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Optimizing the rodeo projection algorithm
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The rodeo algorithm has been proposed recently as an efficient method in quantum computing for projection
of a given initial state onto a state of fixed energy for systems with discrete spectra. In the initial formulation
of the rodeo algorithm, evolution times were chosen randomly via a Gaussian distribution with a fixed standard
deviation. In this paper, it is shown that such a random approach for choosing times suffers from exponentially
large fluctuations in the suppression of unwanted components: as the number of iterations gets large, the
distribution of suppression factors obtained from random selection approaches a log-normal distribution, leading
to remarkably large fluctuations. We note that by choosing times intentionally rather than randomly, such
fluctuations can be avoided and strict upper bounds on the suppression can be obtained. Moreover, the average
suppression using fixed computational cost can be reduced by many orders of magnitude relative to the random
algorithm. A key to doing this is to choose times that vary over exponentially many timescales, starting from a
modest maximum scale and going down to timescales exponentially smaller.

DOI: 10.1103/PhysRevA.108.032422

I. INTRODUCTION

Quantum computers, suggested by Richard Feynman in the
1980s [1], are expected to solve problems that are not acces-
sible to classical computers. It is known that for a number of
problems the asymptotic scaling of quantum algorithms are
better than that of the best-known algorithms with classical
computers. A notable example is the factoring of large num-
bers, where Shor’s algorithm [2] has a computational cost that
is a polynomial in the logarithm of the size of the system while
the best-known classical algorithms have a cost that grows
faster than any power law [3–6]. It is widely believed that
many quantum mechanical problems, which suffer from ex-
ponentially bad sign problems [7] when computed classically
via Monte Carlo methods, would only require polynomial
resources on a quantum computer. Examples include real-time
dynamics [8,9], where the time evolution induces complex
phases that induce sign problems, and certain problems in
which a chemical potential for fermions, such as QCD at a
finite chemical potential [10], induces an complex effective
action after integrating out the fermions. This latter example is
of great importance in nuclear physics since QCD behaves this
way. Thus, quantum computing is potentially useful for sim-
ulating a wide range of quantum systems with exponentially
lower cost, spanning fields from condensed matter physics to
nuclear physics and particle physics [11–16].

To simulate quantum physics, one needs to prepare initial
states and evolve them in time according to the underlying
Hamiltonian. It has long been recognized that the state prepa-
ration problem is a key to viable quantum computation, and
research over nearly three decades has focused on developing
methods for state preparation with a focus on using minimal
resources [17–28].

The rodeo algorithm [29] has been suggested as a cost-
effective method of preparing quantum states by projecting
a given initial state onto an energy eigenstate for systems

with discrete spectra; the success rate is proportional to the
square of the overlap between the initial state and the target
state of interest, and the time needed is logarithmic in the
accuracy making it exponentially faster than phase estima-
tion algorithm. It has been performed on a superconducting
quantum computer [30] and variations of the algorithm have
been considered [31]. An alternative approach, also based on
a projection method via filtering processes has been suggested
[32], which is designed to exploit particular knowledge about
the character of the state.

The rodeo algorithm can be used either as a direct method
of state preparation or in conjunction with other techniques
for state preparation such as adiabatic quantum computing
[33–39]—which could act to extend its utility in state prepara-
tion to situations in which the overlap between the initial and
final states is small.

The rodeo algorithm is based on quantum interferometry
and needs to be done for a relatively large number of iterations
to ensure high accuracy; each iteration is associated with a
running time and accurate projections require numerous dis-
tinct times. It is called the rodeo algorithm since during each
iteration there is a probability that states other than the desired
state are thrown out of the state in analogy to a hapless bull
rider in a rodeo.

In Ref. [29] the emphasis was on the suppression factor
per iteration. This might create an impression that the optimal
approach is to create the maximum suppression per iteration
and then perform a sufficient number of iterations to achieve
the desired suppression. However, this need not be the case:
large suppression factors per iteration require large times.
It can be more efficient in terms of total time to use more
iterations with shorter times per iteration (and less suppression
per iteration).

The goal of this paper is to study how to optimize the
algorithm to obtain the most accurate version of the algorithm
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with minimal computational costs. As the dominant computa-
tional cost is running a Hamiltonian over time, we will use
the net time expended as a proxy for computational costs.
The algorithm involves multiple iterations of a basic compu-
tational structure, which is run for a given amount of time;
optimization involves deciding what times should be used for
each iteration and how many iterations should be run.

