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Perspectives of microwave quantum key distribution in the open air
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One of the cornerstones of quantum communication is the unconditionally secure distribution of classical
keys between remote parties. This key feature of quantum technology is based on the quantum properties of
propagating electromagnetic waves, such as entanglement, or the no-cloning theorem. However, these quantum
resources are known to be susceptible to noise and losses, which are omnipresent in open-air communication sce-
narios. In this paper, we theoretically investigate the perspectives of continuous-variable open-air quantum key
distribution at microwave frequencies. In particular, we present a model describing the coupling of propagating
microwaves with a noisy environment. Using a protocol based on displaced squeezed states, we demonstrate that
continuous-variable quantum key distribution with propagating microwaves can be unconditionally secure with
communication at room temperature up to distances of around 200 m, limited by the total coupled noise photon
number. Moreover, we show that microwaves can potentially outperform conventional quantum key distribution
at telecom wavelengths and imperfect weather conditions.
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I. INTRODUCTION

Quantum key distribution (QKD) is a method to securely
exchange a common key between two parties, conventionally
referred to as Alice and Bob. QKD has attracted increasing
interest over the last decades due to the promise of uncondi-
tionally secure communication while maintaining high secret
key rates [1,2]. The security of commonly used classical
encryption schemes is based on asymmetric mathematical
problems which cannot be easily inverted by classical meth-
ods. Prominent examples are the Diffie-Hellman algorithm
and the RSA code [3,4]. In contrast, QKD relies on the fact that
unconditional security is provided by the fundamental laws
of quantum mechanics, taking advantage of unique quantum
resources, such as entanglement [5], or notably, the no-cloning
theorem [6]. In QKD based on continuous-variable quantum
states (CV-QKD), one encodes information in conjugate elec-
tromagnetic field quadratures, according to various specific
protocols [7]. In particular, CV-QKD protocols provide a pow-
erful alternative to QKD based on discrete-variable quantum
states (DV-QKD), due to potentially higher secret key rates
and being compatible with the existing communication infras-
tructure [8,9].

First successful realizations of QKD protocols have been
implemented at the near-infrared regime at so-called tele-
com wavelengths (780–850- and 1520–1600-nm wavelength)
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[10], where a significant progress has been achieved with
the recent realization of ground-to-satellite QKD networks
[11]. A particular reason for this choice of frequencies is
the low atmospheric absorption on the order of less than
1.0 × 10−2 dB/km [12]. However, in the light of recent im-
pressive achievements with superconducting quantum circuits
operating in the microwave regime [13–16] and due to the
lack of efficient microwave-to-optical frequency transducers
[17], a natural choice is to consider quantum communication
and QKD in the associated microwave regime. Here, super-
conducting Josephson parametric amplifiers (JPAs) represent
a robust source of quantum states in the form of squeezed
microwaves. Flux-driven JPAs routinely generate microwave
squeezed states with squeezing levels up to 10 dB below the
vacuum limit [18–20].

In this paper, we focus on a theoretical analysis of a partic-
ular one-way communication prepare-and-measure CV-QKD
protocol with Gaussian modulation [21] for the microwave
wavelength range of 30–300 mm, corresponding to the fre-
quency range of 1–10 GHz. We analyze the potential of
this protocol for open-air microwave quantum communica-
tion (MQC), considering realistic atmospheric conditions. We
compare its performance to a traditional implementation at the
telecom wavelength of 1550 nm (193.55 THz). We model the
signal readout with a homodyne detection, since the informa-
tion is encoded only in one of the two electromagnetic field
quadratures. In the last step, signal detection is followed by a
one-way classical reconciliation, or error correction, protocol.
There, an important distinction must be made between either
direct reconciliation (DR) or reverse reconciliation (RR) [9].
In DR, the one-way communication is performed from Alice
to Bob. As a result, Alice’s key is used as a reference which
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Bob tries to estimate from the data he obtained via the commu-
nication. In contrast, in RR the one-way communication goes
from Bob to Alice, where Bob’s measured key is estimated by
Alice.

The paper is organized as follows: in Secs. II and III, we
introduce all relevant elements for a practical implementation
of the CV-QKD protocol in the microwave regime. We per-
form a quantitative analysis of the secret key rate and secure
distance, assuming either DR or RR with an ideal reconcil-
iation efficiency in the asymptotic case, i.e., in the case of
Alice and Bob exchanging an infinitely long key. We addition-
ally present a model based on beam splitter transformations
to describe the coupling of propagating microwaves with a
bright microwave thermal background. Our results show that
microwave CV-QKD can be well suited for short-distance
open-air communication scenarios. In particular, in Sec. IV
we find that the microwave CV-QKD protocol may produce
higher secure key rates than its telecom counterpart. We con-
clude our discussion in Sec. V with a detailed study of weather
effects for the particular common cases of rain and haze. We
find that MQC secure communication distances are almost un-
changed as compared to ideal dry weather conditions. This is
in striking contrast to the protocols in the telecom wavelength
regime.

II. QUANTUM KEY DISTRIBUTION PROTOCOL
WITH CONTINUOUS VARIABLES

First, we consider a prepare-and-measure CV-QKD pro-
tocol, independent of a particular hardware platform and
frequency range, as described in [21]. A corresponding
scheme is shown in Fig. 1. Here, Alice transmits to Bob
a Gaussian-modulated random key K = {k1, . . . , ki, . . . , kN}.
This key is a string of real numbers ki, randomly chosen
from a Gaussian distribution with variance σ 2

A. To this end,
Alice prepares a q-squeezed or p-squeezed state [15], with
both states having an equal chance of being selected. Each
symbol, ki, is then encoded as a displacement amplitude, αi, of
each squeezed state such that |αi| = |ki|. Averaging over var-
ious states of Alice results in a thermal state, preventing Eve
from extracting any information on the encoding basis and
encoded symbols. This imposes an additional constraint σ 2

s +
σ 2

A = σ 2
as, where we denote the squeezed and antisqueezed

quadrature variance as σ 2
s and σ 2

as, respectively. The resulting
displaced squeezed state propagates through a lossy and noisy
quantum channel N before being received and measured by
Bob with a local homodyne measurement. After repeating this
process for each of Alice’s symbols, Bob obtains a measured
key K′ = {k′

1, . . . , k′
i, . . . , k′

N}, representing an estimation of
Alice’s key K.

