ = |gg〉〈gg| + |ge〉〈ge| − |eg〉〈eg| + |ee〉〈ee|. (21)

With a finite measurement rate of 
, the Zeno gate is no longer
unitary and can be modeled as

EZ (ρ) = P0et (
D−iH)P0ρP0et (
D+iH)P0, (22)

where D = − 1
2 | f e〉〈 f e| represents a dissipation operator (re-

fer to Supplemental Material Sec. 1 in [50] for details). This
imperfect Zeno gate exhibits a non-trace-preserving error that
can be quantified by

dg(EZ ,UZ ) = 1

2
max

ρ

∥∥∥∥ EZ (ρ)

Tr[EZ (ρ)]
− UZρU †

Z

∥∥∥∥
1

. (23)

Through our analysis, we identify that the imperfection of
the quantum Zeno gate is due to the leakage of the doubly
excited state |ee〉 (refer to Appendix G for a detailed analy-
sis). Therefore, the distance defined in Eq. (23) can be easily
computed using the normalization distance given by Eq. (8).
Figure 4 shows the distance between the ideal and imperfect
quantum Zeno gates as a function of 
R



. The solid blue line

represents the distance calculated by our metric, accurately
quantifying the error. The dashed red line represents the ad
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hoc metric (d� < 19
R



) from the original paper, which over-
estimates the error and is only applicable when 
R



< 0.06.

Our findings suggest potentially better performance for the
quantum Zeno gate than previously anticipated, and our im-
proved metric can benefit the design and engineering of these
gates.

V. DISCUSSION AND CONCLUSION

Our proposed metric paves the way for the comprehen-
sive analysis of general postselected protocols by accounting
for measurement-induced disturbances. An ideal postselected
protocol has a homogeneous measurement probability in-
dependent of the input state and reveals no information.
However, this symmetry can be disrupted by errors, such as
inaccurately prepared ancilla. In these cases, the measure-
ments become biased and reveal information about the input
state, introducing extra disturbance in addition to the original
error associated with the ancilla. Consider, for example, the
intricacies of quantum teleportation when using inaccurately
prepared Bell pairs that are not maximally entangled as∣∣B′

00

〉 = cos θ |00〉 + sin θ |11〉,
where θ ∈ (0, π/2) and deviates from the ideal value of π/4.
Such deviation leads to input state-dependent measurement
probabilities and teleportation channels, resulting in nonlinear
errors that conventional diamond distance cannot analyze.
However, our metric offers a straightforward solution to quan-
tify these errors, as expressed by

dg = |cos θ − sin θ |
cos θ + sin θ

.

For those interested in a deeper analysis, the detailed calcu-
lations and additional non-trace-preserving error models for
quantum teleportation and cluster-state quantum computing
are presented in Appendix D.

Our metric can also find important applications in fault-
tolerant quantum computing. It provides a worst-case error
bound for general error models and can be directly incor-
porated into the method of Aharonov et al. [3] to estimate
fault-tolerant thresholds. Additionally. the metric aids in
analyzing fault tolerance through numerical simulations
[66,84–88], which offer a more precise approach for studying
error propagation and calculating fault-tolerant thresholds.

However, simulating general error models with classical
computers becomes inefficient unless restricted to Clifford
operators [89]. To address this issue, Magesan et al. [90]
proposed a method to approximate an error model using
Clifford operators. They did this by solving an optimization
problem, with the diamond distance serving as the objec-
tive function. However, the diamond distance only applies to
trace-preserving operations. By employing our metric as the
objective function instead of the diamond distance, we can ap-
proximate a non-trace-preserving error model using Clifford
operators. This Clifford model enables the numerical study of
how the error propagates through the quantum system.

