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Quantum bits, or qubits, are the fundamental building blocks of present quantum computers. Hence, it is
important to be able to characterize the state of a qubit as accurately as possible. By evaluating the qubit
characterization problem from the viewpoint of quantum metrology, we are able to find optimal measurements
under the assumption of good prior knowledge. We implement these measurements on a superconducting
quantum computer. Our demonstration produces sufficiently low error to allow the saturation of the theoretical
limits, given by the Nagaoka-Hayashi bound. We also present simulations of adaptive measurement schemes
utilizing the proposed method. The results of the simulations show the robustness of the method in characterizing
arbitrary qubit states with different amounts of prior knowledge.
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I. INTRODUCTION

The qubit is the basic unit of information in most quan-
tum computers. Qubit-based quantum computers have shown
great promise in sensing [1] and computation technologies
[2,3]. Thus, it is essential for the development of quantum
computers to study qubit states in detail. The field of research
which focuses on characterizing quantum states is called state
tomography [4–6]. More specifically, state tomography con-
cerns the problem of finding the most accurate method of
reconstructing the state with a fixed amount of quantum re-
sources, or equivalently, finding the most efficient method that
reconstructs the state up to some fixed threshold uncertainty
with the minimal amount of quantum resources.

Any reconstruction method will involve measurements of
the quantum state. All physically possible measurements in
the context of quantum systems are described by a posi-
tive operator-valued measure (POVM). Among all possible
POVMs, projective measurements form a special subset. Pro-
jective measurements can be described by a single observable
operator and are orthogonal to one another. To reconstruct a
quantum state without ambiguity, we require that the mea-
surement used is informationally complete [7]. With certain
measurements, the information obtained is insufficient to re-
construct the state. For example, a projective measurement
along the z axis of a single-qubit state cannot provide any
information about the x or y components of the Bloch vector,
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and this measurement alone will fail to reconstruct an arbitrary
state.

Two reconstruction methods that are widely regarded as
optimal are projective measurements onto mutually unbiased
bases (MUB) [6] and the symmetric informationally complete
POVM (SIC-POVM) [8,9]. Both of these measurements have
been realized experimentally [10–12], and the SIC-POVM
has already been demonstrated for quantum entanglement
detection [13,14] and tomography protocols [11,12,15,16].
However, for reconstructing an unknown state, the repeated
measurement of an ensemble of identical unknown states
with either the SIC-POVM or MUB will not be the opti-
mal method. This is because neither of these measurements
exploits the knowledge gained from previous measurement
results. Indeed, the optimality of the SIC-POVM for state
reconstruction has been shown only under the condition of
measuring a completely unknown state uniformly distributed
following the Haar measure of the unitary operators [17,18].
Thus, when we have partial knowledge of the state in question,
other measurements may become optimal.

The optimality of the SIC-POVM and MUB is questioned
in a localized setting, where the quantum state is well known,
and we attempt to sense small changes in the state. This bears
great similarity to the setting used in quantum metrology,
where physical parameters are encoded onto quantum states,
and we attempt to sense small changes in those parameters
[19]. It is natural, therefore, to utilize tools from quantum
metrology to analyze quantum state tomography in the lo-
calized setting. In quantum metrology, it is common to use
Cramér-Rao bounds to place limits on how accurately phys-
ical quantities can be measured [19–21]. One bound which
is of particular practical relevance is the Nagaoka-Hayashi
(N-H) bound, as it applies when probe states are measured in-
dividually [22,23]. In this work, we map the qubit tomography
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problem to quantum metrology, allowing us to use the N-H
bound as an experimentally accessible bound for tomography.
The N-H bound, thus, provides a reference against which the
measurement proposed in this paper can be compared.

Under the local setting, a measurement inspired by MUB
has been proposed. This measurement used a probabilistic
mixture of three projective measurements that are orthogonal
to each other, such as projective measurements on the x, y, and
z axes of the Bloch sphere and was shown to be optimal for the
single-qubit state reconstruction problem [24]. In this work we
investigate an optimal reconstruction using a POVM inspired
by the SIC-POVM. The SIC-POVM can be represented by
an equiangular constellation of complex vectors in Hilbert
space. For qubit states, the SIC-POVM, therefore, forms a
tetrahedron. The POVM we propose is similar, being a tetra-
hedron squashed along one axis. Like the SIC-POVM, our
measurement requires only four POVM elements, the minimal
number for an informationally complete measurement on a
single-qubit state.

From a theoretical perspective, the connection between our
proposed POVM and the SIC-POVM suggests the existence
of some unexplored optimal POVMs in higher dimensions1

given any specific amount of prior knowledge. From a
practical viewpoint, we anticipate that the proposal and im-
plementation of an optimal measurement for localized state
tomography will stimulate the development of optimal adap-
tive protocols for quantum tomography that converge to the
locally optimal measurement we proposed.

The structure of this paper is as follows: in Sec. II we give
a detailed description of the state tomography problem in the
localized setting. We demonstrate that the SIC-POVM, which
is optimal for uniformly distributed states, does not saturate
the N-H bound. Hence, it is not optimal in this context. In
Sec. III we introduce optimal POVMs that saturate the N-H
bound. We present the analytical form of the POVMs, which
depend on the density matrix of the mixed state ρ.

In Sec. IV we show the experimental procedure that im-
plements the optimal POVM on a quantum computer. The
method proposed is robust for estimating all mixed states ex-
cept for marginal cases when the purity is exactly 1. Here we
utilize an efficient circuit decomposition of a two-qubit uni-
tary [26], which uses fewer CNOT gates and single-qubit gates
than the previous approach of implementing qubit POVMs
[27]. The processing of the raw quantum circuit output in-
tegrates measurement gate error mitigation [28] and a live
calibration scheme which ensures the unbiasedness of the
measurement and improves the overall performance. These
error mitigation approaches have been shown to improve the
quality of results in other areas of quantum information re-
search [29–31].

In Sec. V we show the results generated by methods
discussed in Sec. IV. The results validate the feasibility
and demonstrate the optimality of the proposed POVMs.
Nonetheless, due to various noises in the current generation of
quantum computers, the resulting mean squared error (MSE)

1Although the existence of such an object for arbitrary dimension
N is still an open problem [25].

value has room for improvement, as the resulting MSE is at
worst 15% above the predicted theoretical MSE.

Finally, in Sec. VI we will discuss the application of the
proposed POVMs in a broader context and address the limita-
tion of the method when purity is close to or is exactly 1. We
address one of the major drawbacks of the localized approach,
namely, that a good prior knowledge of the state is required.
We present a two-step adaptive method incorporating both the
SIC-POVM and our proposed POVMs. This adaptive method
outperforms either the SIC-POVM or the proposed POVM
when either of them is used independently. We also consider a
generalization of our optimal POVM for arbitrary amounts of
prior knowledge. In the limit of a completely unknown state,
this reduces to the SIC-POVM as expected. The result from
simulations of these two adaptive measurement approaches
demonstrates the robustness of the method without the as-
sumption of good prior knowledge.