In order to obtain a common secret key, Alice and Bob
perform a one-way classical postprocessing. The first step,
known as sifting of the keys, consists of producing com-
patible data by discarding any measurement where encoding
and measurement basis disagree. The second step, commonly
referred to as parameter estimation, allows to obtain an upper
bound on the amount of information lost in the quantum
channel by statistically estimating the quantum channel losses
and noise photon number. Then, a classical reconciliation
algorithm, depending on whether DR or RR has been cho-

FIG. 1. General scheme of a QKD protocol based on dis-
placed squeezed states. Here, Alice starts by generating a random
continuous-variable number ki corresponding to Alice’s symbol and
randomly choosing among one of the two possible encoding bases, q
or p. This procedure results in propagating states which are squeezed
along one or the other quadrature with the complex squeezing ampli-
tude ξ . Every symbol ki is encoded via a displacement amplitude αi,
such that |αi| = |ki|. The resulting displaced squeezed state is sent
through a quantum channel N with transmissivity τE. This channel
is assumed to be under full control of a potential eavesdropper, Eve,
who also induces extra noise photon n̄. At the end, Bob receives a
state which he measures in a random basis q or p in order to obtain
an estimate, k′

i , of the original symbol.

sen, is used to generate a common key. The performance of
this algorithm is characterized with a reconciliation efficiency
β. Alice and Bob further proceed to a confirmation step to
validate a recovered common key. Finally, a classical privacy
amplification algorithm produces a secret key by discarding
any eavesdropped bits of the common key.

To describe the quantum channel N , we quantify losses
using a quantum channel transmissivity τE and quantum chan-
nel coupled noise photons n̄, which represents an average
noise photon number referred to the output of the channel.
Generally, these losses and noise represent interactions be-
tween the propagating states and environment. In the worst
case, from the standpoint of security, the quantum channel is
under the full control of a potential eavesdropper, Eve. This
implies that our estimated secure bit rates are lower bounds
of realistically achievable secure bit rates. Here, we analyze
an asymptotic case, where Alice communicates an infinitely
long key, N → ∞. Using this assumption, we can restrict our
analysis to collective Gaussian attacks [22], while considering
them as the most general attacks [23,24]. Lastly, since in prac-
tical QKD protocols only a finite number of symbols can be
communicated, we consider so-called finite-size effects [25],
which effectively reduce the maximal secure communication
distance. For details of derivation of the finite-size effects, we
refer to Appendix B.

In collective Gaussian attacks, all physical Gaussian states
remain Gaussian states throughout the quantum communica-
tion. Additionally, Eve is assumed to interact individually with
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FIG. 2. Schematics of main components for an open-air MQC. Source denotes a squeezing generator, typically implemented with a JPA
in a cryogenic environment. Transmitter and receiver represent corresponding microwave antennae with gains Gt and Gr , respectively. These
antennae belong to different communication parties, Alice and Bob, and are separated by a distance d . Atmospheric absorption losses are
quantified using transmissivity τE which couples the quantum communication channel to the open-air environment with the thermal noise
photon number n̄th. Readout is modeled as a homodyne detector with an overall quantum efficiency η.

each state sent by Alice and to store all her extracted states in
a quantum memory before applying a joint measurement on
her state ensemble at the end of the classical postprocessing.
Then, Eve’s eavesdropping attack can be extended, i.e., di-
lated, into an entangling cloner attack [26]. In this attack, Eve
starts with a two-mode squeezed (TMS) vacuum state [27]
for each incoming state from Alice. One of these modes is
coupled to the quantum channel via a beam splitter with trans-
missivity τE, while Eve preserves the other uncoupled mode
(for details, see Appendix A). After interaction with Alice’s
signal, this coupled mode contains partial information on the
communicated key. A general TMS state features quantum
entanglement, implying that both Eve’s modes are strongly
correlated. Then, Eve can use these correlations to extract as
much information as possible on the sent key.

We model our CV-QKD protocol using an input state ρ̂in

for each symbol ki. This input state contains three modes.
The first mode is used by Alice to generate the displaced
squeezed states. The remaining two modes describe Eve’s
TMS state. The first mode of Eve’s TMS state locally looks
like a thermal state coinciding with the environmental noise
state, but possessing quantum entanglement with the third,
retained, Eve mode. Following this formalism, we denote the
final state ρ̂out, which is also a three-mode state, where its first
mode corresponds to the local state which Bob receives after
Eve’s attack. Similarly, the remaining two modes describe
Eve’s modes after her attack. The final state can be written
as

ρ̂out = T̂AE ρ̂in T̂ †
AE, T̂AE = B̂AE(τE) D̂A(αi ) ŜA(ξ ), (1)

where B̂AE(τE) is a beam splitter operator (see Appendix A)
with transmissivity τE, which describes coupling Alice’s mode
to environment (Eve’s mode). Similarly, D̂A(αi ) represents the
displacement operator [28] applied to Alice’s mode, with the
displacement amplitude encoding a specific symbol, |αi| =
|ki|. Additionally, ŜA(ξ ) corresponds to the squeeze operator
[15] acting on Alice’s mode, and ξ is the complex squeezing
amplitude. Considering that all states in this protocol are

Gaussian states, we derive from Eq. (1) the variance σ 2
B of

Bob’s measured key K′ as

σ 2
B = τE σ 2

as + (1 − τE)σ 2
E + namp/2

= τE σ 2
as + (1 − τE)/4 + n̄ + namp/2 , (2)

where we further introduce namp as the noise photon number
added by Bob’s measurement (see Sec. III B).

III. EXPERIMENTAL SETUP CONSIDERATIONS

An open-air implementation of the above introduced CV-
QKD protocol requires various aspects to be taken into
account. In this paper, we focus on the central components
to realize such an open-air MQC and present the associ-
ated generic scheme in Fig. 2. We analyze the generation
and detection of propagating squeezed states at millikelvin
temperatures. Detection is modeled by a homodyne quadra-
ture measurement with quantum efficiency η. Coupling of
the squeezed states to the open-air environment (atmosphere)
is modeled with two antennae with corresponding gain co-
efficients. The environment is assumed to be at ambient
temperature, T = 300 K, and is described by frequency-
dependent absorption losses. The latter may also be subject
to imperfect weather conditions, as it will be discussed later.

