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Superadditivity effects of quantum capacity decrease with the dimension
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Quantum channel capacity is a fundamental quantity in order to understand how well quantum information
can be transmitted or corrected when subjected to noise. However, it is generally not known how to compute
such quantities since the quantum channel coherent information is not additive for all channels, implying that
it must be maximized over an unbounded number of channel uses. This leads to the phenomenon known as
superadditivity, which refers to the fact that the regularized coherent information of n channel uses exceeds
one-shot coherent information. In this article, we study how the gain in quantum capacity of qudit depolarizing
channels relates to the dimension of the considered systems. We make use of an argument based on the no-cloning
bound in order to prove that the possible superadditive effects decrease as a function of the dimension for such
family of channels. In addition, we prove that the capacity of the qudit depolarizing channel coincides with the
coherent information when d → ∞. We also discuss the private classical capacity and obtain similar results.
We conclude that when high-dimensional qudits experiencing depolarizing noise are considered, the coherent
information of the channel is not only an achievable rate, but essentially the maximum possible rate for any
quantum block code.
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I. INTRODUCTION

Classical communications were revolutionized when Shan-
non introduced the noisy-channel coding theorem in his
groundbreaking work A Mathematical Theory of Communica-
tion [1]. In such theorem, Shannon introduced the concept of
channel capacity, which refers to the maximum coding rate for
which asymptotically error-free communications are possible
over a noisy channel. The consequences of this result are
momentous since it establishes the limit, in terms of rate, for
which error correction makes sense and, thus, the target that
coding theorists should seek when designing their codes. The
computation of such quantity needs to be simple due to the
fact that the classical mutual information is additive, implying
that the regularization over n channel uses needed to compute
the capacity of the channel results in a single-letter formula,
i.e., in the optimization of such quantity over a single use of
the channel [1].

The development of quantum information theory followed
the steps of Shannon, introducing the concept of quantum
channel capacity similar to its classical counterpart, i.e., the
maximum quantum coding rate for communication and cor-
rection (note that in the quantum setting, the noise can arise
from temporal evolution) with error rates vanishing asymp-
totically when quantum information is subjected to noise. In
general, the computation of the quantum channel capacity, CQ,
is based on the following regularization [2–6]:

CQ(N ) = lim
n→∞

1

n
Qcoh(N⊗n), (1)

*Corresponding author: jetxezarreta@tecnun.es

where N denotes the quantum channel and Qcoh refers to the
channel coherent information defined as

Qcoh(N ) = max
ρ

Icoh(N , ρ)

= max
ρ

S(N (ρ)) − S(N c(ρ)),
(2)

with Icoh(N , ρ) the channel coherent information when state
ρ is the input, S the von Neumann entropy, and N c a comple-
mentary channel to the environment.

However, in stark contrast to its classical counterpart, the
channel coherent information has been proven not to be ad-
ditive in general [6–10], implying that the regularization in
Eq. (1) involves optimizing over an infinite parameter space.
Given two arbitrary quantum channels N1, N2, the most
one can say about the coherent channel information of the
parallel channel N1 ⊗ N2 is Qcoh(N1 ⊗ N2) � Qcoh(N1) +
Qcoh(N2). When strict inequality holds, the channels are said
to exhibit superadditivity; otherwise they are said to have
additive coherent information [11]. Explicit examples of su-
peradditivity have been found for several classes of quantum
channels [6–19]. Importantly, the nonadditivity effects of
quantum capacity arise as a result of entanglement in the
input state of the channel since state coherent information
is additive for unentangled input states, i.e., Icoh(N⊗2, ρ ⊗
σ ) = Icoh(N , ρ) + Icoh(N , σ ) [10]. This implies that entan-
glement is a resource that may protect quantum information
from noise in a more efficient way than what is classically
possible.

Therefore, an important question to be answered is what
types of channels have additive channel coherent information
so that their capacity reduces to single-letter expressions,
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i.e., CQ(N ) = maxρ Icoh(N , ρ). At the time of writing,
quantum channels with additive channel coherent information
belong to the classes of degradable [6,20–23], conjugate
degradable [22,24], and less noisy than the environment
[22] channels. The quantum capacities of antidegradable,
conjugate antidegradable, and entanglement-binding channels
are also single-letter characterized, but they are equal
to zero [6,10,22,23,25]. Recently, examples of quantum
channels (the platypus, multilevel amplitude damping,
and resonant multilevel amplitude damping channels)
showing additivity while not being degradable have been
found [26–28].