II. BACKGROUND

To find the optimal measurement in the local setting dis-
cussed above, we first define the problem and the figure of
merit, which will be used throughout the paper. The tomo-
graphical problem we will investigate is formulated as a linear
quantum state tomography problem [32]: We would like to
reconstruct an arbitrary mixed single-qubit state linearly pa-
rameterized as

ρ = (I + �σ · θ)/2, (1)

where �σ is the vector of Pauli matrices and θ is the vector
of parameters we wish to learn about. We define r as the
length of the vector θ, i.e., r = |θ|. r also determines the
purity by (r2 + 1)/2 and is a crucial parameter for the qubit
state as we shall see in the later sections. For the estimated
state, ρ̂, the metric of deviation we use is the trace norm
Dρ,ρ̂ = tr[

√
(ρ̂ − ρ)†(ρ̂ − ρ)] (twice the trace distance). In

this formulation, the trace norm equals the Euclidean distance
between the estimated parameter vector θ̂ and the true pa-
rameter vector θ, i.e., Dρ,ρ̂ = |θ̂ − θ| where θ̂ is the estimated
vector of parameters θ [19].

This formulation enables us to minimize the expectation
value of the square of the trace norm between the true state and
the estimated state, E [D2

ρ,ρ̂] by minimizing the total MSE of
the three parameters. In addition to the formulation presented
above, some studies also consider the Hilbert-Schmidt norm
or fidelity as their figure of merit [16,17]. In the case of qubit
state tomography, the Hilbert-Schmidt norm is proportional
to the trace norm between two arbitrary mixed states; thus, it
is equivalent to minimizing either of the two norms. Under
the formulation discussed above, the MSE produced by the
SIC-POVM for a mixed state is [5]

MSESIC = 9 − r2. (2)

While the MSE that the SIC-POVM can attain is optimal in
the nonlocal setting, the development of quantum metrology
theory suggests that better measurements may be possible in
the local setting we are considering. One such development
is the precision bound for multiparameter estimation, the N-H
bound [22,23]. This bound generalizes information trade-off
relations such as the Heisenberg uncertainty principle and
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gives the precision limit of any multiparameter estimation
problem when the probe states are measured individually.
The MSE described above can be lower bounded by the N-H
bound as we have essentially transformed the problem of
linear quantum state tomography into a multiparameter esti-
mation problem [22], for which the N-H bound is applicable.
Facilitated by the method of semidefinite programming for
efficient calculation of the N-H bound [23], we verified that
the N-H bound for the single-qubit tomography problem is

CNH = (2 +
√

1 − r2)2. (3)

This shows that the MSE for estimating θ obtained from
identical measurements on N probe states, MSE(N ) when
measuring them one by one is lower bounded by CNH/N
for all unbiased measurement methods.2 A measurement that
reaches the value of CNH/N will be deemed optimal. It is
easy to show that CNH < MSESIC except at r = 0. Thus, the
SIC-POVM is not optimal, and there may exist an optimal
measurement that performs better than the SIC-POVM and
saturates the N-H bound.

III. OPTIMAL POVM

We now present the analytical form of the optimal POVMs
which saturate the N-H bound. Depending on the mixed state,
ρ [as parameterized in Eq. (1)], we have different solutions
for the optimal POVM, {�i(θ)}. Each POVM consists of four
rank-1 operators. There is a simple decomposition for the
elements, �i = ri|ψi〉〈ψi| where ri is the real amplitude and
|ψi〉 is a pure-state state vector. Notice that the amplitude ri

denotes the trace of the corresponding POVM element, i.e.,
tr(�i ) = ri. Hence, we can visualize the POVM element �i

by visualizing a vector in the Bloch sphere whose direction
is defined by the direction of |ψi〉 and its length by ri. The
four vectors are orientated such that the representation of the
POVM element, �z, points along the opposite direction of
the probe state ρ while the other three point to vertices of
an equilateral triangle in the opposite direction. A POVM in
this symmetrical shape is inspired by the SIC-POVM which
forms a tetrahedron; thus, we call this POVM the squashed
tetrahedron POVM (ST-POVM).

The ST-POVM is parameterized by two parameters, 0 �
rp < 1 which determine the “squashedness” of the tetrahedron
and the angle φ which orientates the legs forming the equilat-
eral triangle. Explicitly, the four POVM outcomes are given

by rz = (1 +
√

1+rp

1−rp
)−1, r1 = r2 = r3 = 2−rz

3 and

|ψz〉 = |1〉,
|ψ1〉 = |0〉A0 + |1〉A1eiφ,

(4)
|ψ2〉 = |0〉A0 + |1〉A1ei(φ+2π/3),

|ψ3〉 = |0〉A0 + |1〉A1ei(φ+4π/3),

where A0 = 1/
√

3r1 and A1 = √
1 − 1/3r1. These four

POVM elements with φ = 0 are shown in Fig. 1.

2This bound agrees with the bound derived by Gill and Massar
[24,33].

FIG. 1. A Bloch sphere representation of the four elements of
the ST-POVM (with rp = 0.8 and φ = 0) shown by the red arrows.
The green arrow shows the state being estimated. The shape formed
by the four vertices is a triangular pyramid. When the state being
estimated lies closer to the surface of the Bloch sphere (higher
purity), the shape formed by the four elements is squashed further.
When estimating the maximally mixed state, rp goes to zero, and the
ST-POVM converges to the SIC-POVM.

With this POVM and setting φ = 0, we obtain an estimate
of θ from θ̂ j = ∑

k E jk fk , where

E =
⎛
⎝0 2a −a −a

0 0
√

3a −√
3a

b 1 1 1

⎞
⎠, (5)

a =
√

1 +
√

1−rp

1+rp
and b = −1 − 2

√
1+rp

1−rp
. fk = nk/N (k =

z, 1, 2, 3) are the frequencies with which each POVM out-
come occurs given N probes are measured and the outcome
�k was observed nk times. One can verify the unbiasedness
of θ̂ for all rp and φ by calculating E[θ̂ j]. This is given by
E[θ̂ j] = ∑

k E jk pk = θ j where pk = tr[�kρ] are the probabil-
ities for outcome k. The expected MSE for this estimator is
E[MSE] = ∑

j,k pk (E jk − θ j )2. For the state ρ = |0〉 1+r
2 〈0| +

|1〉 1−r
2 〈1|, the expected MSE is minimized when rp = r, and

this saturates the N-H bound.
Without loss of generality, we have provided the analytical

form of the POVM when the probe state is oriented along the
z axis. For any other state oriented differently, it is always
possible to use a coordinate system that aligns its positive
z axis with the state and use the formulation given above
before transforming the estimated state back to the original
coordinate system. This change of basis doesn’t affect the
optimality of the measurement as the MSE based on trace
norm is invariant under unitary transformations.