In conclusion, we propose a metric for non-trace-
preserving operations, characterizing their worst-case errors.
This metric can be computed efficiently using renormaliza-
tion techniques, offering a practical approach for quantifying
non-trace-preserving errors and analyzing postselected pro-
tocols. As a result, the metric not only broadens the scope
of imperfections that can be analyzed in quantum informa-
tion processing, but also opens the door to a wide range of
applications.
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APPENDIX A: STABILITY OF THE GENERAL DISTANCE

We prove that the general distance, as defined in Eq. (2),
satisfies stability, such that dg(E ⊗ I,F ⊗ I ) = dg(E,F ) if
dim(X ) � dim(R), and it is optimized over a pure state on
space X ⊗ R. The proof is a generalization of Lemma 3.45
in [71]. To begin, we first purify density operator ρ by in-
troducing an auxiliary space R′, with ρ = TrR′ [uu†], where
u represents a pure state on space X ⊗ R ⊗ R′. Therefore,
Eq. (2) can be reformulated as

dg(E,F ) = 1

2
max

u∈X⊗R⊗R′

∥∥∥∥∥TrR′

{ ∑
i Aiuu†A†

i

Tr
[∑

i Aiuu†A†
i

] −
∑

j B juu†B†
j

Tr
[∑

j B juu†B†
j

]
}∥∥∥∥∥

1

. (A1)

In the above equation, Ai and Bj are Kraus operators of quantum operations E and F , satisfying
∑

i A†
i Ai � I and

∑
j B†

j B j � I ,
respectively. We also abbreviate Ai ⊗ I as Ai and Bj ⊗ I as Bj for conciseness. Using the contractility of the trace distance [91],
1
2‖TrR′ (ρ1 − ρ2)‖1 � 1

2‖ρ1 − ρ2‖1, Equation (A1) can be bounded by

dg(E,F ) � 1

2
max

u∈X⊗R⊗R′

∥∥∥∥∥
∑

i Aiuu†A†
i

Tr
[∑

i Aiuu†A†
i

] −
∑

j B juu†B†
j

Tr
[∑

j B juu†B†
j

]
∥∥∥∥∥

1

. (A2)

Even though Eq. (A2) appears as a nonstrict inequality, we prove that equality always holds. By applying the Schmidt
decomposition to the state u, we obtain u = ∑n

l=1
√

plxl ⊗ zl , where pl is the Schmidt coefficient, xl and zl are bases on spaces
X and R ⊗ R′, respectively, and n is the dimension of space X . If dim(X ) � dim(R), we can select a pure state v ∈ X ⊗ R, such
that v = ∑n

l=1
√

plxl ⊗ el , where el represents a basis on space R. Defining an isometry U = ∑n
l=1 zle

†
l , which maps from space
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R to space R ⊗ R′, we obtain u = (IX ⊗ U )v, and derive the following identities:∑
i Aiuu†A†

i

Tr
[∑

i Aiuu†A†
i

] =
∑

i (Ai ⊗ U )vv†
(
A†

i ⊗ U †
)

Tr
[∑

i (Ai ⊗ U )vv†
(
A†

i ⊗ U †
)]

=
∑

i (I ⊗ U )Aivv†A†
i

(
I ⊗ U †

)
Tr

[∑
i (I ⊗ U )Aivv†A†

i (I ⊗ U †)
]

= (I ⊗ U )

∑
i Aivv†A†

i

Tr
[∑

i Aivv†A†
i

] (
I ⊗ U †

)
, (A3)

and a similar identity holds for quantum operation F , as∑
j B juu†B†

j

Tr
[∑

j B juu†B†
j

] = (I ⊗ U )

∑
j B jvv†B†

j

Tr
[∑

j B jvv†B†
j

] (
I ⊗ U †

)
. (A4)

The trace distance remains invariant under isometry, Thus, from Eq. (A2), we derive

dg(E,F ) � 1

2
max

u∈X⊗R⊗R′

∥∥∥∥∥
∑

i Aiuu†A†
i

Tr
[∑

i Aiuu†A†
i

] −
∑

j B juu†B†
j

Tr
[∑

j B juu†B†
j

]
∥∥∥∥∥

1

= 1

2
max

v∈X⊗R

∥∥∥∥∥(I ⊗ U )