The depolarizing channel is a widely used quantum chan-
nel model in order to describe the noise that quantum infor-
mation experiences [29]. This channel is characterized by the
depolarizing probability p, and its quantum channel capacity
is still unknown even if it is the simplest and most symmetric
nonunitary quantum channel. In general, d-dimensional de-
polarizing channels (those acting on d-dimensional quantum
states, referred to as qudits) are antidegradable for p � d

2(d+1) ,
while they do not belong to any of the classes of channels pre-
viously mentioned for p < d

2(d+1) [30]. Several upper bounds
on the quantum capacity of d-dimensional depolarizing chan-
nels for the nontrivial parameter region have been derived
[31–36]. However, the quantum capacity of the family of d-
dimensional depolarizing channels remains a mystery for such
region.

In this article, we study how the potential superadditivity
effects of the quantum channel capacity, in qudits per channel
use units, relate to the dimension of the depolarizing channel.
Specifically, we want to observe which is the extra coding
rate achievable due to superadditivity when logical qudits
are encoded by physical qudits. We provide an argument
based on the no-cloning bound in order to study how the
quantum capacity gain (defined as the difference between
the quantum capacity and the channel coherent informa-
tion) caused by potential coherent information superadditivity
relates to the dimension of the depolarizing channel. We
conclude that such possible capacity gain is a monotonically
decreasing function with the dimension and, thus, that the
superadditive effects are less and less important when the
dimension of the depolarizing channels increases. In addi-
tion, we determine that for the extremal case in which the
dimension of the system is allowed to grow indefinitely (in
the limit where the qudit becomes a quantum oscillator, i.e.,
a bosonic mode [37]), the depolarizing channel capacity coin-
cides with the channel coherent information. We also relate
the obtained results to the private capacity of qudit depo-
larizing channels, concluding that such information theoretic
quantity behaves in a similar way as the quantum channel
capacity.

II. QUDIT DEPOLARIZING CHANNELS

The d-dimensional or qudit depolarizing channel, �d
p :

Hd → Hd , is the completely positive, trace preserving
(CPTP) map defined as [31,36,38–40]

�d
p(ρ) = (1 − p)ρ + pTr(ρ)

Id

d
, (3)

where the density matrices ρ are the so-called qudits or
quantum states operating over a d-dimensional Hilbert space
Hd , Id/d refers to the maximally mixed state of dimen-
sion d , and p ∈ [0, 1] refers to the depolarizing probability.
Consequently, the operation of the qudit depolarizing chan-
nel leaves the state uncorrupted with probability 1 − p,
while transforming it to the maximally mixed state with
probability p.

The depolarizing channel has a central role in modeling
quantum noise in the theory of quantum information [29].
Importantly, depolarizing channels can be efficiently simu-
lated as a stochastic noise map by classical means since
they fulfill the Gottesman-Knill theorem [29,41]. This im-
plies that, for example, the performance of quantum error
correction codes, key for fault-tolerant quantum computing
and communications, can be effectively assessed by tradi-
tional methods. Furthermore, Clifford twirling an arbitrary
d-dimensional CPTP noise map results in a qudit depolarizing
channel [29,42]. Twirling is extensively used in quantum in-
formation theory for studying the average effects of a general
noise map by mapping them to more symmetric versions of
themselves [29,30,43–45]. The twirled channel is obtained
by averaging the action of the map over a set of unitaries.
Moreover, the following lemma [43] implies that error cor-
rection codes for arbitrary noise maps can be designed by
constructing them to correct a twirled map.

Lemma 1. Any correctable code for the twirled channel
N̄ is a correctable code for the original channel N up to an
additional unitary correction.

Hence, the depolarizing channel is not only interesting be-
cause of its nice properties, but also as error correction codes
can be designed by using it. The depolarizing parameter and
the parameters of the original channel are related in a specific
way as a result of the twirl (see [29,46] for specific details on
the qubit case). Notably, twirling channels into Pauli channels,
whose symmetric version is the depolarizing channel, has
recently been used for the quantum error mitigation technique
named probabilistic error cancellation (PEC) [47].

Consequently, studying the achievable rates for the differ-
ent quantum information theoretical tasks over depolarizing
channels is of the outmost importance. Studying the differ-
ent capacities of such family of channels is also interesting
from the point of view of quantum information theory since
the capacities of twirled channels lower bound the capacities
of the channels from which they originated [30] and, thus,
interesting lower bounds on the achievable rates of general
channels might be obtained.

The channel coherent information, Qcoh, defined in Eq. (2),
for qudit depolarizing channels is [31]

Qcoh
(
�d

p

) = max {0, log2 d

+
(

1 − p
d2 − 1

d2

)
log2

(
1 − p

d2 − 1

d2

)

+ p
d2 − 1

d2
log2

( p

d2

)}
, (4)

with units of qubits per channel use. It provides a lower bound
for the quantum channel capacity, CQ(N ) � Qcoh(N ). Note
that by changing the log2 in the above expression by logd ,
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the units of Qcoh(�d
p) are qudits per channel use. The reason

to consider these units is that we are interested in studying
the logical qudits per physical qudits, i.e., coding rate, that
can be achieved for a qudit error correction scheme and not
the amount of logical qubits that can be encoded by means of
qudits. For the sake of notation, we will denote the channel
coherent information in such units by Qd

coh(�d
p).