In principle, it is always possible that the estimated state
will not lie within the Bloch sphere, i.e., |θ̂| > 1. However, in
practical scenarios, as pointed out in Ref. [18], the probability
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FIG. 2. An illustration of the procedures involved in the demonstration. The first three stages are handled by the quantum computer, and the
last two stages are handled by the classical computer. The classical operations take the frequencies of outcomes, F , and apply the measurement
error mitigation. At the last step, by applying the preconstructed estimator E and the calibration offset 	θ̂ , we obtain the final estimates of the
parameters.

of obtaining a physically impossible state will decay to zero
with increasing repetitions of estimations due to the large
deviation theory [34] as long as the estimator is unbiased.
However, if the purity of the state is close to 1, the number of
experiments required to guarantee the absence of a physically
impossible estimate can be too big to realize experimentally.
In this paper we do not consider this issue because neither
states with r close to 1 nor an insufficient number of experi-
ments occur.

IV. METHODOLOGY

We implemented the ST-POVM on a superconducting
quantum computer to demonstrate its feasibility and utility.
An illustration of the general procedure of the demonstration
is shown in Fig. 2. The demonstration involves both opera-
tions on quantum computers and classical computers. For the
quantum operations, we generated the state and applied the
ST-POVM before measuring it at the end. For the classical
statistical operations, we utilize the measurement gate error
mitigation technique [28] and a calibration procedure to im-
prove our results. The procedure shown in Fig. 2 performs
estimation with a fixed number of probe states N . However,
through this paper, we will subsample these data to obtain
estimates of the quantum state based on different numbers of
trials

In this section we will first discuss the method of preparing
probe states and then the method of implementing the POVM
on the quantum computer. Finally, we will discuss the detailed
implementation of the demonstration with error-mitigating
techniques and calibration.

A. State preparation

Quantum circuits initialize only pure states, and the uni-
tary quantum gates available do not change the purity of the
initialized state in principle. Thus, to prepare a mixed state,
we use the result that a mixed-qubit state can be generated by
a probabilistic combination of two pure states with probability
P1 and P2. For a single-qubit mixed state ρ, it is always
possible to decompose the mixed state as follows:

ρ = P1|φ1〉〈φ1| + P2|φ2〉〈φ2|. (6)

Thus, implementing an estimation scheme on a certain mixed
state is equivalent to performing estimations with pure states
randomly chosen between |φ1〉 and |φ2〉 with probabilities P1

and P2. The U1 block in Fig. 3(a) generates the desired pure
state |φi〉 for the simulation of a mixed state.

U1 is designed to bring the initial |0〉 state of the probe qubit
to the pure state of either |φ1〉 or |φ2〉. The decomposition
shown in Eq. (6) is not unique. In our demonstration, we use
pure states ρ(θ) (|θ| = 1) that have the same θy and θz as the
target mixed state ρ. The probabilities assigned to the two
states will have a ratio of P1 : P2 = |θx − θ (2)

x | : |θx − θ (1)
x |. θx

is the x axis projection of the mixed state. θ (1)
x and θ (2)

x are the
x-axis projections of the two pure states ρ1(θ) = |φ1〉〈φ1| and
ρ2(θ) = |φ2〉〈φ2|. During the initialization of the mixed state
ρ, a pure state will be randomly selected from {ρ1, ρ2} with
probabilities P1 and P2, respectively.

B. Naimark extension

The quantum circuit uses two qubits for each instance of
the chosen pure state. One is the probe qubit, and the other
is the auxiliary qubit which helps the implementation of the
POVM. The U2 block in Fig. 3(a) represents the combined
unitary operator of a series of two-qubit and single-qubit gates
that entangle the probe qubit and the auxiliary qubit. This is
to use the expanded Hilbert space for implementing the ST-
POVM on the probe qubit.

We followed the principles of Naimark’s dilation theorem
[19,35,36] to construct U2, which requires an auxiliary qubit
for our experiment. The U2 constructed should entangle the
probe qubit and the auxiliary qubit initialized in the |0〉 state in
a particular way such that a chosen projective value measure-
ment on the extended two-qubit state E+

i produces the same
probability distribution as the original POVM:

tr(ρ ⊗ |0〉〈0|U †
2 E+

i U2) = tr(ρ�i ) for ∀ρ. (7)

For more detail on Naimark’s dilation theorem see
Appendix A.

In our demonstration, the quantum computer hardware sup-
ports projective measurements on each qubit; thus, the chosen
measurement on the extended Hilbert space will be E+

i =
|ei〉〈ei| where |ei〉 denotes each of the four computational basis
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FIG. 3. (a) A schematic diagram of the quantum circuit for the demonstration. U (1)
1 or U (2)

1 is a single-qubit unitary used to prepare the
appropriate probe state. U2 implements the optimal ST-POVM. (b) An example of the circuit; all the circuits have the same structure. The
dotted black lines separate the circuit into three steps, which correspond to U1, U2 and measurement gates in (a). RZ denotes the parametric Rz

gates with the corresponding input angles that realize U1 and U2.

states: |00〉, |01〉, |10〉, |11〉. By Naimark’s dilation theory
and an numerical approach of implementing the POVM, we
obtained the required U2 that fulfils Eq. (A3). By applying U2

on the two-qubit state and making projective measurements
along the four computational basis states of the quantum
computer available, we performed the ST-POVM on the probe
qubit.

C. Implementing on IBM quantum computer
with autonomous package

The decomposition of these unitary U1 and U2 is handled
by the autonomous algorithms provided by IBM’s quantum
computing package, Qiskit [37]. An example of the na-
tive circuit running on one of the IBM quantum systems,
ibmq_jakarta, is shown in Fig. 3(b). We use this quantum
system to generate all experimental results in this paper. For
a single-qubit unitary, Refs. [38,39] provide a scheme for
the device with restricted sets of single-qubit operations to
construct arbitrary single-qubit unitary gate. For a two-qubit
unitary, Ref. [26] shows that with three CNOT gates acting on
the two qubits and some other single-qubit unitary operation,
one can construct arbitrary two-qubit unitary operators.