{ ∑
i Aivv†A†

i

Tr
[∑

i Aivv†A†
i

] −
∑

j B jvv†B†
j

Tr
[∑

j B jvv†B†
j

]
}(

I ⊗ U †
)∥∥∥∥∥

1

= 1

2
max

v∈X⊗R

∥∥∥∥∥
∑

i Aivv†A†
i

Tr
[∑

i Aivv†A†
i

] −
∑

j B jvv†B†
j

Tr
[∑

j B jvv†B†
j

]
∥∥∥∥∥

1

= 1

2
max

v∈X⊗R

∥∥∥∥∥ (E ⊗ IR)
(
vv†

)
Tr[(E ⊗ IR)(vv†)]

− (F ⊗ IR)
(
vv†

)
Tr[(F ⊗ IR)(vv†)]

∥∥∥∥∥
1

. (A5)

By comparing Eq. (A5) with Eq. (2), we find that the pure
state vv† resides within a subset of the domain of optimization
variable ρ on space X ⊗ R. Consequently, we can conclude
that the stability of the general distance holds if dim(X ) �
dim(R), and the distance is optimized over a pure state
on space X ⊗ R.

APPENDIX B: QUANTUM OPERATION
RENORMALIZATION

By introducing a renormalized state u = Âψ

|Âψ | , we can re-
formulate the general distance defined in Eq. (4) as

dg(E,F ) = 1

2
max

u

∥∥∥∥∥TrZ

{
uu† − (B̂Â−1)uu†(B̂Â−1)†

u†(B̂Â−1)†B̂Â−1u

}∥∥∥∥∥
1

,

(B1)

where Â−1 denotes the pseudoinverse of Â. Applying singular
value decomposition to B̂Â−1, we obtain

B̂Â−1 = UMV †.

In this expression, U and V are isometries that map the in-
put space X to the output space Z ⊗ Y . Specifically, U is
of dimension k′n × m, V is kn × m, and M is a nonnegative
diagonal operator with a dimension of m × m. Here, m and n
denote the dimensions of spaces X and Y , respectively, while k
and k′ represent the cardinalities of the sets of Kraus operators
{Ai} and {Bj}. With this decomposition, we can write Eq. (B1)
as

dg(E,F ) = 1

2
max

u

∥∥∥∥TrZ

{
uu† − UMV †uu†V MU †

u†V M2V †u

}∥∥∥∥
1

.

(B2)

By defining a new state v = V †u and using the triangular
inequality and the contractility of trace distance, we can bound
Eq. (B2) by

dg(E,F ) = 1

2
max

v

∥∥∥∥TrZ

{
V vv†V † − UMvv†MU †

v†M2v

}∥∥∥∥
1

= 1

2
max

v

∥∥∥∥TrZ

{
V vv†V † − Uvv†U † + Uvv†U † − UMvv†MU †

v†M2v

}∥∥∥∥
1

� 1

2
max

v
‖TrZ{V vv†V † − Uvv†U †}‖1 + 1

2
max

v

∥∥∥∥TrZ

{
Uvv†U † − UMvv†MU †

v†M2v

}∥∥∥∥
1
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� 1

2
max

v
‖TrZ{V vv†V † − Uvv†U †}‖1 + 1

2
max

v

∥∥∥∥vv† − Mvv†M

v†M2v

∥∥∥∥
1

. (B3)

We define two renormalized quantum channels

U (ρ) = TrZ{UρU †},
V (ρ) = TrZ{V ρV †}, (B4)

and a normalization operation

M(ρ) = MρM

Tr[MρM]
. (B5)

The general distance between E and F is bounded by
Eq. (B3), as

dg(E,F ) � d�(U ,V ) + dg(I,M), (B6)

where d�(U ,V ) denotes the conventional diamond distance,
which can be computed using convex optimization; dg(I,M)
represents the general distance between an identity operation
and the normalization operation, which we refer to as the
normalization distance.