Recall that for p < d
2(d+1) , the channel does not belong to

any of the classes with proven additive channel coherent in-
formation [21], implying that the quantum channel capacity is
not known and may exhibit superadditivity gains. In fact, these
gains have been obtained in previous works [6–8,18]. Sev-
eral techniques have been developed in order to obtain upper
bounds for the quantum channel capacity of d-dimensional
depolarizing channels [31–35]. Each of those upper bounds
are tighter depending on the region of depolarizing proba-
bility considered in p ∈ [0, d

2(d+1) ]. The tightest upper bound
is usually obtained by using the fact that the convex hull of
the upper bounds is itself an upper bound [32]. However,
for the purposes of this work, we will consider the so called
no-cloning bound, Qnc. The no-cloning bound on quantum
capacity is based on combining Cerf’s no-cloning bounds [49]
and the degradable extension technique of Ref. [36]. Cerf’s
results lay on the no-cloning theorem1 of quantum mechanics
for determining that Pauli channels (depolarizing channels are
a specific instance of this) cannot have a positive capacity
under certain conditions. By using this result, the bound can
be obtained by the techniques in Ref. [36]. A proof for this can
be found in Ref. [30]. The no-cloning bound upper bounds the
quantum channel capacity of qudit depolarizing channels as
[30,32,48–50]

CQ
(
�d

p

)
� Qnc

(
�d

p

) =
(

1 − 2p
d + 1

d

)
log2 d, (5)

with units of qubits per channel use. Note that the expression
of Qnc(�d

p) in qudits per channel use reduces to

Qd
nc

(
�d

p

) =
(

1 − 2p
d + 1

d

)
. (6)

III. SUPERADDITIVITY GAIN

As explained in the previous section, the potential superad-
ditive nature of the coherent information may lead to quantum
channel capacities that are higher than the one-shot channel
coherent information. In other words, there exists a gain in
quantum channel capacity if several quantum channel uses
are considered. Remarkably, it has been proven that even an
unbounded number of channel uses may be required for this
effect to happen [10]. In order to quantify this gain, we define
the superadditivity gain ξ as

ξ (N ) = CQ(N ) − Qcoh(N ), (7)

which gives the additional qubits per channel that the channel
capacity has when compared to the achievable rate of the

1A unitary operator that perfectly copies arbitrary quantum states
cannot be constructed.

channel coherent information. Clearly, if the coherent infor-
mation of the channel is additive, then ξ (N ) = 0. Knowledge
about the quantum channel capacity is needed in order to
compute the superadditivity gain in Eq. (7) and, as stated
before, the quantum capacity of qudit depolarizing channels
is still unknown. However, upper bounds on such quantity can
be obtained using the upper bounds derived in Refs. [31–36].
For the purposes of this work, we will upper bound the super-
additivity gain by using the no-cloning bound as

ξnc
(
�d

p

) = Qnc
(
�d

p

) − Qcoh
(
�d

p

)
� ξ

(
�d

p

)
. (8)

The units in the above expression are qubits per channel use.
However, we will study the capacity gain with qudits per chan-
nel use units in order to have a fair comparison of the extra
capacity that is obtained via superadditive effects. In this way,
we will be able to see how many more qudits per channel use
can be potentially obtained due to superadditive effects, which
is more fair to compare those effects for different dimensions
since operating in more dimensions trivially implies that more
information (in terms of qubits) can be encoded in a single
quantum state. For example, consider d1 < d2 and assume that
their superadditivity gains in qudits per channel use (coding
rate) for both cases is the same. That is, ξ (�d1

p ) = ξ (�d2
p ) = g.

However, these gains become g log2(d1) < g log2(d2) when
expressed in qubits per channel use, giving the impression that
the capacity of d2 increases more. Note that whenever qudit
error correction codes are constructed, their coding rate will
have logical qudits per physical qudits units, implying that the
extra rate obtained via superadditivity should be quantified in
such terms.