A. Generation of quantum microwave states

The experimental realization of the CV-QKD protocol
requires the generation of propagating displaced squeezed
states. In the microwave regime, flux-driven JPAs provide a
well-established tool to generate squeezed states with tunable
squeezing level and angle [18,29]. Typically, JPAs consist of a
coplanar waveguide λ/4 resonator, which is short-circuited to
ground by a direct current superconducting quantum interfer-
ence device (dc-SQUID). This dc-SQUID acts as flux-tunable
inductance which can be modulated by applying an external
magnetic flux resulting in a flux tunability of the resonance
frequency of the JPA. Applying a microwave pump signal
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inductively coupled to the λ/4 resonator, JPAs can provide
phase-insensitive or phase-sensitive amplification of incident
signals [30]. The latter regime is directly related to the gen-
eration of squeezed microwave states. According to Cave’s
theory of noise in linear amplifiers [31], phase-insensitive
bosonic amplifiers are quantum limited in the sense that they
add at least half a noise photon to an input signal. In contrast,
a phase-sensitive amplifier can, in principle, achieve noise-
less amplification. In practice, JPAs have proven to approach
both these limits, which makes them well qualified for MQC
applications. Over the course of many experiments, JPAs op-
erating in the GHz regime were shown to reach noise levels
well below the quantum limit, reaching noise levels on the
order of 0.1 added noise photons in the phase-sensitive regime
[18,32,33]. Presently, the noise performance of JPAs is known
to be limited by fabrication imperfections, pump-induced
noise [32,33], or higher-order nonlinearities [34]. Lastly, the
displacement operation required by our CV-QKD protocol can
be experimentally realized by applying strong coherent drive
tones to cryogenic directional couplers [28]. Ultimately, the
combination of JPAs with subsequent directional couplers al-
lows one to generate displaced squeezed states with a desired
displacement amplitude α.

B. Microwave antennae and amplification noise

In order to couple propagating microwave states, gener-
ated at millikelvin temperatures, to the open-air quantum
channel one requires a microwave interface between the cor-
responding cryogenic environment and the open-air medium.
A microwave antenna serves as such kind of interface. The
antenna may be modeled by a transmission line of spatially
varying impedance connecting the 50-
 matched cryogenic
circuits to open-air channels with characteristic impedance
of 377 
. A central figure of merit of the transmitter and
receiver antennae is their passive antenna gain, G. In general,
for microwave antennae, the gain reads [35]

G = ηrad D, (3)

where 0 � ηrad � 1 is the radiation efficiency and accounts
for the antenna losses, while D represents the antenna directiv-
ity. The latter expresses the ability of the antenna to focus the
emitted power into a specific direction and strongly depends
on the antenna geometry. An antenna with a well-defined
physical aperture area, A, has the directivity

D = 4πA

λ2
eA, (4)

where A is determined by the size and shape of the antenna,
λ is the signal wavelength, and eA is the aperture efficiency,
defined as the ratio between the effective aperture and phys-
ical aperture areas. Cryogenic to open-air transmission of
microwave signals is a current technological challenge. First
proposals already exist [36]. For communication distances
of approximately 50 m, an open-air geometric attenuation of
signals, also known as the path loss, is around 80 dB (see
Sec. III C) at the frequency of 5 GHz. In general, the path loss
can be compensated by using transmitter and receiver anten-
nae with sufficient gain. For instance, a parabolic transmitter
and receiver antenna with a diameter of around Dant = 2 m

could compensate for the aforementioned path loss. A more
detailed analysis on antennae designs, gains, and related path
losses goes beyond the scope of this paper and is discussed
elsewhere [37]. Here, we assume that antenna gains fully
compensate for the path loss and focus on the effects of
atmospheric absorption losses as the main source of commu-
nication imperfections.

Lastly, in order to finalize the prepare-and-measure CV-
QKD protocol, one has to perform a homodyne quadrature
measurement. In the microwave regime, this task requires
usage of linear amplifiers with a certain quantum efficiency,
ηmw, to quantify the amplification chain noise performance.
The quantum efficiency is defined as the ratio between vac-
uum fluctuations and fluctuations in output signals resulting
from additional noise photon number namp due to amplifica-
tion, where namp is referred to the input of the detection chain.
Therefore, we can express the quantum efficiency as [32]

ηmw = 1

1 + 2namp
. (5)

State-of-the-art traveling-wave parametric amplifiers (TW-
PAs) allow for phase-insensitive amplification with high gain
values (≈20 dB) and broad bandwidths (≈3 GHz) at cryo-
genic temperatures. These TWPAs are also potentially able
to approach the quantum-limited regime characterized by
namp = 0.5 for the phase-insensitive mode of operation [31].
Conversely, as mentioned in [38], a phase-sensitive linear
amplifier could achieve noiseless amplification of a single
quadrature, at the cost of deamplifying the conjugate quadra-
ture. Such a detection scheme can be used to implement a
microwave homodyne detection similar to its optical counter-
part [39]. In cryogenic microwave experiments, one typically
uses chained quantum-limited amplifiers followed by cryo-
genic high-electron-mobility transistor amplifiers. In this case,
we can use the Friis formula to estimate the total amplification
noise namp of the detection chain. For instance, for the case of
two chained amplifiers and in the limit of large amplification,
G1,2 � 1, the total amplification noise reads

namp = n1 + n2

G1
, (6)

where n1 and G1 are the noise photon number and gain of the
first amplifier in the chain, while n2 describes the input noise
photon number of the second amplifier. Thus, the total noise
namp depends mainly on the noise properties of the first am-
plifier. For homodyne detectors at telecom wavelengths, the
quantum efficiency is usually modeled by additional losses,
introduced by a nonunity transmissivity within a beam splitter
model. For the case of a purely lossy optical detector, both
approaches are known to be equivalent, as described in [34].
However, we emphasize that our definition of the quantum
efficiency is well suited for the study of microwave quantum
communication, as the efficiency of signal readout is primarily
limited by amplification noise in this case.

C. Losses and noise budget

We conclude this section with a brief analysis of losses and
noise in open-air communication channels, where losses scale
with the communication distance. We distinguish between
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two categories of losses: (i) the path loss which represents
geometric attenuation of propagating signals and (ii) absorp-
tion losses due to coupling to the environment, such as the
atmospheric absorption losses or weather-induced losses. For
signals transmitted and received via the antennae, the path
loss Lp, describing the fraction of the initial signal power lost
during the communication, is commonly described using the
Friis transmission formula [35]

Lp = 10 log10

[
GtGr

(
λ

4πd

)2
]

. (7)

Here, Gt (Gr) is the transmitter (receiver) antenna gain, λ is
the wavelength of the communication signals, and d is the
propagation distance. As mentioned above, we consider in
the remainder of the paper that the experimental implemen-
tation of the QKD protocol is done with antennae that fully
compensate for path losses. With this assumption, we focus
our analysis on purely physical limitations expressed in terms
of losses and coupled noise photon number. To this end, we
model the absorption and scattering power losses via a single
effective beam splitter with transmissivity τE given by

τE = 10−γ d/10, (8)

where γ is the total specific attenuation (dB/km) given by the
sum of each specific attenuation γi associated with their re-
spective loss mechanism. In our case, we attribute these losses
to atmospheric absorption and weather conditions such as rain
or haze. Empirical models show that for microwave frequen-
cies around ωmw/2π � 5 GHz, propagation losses mainly
arise due to molecular oxygen absorption [40]. For the ideal
case of dry weather, we estimate the corresponding specific
attenuation of γmw = 6.3 × 10−3 dB/km [40]. To describe the
coupling of the propagating quantum bosonic signal â to the
noisy environmental modes, we use the input-output formal-
ism. The output signal mode â′ can be expressed as