APPENDIX C: CALCULATION OF THE NORMALIZATION
DISTANCE

We can directly calculate the normalization distance

dg(I,M) = 1

2
max

ψ

∥∥∥∥ψψ† − Mψψ†M

〈ψ |M2|ψ〉
∥∥∥∥

1

, (C1)

where ψ is a pure quantum state and M is a nonnegative di-
agonal operator with a dimension of n × n. We can denote the
normalized output state as |φ〉 = M|ψ〉

|M|ψ〉| , and the normalization
distance is given by

dg(I,M) = 1
2 max

ψ
‖ψψ† − φφ†‖1. (C2)

The trace distance between two pure states is related to their
inner product by

1
2‖ψψ† − φφ†‖1 =

√
1 − |〈ψ |φ〉|2,

so that maximizing ‖ψψ† − φφ†‖1 is equivalent to minimiz-
ing cos θ = |〈ψ |φ〉|, where we refer to θ as the rotating angle
between the input and output states.

We can compute cos θ by induction. We denote the normal-
ization operator as

M = diag(λ1, λ2, . . . , λn),

where λ1 � λ2 � · · · � λn � 0. We first consider the projec-
tion of M on a l-dimensional subspace as

Ml = diag(λ1, λ2, . . . , λl ).

A vector |u〉 on the subspace can be decomposed as

|u〉 = √
x|l〉 + √

1 − x|v〉,
where x ∈ [0, 1], |l〉 is the basis of M corresponding to
the eigenvalue λl , and |v〉 is a unit vector on the (l − 1)-
dimensional subspace orthogonal to |l〉. The assumption of

positive coefficients loses no generality because we can al-
ways redefine the basis with any phase. Applying Ml to |u〉
gives

Ml |u〉 = λl
√

x|l〉 + √
1 − xMl−1|v〉, (C3)

where Ml−1 is the projection of M on the (l − 1)-dimensional
subspace. Applying Ml−1 to |v〉 results

Ml−1|v〉 = rl−1 cos θl−1|v〉 + rl−1 sin θl−1|v⊥〉, (C4)

where rl−1 and θl−1 are the contracting factor and rotating an-
gle, respectively, and |v⊥〉 represents a unit vector orthogonal
to |v〉. A specific rotating axis does not affect the following
calculation because the axis is always orthogonal to |l〉. The
contracting factor and rotating angle of Ml |u〉 are given by

rl =
√

|〈u|M2
l |u〉| and cos θl = 〈u|Ml |u〉/rl , respectively, and

combining Eqs. (C3) and (C4) gives

r2
l = xλ2

l + (1 − x)r2
l−1,

rl cos θl = xλl + (1 − x)rl−1 cos θl−1, (C5)

i.e., (r2
l , rl cos θl ) is a convex combination of (λ2

l , λl ) and
(r2

l−1, rl−1 cos θl−1). By induction, the feasible domain of
(r2, r cos θ ) for the normalization operation M is given by

r2 =
∑

i

xiλ
2
i ,

r cos θ =
∑

i

xiλi, (C6)

where xi represents the coefficient of convex combination
satisfying

∑
i xi = 1, and λi is the eigenvalue of M. The

minimum of cos θ is on the boundary of the feasible domain
depending on the combination two eigenvalues. We can cal-
culate the minimum of cos θ easily by calculus, as

min cos θ = 2
√

λmaxλmin

λmax + λmin
, (C7)

where λmax and λmin are the maximum and minimum eigen-
values of M. Therefore, the distance between the identity and
normalization operations is given by

dg(I,M) = λmax − λmin

λmax + λmin
. (C8)

APPENDIX D: EXAMPLES OF NON-TRACE-PRESERVING
ERRORS IN POSTSELECTED PROTOCOLS

1. Inaccurate Bell pairs in quantum teleportation

The inaccurately prepared Bell pairs can cause non-trace-
preserving errors in quantum teleportation, which has been
discussed for trapped-ions [92] and single rail photonic
qubits [93]. We assume that other operations, including Bell
measurements and single-qubit rotations, are ideal, but the
prepared Bell pairs are in state∣∣B′