In this context, we note that if the computation is to be
done on a digital quantum computer based on gates, then
“time” could represent a mathematical time in a Trotter-
ized version [40,41] of the time evolution. However, the
rodeo algorithm would also be viable on analog quantum
simulators—provided that one could use quantum gates to
turn the simulator on and off in a controlled way. It is not
implausible that such a scheme of gate-controlled analog
quantum-simulation (GCAQS) might be the first setting in
which rodeo projection proves to be decisive.

While the rodeo algorithm can be used to project onto
any discrete state of the spectrum for any Hermitian opera-
tor, for simplicity of discussion, this paper will focus on the
projection onto the ground state of a Hamiltonian of physical
interest—which is likely to be a common application. More-
over, to further simplify discussion, we will assume that a
constant has been added to the Hamiltonian of the system to
make the ground-state energy zero. However, the discussion
given here goes through mutatis mutandis for the more general
case of an arbitrary discrete state with the any value of the
ground-state energy.

In this paper we demonstrate that the version of the rodeo
algorithm shown in Ref. [29], which is based on choosing the
evolution times for the iterations randomly using a Gaussian
distribution with a fixed standard deviation, has large fluctua-
tions in efficiency that grow exponentially with the number of
iterations. We show that these fluctuations can be suppressed
by a very efficient algorithm designed with a set of “super-
iterations” which include iterations of multiple timescales.

We begin in Sec. II with an introduction to the rodeo pro-
jection algorithm; additional details are given in Appendix A.
Section III describes how the rodeo algorithm whose times for
each iteration are chosen randomly via a Gaussian distribution
can be optimized to minimize computational costs while max-
imizing suppression of unwanted states. This will serve as a
baseline for comparison with other approaches. It is shown in
Sec. IV that this random version of the rodeo algorithm has
large fluctuations, which grow exponentially in the number of
iteration. This implies that if one wishes to ensure a fixed level
of accuracy, with a high level of confidence one would need to
use substantially more resources than predicted by the average
value. In order to suppress these fluctuations, in Sec. V the no-
tion of a “super-iteration” algorithm is introduced. In Sec. VI
a simple ad hoc prescription of choosing super-iterations is
considered; additional details are given in Appendix B. Its
results are compared with the random approach and shown to
yield substantially stronger suppression of unwanted compo-
nents than the random approach. Finally, a few practical issues
associated with the implementation of the rodeo algorithm are
considered in Sec. VII.

II. RODEO PROJECTION

The rodeo projection algorithm acts by suppressing com-
ponents of the initial state depending on the energy of the

state. Since the algorithm is only applicable to discrete states,
there is necessarily an excited state with a minimum exci-
tation, which we denote �. It is extremely helpful to know
the value of � when attempting to optimize the performance
of the algorithm: clearly it makes no sense to spend com-
putational resources in order to improve the suppression of
would-be components with energies less than � as such com-
ponents do not exist.

The existence of a minimum excitation energy �, defines
a natural timescale for our problem:

T0 = 2π h̄

�
, (1)

which is the time needed for a full period for the phase evolu-
tion of the lowest excited state.

Using time as our proxy for computational cost is slightly
problematic in that it is a dimensionful quantity. One can
rescale all times in the problem by a constant factor and
rescale all energies by its inverse and so the computational
difficulty is the same. Moreover, a large extent in the analy-
sis of the rodeo algorithm involves products of energies and
times. Accordingly we will often express quantities in terms
of the following dimensionless combinations:

ζ = ET

2π h̄
= E

�

T

T0
, ζtot = ETtot

2π h̄
= E

�

Ttot

T0
, (2)

where T is a time that occurs during one iteration and Ttot is
the total time. The factor of 2π is included so that ζ measures
the number of periods.

The rodeo algorithm involves dynamics in which the phys-
ical system of interest is entangled with an ancilla qubit. The
scheme is based on iterations, with the concept of “successful”
and “unsuccessful” iterations determined by a measurement
of the ancilla qubit, indicating whether an iteration is success-
ful or not. The input to the jth iteration is the physical state
|ψ〉 j initial

phys and the output of successful iterations is the physical

state |ψ〉 j final
phys ; the time used to implement the iteration is Tj .