â′ = √
τE â +

√
1 − τE ĥenv, (9)

where ĥenv corresponds to the environmental thermal mode.
The latter may be a vacuum or thermal state, depending on the
carrier frequency and environment temperature. For a thermal
background, the average thermal noise photon number n̄th per
mode is given by the Planck distribution as

n̄th = 1

exp
(

h̄ ω
kBT

) − 1
, (10)

where h̄ is the reduced Planck constant, kB is the Boltzmann
constant, ω/2π is the signal frequency, and T is the back-
ground temperature. From Eq. (9), the relation between the
photon number n̄th and the coupled noise photon number n̄ is
expressed as

n̄ = 1
2 (1 − τE) n̄th. (11)

Finally, it is instructive to consider open-air losses at tele-
com wavelengths. We emphasize that Eq. (7) is also applicable
in the optical frequency range. Then, Gt and Gr correspond
to the effective passive gain of optical lenses used to fo-
cus and collect optical beams. Typical telecom wavelengths
(780–850 and 1520–1600 nm) are chosen to suffer from the

lowest possible atmospheric absorption losses. At the tele-
com wavelength of 1550 nm, absorption losses of less than
1.0 × 10−2 dB/km can be reached [12]. In this case, open-air
attenuation is mainly caused by scattering losses, such as
Rayleigh or Mie scattering [12]. The corresponding open-air
specific attenuation is γtel = 2.02 × 10−1 dB/km. We discuss
the additional attenuation due to rain and haze in more detail
in Sec. V.

IV. SECURITY ANALYSIS

A. Secret key

In order to assess the experimental feasibility of our CV-
QKD protocol, it is mandatory to analyze its security. The
latter is quantified by the secret key Kexp, which represents
the amount of secure information per communicated symbol.
The secret key is bounded by

Kexp � K = β I (A:B) − χE. (12)

Here, I (A:B) is the mutual information between Alice and Bob
and measures correlations between the key sent by Alice and
that measured by Bob. Additionally, χE is the Holevo quantity
[41] of Eve and gives an upper bound on the information that
Eve obtains during her attack (see Appendix A). It should be
noted that experimental values β > 0.9 have been obtained
and can be commonly achieved with current classical postpro-
cessing error correction algorithms [42]. A positive value of
K indicates a secure communication, as Alice and Bob share
more information than Eve can in principle obtain. In order
to take into account the finite size of the communicated key
between Alice and Bob, the secret key expression must be
modified as [37]

Kexp � KN = nec pec

N
[K (τ̂ �

E, ˆ̄n�) − �(nec)] , (13)

where nec � N denotes the number of symbols kept for the
reconciliation algorithm while m = N − nec symbols are used
for parameter estimation. The latter is assumed to succeed
with a probability of pec. The additional term �(nec) corre-
sponds to a correction term due to the key finite size. Lastly,
τ̂ �

E ( ˆ̄n�) is a statistical estimator of τE (n̄) built after Alice’s and
Bob’s communication using m symbols (see Appendix B for
more details).

In Fig. 3, we show results of numerical evaluation of the
secret key as a function of the transmissivity τE and noise pho-
ton number n̄ in the quantum channel. Remarkably, in the DR
case a secure communication cannot exist when τE exceeds
a threshold value of 0.5, which illustrates the well-known
result that secure CV-QKD communication in DR schemes is
limited to 3 dB of losses [43,44]. The reason for this fact is that
communication with DR cannot be secure when Eve receives
more than 50% of Alice’s information. In this scenario, Eve
effectively replaces Bob as the communication partner. As
illustrated in Fig. 3, this limit can be entirely circumvented by
using the RR scheme. Then, Bob’s measured key is treated as
a reference and Alice needs to correct her own key according
to it. For RR, if we imagine that Eve only induces losses
during the quantum communication, Alice has always more
information than Eve on Bob’s measured key. This is because,
in her attack, Eve is assumed to induce losses by using a
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FIG. 3. Secret key K of the CV-QKD protocol plotted as a func-
tion of the squeezing level S (measured in dB below the vacuum
limit), transmissivity τE, and noise n̄, for ideal detection efficiency
ηmw = 1. (a), (b) The cases of DR and RR, respectively. The number
of environmental noise photons, n̄, is shown for a fixed commu-
nication distance, d = 200 m, and microwave specific attenuation,
γmw = 6.3 × 10−3 dB/km. Gray areas represent the regions of nega-
tive keys, i.e., insecure communication.

beam splitter to get part of the signals sent by Alice. As a
result, Eve can only obtain a fraction of Alice’s information.
Furthermore, in the case of very large losses (τE → 0), Bob
receives only a tiny fraction of the signal coming from Alice,
meaning that his signal is largely uncorrelated with Eve’s
eavesdropped signal. As a consequence, Eve’s information
reveals very little about Bob’s measured key, making the com-
munication secure. If Eve couples noise photons in addition to
the previous losses, the correlations between the key sent by
Alice and that measured by Bob decrease. At the same time,
Eve gains more information on the key measured by Bob.
In particular, the communication is secure up to a coupled
noise photon threshold value n̄ of 0.183 for both reconcil-
iation cases. This result is consistent with the well-known
Pirandola-Laurenza-Ottaviani-Banchi upper bounds for Gaus-
sian channels [45]. This noise threshold corresponds to the
crossover of the quantum channel capacity from finite values
to zero. It is also important to note that these noise numbers
do not account for noise photons which can be added by Bob
during his measurements. Finally, we observe that an increase
in squeezing level results in an increase of the secret key. This
increase can be understood as a decrease of the displacement
uncertainty encoding the symbols, while also allowing for
higher displacement amplitudes [21].

Next, we extend our analysis of the microwave CV-QKD
protocol to variable communication distances d , for both
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FIG. 4. Secret key K of the CV-QKD protocol as a function of
communication distance d and squeezing level S. The left (right)
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Detection efficiency is assumed to be ideal, ηmw = 1. We assume the
average environmental noise photon number n̄th = 1250 and trans-
mission losses γE = γmw � 6.3 × 10−3 dB/km. Gray areas represent
the regions of negative keys, i.e., insecure communication.