00

〉 = cos θ |00〉 + sin θ |11〉,
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where θ ∈ (0, π
2 ) and deviates from the ideal value π

4 . To
derive imperfect channels, we assume that the input qubit is in
state |ψ〉 = α|0〉 + β|1〉. We then represent the first two qubits
of the total state |ψ〉 ⊗ |B′

00〉 in Bell bases and obtain

|ψ〉 ⊗ ∣∣B′
00

〉 = |B00〉 ⊗
(

α cos θ√
2

|0〉 + β sin θ√
2

|1〉
)

+ |B01〉 ⊗
(

α cos θ√
2

|0〉 − β sin θ√
2

|1〉
)

+ |B10〉 ⊗
(

α sin θ√
2

|1〉 + β cos θ√
2

|0〉
)

+ |B00〉 ⊗
(

α sin θ√
2

|1〉 − β cos θ√
2

|0〉
)

,

where |Bmn〉 (mn is a binary number) is the Bell basis and
given by

|B00〉 =
√

2

2
(|00〉 + |11〉),

|B01〉 =
√

2

2
(|00〉 − |11〉),

|B10〉 =
√

2

2
(|01〉 + |10〉),

|B11〉 =
√

2

2
(|01〉 − |10〉). (D1)

Therefore, the quantum operations corresponding to each Bell
measurement is given by

Emn(ρ) = EmnρE†
mn

Tr[EmnρE†
mn]

, (D2)

where the corresponding Kraus operators are given by

E00 =
(

cos θ√
2

0

0 sin θ√
2

)
, E01 =

(
cos θ√

2
0

0 − sin θ√
2

)
,

E10 =
(

0 cos θ√
2

sin θ√
2

0

)
, E11 =

(
0 − cos θ√

2
sin θ√

2
0

)
.

We can compute the general distance between channel Emn

and unitary Umn ∈ {I, Z, X, XZ}. They result in the same dis-
tance, given by

dg(Emn,Umn) = |cos θ − sin θ |
cos θ + sin θ

. (D3)

2. Probabilistic CNOT errors in quantum teleportation

Probabilistic CNOT errors on Bell pairs can cause non-trace-
preserving errors in quantum teleportation. We consider a
channel that applies CNOT gates on the ideal Bell pair |B00〉
with probability p, given by

E (|B00〉〈B00|) = (1 − p)|B00〉〈B00| + pCNOT |B00〉〈B00|CNOT†. (D4)

This channel can model the nondeterministic generation of Bell pairs, but the success event is not perfectly heralded. We can
represent the resulting mixed state �00 = E (|B00〉〈B00|) by state purification, denoted as

|�00〉 =
√

1 − p

2
(|00〉 + |11〉) ⊗ |e0〉 +

√
p

2
(|00〉 + |10〉) ⊗ |e1〉. (D5)

To derive imperfect channels, we assume an input qubit in state |ψ〉 = α|0〉 + β|1〉. We then represent the first two qubits of the
total state |ψ〉 ⊗ |�00〉 in Bell bases and obtain

|ψ〉 ⊗ |�00〉 = |B00〉 ⊗
[√

1 − p

2
(α|0〉 + β|1〉) ⊗ |e0〉 +

√
p

2
(α + β )|0〉 ⊗ |e1〉

]

+ |B01〉 ⊗
[√

1 − p

2
(α|0〉 − β|1〉) ⊗ |e0〉 +

√
p

2
(α − β )|0〉 ⊗ |e1〉

]

+ |B10〉 ⊗
[√

1 − p

2
(α|1〉 + β|0〉) ⊗ |e0〉 +

√
p

2
(α + β )|0〉 ⊗ |e1〉

]