Therefore, in what follows, the units of the superadditive
gains will be given in qudits per channel use, that is,

ξnc
(
�d

p

) = Qd
nc

(
�d

p

) − Qd
coh

(
�d

p

)
� ξ

(
�d

p

)
. (9)

IV. SUPERADDITIVITY EFFECTS OF QUANTUM
CAPACITY DECREASE AS A FUNCTION

OF THE DIMENSION

We now provide the main result of this article.
Theorem 1. Let dl be an arbitrary positive integer higher

than 2 and pdl
0 ∈ R defined as

pdl
0 = min

p

{[
p ∈

(
0,

dl

2(dl + 1)

)
: Qdl

coh

(
�dl

p

) = 0

]}
. (10)

That is, pdl
0 is the smallest depolarizing probability that

makes the coherent information of the dl -dimensional depo-
larizing channel equal to zero. Then, for any depolarizing
probability p in the range p ∈ (0, pdl

0 ), the superadditivity
gain ξnc(�d

p) in qudits per channel use units is a mono-
tonically decreasing function of the channel dimension d
for d � dl .

Proof. To prove the theorem, we must prove that

∂ξnc(�d
p)

∂d
< 0, ∀p ∈ (

0, pdl
0

)
. (11)

Thus, the derivative of ξnc(�d
p) over the dimension in the
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FIG. 1. No-cloning superadditivity gain as a function of depo-
larizing probability p. Channel dimensions d ∈ {2, 22, 25, 220} are
plotted.

range p ∈ (0, pdl
0 ),

∂ξnc
(
�d

p

)
∂d

= − 1 − 4
p

d
+ 4p

(d2 − 1)

d3

− p
(d2 − 1) log2

( p
d2

)
d2 log2 d

−
(
1 − pd2−1

d2

)
log2

(
1 − pd2−1

d2

)
log2(d )

= −4
p

d
+ 4p

(d2 − 1)

d3
− Qd

coh

(
�d

p

)
< 0. (12)

The last inequality follows from the fact that 4 p
d >

4p (d2−1)
d3 ,∀d (this inequality reduces to 1

d > 1
d − 1, which is

true for all d > 0) and the fact that ∀d � dl , Qd
coh(�d

p) � 0,
since pd

0 increases with d and we are considering the range
p ∈ (0, pdl

0 ). �
Figure 1 graphically shows the results of this theorem.

It plots the no-cloning superadditivity gain versus depolar-
izing probability p for four different dl dimensions. For a
given dl , the vertical dashed lines give the value of the
corresponding pdl

0 .
Note that the result of Theorem 1 states that for an initial

dimension dl , the no-cloning superadditive gain ξnc(�d
p) is a

decreasing function with respect to the dimension d � dl in
the depolarizing probability range p ∈ (0, pdl

0 ). It is notewor-
thy that the result of the theorem can be extended to a nontriv-
ial region where the coherent information vanishes. However,
since the point of maximum potential superadditivity lays in
the considered region, expanding the analysis to such parame-
ter space would result in similar conclusions. Additionally, the
upper limit of such range, pdl

0 , increases with respect to the ini-
tial dimension under consideration. This value saturates to 1/2
when the dimension of the system is left to grow indefinitely

102 104 106 108
10-3

10-2

10-1

FIG. 2. No-cloning superadditivity gain as a function of dimen-
sion and depolarizing probability. We plot the superadditivity gain in
terms of qudits per channel use as a function of the dimension of the
depolarizing channel for p ∈ {0.01, 0.05, 0.1, 0.2, 0.25}.

since

lim
d→∞

Qd
coh

(
�d

p

) = lim
d→∞

⎛
⎜⎝1 +

(
1 − pd2−1

d2

)
log2

(
1 − pd2−1

d2

)
log2 d

+ pd2−1
d2 log2

( p
d2

)
log2 d

)
= 1 − 2p, (13)

which vanishes at the value of 1/2.
In this way, by starting with the minimum dimension of

a quantum system, i.e., a qubit dl = 2, we can always find
another initial higher dimension for which the no-cloning su-
peradditive gain decreases in the entire range of depolarizing
probabilities p ∈ (0, 1/2). For example, see that in Fig. 1 we
can change from dl = 2 to dl = 4 once we reach pdl =2

0 , and
the gain will still be decreasing for d > dl = 4. This can be
done each time we reach a particular dl . Thus, we effectively
prove that whenever the dimension of the system increases,
the room left for superadditive effects in qudits per channel
use units decreases. Note also that the region p ∈ (0, 1/2)
is actually the only region where superadditivity may hap-
pen for every d-dimensional depolarizing channel since, for
p = 0, there is no noise, implying that Cd

Q(�d
p) = 1, while for

p > 1/2, every qudit depolarizing channel is antidegradable
since limd→∞ d/[2(d + 1)] = 1/2.

Figure 2 showcases the decrease of the no-cloning su-
peradditive gain for different depolarizing probabilities p ∈
{0.01, 0.05, 0.1, 0.2, 0.25} as a function of the dimension of
the considered system.