DR and RR. To this end, we use Eq. (9) in combination
with the specific attenuation given in Sec. III C to convert
communication distances d into corresponding transmissiv-
ities τE. We additionally consider the effects of imperfect
reconciliation and finite-size effects. The corresponding
secret keys are shown in Fig. 4. Remarkably, we observe
positive secret key values over communication distances
of up to 200 m, in both DR and RR. These results suggest
the experimental feasibility of microwave QKD in open-air
conditions. No major distinction in communication distances
is observed between the reconciliation cases, although one
could intuitively expect RR to yield larger distances according
to our previous discussion. This behavior originates from the
presence of the bright microwave thermal background which
couples to propagating states during the communication.
Consequently, the effects of coupled noise largely outweigh
the effects of losses and make the RR and DR cases more
similar. As shown in Fig. 4(a), we observe that an imperfect
reconciliation with 0.9 � β � 1 leads only to a slight
decrease of the maximal secure communication distance
with positive secret key values still up to 176 m (167 m) for
β = 0.95 (β = 0.9). However, we note that finite-size effects
have a more significant impact on the secret key values as
presented in Fig. 4(b). Here, the total length N of the key
critically determines the secure communication distance.
For instance, a practical key length of N = 105 decreases
the secure communication distance to 122 m(154 m) in the
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DR case (RR case). These effects can be overcome by
extending the key length to larger values. A realistic but
more demanding key length of N = 106 extends the secure
communication distance to 172 m(183 m) in the DR case (RR
case). Lastly, we comment on the Gaussian modulation for
our protocol as compared to a discrete modulation regime.
To this end, we consider the discrete modulation homodyne
detection quadrature phase shift keying CV-QKD protocol
[46,47]. Our preliminary analysis indicates that the CV-QKD
protocol with discrete modulation [47] can be realized in the
microwave regime and, under ideal conditions, could achieve
notably larger secure communication distances than for
the protocols with Gaussian modulation. However, under
more realistic conditions with noisy detectors, the discrete
modulation protocols quickly lose their advantage as a
function of the detection noise, as compared to the Gaussian
modulation protocols. Further detailed investigations are
needed here.

For a more practical evaluation of the QKD performance,
one typically uses a secret key rate R0. The latter evaluates
the amount of secure bits per second that can be obtained
from the communication protocol. Under the asymptotic case
assumption, one can express the secret key rate R0 in bits per
second using the secret key as

R0 = fr K , (14)

where fr represents the repetition rate (in symbols per sec-
ond). This rate encompasses all information postprocessing
steps, such as sifting, parameter estimations [5,7], and exper-
imental bandwidths of the involved devices. We use an upper
bound on the secret key rate R, derived from the Shannon-
Hartley theorem and the Nyquist rate [48]

R0 � R = 2
�ω

2π
K , (15)

where �ω/2π denotes the experimental detection bandwidth.
This upper bound becomes especially useful when comparing
different physical QKD platforms, as it is going to be dis-
cussed in the next section.

B. Comparison of telecom and microwave frequency regimes

Here, we now compare the microwave CV-QKD per-
formance to that of QKD at telecom frequencies. For this
purpose, we define and numerically compute a communica-
tion crossover distance dc:

dc := max
Rmw�Rtel

(d ), (16)

where d corresponds to communication distance, while Rmw

and Rtel are the secret key rates for microwave and telecom
frequencies, respectively. According to Eq. (15), it is relevant
to optimize the detection bandwidth to achieve high secret key
rates. To this end, we assume an experimental state-of-the-art
broadband squeezing generation and detection at 1550 nm
wavelength over a bandwidth of �ωtel/2π = 1.2 GHz with
a quantum efficiency of ηtel = 0.53, as shown in [49]. In
this experiment, the authors also report a squeezing level
of 3 dB, which we will use as a common level of vacuum
squeezing for both the microwave and telecom regimes. We
compute the corresponding crossover distance as a function
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FIG. 5. Crossover distance dc between microwave and telecom
CV-QKD. (a, b) The DR and RR cases, respectively. For the tele-
com and microwave wavelengths, we assume transmission losses
γtel � 2.02 × 10−1 dB/km and γmw � 6.3 × 10−3 dB/km, respec-
tively. For both DR and RR, the secret key rates R of both detection
cases are shown in the right column as a function of communi-
cation distance d . The top blue (bottom green) inset represents a
comparison between microwave and telecom secret key rate for a
quantum efficiency ηmw = 0.695 (ηmw = 0.345) and detection band-
width �ωmw/2π = 1.2 GHz (�ωmw/2π = 3.0 GHz).

of the microwave detection bandwidth �ωmw/2π and quan-
tum efficiency ηmw. The corresponding results are shown in
Fig. 5 for both DR and RR. Interestingly, we observe that
the microwave CV-QKD protocol can outperform the telecom
counterpart for realistic values of �ωmw/2π and ηmw. A clear
distinction can be seen between the two reconciliation cases.
For the DR case, it is beneficial to aim at a quantum efficiency
close to unity and large detection bandwidths. The situation
is noticeably different in RR. For the latter, we observe that
above a certain detection bandwidth the optimal quantum
efficiency is no longer unity. Instead, there exists an optimal
detection noise added by Bob, which maximizes the secret key
rate depending on the detection bandwidth. The existence of
an optimal quantum efficiency is a remarkable feature of RR,
which arises when Bob couples additional noise during his
measurements [50]. To illustrate the influence of the quantum
efficiency and the detection bandwidth, we envision two dif-
ferent microwave homodyne detection cases implemented by
a phase-sensitive amplifier. First, we choose a high detection
bandwidth �ωmw/2π = 3 GHz with a quantum efficiency of
ηmw = 0.345. This case is motivated by the existing state-
of-the-art superconducting TWPA devices operated in the
phase-insensitive regime [51,52]. The second case considers
a detection bandwidth of �ωmw/2π = 1.2 GHz = �ωtel/2π ,
and we choose a quantum efficiency of ηmw = 0.695, such
that both cases yield the same DR crossover distance. This
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case originates from recent results on broadband squeezing in
the microwave regime [53,54]. By using this set of already
experimentally feasible parameters, we can reach a crossover
distance of dc = 16 m for both cases. For RR, we observe that
the crossover distance can be increased to dc = 25 m. The rea-
son is that RR benefits from a quantum efficiency below unity.
Remarkably, high secret key rates R of a few Gbits per second
can be reached for all of the previously mentioned sets of
parameters. However, we stress that the computed secret key
rates R are merely upper bounds for realistically achievable
rates. Existing telecom QKD implementations reach secure
key rates up to a few Mbits per second [55–57]. Aside from
finite quantum detection efficiencies and bandwidths, practi-
cal secret key rates are also limited by various factors such
as actual experimental repetition rates [7], device-induced
noise [56], finite size effects [25], or postprocessing [58].
Nevertheless, the demonstrated results make MQC relevant
for short-distance classical communication protocols such as
Wifi 802.11 standard (communication range � 70 m), Blue-
tooth 5.0(�240 m), or more recent technologies such as 5G
(�305 m) because of matching frequency ranges, distances,
and technological infrastructure.