+ |B11〉 ⊗
[√

1 − p

2
(α|1〉 − β|0〉) ⊗ |e0〉 +

√
p

2
(α + β )|0〉 ⊗ |e1〉

]
. (D6)

Assuming that the Bell measurement gives a result of |B00〉,
the operation on an arbitrary input state ρ is given by

E00(ρ) = E0ρE†
0 + E1ρE†

1

Tr[E0ρE†
0 + E1ρE†

1 ]
, (D7)

where the Kraus operators are given by

E0 =
(√

1−p
2 0

0
√

1−p
2

)
, E1 =

(√
p

2

√
p

2

0 0

)
.

The operation is nonlinear, and its probabilities can be char-
acterized by a semidefinite operator S = E†

0 E0 + E†
1 E1 [8].
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Applying the singular value decomposition to S results in

S = H

(
1+p

4 0

0 1−p
4

)
H†, (D8)

where H is the Hadamard gate. The singular values repre-
sent the measurement probabilities for different state bases.
It shows that the channel has a state-dependent measurement
probability, which will have a nonlinear effect on the tele-
ported state. Therefore, we should use the general distance
to quantify its error and denote it as dg(E00, I ). We did not
obtain a closed-form of the distance, but it can be numerically
bounded by our algorithm. We omit the analysis of the other
Bell measurements. They follow the same analysis steps and
yield the same distances.

3. Amplitude damping errors in cluster-state
quantum computing

To show non-trace-preserving errors caused by amplitude
damping in cluster-state quantum computing, we consider
a measurement-based Hadamard gate. To implement a
Hadamard gate on state |ψ〉 = α|0〉 + β|1〉, as shown in the

circuit

we apply a controlled-Z gate between the input state and
an ancilla state |+〉, and measure the first qubit in bases
{|+〉, |−〉}. The output state is encoded in the second qubit,
which goes through a Hadamard gate with a conditional Pauli-
X gate depending on the measurement result. Assume that the
ancilla |+〉 suffers from an amplitude damping channel, given
by

EAD(|+〉〈+|) = E0|+〉〈+|E†
0 + E1|+〉〈+|E†

1 , (D9)

where E0 = (1 0
0

√
1 − p) and E1 = (0

√
p

0 0 ), and p is the damp-
ing probability. We can represent the imperfect ancilla �AD =
EAD(|+〉〈+|) by state purification, denoted as

|�AD〉 = 1√
2

(|0〉 +
√

1 − p|1〉) ⊗ |e0〉 +
√

p

2
|0〉 ⊗ |e1〉.

After a controlled-Z gate and a Hadamard gate on the total
state |ψ〉 ⊗ |�AD〉, the resulting state is given by

|ψ〉 ⊗ |�AD〉 → |0〉 ⊗
[
α + β

2
|0〉 + (α − β )

√
1 − p

2
|1〉

]
⊗ |e0〉 + |0〉 ⊗ (α + β )

√
p

2
|0〉 ⊗ |e1〉

+ |1〉 ⊗
[
α − β

2
|0〉 + (α + β )

√
1 − p

2
|1〉

]
⊗ |e0〉 + |1〉 ⊗ (α − β )

√
p

2
|0〉 ⊗ |e1〉. (D10)

Assuming that the measurement of the first qubit is |0〉, the
imperfect Hadamard gate is given by

HAD(ρ) = F0ρF †
0 + F1ρF †

1

Tr
[
F0ρF †

0 + F1ρF †
1

] , (D11)

where the Kraus operators are given by

F0 =
(

1
2

1
2√

1−p
2 −

√
1−p
2

)
, F1 =

(√
p

2

√
p

2

0 0

)
.