1. Readout noise and measurement gate error mitigation

Readout noise refers to the noise of the measurement gate.
With up to 10% error for assigning the |0〉 state as |1〉 or vice
versa for some qubits on the IBM cloud computing devices,
the readout noise posed a significant challenge to the accuracy
of our repeated measurements. Thus, it is crucial to mitigate
the readout noise produced by the measurement gates. In
our demonstration, we followed the error mitigation scheme
proposed in Ref. [28] for minimizing readout noise. This
error model proposes that the output frequencies vector F ′
of a set of measurements have a linear correlation to the true
frequencies F , which would be obtained on an ideal quantum
computer. The linear correlation is as follows:

F ′ = MF, (8)

where M is a probability matrix that maps the ideal output F
to the experimental output F ′. The method we implement first
generates the error matrix M, a nonunitary operator describing
the error. A set of four calibration circuits are run measuring
only trivially generated states, |00〉, |01〉, |10〉, |11〉, which are
assumed to be error-free. Then we use the reverse correlation

M−1 to calculate what the true frequencies should be for the
experimental runs:

F = M−1F ′. (9)

Whenever we perform an offset calibration, we also generate
the matrix M so that the matrix M is always up to date. This
accounts for any possible drifting of hardware parameters.

2. Time-dependent calibration

For any localized measurement that demands great pre-
cision, calibration before the measurement is recommended
as it reduces systematic errors which cannot be reduced by
repeated estimation, unlike random error due to statistical
fluctuations. The execution of circuits on the quantum com-
puter lasted only 12 h. However, the entire execution is split
into four time segments due to the availability of IBM’s quan-
tum computers. Thus, the possible time-dependent variables,
such as the drift of hardware parameters and updated hardware
calibrations, may affect the raw output of the circuits. To
account for this time-dependent issue, we performed calibra-
tions regularly and compensated for the systematic offset for
each corresponding main run.

The calibration runs use the same U2 (ST-POVM) but
slightly different U1 (state preparation) compared to the main
runs. For precise calibration, we need to remove any possi-
bility of circuit degeneration. The degeneracy of the circuit
refers to the reduction of circuit complexity when initializ-
ing different states. For example, initializing a general state
such as 1/

√
2(|0〉 + i|1〉) requires a more complex circuit

than initializing state |0〉. To avoid degeneracy while keeping
the control protocols on the quantum computers autonomous
and robust, we adopted a semirandomized approach to the
initialization step of the main runs.

For every two of the main runs, we generate one calibration
run consisting of 10 randomized mixed states in the unit
sphere of radius 0.1 centered around the true state. We also
randomized the exact mixed state in a small sphere of radius
0.01 to eliminate any degeneracy of state generation. The
exact randomization scheme of the main run is as follows:
We choose a mixed state for a set of two main runs randomly
following a uniform distribution inside a small sphere of
radius 0.01 centered around the mixed state we intended to
simulate. Then we initialize and measure the state with the
exact procedure also implemented on the calibration circuits.
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FIG. 4. The ranges of the semirandomized initialization scheme.
The outermost sphere is the Bloch sphere, and the medium size
sphere shows the range of randomly chosen calibration states. These
calibration initial states will be used to find the offsets on parameter
θ . The smallest sphere shows the range of randomly chosen for the
main runs. The medium sphere and the small sphere are centered
around the intended true state shown by the vector arrow. The sizes
of spheres in this graph are exaggerated for improved visual clarity.
The exact radii of these spheres are given in the main text.

The ranges of the semirandomized initialization are shown in
Fig. 4. The possible error generated from the semirandomized
approach will be discussed in the next section.

To correct the systematic error, we use the calibration runs
to find the offsets for estimating each component of the Bloch
vector. This is done by fitting the known input Bloch vector
components to the estimated components via linear regres-
sion, with a fixed gradient of 1, to ensure that our estimates
are locally unbiased. Next, we subtract the systematic offsets,
	θ̂ in Fig. 2, from the corresponding estimate of parameters
obtained from the main runs. The method described above
provided significant improvement to the overall accuracy, es-
pecially for estimates from large ensembles of identical copies
of the qubit state.

V. RESULTS

In this section, we will present the results of the demonstra-
tion. We will also address our statistical method to analysed
the raw results. For the very last stage of the demonstra-
tion shown as “Correcting estimated states by calibration
offsets” in Fig. 2, the input is the measurement results af-
ter being corrected by measurement gate error mitigation.
This result is a series of random POVM outcomes chosen
from the four possible outcomes X1, X2, X3, and X4 (such as
{X1, X2, X1, . . . , X4, X1}). The four possible outcomes corre-
spond to the four POVM elements, and the length of the series
is equal to the total number of probe states involved in the
demonstration. In a practical setting, the number of probes

FIG. 5. The effective MSE using 100 probe states characterized
by the length of the Bloch vector, r. The result is obtained from a
total number of 180 000 identical probe states for each data point via
repeated subsampling. The MSE is scaled to measure the effective-
ness of the method per probe state, i.e., MSE = N MSEN where N
is the number of probes. The data points are the combined scaled
MSE of the estimated state ρ̂(θ̂x, θ̂y, θ̂z ) when the group’s size is
100. The blue (upper) line shows the theoretical MSE for a perfect
SIC-POVM. The red dotted line indicates the N-H bound that lower
bounds the MSE of any possible separable measurement. Error bars
are one standard deviation obtained via bootstrapping.

may range from a few tens to millions. To comprehensively
analyze the performance and the potential of the ST-POVM,
we analyze the series of outcomes for the probe states by
dividing them into groups of the same sizes, N .

From each group with N outcomes, we calculate the fre-
quency with which each POVM element is observed F =
( fz, f1, f2, f3)ᵀ. Using Eq. (5), we calculate the estimated
value of θ, θ̂, for each group. Then we calculate the MSE
for each group and report the average MSE as the result.
In this section, as we are working with multiple probes
and the precision limit given by the N-H bound is MSE �
CNH/N , we expect the MSE to scale down with an increased
number of probes (in each group) MSEN → MSE1/N . In a
practical setting, a large number of probes will be needed
to obtain a satisfactory estimate of the state. Here we first
present results using 100 probes to demonstrate the effec-
tiveness of the ST-POVM for a lower number of probes. We
then proceed to establish a model for the performance, in
terms of MSE, when varying numbers of probes are used to
estimate θ.

A. MSE of 100-probe estimation

We implemented the ST-POVM scheme on IBM’s quantum
computers. We obtained a set of results that shows the advan-
tages and limitations of the measurement method we proposed
in an experimental setting. The MSE in our demonstration
conducted using 100 probe states is shown in Fig. 5. This
result demonstrates that the POVM we suggest can saturate
the N-H bound for some instances. Note, however, that in
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FIG. 6. The deviation of the output state from the ideal state is
demonstrated by the differences in probability for each measurement
outcome. The probabilities of the outcomes marked by the four basis
states are labeled by “Quantum Computer (QC) result.” The probabil-
ities of ideal outcomes are produced on simulated noiseless circuits
and shown as the “Ideal result.” The deviation of the amplitude from
the ideal amplitude accounts for the time drift of the experimental
setting across six sets of measurement. The error bar in the diagrams
indicates the estimated statistical error of sampling from a multi-
nomial distribution. Each set of measurements is performed within
30 min on IBM’s quantum devices.

some cases, the average experimental MSE deviates from the
theoretical prediction. We provide a brief discussion of this
experimental error in the MSE obtained from sets of 100
probe states in this section, and a further elaborated analysis
regarding the error in the experimental MSE using larger
numbers of probes will be presented in Sec. V B.