V. WEATHER INDUCED LOSS EFFECTS

A. Nonoptimal weather conditions

So far, we have investigated open-air CV-QKD under ideal
weather conditions. However, it is well known that realistic,
nonoptimal weather conditions may drastically affect absorp-
tion losses for propagating signals. Such effects are especially
prominent in the telecom frequency range. Therefore, it is
natural to investigate effects of these nonoptimal conditions
on the MQC as well. Specifically, we focus on two nonideal
weather scenarios: rain and haze. In the context of microwave
communication, the ITU-P. 838 and ITU-P. 840 recommen-
dations provide empirical prediction models for the induced
attenuation on propagating microwave signals due to rainfall
and haze, respectively. More precisely, the specific attenuation
γmw,r due to rain along a horizontal path can be expressed as
[59]

γmw,r = k(ω) Rα(ω)
r , (17)

where k and α are coefficients which depend on the commu-
nication microwave frequency ω/2π , while Rr (mm/h) is the
rain rate. The haze specific attenuation γh can be obtained
from the liquid water concentration M (g/cm3) from a linear
relationship as [60]

γmw,h = Kl (ω, T ) M, (18)

where Kl (dB m2/g) is the specific attenuation coefficient
that depends on the considered microwave frequency ω/2π

and water temperature T in the atmosphere. The liquid water
concentration can be related to a physically more intuitive
quantity, the so-called visibility V (km). The latter represents
the distance at which the light intensity from an object drops
to 2% of its initial value. For a nonpolluted environment, one
can link two aforementioned quantities as [61]

M =
(

a

V

)b

, (19)

where a = − log(0.02)/99 and b = 0.92−1. For the
telecom frequencies, rain causes a wavelength-independent
attenuation. The specific attenuation γtel,r can be expressed
for a horizontal path as [12]

γtel,r = k Rα
r , (20)

where Rr is the rain rate, k = 1.076, and α = 0.67. The
haze-specific attenuation is empirically derived similarly to
the microwave case. Once again, visibility determines the
specific attenuation γtel,r . Empirical models for Mie scattering
show that [12,62]

γλ,h = C

V

(
λ

550

)−p(V )

, (21)

where C = 39.1 log(e), λ (nm) corresponds to a certain
telecom wavelength, and p is a scattering coefficient that
depends on the considered visibility range and varies from 0
to 1.6 [12,62].

B. Effects of weather conditions

In order to study the effect of nonoptimal weather con-
ditions on the CV-QKD secure key rates, we consider two
specific situations: (i) heavy (light) rain with the rain rate
Rr = 7 mm/h (Rr = 2 mm/h) and (ii) (light) haze with a
visibility (V = 4 km)V = 1 km. We compare the telecom
and microwave secret key rates in Fig. 6. For the detection
bandwidth and quantum efficiency, we stick to the pre-
viously analyzed set of parameters (�ωtel/2π = 1.2 GHz,
ηtel = 0.53 and �ωmw/2π = 3 GHz, ηmw = 0.345). We find
that short-distance microwave QKD could potentially yield
a higher secret key rates telecom case. The reason is that
microwave QKD benefits from higher experimental band-
widths and lower losses due to weather imperfections. We
note that telecom QKD allows for secure communication over
much larger distances, up to d � 140 km using RR. These
distances are significantly reduced when the effects of rain
and haze are taken into account. For these weather conditions,
the maximum secure telecom communication distances can
be strongly reduced to �300 m (7 km) and �70 m (1.7 km),
for DR (RR) respectively. Conversely, for microwave fre-
quencies, the maximum secure communication distance is
almost unchanged in both reconciliation cases compared to
that obtained for optimal weather conditions, highlighting the
robustness of microwave CV-QKD to weather effects. The
most significant difference arises when considering the effect
of light haze. Remarkably, haze induces little to no microwave
losses. Even strong haze and fog only weakly disturb mi-
crowave signals by causing a small additional attenuation of
around 1 × 10−3 dB/km. The latter holds even when visibil-
ity is reduced to less than 500 m. In contrast, reducing the
visibility below 1 km would generate large losses (more than
≈20 dB/km) for the telecom frequency, preventing the possi-
bility of any relevant secure quantum communication. These
results indicate that an ideal quantum open-air communication
network could consist of a combination of microwave-based
channels for short distances (d � 200 m) and telecom-based
channels for long distances (d > 200 m).
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FIG. 6. Secret key rates of the CV-QKD protocol for various weather conditions. Telecom [brown, lower (solid and dashed) lines for
distance d = 1] and microwave [blue, upper (solid and dashed) lines for distance d = 1] secret key rates R are computed for DR in panel
(a) and for RR in panel (b) as a function of the communication distance d for the squeezing levels of Stel = Smw = 3 dB. The insets correspond
to a zoom for the telecom secret key rates. Three different weather conditions are considered: ideal weather conditions (visibility of 23 km),
heavy (light) rain with a rain rate of 7 mm/h (2 mm/h), and (light) haze with a visibility of (1 km) 4 km. The choice of quantum efficiency and
detection bandwidth is the same as for the ideal weather conditions. For the telecom case, we consider the total transmission losses γtel � 2.02 ×
10−1 dB/km (optimal), γtel � 4.17 or 1.91 dB/km (heavy rain or light rain), and γtel � 17 or 1.55 × 10−2 dB/km (haze or light haze). For the
microwave case, we assume the transmission losses γmw � 6.3 × 10−3 dB/km (optimal), γmw � 1.22 × 10−2 or 7 × 10−3 dB/km (heavy rain
or light rain), and γmw � 6.7 × 10−3 or 6.4 × 10−3 dB/km (haze or light haze).

VI. CONCLUSION

In conclusion, we have performed a comprehensive anal-
ysis of microwave CV-QKD and demonstrate its potential
for applications in open-air conditions. We have shown that
quantum microwaves can yield positive secret key rates for
short-distance communication for both DR and RR. Our cal-
culations rely on empirical models for microwave and telecom
atmospheric absorption losses. We have estimated the re-
lated microwave and telecom specific attenuation for optimal
weather conditions to 6.3 × 10−3 and 2.02 × 10−1 dB/km,
respectively. In our analysis, we have assumed microwave
homodyne detection based on state-of-the-art TWPAs. Our
model for the CV-QKD protocol predicts positive secret key
rates for the microwave regime over distances of around
200 m. We have extended our analysis to include imperfect
reconciliation and finite-size effects. Here, we have found that
an imperfect reconciliation only marginally limits the commu-
nication distance and that finite-size effects can be overcome
using a key length of N � 106. We have employed this model
to compare the microwave and telecom cases for different
detection quantum efficiencies and bandwidths. Our results
show that, based on parameters of state-of-the-art technology,
the microwave CV-QKD can potentially outperform the tele-
com implementations for short distances of around 30 m in
terms of the secret key rates. From our analysis, it appears that

both reconciliation scenarios are relevant. In particular, DR is
favored for high quantum efficiencies, while RR allows for
applications with rather lower detection quantum efficiencies
η. The RR case also exhibits a nontrivial dependence of the
secret key rate R on η, which can be explained by the positive
impact of detection noise on the protocol security.