Two important conclusions are derived from Theorem 1,
which are clearly appreciated in the above two figures. The
first conclusion is that whenever quantum systems of high
dimensions are corrupted by the operation of a qudit depo-
larizing channel, the nonadditive behavior of the coherent
information is less relevant. That is, the potential superadditiv-
ity gain in terms of qudits per channel use decreases. This is an
important result for the depolarizing channel since it implies
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that for very high-dimensional systems, the channel coherent
information and the quantum channel capacity will be close
together. Note that tighter bounds than the no-cloning bound
can be used to bound the superadditivity gain, implying that
the actual gain will be much smaller. This yields the second
conclusion, which states that for high-dimensional systems,
the capacity of the depolarizing channel is close to the single-
letter coherent information of the channel, that is, one can
state that Cd

Q(�d
p) ≈ Qd

coh(�d
p). Therefore, we can conclude

that for such high-dimensional systems, random block codes
on the typical subspace of the optimal input (for the one-
shot coherent information) will essentially achieve quantum
channel capacity [6,51]. This means that the best strategy
to achieve the capacity of a depolarizing channel with suffi-
ciently large dimension is by randomly selecting a stabilizer
code [6].

We have observed that the superadditive behavior of coher-
ent information loses importance when the dimensions of the
qudit depolarizing channel increase. In particular, in the limit
when d is allowed to be infinite, the qudit becomes a quantum
oscillator or bosonic mode [37], and the quantum channel ca-
pacity of the ∞-dimensional or bosonic depolarizing channel
is given by 1 − 2p, as is shown in the following corollary.

Corollary 1. The quantum channel capacity of the ∞-
dimensional or bosonic depolarizing channel is

Cd
Q

(
�∞

p

) = Qd
coh

(
�∞

p

) = 1 − 2p, (14)

with bosonic modes per channel use units for p ∈ [0, 1/2] and
0 for p ∈ [1/2, 1].

Proof. We use a sandwich argument to prove the corollary.
We know from Eq. (13) that the coherent information of the
depolarizing channel has the following asymptotic behavior in
the region p ∈ [0, 1/2]:

Cd
Q

(
�∞

p

)
� Qd

coh

(
�∞

p

) = lim
d→∞

Qd
coh

(
�d

p

) = 1 − 2p. (15)

In addition, if we study the asymptotic behavior of the no-
cloning bound in Eq. (6), then

Cd
Q

(
�∞

p

)
� lim

d→∞

(
1 − 2p

d + 1

d

)
= 1 − 2p, (16)

which completes the sandwich and, thus,

Cd
Q

(
�∞

p

) = Qd
coh

(
�∞

p

) = 1 − 2p. (17)

For the complementary region, p ∈ [1/2, 1], we know that
this channel is antidegradable. Therefore, the quantum chan-
nel capacity vanishes. �

Consequently, it can be seen that the superadditive na-
ture of the coherent information of the qudit depolarizing
channel is lost when the dimension of the system is let to
grow indefinitely, i.e., ξ (�∞

p ) = 0,∀p. This result is espe-
cially interesting since it is an example of a channel not
belonging to the degradable or conjugate degradable classes
(the depolarizing channel does not belong to these families of
channels), but showing channel coherent information with an
additive behavior. Knowledge about quantum channels pre-
senting additive coherent information but not belonging to the
classes of channels known to exhibit additivity is important to
obtain a better understanding about the behavior of quantum
channel capacity. In this sense, understanding the structure of

particular channels exhibiting additive coherent information
may provide hints to understand general classes of channels
with such property.

Another implication of Theorem 1 and Corollary 1 is that
whenever the dimension of the qudit depolarizing channels
is large enough, the advantage of utilizing entangled inputs
for protecting quantum information loses importance. This
comes from the fact that the nonadditive effects of coher-
ent information are a result of considering input states that
are entangled2 [10]. Since the channel coherent informa-
tion is approximately additive for sufficiently high system
dimensions, the use of entangled input states will provide
almost no net gain. As entanglement is an expensive re-
source, this significantly relaxes the required resources for
optimal quantum communication and correction over such
channels.