By analyzing the entire series of POVM outcomes of
180 000 measurement for each r, Fig. 6 hints at the kind of
error we encounter when operating the quantum computer.
For all six different quantum states, the probability amplitudes
of the |10〉 state are consistently higher than the amplitudes
of the ideal state, and the amplitudes of the |11〉 state are
consistently lower than the ideal amplitudes. This could be
the consequence of a systematic gate error or a gate alignment
problem, but a definite conclusion about the origin of the error
could not be made based on the data. As we have already
performed measurement gate error mitigation before getting
the result in Fig. 6, we suspect that the influences of the
measurement gate error on the data as a whole are relatively
small compared to the observed deviation from the ideal result
of up to 10%.

TABLE I. The result of the model fitting according to Eq. (10).

r CNH C δ

0.15 8.932 8.939 ± 0.096 2.72 ± 0.92 × 10−5

0.25 8.810 8.937 ± 0.066 33.41 ± 0.63 × 10−5

0.45 8.370 8.785 ± 0.065 7.45 ± 0.62 × 10−5

0.55 8.038 8.108 ± 0.115 14.06 ± 11.04 × 10−5

0.75 7.083 7.358 ± 0.072 2.10 ± 1.69 × 10−5

0.85 6.385 7.225 ± 0.068 13.07 ± 0.65 × 10−5

We did not conduct any further investigation on the sources
of errors with the POVM implementation as our focus is on
the realization of the ST-POVM. To confirm and investigate
the error contribution from the POVM implementation, we
suggest a simpler measurement scheme such as the one shown
in [40], which can potentially reconstruct any middle state in
different stages of the circuit with a much lower error rate
compared to the existing errors in the circuit.

B. MSE with varying number of probe states

In the previous section, we presented the MSE analyzed in
groups of 100 probe states. For practical use, we would like to
consider various different numbers of probe states. Account-
ing for the possible error generated during the demonstration,
we propose the following model for how the MSE scales with
the number of probes used:

MSE(N ) = C

N
+ δ, (10)

where C is the experimental bound which depends on the
specific implementation, and δ is a constant that accounts for
the systematic error and drift of the experimental settings.
As the N-H bound poses a fundamental limit to the state
estimation problem, the C value in the model above should
not be less than the N-H bound, i.e., C � CNH. In an ideal
experiment, C = CNH and δ = 0.

Given a finite number of measurement outcomes (Ntotal =
180 000 in our case), to accurately fit the model, we uti-
lized repeated subsampling to get many more instances of
the MSE(N ) than just Ntotal/N sets. To conduct subsampling,
we randomly divided the entire sample into Ntotal/N sets and
used the N outcomes in each set to generate an instance of
MSE(N ). Then we repeated the division of the entire data
set multiple times to generate a greater number of separate
instances of MSE(N ) values, from which an estimate of the
average MSE(N ) will be calculated by averaging over all in-
stances of MSE(N ). We observed no further convergence after
reaching 10 000 instances of MSE(N ) for all probe states.
Thus, we use 10 000 instances for all the results presented
in this section.

In Fig. 7 we fit a modified version of Eq. 10 shown below
by linear regression

N MSE(N ) = C + N δ. (11)

With an increasing number of estimations, we can see that
the specific MSE, N MSE(N ), increases almost linearly. This
show that our model is a valid description of the results. In
Table I, for different probe states characterized by r, the values
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FIG. 7. A demonstration of the model fitting according to
Eq. (11) for r = 0.25. The error bar shows the standard deviation
of MSE for each number of probes obtained by bootstrapping.

of the N-H bound, CNH, and the values of the fitted parameters,
C and δ, are shown. We attribute the deviation of C from the
N-H bound to the imperfect implementation of the POVM,
and we attribute the value δ to imperfect calibration and drift
of the experimental setup. In the following paragraphs, we
will try to explain and validate the above claim.

Due to the experimental imperfections, the POVM that is
physically implemented by the imperfect circuit differs from
the theoretical optimal POVM we proposed. As long as we
treat all the quantum gates as unitary gates, the imperfect
circuit always corresponds to some POVM acting on the first
qubit. We can see in Fig. 6 that the probabilities of arriving at
the four different POVM outcomes differ from the ideal prob-
abilities calculated from the optimal POVM. Assuming that
the initialization step gives negligible errors, this indicates the
implementation of the POVM can be slightly different from
the proposed POVM. This imperfect POVM is less optimal,
and the variance resulting from the suboptimal POVM will be
greater than the N-H bound by an amount depending on the
degree of error in the circuit.

We propose that the major contributor to the values of δ

is the statistical error of the calibration runs. As we use a
finite number of qubits for the calibration data, the calibration
procedure will not be perfectly accurate. Thus, there is always
a finite gap between the correction proposed by the calibration
runs and the actual deviation between the means of the main
measurement and the true values. Repeating the main runs
will not eliminate this systematic error, so the effect of the
slight inaccuracy of calibration will contribute to the constant
term in Eq. (10), δ. We can verify this by calculating the
expected standard deviation based on the finite amount of data
used in calibration. For every 30 000 data points for the main
measurement, we run 150 000 calibration measurements. The
estimated standard deviation from the ncalib = 150 000 cali-
bration runs will be approximately CNH/ncalib = 3 × 10−5 to
7 × 10−5, which is on the same scale as the δ listed in Table. I.

In addition to the statistical error of calibration, we pro-
pose other possible contributors to δ that are comparatively
harder to estimate. One of them is random fluctuations of
the experimental circuit (including the initialization and the

POVM implementation) in terms of its average effect on an
input state, i.e., fluctuation of the physical parameters when
the circuit is implemented on the quantum computer. The fluc-
tuation of measurement gate performance contributes to δ as
well because the independent and identical performance of the
measurement gate is one of the premises of the measurement
error mitigation scheme discussed in Sec. IV C 1. Error re-
ports based on the method of randomized benchmarking [41]
can be fetched from the database of IBMQ. Still, the reports
available based on the randomized method are insufficient for
analyzing the contribution to δ from the circuit. Other possible
contributors can be the drift of experimental settings across
different times and the statistical error in the result on the
original 180 000 probes before subsampling.