Consider an initial physical state prior to the first iteration
given by

|ψ〉initial
phys = αg|ψg〉 +

∑
c

αc|ψc〉 with

Pi
g = |αg|2 and |αg|2 +

∑
c

|αc|2 = 1, (3)

where the subscript g indicates the ground-state component
and c indicates the excited states (where Ĥphys|ψa〉 = Ea|ψa〉);
Pi

g is the initial probability that the system is in the ground
state. The central features of the algorithm are the following:

(1) Following n consecutive successful iterations, the cth
excited state is suppressed compared to the ground state by a
factor of

sc =
n∏

j=1

s j
c with

s j
c = cos2

(
ωcTj

2

)
= cos2

(
πζ j

c

)
, where

ωc ≡ Ec

h̄
and ζ j

c ≡ ωcT j

2π
. (4)
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One can represent the overall suppression factor after n iter-
ations for an arbitrary component in terms of ζtot [given in
Eq. (2)] as

s(ζtot ) = s

(
Ec

�

Ttot

T0

)
=

n∏
j=1

cos2

(
ωcTj

2

)
,

where Ttot =
n∑

k=1

Tn. (5)

(2) A consequence is that Pn
g , the probability that the phys-

ical system is in the ground state after n consecutive successful
iterations, is

Pn
g = |αg|2

|αg|2 + ∑
c

[∏n
j=1 cos2

(
πζ

j
c
)]|αc|2

= Pi
g

Pi
g + ∫∞

�
dE s

(
E
�

Ttot
T0

)
ρ(E )

= Pi
g

Pi
g + (

1 − Pi
g

)
SE

, (6a)

where s( E
�

Ttot
T0

) was given above. It is useful to consider the
overall suppression for all excited states. This is naturally
given in terms of the spectral density of the initial state, ρ(E ),

ρ(E ) ≡ initial
phys〈ψ |δ(E − Ĥ )|ψ〉initial

phys . (6b)

SE , the overall suppression factor for excited states, is then
given by

SE ≡
∫∞
�−ε

dE s
(

E
�

Ttot
T0

)
ρ(E )∫∞

�−ε
dE ρ(E )

with 0 < ε < �. (6c)

[The integral starts at � − ε to ensure that the delta func-
tion for the first (discrete) excited state is included.] Clearly,
SE goes to zero as n → ∞, which implies that as n → ∞,
Pn

g → 1.
(3) Assuming the ground-state energy is known with very

high accuracy and the algorithm is implemented without er-
rors, the probability that n consecutive successful iterations
occur starting from |ψ〉 j initial

phys , Pn s, is given by

Pn s = |αg|2 +
∑

c

⎛
⎝ n∏

j=1

cos2 (πζ j
c

)⎞⎠|αc|2, (7)

where |ψ〉phys is the physical state after n consecutive success-
ful iterations. This implies that

lim
n→∞ Pn s → |αg|2 = ∣∣〈ψg|ψ〉initial

phys

∣∣2. (8)

(4) If an iteration is unsuccessful prior to obtaining a phys-
ical state with sufficiently high probability to be in the ground
state (for the purposes of the problem one is studying), one
needs to recreate the initial state and start from the beginning.
The expected number of times one needs to create (or recreate)
|ψ〉initial

phys is 1
Pn s where n is the number of successful iteration

needed to achieve the desired accuracy.

(5) The expected net time to obtain a successful projected
state with the accuracy associated with n iterations

T expected = T n s∣∣〈ψg|ψ〉initial
phys

∣∣2 , (9)

where T n s is the time needed for n successful iterations; in
Eq. (9) it is assumed that

∑
c(
∏n

j=1 cos2(πζ
j

c ))|αc|2 is negli-
gibly small.