To finish with this section, it is important to discuss what
happens with the superadditive gain whenever it is considered
in qubits per channel use units. As we discussed, we have con-
sidered qudits per channel use units since we wanted to study
the extra rate achievable due to superadditivity whenever
qudit error correction codes are considered, i.e., protecting
logical qudits using physical qudits. However, sometimes the
information rate in terms of qubits per channel use is also
an important thing to study as, for example, when logical
qubits want to be encoded by means of qudits [52,53] or when
the noise in a system composed by n qubits experiences a
depolarizing channel of dimension equal to the Hilbert space
of the whole system, i.e., d = 2n. The last example would
refer to noise that is correlated, that is, noise that cannot be
seen as independent noises acting over each of the qubits
of the system (see Sec. VI for further discussions). In this
case, it is more convenient (in terms of calculations) to re-
define the superadditivity gain as ζ (N ) = CQ(N )/Qcoh(N )
for obtaining the same results as before. Note, for exam-
ple, that it is straightforward to see that limd→∞ ζ (�d

p) =
[Cd

Q(�d
p) log2 d]/[Qd

coh(�d
p) log2 d] = 1, implying that the co-

herent information is additive. Unluckily, this redefinition of
the gain poses some problems since it diverges for the region
where the coherent information vanishes but the capacity is
still strictly positive. However, since Theorem 1 considers
only the region of positive coherent information and in Corol-
lary 1 this is true for the whole region, the same results are
obtained. Regardless, we still consider ξ (N ) to be the appro-
priate way to define the superadditivity gain since it is able to
capture the nonadditivity effects of coherent information for
the whole parameter region and, thus, discussed such quantity
in terms of qudits per channel use.

V. RELATIONSHIP WITH OTHER CAPACITIES

Generally speaking, quantum channels have many other
quantum capacities associated with the optimal rate at which
some information theoretic task can be performed. Therefore,

2Note that this does not refer to entanglement assistance, but to the
fact that the inputs used over sequential uses of the same channel are
entangled among them.
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in this section, we discuss the superadditive gain for the clas-
sical and private capacities of qudit depolarizing channels.

The classical capacity of a quantum channel, Cχ (N ), is
defined as the asymptotically achievable rate of reliable trans-
mission of classical information through the noisy channel
[54,55,58]. The classical capacity of a quantum channel is
given by the following regularized formula:

Cχ (N ) = lim
n→∞

1

n
χ (N⊗n), (18)

where χ (N ) is named the Holevo quantity [58] and is calcu-
lated as

χ (N ) = sup
ρXA

I (X ; B)ρ, (19)

where ρXA refer to pure classical-quantum states [58] and
I (A; B)ρAB = S(ρA) + S(ρB) − S(ρAB) is the quantum mutual
information [6]. The mutual information is evaluated with
the state (IX ⊗ N )(ρXA). For arbitrary channels, the Holevo
information is superadditive, implying that the regularization
in Eq. (18) is necessary [6,58]. However, it is well known
that the Holevo information of qudit depolarizing channels is
additive, implying that the classical capacity of such families
of channels is equal to the Holevo quantity [38]. Therefore,
the superadditivity gain of the classical capacity vanishes for
all depolarizing probabilities.

The private capacity P(N ) refers to the maximum achiev-
able rate for private transmission of information over a
quantum channel with an asymptotically vanishing error rate
[4,56,58]. Such quantity can be evaluated as

P(N ) = lim
n→∞

1

n
P1(N⊗n), (20)

where the one-shot private information is calculated as

P1(N ) = sup
ρUA

I (U ; B)ρ − I (U ; E ), (21)

where ρUA refer to mixed classical-quantum states [58]. The
mutual information is evaluated for states (IU ⊗ N )(ρUA) and
(IU ⊗ N c)(ρUA), respectively. Private capacity has also been
shown to be a superadditive quantity [57,58]. Importantly,
the private capacity upper bounds the unassisted quantum
capacity of a quantum channel [58–60], i.e.,

P(N ) � CQ(N ), (22)

which also holds for the one-shot capacities, i.e., P1(N ) �
Qcoh(N ). The upper bound saturates for the class of more
capable channels (which includes less noisy and degradable
channels) [22].

Moreover, the no-cloning bound in Eq. (5) also upper
bounds the private capacity of qudit depolarizing channels.
We are unaware of a manuscript including these results and,
thus, we provide a proof for it.

Corollary 2. The no-cloning bound Qnc(�d
p) is an upper

bound for the private quantum capacity of qudit depolarizing
channels, i.e.,

P(N ) � Qnc
(
�d

p

) =
(

1 − 2p
d + 1

d

)
log2 d. (23)

Proof. Note that the d-dimensional depolarizing channel
is both degradable and antidegradable when p = d

2(d+1) .

Following the rationale in Ref. [30], we can invoke Smith
and Smolin’s technique of degradable extensions [36] to
obtain the upper bound given in the corollary by noting that
if the additive extension is degradable, then its coherent
information also upper bounds the private capacity of the
channel (Theorem 3 in Ref. [36]). �

Similarly as done with the quantum channel capacity,
we will define the normalized private capacity as Pd (N ) =
P(N )/ log2 d . Here, the operational meaning of this quan-
tity will be the number of private bits that can be reliably
sent per qubit channel use. Note that since having a higher-
dimensional system implies that more classical information
can be packed, by normalizing this quantity we can more
fairly compare how many extra private bits can be achieved
due to superadditivity effects when comparing different di-
mensional depolarizing channels.