VI. COMPLEMENTARY SIMULATIONS

The method above and the N-H bound are designed to
solve a localized problem, i.e., when the state is known rel-
atively accurately, and we are trying to infer small changes in
the state. However, in an alternative scenario, the qubit state
can be completely unknown, or we know only approximately
what the state might be. For such purposes, it is neither possi-
ble nor efficient to apply the ST-POVM measurement directly,
as the orientation of the ST-POVM depends on the state. Thus,
we present simulations of two adaptive methods in this sec-
tion to demonstrate the potential usefulness of the ST-POVM
in the scenario where we have some limited amount of prior
knowledge. Adaptive approaches to tomography have been
considered before both theoretically [40] and experimentally
[42–44]. In this section, we will first illustrate the simulations
of an adaptive measurement scheme on states assumed to be
completely unknown. Then we will consider optimal mea-
surements for differing degrees of prior knowledge. We show
that in the limit of a large number of probes, with an adaptive
method utilizing the ST-POVM, the MSE approaches the N-H
bound. We also show that as the amount of prior knowledge
increases, the optimal measurement tends to the ST-POVM.

A. Adaptive POVM using the SIC and ST-POVM

The simulation discussed in this section will show an
adaptive scheme which gives an effective MSE that saturates
the N-H bound asymptotically with the total probe number.
We present a general guideline for implementing a two-step
adaptive method, which uses the SIC-POVM initially before
switching to the ST-POVM. We show that the optimal number
of preliminary steps, given a fixed amount of total probe
states, N , is proportional to

√
N when N is large. This sec-

tion demonstrates the effectiveness of applying the ST-POVM
on a more general problem of an unknown qubit state.

To measure a completely unknown state, one approach
is an adaptive measurement scheme where the measurement
of the next step will depend on the measurement result of
the steps before it. In this way, the measurement applied
for later steps will have reduced variance compared to the
measurements applied before. In this example, we consider
a two-step adaptive measurement where the SIC-POVM will
serve as the preliminary measurement, and ST-POVM will be
the secondary fine measurement. As the optimal ST-POVM
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is state-dependent, in the second stage, the ST-POVM chosen
will be the most suitable measurement from the family of ST-
POVMs based on the estimated state given by the preliminary
step. After the two stages are completed, the final estimated
state will be a weighted average of the result of the prelimi-
nary stage and the secondary stage. The final estimation of the
parameters will be

θ̂ = W θ̂
(1) + (1 − W )θ̂

(2)
, (12)

where 0 � W � 1 is the weight of the preliminary measure-
ment. The superscripts(1) and (2) denote the first step and the
second step of the adaptive measurement. The MSE that we
aim to minimize for optimizing this adaptive method is

MSE = E [(θ̂ − θ)2], (13)

where θ is the probe state. With a given number of probes N
to complete the two-step adaptive measurement, we will need
to allocate an appropriate amount of probes to the preliminary
measurement and assign an appropriate value to the weight W
to minimize the MSE.

To implement simulations with up to 1010 total available
probes, we choose to use an approximated analytical approach
instead of Monte Carlo sampling. We will justify the approx-
imation used in this approach below and, in Fig. 9(a) below,
a referential set of data is given to further demonstrate the
asymptotic accuracy of the approximated analytical approach.
For this analytical approach, the central limit theorem that
applies to a large number of repeated sampling facilitates our
analysis. For a large number of available probe states, by the
multidimensional central limit theorem [45], the distribution
of the estimated state for each stage can be well approximated
by a multivariate normal distribution centered around the true
state with covariance matrix �N = �/N . However, as shown
in Fig. 9(a), the approximation tends to introduce more error
in the low probe number regime and the results obtained con-
verge to the Monte Carlo simulation in higher probe number.

The central limit theorem also leads to a simplification
of finding the optimal weight W from Eq. (12). Assuming
that the results obtained from both stages are unbiased, the
estimated states for the two stages are uncorrelated on all three
parameters θx, θy, and θz. For θ j , this translates to

cov
(
θ

(1)
j , θ

(2)
j

) = 0 ( j = x, y, z), (14)

where cov( ·, · ) is the covariance between the two random
variables. Note that the two outcomes from the two stages
remain statistically dependent on each other as the parameter
of the second stage depends on the result of the first stage. Let
the MSE of the preliminary stage be MSE1, and the MSE of
the secondary stage be MSE2. By Eq. (14), we simplify the
total MSE based on Eq. (12) to be

MSE = W 2MSE1 + (1 − W )2MSE2. (15)

The MSE is minimized by setting

W = MSE2

MSE1 + MSE2
. (16)

Using the optimal value of the weight W , we can find the
average MSE for different numbers of allocated preliminary
measurements by Eq. (12). For a given preliminary outcome
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FIG. 8. The effective MSE given 10 000 probe states,
N MSE(N ), for different number of allocated preliminary steps,
NSIC. There is an optimal number of preliminary step N ′

SIC that gives
a minimum MSE. The MSE obtained when only SIC-POVM is used
is indicated by the upper flat line. The lower flat line indicates the
N-H bound. The optimal NSIC is indicated by the vertical line.

θ̂
(1)

, we have MSE1 = (θ̂
(1) − θ)2. If the function MSE2(θ̂ (1) )

is known, given initial parameter, θ , we are able to evaluate
both MSE1 and MSE2(θ̂ (1) ). By Eq. (15) and Eq. (16), a MSE
value that depends on the preliminary estimate θ̂ (1) can be
constructed. The method that we use to find the function,
MSE2(θ̂ (1) ), is a change of the coordinate system. Based on
the preliminary estimate, θ̂ (1), we switch to a coordinate sys-
tem such that the predicted state lies along the negative z axis.
This means that the optimal POVM, used in the second stage,
is oriented along the positive z axis. The MSE obtained in this
setting is equal to the MSE in the original coordinate system
because the MSE derived from the trace norm between states
is invariant under a unitary rotation. Then, after transforming
θ̂ (1) back to the original coordinate system, we have the func-
tion MSE2(θ̂ (1) ).