To see how these features come about, it is useful to focus
on the details of how a single iteration works; this is given
in Appendix A. Prior to the beginning of the jth iteration,
the the physical system is in pure state given in the energy
eigenbasis by

|ψ〉 j initial
phys = α j

g|ψg〉 +
∑

c

α j
c |ψc〉

with
∣∣α j

g

∣∣2 +
∑

c

∣∣α j
c

∣∣2 = 1. (10)

Thus, P j i
g , the initial probability for the system to be in the

ground state at the onset of iteration j, is given by P j i
g = |α j

g|2.
As shown in Appendix A the effect of a successful iteration

on the state is to affect the following transformation:

|ψ〉 j initial
phys

successful−−−−−→
iteration

|ψ〉 j final
phys with

|ψ〉 j final
phys = αg|ψg〉 + ∑

c
1
2 (1 + e−i2πζ

j
c )α j

c |ψc〉√∣∣α j
g

∣∣2 + ∑
c

∣∣α j
c

∣∣2 cos2
(
πζ

j
c
)

where ζ j
c ≡ EcT j

2π h̄
. (11a)

Thus

|ψ〉 j final
phys = α′ j

g |ψg〉 +
∑

c

α′ j
c |ψc〉

with α′ j
g = α

j
g√∣∣α j

g

∣∣2 + ∑
c

∣∣α j
c

∣∣2 cos2
(
πζ

j
c
) ,

α′ j
c = α

j
c cos

(
πζ

j
c
)
e−iπζ

j
c√∣∣α j

g

∣∣2 + ∑
c

∣∣α j
c

∣∣2 cos2
(
πζ

j
c
) . (11b)

A successful iteration of the algorithm increases the probabil-
ity that the system is in the ground state:

P j 1 s
g = ∣∣α′ j

g

∣∣2 = P j i
g∣∣α j

g

∣∣2 + ∑
c

∣∣α j
c

∣∣2 cos2
(
πζ

j
c
) � P j i

g , (12)

where the fact that |α j
g|2 + ∑

c |α j
c |2 cos2(πζ

j
c ) is necessar-

ily less than or equal to unity gives rise to the inequality.
Moreover this inequality is only saturated if every component
c either has α

j
c = 0 or has cos2(πζ

j
c ) = 1, an exceedingly

unlikely possibility. Thus a successful iteration will enhance
the ground-state component of the physical system.

From Eq. (11b), it is clear that the enhancement of the
ground-state probability comes through the relative suppres-
sion of components other than the ground state, which is given
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by

s j
c ≡

( ∣∣α′ j
c

∣∣∣∣α′ j
g

∣∣
/∣∣α j

c

∣∣∣∣α j
g

∣∣
)2

= cos2
(
πζ j

c

)
. (13)

Since this suppression happens for each iteration, the net
suppression for component c is the product

∏n
j=1 s j

c , which
establishes feature (i) above; feature (ii) follows logically
from it.

The reduced density matrix for the physical system is given
in Eq. (A3a) of Appendix A. Since the reduced density matrix
sums over the auxiliary qubit, it sums over both successful
and unsuccessful iterations. From the form of Eq. (A3a), it
is apparent that the total probability that the physical system
is in the ground state—including both successful and unsuc-
cessful iterations—is given by |a j

g|2, which as noted above
is the initial probability of the system being in the ground
state at the start of the jth iteration. Thus, if one includes the
contributions of both successful and unsuccessful iterations,
the total probability that the system is in the ground state is
unchanged by the iteration. Since this holds for all iterations, it
follows that the net probability that the system is in the ground
state is unchanged from the initial configuration prior to any
iterations. Feature (iii) follows immediately; features (iv) and
(v) are natural consequences of (iii).

Once the number of iterations and the times for each it-
eration are fixed, the total suppression for components with
any given energy is determined. However, the algorithm as
described so far has not been fully specified, since criteria
for choosing the times for each iteration and the number of
iterations have not been given.

It is useful to recall that the suppression factor for any
iteration only depend on ζ

j
c = EcT j/(2π h̄). Since our interest

is to suppress contributions with various energies contained
in the initial state, the goal is to pick times that usefully
suppress these. Clearly, it is suboptimal to use the same time
for each iteration of algorithm: if this were done energies
for which wcT j is an odd integer (where ω = E/h̄) would
have a suppression of unity (i.e., no suppression) no matter
how many iterations were done and energies near these points
would only be weakly suppressed. The remainder of the paper
is dedicated to considering various schemes for picking the
times.

III. OPTIMIZING THE RANDOM RODEO ALGORITHM

The original formulation of the algorithm chose times
randomly from a Gaussian distribution with a predetermined

standard deviation for each iteration [29]. We will refer to
this incarnation of the rodeo algorithm as the random rodeo
algorithm (RRA). The logic of RRA simple: there is no cor-
relation between the times apart from that fixed by the overall
standard deviation. Given this one might reasonably expect
that all excited states will have large suppression after many
iterations since one does not have coherent regions that are
largely unsuppressed.