The operation has a state-dependent probability, characterized
by a semidefinite operator S = F †

0 F0 + F †
1 F1. Applying the

singular value decomposition to S results in

S = H

(
1+p

2 0

0 1−p
2

)
H†, (D12)

where H is the Hadamard gate. The singular values represent
the measurement probabilities for different state bases. We
can quantify the error of the imperfect Hadamard operation
by the general distance dg(HAD, H ). Our metric calculates an
upper bound on the distance as

dg(HAD, H ) �
√

1 + p − 1

2
√

1 + p
+ 1 −

√
1 − p2

p
. (D13)

We omit the analysis of measurement |1〉, which follows the
same analysis steps and yield the same metric.

APPENDIX E: REVISITING THE PAULI TWIRLING
APPROXIMATION

In this Appendix, we revisit the validity of the Pauli
twirling approximation for the no-leak channel of neutral
atoms in [25]. The postselected channel with perfect detection
efficiency is given by

EK (ρ) = KρK†

Tr[KρK†]
, (E1)

where K = |0〉〈0| + √
1 − p|1〉〈| is the no-leak operator and

p is the leakage probability. Wu et al. analyzed the channel
by applying the Pauli twirling approximation [82] to operator
K , which can be done by removing the off-diagonal elements
in the process matrix of operation KρK† represented in Pauli
bases. Operator K is denoted by

K = 1 + √
1 − p

2
I + 1 − √

1 − p

2
Z,

so the operation is given by

KρK† =
(
1 + √

1 − p
)2

4
ρ + p

4
Zρ + p

4
ρZ†

+
(
1 − √

1 − p
)2

4
ZρZ†. (E2)
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By removing the off-diagonal terms of the operation, we ob-
tain its Pauli twirling approximation

KρK†
∣∣
PTA =

(
1 + √

1 − p
)2

4
ρ +

(
1 − √

1 − p
)2

4
ZρZ†.

(E3)

However, this approximation is still non-trace-preserving, so
we should normalize it to get

E ′
K (ρ) = KρK†

∣∣
PTA

Tr[KρK†|PTA]

=
(
1 + √

1 − p
)2

4 − 2p
ρ +

(
1 − √

1 − p
)2

4 − 2p
ZρZ†. (E4)

Then, the diamond distance between the approximated and
identity channels can quantify the error strength as

d�(E ′
K , I ) =

(
1 − √

1 − p
)2

4 − 2p
. (E5)

Wu et al. argued that when p is small, the error strength
behaves as P2

16 and is therefore negligible.
However, we can directly calculate the general distance

between the postselected and identity channels by Eq. (8) in
the main text, namely, dg = λmax−λmin

λmax+λmin
. By inserting λmax = 1

and λmin = √
1 − p into the equation, we obtain the distance

dg(E, I ) = 1 − √
1 − p

1 + √
1 − p

. (E6)

It behaves as p
4 when p is small. In contrast, the Pauli twirling

approximation underestimates the errors because it does not
account for the state-dependent renormalization effect that can
lead to extra errors.

We note that the diamond distance between the unnormal-
ized approximated channel [Eq. (E3)] and the identity channel
is given by

d�(KρK†|PTA, I ) = 1 − √
1 − p

2
. (E7)

When p is small, it approaches the actual error strength in
Eq. (E6). However, the unnormalized channel lacks a physical
interpretation. We also note that Wu et al. considered the
behavior of the postselected no-leak channel and an amplitude
damping channel to be similar. However, the amplitude damp-
ing channel is trace-preserving and has an additional damping
operator J = √

p|0〉〈1|. Its complete representation is given
by EA = KρK† + JρJ†. The diamond distance between the
amplitude damping channel and the identity channel is given
by d�(EA, I ) = p. The Pauli twirling approximation for the
amplitude damping channel is given by

E ′
A(ρ) =

(
1 + √

1 − p
)2

4
ρ + p

4
XρX † + p

4
Y ρY †

+
(
1 − √

1 − p
)2

4
ZρZ†. (E8)

It also applies the Pauli-X and Pauli-Y errors at a rate of p
4

compared to the Pauli twirling approximation for the no-leak
channel in Eq. (E4).