Last, we will need to iterate through different numbers of
probes allocated for the two stages to find the optimal num-
ber of preliminary measurements together with the minimum
MSE achieved by the two-step adaptive method. Thus, we per-
form numerical integration with a fixed number of preliminary
measurements using the SIC-POVM, NSIC, as shown below:

MSE =
∫∫∫

S
MSE(θ̂

(1)
) pdf(θ̂

(1)
) d θ̂

(1)
, (17)

where pdf(θ̂
(1)

) is the probability density function of the
multivariate normal distribution that we use to approximate
the discrete distribution of the preliminary outcomes. S is the

entire parameter space with |θ̂(1)| < 1.
We provide the detailed graphed result for one sample

qubit state in Fig. 8 and Fig. 9, and the results of five other
states are presented in Table II. For the detailed examples, we
use the state ρ = (I + �σ · θ)/2 where θ = (0, 0, 0.5)
 is the
vector of parameters. For this specific state, Fig. 8 shows the
change in MSE when allocating different numbers of qubits
to the SIC-POVM preliminary experiments when the total
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FIG. 9. (a) Asymptotic behavior of the effective MSE when the
number of total probes approaches infinity. A set of data generated
from a Monte Carlo simulation is shown for reference. The error
bar indicates the statistical error of the Monte Carlo simulation. The
dotted red line shows the N-H bound. (b) The change of the optimal
preliminary step number, NSIC with different numbers of total probes,
N . The linear fit verified Eq. (18).

number of qubits is 10 000. It shows that there is one and only
one minimum MSE. Either more preliminary steps or fewer
preliminary steps will increase the MSE. For 10 000 qubits,
the optimal number of preliminary SIC-POVM experiments is
673 (without accounting for modeling error). In this case, the
effective MSE is only 0.8% above the N-H bound at 8.28. In
contrast, for a pure SIC-POVM approach, the effective MSE
will be more than 6.5% above the N-H bound at 8.75. For
a larger number of total probes, the effective MSE is closer
to the N-H bound and will eventually converge to the N-H

TABLE II. The coefficient B of various states on the z axis. The
value of B grows to infinity when the θz value approaches 0, 1, and
−1. Thus, we did not give a value of B for θz = 0. The algorithms we
have designed can solve the problem of finding the optimal number
of preliminary steps with arbitrary parameters. This table serves as
a general guideline of how many preliminary numbers are preferred
and as a demonstration of our algorithms.

θz −0.9 −0.5 −0.3 0 0.3 0.5 0.9
B 8.39 6.76 10.35 NA 10.28 6.55 5.24

bound when N → ∞. This asymptotic behavior is shown in
Fig. 9(a). We also found that for this particular two-step adap-
tive measurement on the state specified above, the optimal
number of preliminary experiments, which we denote N ′

SIC,
can be approximated by

N ′
SIC = B

√
N, (18)

where B is a constant, which depends on the state’s purity and
orientation. Figure 9(b) shows the change of N ′

SIC. By linear
regression, we found that the B = 6.55 is the coefficient.

We have included the suggested coefficient B for other
states when the ST-POVM is aligned along the z axis in
Table II. The initial SIC-POVM in our simulated experiment
always points downward, similar to the “squashed” tetrahe-
dron shown in Fig. 1. We also found that the value of B grows
when the θz value approaches 0, 1, and −1. For 1 and −1,
as the ST-POVM becomes more specialized, it requires more
preliminary steps to ensure a correct input estimated state until
at r = 1, the formulation introduced in Sec. III breaks as the
bottom left entry, b + r, in the estimator matrix E in Eq. (5)
becomes infinity. This incompatibility of the ST-POVM with
pure states is expected because setting the preliminary expec-
tation of r = 1 eliminates the uncertainty of estimating θ̂ in
the radial direction. For example, the state |0〉 has a vanishing
z direction variance:

E[(θ̂z − θz )2] =
∑
i=0,1

p|i〉(θz,|i〉 − 1)2 = 0. (19)

This changes the three-parameter estimation problem to a
two-parameter problem. Thus, setting r = 1 violates the as-
sumption of estimating three parameters simultaneously for
the ST-POVM estimation scheme. For θz = 0 the SIC-POVM
is already the optimal POVM. Thus, any further adaptive
measurement will be less optimal.

Note that Table II is computed assuming that the state is
known. In an experiment with a completely unknown probe
state, it will not be possible to use the optimal B value or the
optimal weight in Eq. (16). For an experiment with a flexible
amount of probe states, one could use approximately 20

√
N

of the probes for the preliminary SIC-POVM without inducing
significant overhead for the ST-POVM while maintaining high
suitability for the follow-up measurement. In this simulation,
the relative orientation between the initial state and the SIC-
POVM will change the coefficient B. The reason for this is
that although estimations given by the SIC-POVM give a
uniform MSE = 9 − r2

p [Eq. (2)] regardless of the orientation
of the POVM, the distribution of SIC-POVM estimates is not
invariant with a unitary rotation. This can be explained by the
discrete structure of the SIC-POVM. We should bear in mind
that an arbitrary rotation of the tetrahedron representing the
SIC-POVM does not guarantee the orientation invariance like
a rotation acting on the sphere does. This is what gives rise to
the asymmetry in Table II.

B. Evolving ST-POVM for general adaptive measurement

In the previous simulation, we considered a simple
two-step adaptive measurement. This MSE approached the
quantum limit, the N-H bound, asymptotically when the num-
ber of available probe states tends to infinity. Thus, there is
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FIG. 10. Minimizing the average MSE given a certain prior distribution of states. (a) Examples of the prior distribution of states for a cross
section of the Bloch sphere in the x-y plane. Legend is the same as in (b). (b) Average MSE as a function of the stretching parameter, rp, for
different prior distributions. The blue dots indicate the minimum MSE for each prior distribution. As the distribution gets more sharply peaked,
the optimal rp tends to the r, which saturates the N-H bound, and the MSE tends to the limit set by the N-H bound.

little space for other more sophisticated adaptive schemes to
improve upon. However, when the total number of probes is
low, the evolving adaptive measurement utilizing the Bayesian
estimation [46] procedure is more advantageous. During an
evolving adaptive measurement, the POVM implemented is
adjusted more frequently according to the results obtained
from the preceding steps. In such an adaptive measurement
scheme, the stretching parameter3 rp (first shown in Sec. III)
is updated over time so that, at each stage, the optimal POVM
is being used.

In each iteration of an evolving adaptive measurement, a
fixed algorithm will decide the most suitable POVM based
on the prior distribution of states given from the previous
measurement results. The objective of the entire adaptive
procedure will be to improve the sharpness of the posterior
distribution so that the uncertainty of the estimated state is
minimized. After a POVM is decided, it will be applied to one
of the probes. Using the results of this POVM and following
the formulation of Bayesian estimation, one could obtain the
posterior distribution, which will serve as the prior for the next
iteration. In this section, we will give a paradigmatic example
of finding the most suitable POVM for a given Bayesian prior
distribution of state based on the minimization of Bayesian
risk [47]. We emphasize that this is different to simulating the
full adaptive measurement scheme. This section merely shows
what is the optimal POVM given a certain prior distribution.

For the purpose of this demonstration, we assume that the
prior distribution is invariant under a rotation around its radial
axis. Thus, the state distribution under the spherical coordi-
nate system, f (r, λ, φ), can be decomposed to a separable
form,

f (r, λ, φ) = fr (r) fλφ (λ, φ). (20)

For simplicity, we use the 3D Von Mises-Fisher distribution
[48] for the probability density function fλφ with a unified

3The stretching parameter, rp, may be seen as a representation of
the degree to which the squashed tetrahedron POVM is squashed.
When rp = 0, there is zero squashing and the ST-POVM converges
to the SIC-POVM.

concentration parameter κ for all values of r. For the distribu-
tion along the radial direction, fr , we use the Beta distribution
with two positive shape parameters α and β. We set β =
α(1 − r)/r where r is the distance from the center of the
distribution to the origin of the Bloch sphere.