Finally, we have considered the open-air CV-QKD protocol
under nonideal weather conditions of rain and haze. We have
found that these nonidealities strongly reduce the secure com-
munication distance for the telecom regime, from 140 km to
several hundred meters. Remarkably, the microwave open-air
CV-QKD protocol appears to be largely immune to these
weather imperfections with its secure communication dis-
tances staying mostly unchanged. We envision that our results
could serve as a motivation for building first prototypes of
secure microwave quantum local area networks. Our analysis
also establishes the foundations for hybrid networks, where
short-distance secure communication is carried out by mi-
crowave signals. Such hybrid network offer the advantage
of providing potential high secret key rates and robustness
to weather imperfections, while switching to telecom setups
for long-distance communication. Short-distance MQC secure
platforms could also complement current classical microwave
communication technologies such as Wifi, Bluetooth, and 5G
due to the intrinsic frequency and range compatibilities.
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APPENDIX A: DESCRIPTION OF BOB’S
AND EVE’S QUANTUM STATES

In this section, we provide details about the quantum states
of Bob and Eve. To describe these states, we first need to
consider the matrix representing the beam splitter operator:

B(τ ) =
( √

τ I2
√

1 − τ I2

−√
1 − τ I2

√
τ I2

)
. (A1)

Here, τ is the transmissivity associated with the beam splitter
and I2 denotes the 2 × 2 identity matrix. Further, we introduce
the direct sum for matrices A and B as

A ⊕ B =
(

A 0
0 B

)
. (A2)

Since we assume all states in the protocol to be Gaussian,
these states are characterized by their displacement vector x̂
and covariance matrix V [7]. In this formalism, the displace-
ment vector of an N-mode Gaussian state reads as

x̂ = (q̂1, p̂1, . . . , q̂N, p̂N), (A3)

where q̂i and p̂i are the conjugate quadrature operators of the
ith mode. The displacement vector fulfills the commutation
relation

[x̂i, x̂ j] = i

2
�i j, � =

N⊕
i=1

(
0 1

−1 0

)
. (A4)

We use the expression x̄ to refer to the expectation value of
the displacement vector, i.e.,

x̄ = 〈x̂〉. (A5)

The elements of the covariance matrix of a mode are com-
puted as

Vi j = 〈x̂ix̂ j + x̂ix̂ j〉/2 − 〈x̂i〉 〈x̂ j〉. (A6)

Using the previously introduced matrices in combination with
Eq. (1), we can express the mean displacement vector of Bob’s
mode (Eve’s mode) x̄B (x̄E) as well as the covariance matrix
of Bob’s mode (Eve’s mode) VB (VE) as

(x̄B,x̄E)T = �(x̄0,x̄E,in )T + �E(x̄A,0̄E,in )T,(
VB CBE

CT
BE VE

)
= �(V0 ⊕ VE,in )�T, (A7)

with

�E = B(τE) ⊕ I2, �A = (
R(ϕ/2) Ssq(r)

) ⊕ I4,

� = �E �A. (A8)

Here, x̄0 (V0) represents the mean displacement vector (co-
variance matrix) of the initial vacuum state. Furthermore, x̄A

represents Alice’s mean displacement vector, and x̄E,in repre-
sents Eve’s initial mean displacement vector of her TMS state.
Additionally, r and ϕ correspond to the squeezing factor and
squeezing angle of the generated squeezed states by Alice,
respectively. Correlations between Bob’s and Eve’s individual
states are described by the submatrix CBE. Finally, R corre-
sponds to a two-dimensional rotation matrix while Ssq is a
2 × 2 matrix, which we calculate as

R(ϕ/2) Ssq(r)

=
(

cos(ϕ/2) sin(ϕ/2)
−sin(ϕ/2) cos(ϕ/2)

) (
exp(−r) 0

0 exp(r)

)
.

(A9)

Using Eq. (A7), the variance of Bob’s states reads

VB = τEVA + (1 − τE) 1
4 (1 + 2nEve)I2

= τEVA + [
1
4 (1 − τE) + n̄

]
I2, (A10)

where VA represents Alice’s state variance, while the co-
variance matrix of Eve’s mode coupled to Alice’s mode is
given by 0.25(1 + 2nEve)I2. Lastly, we incorporate the noise
of the amplification chain by using the following input-output
formalism for a bosonic signal mode â [31]:

â′ =
√

G â + √
G − 1 ĥ†

amp. (A11)

Here, G is the gain of the amplification chain and ĥamp is an
environmental mode, modeled as a thermal state. For G � 1,
this results in the final covariance matrix for Bob:

VB = τEVA + [
1
4 (1 − τE) + n̄ + n̄g

]
I2. (A12)

Here, n̄g = n̄amp/2 is the added quadrature noise from the
amplification chain expressed in an average photon number. In
the previous equation, the covariance matrix has been divided
by the gain G as this gain can always be determined from
calibration measurements. In the third step, we compute the
mutual information I (A:B) using the expression

I (A:B) = h(B) − h(B|A), (A13)

where h denotes the differential entropy. Local measurements
of Bob on individual states, which he receives during the
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communication, are represented by a classical random
variable B|A. Then, B is a classical random variable
representing Bob’s overall measurements over all received
states (i.e., representing Bob’s final key estimationK′ =
{k′

1, . . . , k′
N }). From Eq. (A12), we derive the variance σ 2

B|A
of the variable B|A as

σ 2
B|A = τE σ 2

s + (1 − τE)/4 + n̄ + ng. (A14)

Then, by averaging over Bob’s Gaussian codebook and from
the relation σ 2

s + σ 2
A = σ 2

as, we similarly obtain the variance
σ 2

B of the variable B as

σ 2
B = τE σ 2

as + (1 − τE)/4 + n̄ + ng. (A15)

For a Gaussian random variable X of variance σ 2
X , the differ-

ential entropy simplifies to

h(X ) = 1
2 log2

(
2π σ 2

X

)
. (A16)

As a result, we write the mutual information in Eq. (A13) as

I (A:B) = 1

2
log2

(
σ 2

B

σ 2
B|A

)
. (A17)