APPENDIX F: CALCULATING THE DISTANCE
OF LEAKAGE CHANNELS

In this section, we quantify the errors of neutral atoms
under leakage detection. The undetected leakage channel is
given by

Eleak (ρ) = KρK† + LρL†. (F1)

In the above equation, K = |0〉〈0| + (1 − √
1 − p)|1〉〈1| is

the Kraus operator corresponding to a no-leak evolution and
L = √

p|e〉〈1| is the Kraus operator corresponding to the leak-
age, where p is the leakage probability, |0〉 and |1〉 are the
computational states, and |e〉 is an irrelevant state outside the
computational subspace. The error between the undetected
leakage channel and the identity channel can be measured by
the diamond distance, which is given by

d�(Eleak, I ) = p. (F2)

In the case of imperfect detection efficiency, the postse-
lected channel under leakage detection is given by

Epost (ρ) = KρK† + (1 − γ )LρL†

Tr[KρK† + (1 − γ )LρL†]
, (F3)

where γ is the detection efficiency. Since the channel is non-
trace-preserving, we should quantify its error by the general
distance dg(Epost, I ). Using the renormalization technique, we
can bound the general distance by

dg(Epost, I ) � d�(U , I ) + dg(M, I ), (F4)

where U is a trace-preserving operation, and M is a normal-
izing operation. In the operator-sum representation, operation
U is given by

U (ρ) = E0ρE†
0 + E1ρE†

1 , (F5)

where

E0 =

⎛
⎜⎝

1 0

0
√

1−p
1−γ p

0 0

⎞
⎟⎠, E1 =

⎛
⎜⎝

0 0
0 0

0
√

(1−γ )p
1−γ p

⎞
⎟⎠,

representing maps from input space {|0〉, |1〉} to output space
{|0〉, |1〉, |e〉}. We can calculate the diamond distance as

d�(U , I ) = (1 − γ )p

1 − γ p
. (F6)

The normalizing operation M is represented by

M(ρ) = MρM†

Tr[MρM†]
, (F7)

where M = (1 0
0

√
1 − γ p). Its distance from the identity chan-

nel is given by

dg(M, I ) = 1 − √
1 − γ p

1 + √
1 − γ p

. (F8)

Therefore, the general distance between the detected leakage
channel and the identity channel is bounded by

dg(Epost, I ) � (1 − γ )p

1 − γ p
+ 1 − √

1 − γ p

1 + √
1 − γ p

. (F9)
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In particular, when one has perfect detection (γ = 1), the bound is exact, and the general distance is given by 1−√
1−p

1+√
1−p

.

APPENDIX G: QUANTUM ZENO GATE

The exponent of the imperfect Zeno transformation in Eq. (22) is given by

t (
D − iH) = π

(
|eg〉〈 f g| − | f g〉〈eg| + |ee〉〈 f e| − | f e〉〈ee| − 1

r
| f e〉〈 f e|

)
, (G1)

where we relabel r = 
R



. The transformation is calculated by matrix exponentiation, resulting in

P0et (
D−iH)P0 = |gg〉〈gg| + |ge〉〈ge| − |eg〉〈eg| + λ|ee〉〈ee|, (G2)

where the coefficient of |ee〉〈ee| is given by

λ = e
π

√
1−4r2

2r

(
1 + √

1 − 4r2
) − e− π

√
1−4r2

2r

(
1 − √

1 − 4r2
)

2e
π
2r

√
1 − 4r2

. (G3)

It shows that the imperfection is caused by the leakage of the doubly excited state |ee〉. We can calculate the general distance by
Eq. (8), and obtain

dg(EZ ,UZ ) =
2e

π
2r (1+√

1−4r2 )√1 − 4r2 −
(

1 + e
π
r

√
1−4r2

)(
1 + √

1 − 4r2
) + 2

2e
π
2r (1+√

1−4r2 )√1 − 4r2 +
(

1 + e
π
r

√
1−4r2

)(
1 + √

1 − 4r2
) − 2

. (G4)
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