For a given prior distribution, we will assume that we
always point our ST-POVM along the direction of the distri-
bution’s radial axis. The Bayesian risk, ε̄(rp), when using a
POVM with parameter rp can be calculated as follows [47]:

ε̄(rp) =
∫

dr dλ dφ MSE(θp, r, λ, φ) f (r, λ, φ), (21)

where MSE(θp, r, λ, φ) is the MSE of a measurement on
the probe state ρ(r, λ, φ), where (r, λ, φ) are the spherical
coordinates of the probe state in the Bloch sphere, when the
ST-POVM is orientated along the direction of θp with param-
eter rp = |θp|. Due to the symmetry of the prior distribution,
we choose the orientation of the POVM to be the same as
the orientation of the distribution. Thus, the chosen ST-POVM
and the distribution are invariant when rotating around the axis
of θp. Consequentially, without loss of generality, we write the
Bayesian risk on the left-hand side as a function of rp.
The equation above indicates that the Bayesian risk, ε̄(rp), is
the average of the MSE we first defined in the introduction
over the distribution of quantum states using the same POVM
with parameter rp.

We compute the Bayesian risk for a range of distributions
in the form of Eq. (20), centered on a state with r = 0.5.
Examples of this prior distribution are shown in Fig. 10(a). For
each distribution, to find the best ST-POVM with parameter
rp, the Bayesian risk is calculated for a range of different
stretching parameters.

The results of the calculation are shown in Fig. 10(b). It
shows that with an increase of the parameter κ and α, the
minimum Bayesian risk approaches the N-H bound. As an
increase in κ and α implies a more localized prior distribution,
the results also suggest that the ST-POVM is applicable and
asymptotically optimal in an evolving adaptive measurement
scheme that utilizes Bayesian estimation. It is also worth
noting that the ST-POVM should be close to the optimal
measurement in terms of MSE for the later stages (when the
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uncertainties of the priors are low) of any evolving adaptive
tomography scheme on the single-qubit state. As the opti-
mal measurement with zero prior knowledge was found to
be the ST-POVM with a stretching parameter rp = 0, i.e. a
SIC-POVM, this framework offers a nice way to visualize the
evolution of the optimal measurement.

VII. CONCLUSION

In this paper we have mapped qubit tomography to a
quantum multiparameter estimation problem. Based on the
multiparameter estimation bound for separable measurements
(N-H bound), we found the theoretically optimal measure-
ment for the local tomography problem, which we call the
ST-POVM. As such local measurements that characterize the
qubit state have direct implications for quantum computing,
we performed a demonstration on an IBM superconducting
quantum computer, and the result shows the saturation of the
N-H bound. In Sec. VI we argued that the ST-POVM could
also be effective in the nonlocalized setting by showing the
results of two complementary simulations of two different
types of adaptive measurement.

In this paper, single-qubit state estimation is the focus.
However, to better evaluate the performances of a more gen-
eral quantum circuit, one needs to consider more than one
qubit. We will briefly discuss two possible ways of extending
the scope of the demonstration. Previous studies have shown
that entangling measurements help reduce the experimental
errors [16,49,50] and can be useful in state discrimination
[51]. Thus, the first extension can be to evaluate more than one
copy of the qubit state at once, as the entanglement between
multiple probes state will be able to reduce the experimental
errors further. While the exact method that attains the N-H
bound for multiple copies of a state ρ⊗n remains unknown,
the ST-POVM with its corresponding estimator introduced in
this paper may have implications in finding a series of POVMs
exploiting the symmetry of a multicopy quantum system that
saturates the N-H bound. For the SIC-POVM, a two-copy
extension has been tested on the photonic system [16], which
suggests a possible generalization of the ST-POVM to multi-
ple copies of a qubit system.

On the other hand, a less complicated extension of the
results in this research would be to reduce the complexity
by considering two of the three parameters. The search for
the two-parameter optimal POVM is promising because it has
been shown that there is an equivalent of the SIC-POVM in
this problem, the conditional SIC-POVM [32,52]. It is opti-
mal when the figure of merit is the average Hilbert-Schmidt
norm deviation. Alternatively, for a general Hilbert space of
dimension d with d (d + 1)/2 free parameters, there might
be a conditional optimal POVM with a similar structure as
the ST-POVM when three of the d (d + 1)/2 parameters are
unknown, similar to the three parameters for the qubit tomog-
raphy problem, θx, θy, and θz.

In summary, the result of our demonstration validates the
theory and illustrates the power of a general quantum com-

puter in implementing POVM measurements. The scheme we
developed may also provide an opportunity for understanding
the characteristics of the qubits and the quantum gates by fa-
cilitating a more well-rounded assessment of any single-qubit
output state.
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APPENDIX: NAIMARK’S DILATION THEOREM

Given any POVM {�i}, Naimark’s dilation theorem
[19,35,36] guarantees the existence of an isometry Ṽ : H →
H+, and a projective measurement {E+

i } on an extended
Hilbert space H+ (with the same number of elements), which
satisfy

Ṽ †E+
i Ṽ ρ = �iρ for ∀ρ. (A1)

As we shall see later, the above equation is solvable for H+
being a two-qubit Hilbert space. In the following discussion,
we will use a single auxiliary qubit to realize the POVM. Be-
cause the auxiliary qubit on a quantum computer is initialized
at the |0a〉 state, we consider an isometry Ṽ with the following
effect on a mixed state ρ:

Ṽ ρ = U2(ρ ⊗ |0a〉〈0a|). (A2)

This simplifies Eq. (A1) to

〈0a|U †
2 E+

i U2|0a〉ρ = �iρ for ∀ρ. (A3)

For projectors E+
i , the unitary U2 effectively rotates the hyper-

plane that the operator projects onto. Thus, we can write the
operators on the extended Hilbert space U †

2 E+
i U2 as another

projector, |ψ+
i 〉〈ψ+

i |. Now we force the operators acting on ρ

on each side to be the same, and we have

〈0a||ψ+
i 〉 = √

ri|ψi〉, (A4)

where ri and |ψi〉 defines the ST-POVM in Sec. III. A numeri-
cal calculation can then be performed to find all four elements
of orthonormal {|ψ+

i 〉} given Eq. (A4). It is also worth noting
that Eq. (A3) also guarantees that the measurement outcome
distribution is unchanged by this process, which is crucial for
the success of the estimation:

tr(ρ ⊗ |0〉〈0|U †
2 E+

i U2) = tr(ρ�i ) for ∀ρ. (A5)
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