Furthermore, to compute Eve’s Holevo quantity for DR (de-
noted as χ�

E ) and for RR (denoted as χ�
E ), we first start

by finding Eve’s average state. To this end, we introduce an
integer c ∈ {0, 1} describing the choice of Bob’s measure-
ment basis, q or p. Note that, due to the sifting step, Bob’s
measurement basis matches Alice’s encoding basis. Eve’s av-
erage state reads as

ρ̂avg,E =
1∑

c = 0

∫ ∞

−∞
fA,C(ki, c) ρ̂

ki
E,A dki. (A18)

Here, ρ̂
ki
E,A is the density matrix of an individual state ob-

tained by Eve from the entangling cloner attack. The function
fA,C(ki, c) is the joint probability density function describing
the probability of Alice encoding a symbol ki in a measure-
ment basis according to c. To this end, C represents a binary
random variable used to obtain c with the same probability
for both outcomes [P(C = 0) = P(C = 1) = 1/2]. Since c is
given by a discrete variable and ki is given by a continuous
variable, we use a mixed joint probability density function
which gives

fA,C(ki, c) = fA|C(ki|c)p(C = c)

= fA(ki )p(C = c)

= 1√
2πσ 2

A

exp

(
− k2

i

2σ 2
A

)
1

2
. (A19)

Here, fA is the probability density function of the random vari-
able A representing Alice’s random choice for ki. Additionally,
fA|C is the probability density function of a random variable
A|C representing Alice’s random choice for ki conditioned on
the value of C. Note that we use fA|C = fA, since Alice uses
the same random variable to get ki independently of the value
taken by C. From this description, we write Eve’s Holevo
quantity for DR as

χ�
E = S(ρ̂avg,E) −

1∑
c = 0

1

2

∫ ∞

−∞
fA(ki ) S

(
ρ̂

ki
E,A

)
dki, (A20)

where S is the von Neumann entropy. In order to compute
χ�

E , we need to compute the covariance matrix of Eve’s mode
after Bob has performed his measurement on either the q or
p quadrature. Following [44], the covariance matrix of each
individual mode of Eve after Bob’s measurement is derived as

Vk′
i

E,B = Vavg,E − 1

σ 2
B

CEB � CT
EB, (A21)

where σ 2
B = τE e2r/4 + n̄ + n̄g + (1 − τE)/4. Additionally,

� ∈ {�q,�p} is a projective measurement operator in phase
space, meaning that

�q =
(

1 0
0 0

)
(q-quadrature measured),

�p =
(

0 0
0 1

)
(p-quadrature measured). (A22)

Finally, CEB represents the correlations between Eve’s mode,
which she used during her entangling cloner attack, and Bob’s
mode. One can derive that

CEB = (C1 I2,C2 σz)T, (A23)

where σz is the Z Pauli matrix, and

C1 = −√
τE

√
1 − τE[e2r/4 − n̄tot],

C2 =
√

1 − τE

√
(n̄tot )2 − 1. (A24)

In the previous expression, we used the notation n̄tot = (n̄ +
n̄g)/(1 − τE) + 1/4. Finally, for RR, one can express Eve’s
Holevo quantity as

χ�
E = S(ρ̂avg,E) −

1∑
c = 0

1

2

∫ ∞

−∞
fB(k′

i ) S
(
ρ̂

k′
i

E,B

)
dk′

i . (A25)

Here, ρ̂
k′

i
E,B is the density matrix of Eve’s individual mode,

which she gets after Bob’s individual measurement. Addi-
tionally, fB is the probability density function of the random
variable B. The corresponding covariance matrix of Eve’s
individual mode is then given by Eq. (A21).

APPENDIX B: FINITE-SIZE EFFECTS

For any QKD protocols, Alice and Bob estimate the losses
and coupled noise photon number of the quantum channel
they use during their communication. In this section, we detail
a possible approach in which Alice and Bob build a statistical
estimator by publicly disclosing a part of length m of their
exchanged key. Using the disclosed data, they compute a
square-root transmissivity estimator which can be constructed
as

T̂E =
∑m

i=1(ki − K̄)(k′
i − K̄′)∑m

i=1(ki − K̄)2
, (B1)

where we defined

K̄ =
m∑

i=1

ki and K̄′ =
m∑

i=1

k′
i . (B2)

From this estimator, they define τ̂E := T̂ 2
E . This estimator is

built so that 〈τ̂E〉 = τE. As a next step, they define a total noise
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photon number estimator [37]:

ˆ̄ntot = 1

m

m∑
i=1

(k′
i − T̂E ki )

2, (B3)

such that 〈 ˆ̄ntot〉 = n̄tot = τE σ 2
s + (1 − τE)(1 + 2nEve)/4 + n̄g.

Given a confidence parameter w, they compute worst-case
unbiased estimators:

τ̂ �
E := τ̂E − w

√
var(τ̂E) � τ̂E − 2w

√(
n̄tot

σ 2
A

+ 2τE

)
τE

m
,

ˆ̄n�
tot := n̄tot + w

√
var(n̄tot ) � n̄tot + w

√
n̄2

tot

8 m
. (B4)

For random variables with a normal distribution, the confi-
dence parameter w reduces to

w =
√

2 erf−1(1 − 2εec), (B5)

with εec defined as an error probability which we set to 10−10,
giving w � 6.34. A coupled noise photon number unbiased
estimator can be computed as

ˆ̄n� = ˆ̄n�
tot − (1 − τ̂ �

E )

4
− n̄g − τ̂ �

E σ 2
s . (B6)

Since a part of the secret key must be used for parameter
estimation, Alice and Bob only exchange a key of finite size

nec = N − m at the end of the reconciliation step. For our
analysis, we fix nec = 0.9 N . The resulting secret key Kexp

from their communication is then bounded by the finite-size
secret key KN [37]:

Kexp � KN = nec pec

N

(
K (τ̂ �

E, ˆ̄n�) − �fs√
nec

+ �

nec

)
, (B7)

where the finite-size terms are defined as

�fs = 4 log2(
√

d + 2)

√
log2

(
18

p2
ecε

4
s

)
,

� = log2

[
pec

(
1 − εs2

3

)]
+ 2 log2(

√
2εh). (B8)

Here, the parameter d represents the dimension of Alice’s
and Bob’s effective codebook after the discretization during
reconciliation of their respective data. We choose a typical
value for CV-QKD protocols of d = 25 for a 5-bit discretiza-
tion. The overall success of the protocol is then limited by
a tolerance error for the security of the protocol, reflected in
a smoothing parameter εs and a hashing parameter εh. These
parameters determine the total error of the privacy amplifi-
cation step. Since they can be set to an arbitrary value, we
use a conservative value of εs = εh = 10−10. Lastly, we use
a conservative and realistic success probability for the error
correction of pec = 0.9.
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