This section will discuss how to optimize RRA to max-
imize suppression for minimal computational cost. As will
be discussed in subsequent sections, there exist other ways
to pick times which generically produce more suppression at
less computational cost than the optimized RRA. But to see
that, it is important to know just how well RRA can do.

The optimization problem is not yet well posed. Different
components of the initial state are suppressed differently and
depending on the information one has about the initial state
one might sensibly alter what one is attempting to optimize.
For example, if one knew that the excited state components in
the initial state was dominated almost entirely by components
with energies between � (the minimum excitation energy)
and 2�, one would attempt to configure the algorithm to
suppress those configurations optimally; the strategy could be
qualitatively different if the initial state contained substantial
contributions with excited energies covering many orders of
magnitude.

Let us consider the case where we know nothing about
the initial state beyond the fact that it is normalized and
all excited components have energy greater than or equal to
�. In that case, it seems reasonable to adopt a conservative
strategy to optimize the suppression of the components with
energies equal to or greater than � which on average are the
least suppressed (i.e., have the largest expectation value of the
suppression factor s) assuming fixed average total time. Since
this variant of the algorithm picks times randomly all one can
specify is the average total time; similarly one cannot ensure
that there will not be components that are less suppressed
than average, but at least one can be sure that in a statistical
sense the suppression should be at least as large as this for
any component. Equivalently, one can ask how much time one
needs to spend on average to ensure that the expected average
suppression for all components with energy greater than � are
suppressed on average by at least fixed predetermined factor.

This is straightforward to do. From Eq. (4), the suppression
for a component with energy E = h̄ω after n iterations of the
algorithm is s(ω) = ∏n

j=1 cos2( ωTj

2 ) and since the Tj are cho-
sen randomly and independently of each other, the ensemble
average of the suppression is given by

sAvg =
∫ ⎛

⎝ n∏
j=1

dTj p(Tj, T )

⎞
⎠ cos2

(
ωT1

2

)
cos2

(
ωT2

2

)
· · · cos2

(
ωTn

2

)
=
[∫

dT ′ p(T ′, T ) cos2

(
ωT ′

2

)]n

=
(

1

2

)n[
1 + exp

(
−πω2T 2

4

)]n

=
(

1

2

)n

[1 + exp(−π3ζ 2)]n, (14)

where n is the number of iterations, p(Tj, T ) is given from the positive half of a normal distribution whose average value is T

(so that T =
√

2
π

TRMS) and the substitution ζ ≡ ωT
2π

is made in the final form of s.
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FIG. 1. Average suppression factor as a function of ζtot for various values of n. The left panel shows all values of n from 1 to 40. As the
curves become dense near the separatrix, obscuring the features, the middle panel shows every fifth value of n. The right panel includes a
dashed line corresponding to the exponential fit given in Eq. (16d).

It should be clear that as ζ → 0, sAvg → 1. This simply re-
flects the fact the algorithm is designed so that the ground state
remains unsuppressed. On the other hand, for large ζ , savg

asymptotes1 to 1/2n. Moreover, it approaches its asymptotic
value quite quickly since exp(−π3ζ 2) becomes very small for
quite modest values of ζ .

Note that the total average time, Ttot , is simply the number
of iterations times the average time per iteration given by
Ttot = nT . It is useful to rewrite Eq. (14) in terms of Ttot or
equivalently ζtot = ωTtot/2π :

sAvg =
(

1

2

)n[
1 + exp

(−π3ζ 2
tot

n2

)]n

. (15)

In Fig. 1, sAvg is plotted as a function of ζtot for various
values of n. The leftmost panel includes all n’s from 1 to 40.
It is clear that the ζtot − sAvg plane separates into two regions.
Situations in which there are no values of n for which a given
value of ζtot has a corresponding sAvg are in the lower left. In
this region it is impossible to use RRA to obtain an average
level of suppression, sAvg, for the given ζtot. Conversely, the
top right region corresponds to situations in which it is possi-
ble to use RRA to obtain an average level of suppression, sAvg,
for the given ζtot. There is a clear separatrix between these two
regions.

1Note this asymptotic behavior differs from the 1/4n discussed
in Ref. [29] that 1/4n behavior corresponds to the geometric mean
while the present result is for the arithmetic mean. The qualitative
difference between these behaviors reflects very large fluctuations
and will be discussed in the next section.