Using the no-cloning bound upper bound on the private
capacity, we extend the results of Theorem 1 and Corollary
1 for the private capacity of qudit depolarizing channels.

Corollary 3. The normalized private capacity superadditiv-
ity gain of qudit depolarizing channels, ξP(�d

p), in units of
private bits per two-dimensional channel use is upper bounded
by ξnc(�d

p), which is a monotonically decreasing function
with d for any depolarizing probability p in the range p ∈
(0, pdl

0 ), where pdl
0 is defined as in Theorem 1 with dl an ar-

bitrary positive integer higher than 2. Therefore, the potential
gain that can be obtained from superadditive effects for the
private capacity decreases with the dimension of the system.

Moreover, the normalized private channel capacity of the
∞-dimensional or bosonic depolarizing channel coincides
with its quantum capacity and is given by

Pd
(
�∞

p

) = Cd
Q

(
�∞

p

) = 1 − 2p, (24)

with private bits per two-dimensional channel use units for
p ∈ [0, 1/2] and 0 for p ∈ [1/2, 1].

Proof. Since we are restricting the depolarizing probabili-
ties to the range p ∈ (0, pdl

0 ), we know that the superadditivity
gain of the quantum capacity, ξnc(�d

p), is a monotonically
decreasing function with d from Theorem 1. Therefore,
by taking into account the following chain of inequalities:

ξnc
(
�d

p

) = Qd
nc

(
�d

p

) − Qd
coh

(
�d

p

)
� Pd

(
�d

p

) − Qcoh
(
�d

p

)
� Pd

(
�d

p

) − P1
(
�d

p

) = ξP
(
�d

p

)
, (25)

the upper bound for the superadditivity gain of the quan-
tum channel capacity upper bounds the superadditivity gain
of the private capacity of qudit depolarizing channels too.
Consequently, the possible room for increasing the achievable
rate in a task of private classical communication over a qudit
depolarizing channel decreases as the dimension of the system
increases.

The second part of the corollary is straightforward from
Corollary 1 due to the fact that

lim
d→∞

ξnc
(
�d

p

) = 0, (26)

and thus, ξP(�∞
p ) = 0. This implies that Pd (�∞

p ) =
limd→∞ Qnc(�∞

p ) = 1 − 2p, for p ∈ [0, 1/2]. The
complementary depolarizing parameter region is trivial
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from the fact that the channel is antidegradable and, thus, the
private capacity vanishes. �

Note that the result implying that the quantum channel
capacity and the private capacity of the qudit depolarizing
channels coincide when the dimension of the system is al-
lowed to grow indefinitely is an interesting result since, at
the time of writing, only the class of more capable quantum
channels (which includes the class of degradable channels)
presents such equality [22,58,61], while depolarizing chan-
nels are not more capable.

VI. IMPLICATIONS FOR QUANTUM ERROR
CORRECTION WITH CORRELATED

DEPOLARIZING NOISE

As stated before, the d-dimensional depolarizing channel
can be used to describe a noise map over a set of n qubits for
which the noise occurs in a very correlated manner. In this
sense, this channel will have a dimension that is equal to the
whole qubit system, i.e., d = 2n. In order to better understand
the correlated noise model described by the d-dimensional
depolarizing channel for these systems, note that expression
(3) can be rewritten as [62]

�d=2n

p (ρ) =
(

1 − p + p

22n

)
ρ + p

22n

∑
{ j̄,k̄}\{0̄,0̄}

X j̄Zk̄ρZk̄X j̄,

(27)

where X j̄ = X j1 ⊗ X j2 ⊗ · · · X jn and Zk̄ = Zk1 ⊗ Zk2 ⊗
· · · Zkn , and X, Z are the bit and phase flip Pauli matrices,
respectively. By inspecting this expression, it can be observed
that the d-dimensional depolarizing channel refers to a
channel in which all the nontrivial Pauli elements of the
n-fold Pauli group are applied in an equiprobable manner.
Therefore, this channel represents a channel in which there
exists a visible correlation in the Pauli errors that each of the
qubits of the system experiences. A visual example of why
this is said to be correlated can be seen in the fact that for this
channel, an error or weight n would occur with a probability
p/22n, while in an independent depolarizing channel, such
probability would be given by the product of the probability
of error of the channel, i.e., (p/4)n. Thus, such event is much
more infrequent for the uncorrelated depolarizing channel.

Following this logic, consider, for example, a rotated pla-
nar surface code with distance d = 21 [63] or a length 1000
quantum turbo code [64]. Those lengths refer to quantum error
correction codes with a good performance. Note that the di-
mensions of the whole system for such codes will be d = 2441

and 21000, respectively. Thus, those codes have humongous di-
mensionality. Quantum error correction codes are presumed to
operate over a large quantity of qubits, similar to the examples
provided; hence, if the noise experienced by those systems
has a significant correlation, that is, similar to the depolarizing
channel presented in Eq. (27), then superadditive effects will
not be possible and the optimal communication and correction
rates will be achieved by random stabilizer codes.

This type of scenario can be possible in real imple-
mentations of these types of protocols. For example, when
stabilizing quantum communication protocols over fiber op-
tics, the transmitted qubits can experience correlated noise

depending on how fast the photons with the encoded infor-
mation are transmitted [29,65,66]. Specifically, taking into
account the delay time in the transmission of photons, 	t ,
and the relaxation time of the optical fiber, τ , there are three
possible scenarios:

(i) 	t � τ : memoryless noise for the qubits [29,65].
(ii) 	t ≈ τ : intersymbol interference memory, i.e., only

correlation for some finite amount of qubits [66].
(iii) 	t << τ : perfect memory system, i.e., there is signif-

icant correlated noise for all the qubits [29,65].
Therefore, whenever the qubits are transmitted much faster

than the time required by the optical fiber to return to its
relaxed state (third scenario), the noise will be very correlated.
Following this rationale, if the noise is assumed to have a de-
polarizing nature, then it can be modeled by the d-dimensional
depolarizing channel as in Eqs. (3) and (27). Combining this
with the fact that the dimensionality of the system is consider-
ably high, as discussed before with the results of Theorem 1,
we can conclude that for such scenario, the optimal commu-
nication rate will be achievable by random stabilizer codes.
This discussion is relevant since communication speed is an
important feature for such systems and, therefore, the noise
can, in fact, be of such a correlated nature.

To finish with this discussion, note that the conclusion is
similar if private classical communication is intended to be
done over quantum channels that exhibit perfect memory or
full correlation. Moreover, the discussion is also similar if we
consider qudits as the individual elements of the communica-
tion system other than qubits.

VII. CONCLUSION

In this article, we have studied how the potential su-
peradditivity effects of the quantum capacity of the qudit
depolarizing channel relate to the dimension of the quan-
tum systems under consideration. We proved that whenever
the dimension of the d-dimensional depolarizing channel in-
creases, the potential gain in terms of qudits per channel use
decreases. This is an important result since it implies that for
very high-dimensional systems, the channel coherent infor-
mation and the quantum channel capacity will be very similar
for the depolarizing channel, which results in the fact that
random block codes on the typical subspace of the optimal
input will be achieving capacity. We also observed that when
∞-dimensional or bosonic depolarizing channels are consid-
ered, the coherent information results in an additive quantity,
making the superadditivity gain vanish for all depolarizing
probabilities. We proved that the private capacity of qudit
depolarizing channels behaves similarly in the sense that its
potential superadditivity gain decreases with the dimension
of the system. Asymptotically, the ability of sending private
classical information over such family of channels is also an
additive quantity and, interestingly, it coincides with the previ-
ously discussed quantum channel capacity. We also discussed
the fact that since high-dimensional depolarizing channels
exhibit additive coherent information, the use of entangled
input states is not required for optimal quantum information
protection for such cases, significantly relaxing the required
resources. Finally, we argue how the obtained results are
applicable for real quantum communication and correction

032602-7



JOSU ETXEZARRETA MARTINEZ et al. PHYSICAL REVIEW A 108, 032602 (2023)

systems where the noise has a very correlated nature, con-
cluding that for those systems, the best strategy for achieving
optimal rates is by means of random stabilizer codes.

We have conducted this analysis of the reduction of
superadditivity effects for depolarizing channels, but we
consider that this type of argument can be used to study
how superadditivity behaves in high dimensions for other
quantum channels. Similar proofs for other general qudit
channels could be potentially obtained by squeezing upper
bounds for their capacities with their coherent information.
Also, it is noteworthy to state that the Clifford twirl of a
general d-dimensional channel results in a qudit depolarizing
channel [42], implying that since its capacity lower bounds
the capacity of the original channel, the results obtained
here may be somehow extended. In this way, it could be
concluded that the gain in qudits per channel use decreases
with respect to the dimension for every quantum channel that
admits a seamless extension to d dimensions, implying that
seeking such effects should be restricted for low-dimensional
quantum channels. Additionally, the behavior of other
channel capacities, such as the local operations and classical

communications (LOCC)-assisted quantum capacity [58,59]
Q↔ or the secret-key agreement capacity (LOCC-assisted
private capacity) [58,59] P↔, can also be studied for the family
of depolarizing channels and for general maps too. These
thoughts are conjectures and are deemed as future work.
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