The way the separatrix forms is a bit hard to discern from
the left most panel of Fig. 1 since the curves for the various n’s
are so dense. To clarify how the nearly exponential separatrix
forms, the middle panel plots only every fifth n. For values of
ζtot greater then 1, the separatrix is approximated extremely
well by a simple exponential—a line in the log plot.

The most natural fit to a simple exponential is the one that
exactly matches the exact separatrix once for each value of
n. This is straightforward to do: if one takes the functional
form of Eq. (15) but takes n to be a continuous real variable
rather than having discrete integer values, one can minimize
SAvg with respect to n for fixed ζtot. This yields

n = αζtot, (16a)

where α satisfies

2π2

α2
[
1 + exp

(
π3

α2

)] = ln

[
2

1 + exp
(−π3

α2

)
]
, (16b)

so that

α ≈ 4.271 (16c)

and

SAvg = exp (−β ζtot ) with

β = −α ln

[
1 + exp

(−π3

α2

)
2

]
≈ 2.244. (16d)
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Equations (19)–(22) give the minimum value of SAvg for any
value of n, integer or discrete. However, RRA is restricted to
integer values. Thus, Eq. (22) gives a lower bound for SAvg :

SAvg � exp (−β ζtot ) with β ≈ 2.244. (16e)

However, when ζtot is such that n [as given in Eq. (19)–(21)]
happens to be an integer, then the simple exponential form
precisely matches the separatrix and Eq. (23) becomes an
equality. Moreover, since the curves for the various n’s near
the separatrix become quite dense by the time ζtot reaches one,
one expects the simple exponential form to be an excellent
approximation. This is seen in the right panel of Fig. 1.

With this result in hand let us return to the optimization
problem of determining how much time one needs to spend
to ensure that all components with energy greater than �

(the gap or minimum excitation energy) are suppressed on
average by at least fixed predetermined factor S. Recalling that
ζtot = ETtot

2π h̄ , Eq. (16e) becomes Ttot � − 2π h̄ ln(S)
βE . To ensure

that the time is long enough so that all components of the state
are suppressed by at least S, one needs to use � for the energy.
Thus,

Ttot � −2π h̄ ln(S)

β�
(17)

If one uses T0 ≡ 2π h̄/� as a natural unit of time then

Ttot

T0
� − ln(S)

β
≈ 0.4456 ln (S). (18)

IV. FLUCTUATIONS IN THE RANDOM
RODEO ALGORITHM

Ensuring that the ensemble-averaged suppression factor is
smaller than some fixed value S for all excited state energies
might seem to be a sensible way to obtain a controlled level
of suppression. This would certainly be true if the statistical
fluctuations in the suppression factor were themselves under
control. For example, if the suppression factors were dis-
tributed normally so that the ratio of the distributions width to
the average suppression scaling like n− 1

2 , then at large n one
could be quite confident that the suppression factor in various
runs did not exceed S much. This would allow a reliable and
predictable projection onto the ground state.

Unfortunately, this is not the case. Rather, there are ex-
ceptionally large fluctuations, which make it very difficult
(and computationally expensive) to produce a given level of
suppression in a reliable way.

A. Fluctuations in statistical measures over
the random ensemble

A hint that exceptionally large fluctuations are present can
be seen in the fact that there are multiple qualitatively different
“natural” expectations for the amount of suppression after n
iterations.

Since the average of cos2 is 1
2 , it seems reasonable that well

away from ζ = 0 (where there is no suppression) on average
each iteration should randomly sample from cos2 leading to
expectation of an average suppression of 1

2 per iteration. On
the other hand, it also seems reasonable that well away from
ζ = 0, where a random assignment of times will lead to an
approximately uniform distribution of phases in the cosine
and as noted in Ref. [29], the geometric mean of cos2(θ ) leads
to an expectation of a suppression of 1

4 per iteration.
Which one of these “natural” expectations is correct? An

apparently puzzling feature is that there is strong evidence
that each of these is at least approximately correct: Ref. [29]
gives evidence for a suppression of 1

4 per iteration: it plots
the logarithm of the suppression for four values of ζ for one
random run of up to 150 and shows that for ζ = 3.0 the
logarithm suppression closely follows −N ln 4 (where N is
the number of iterations (with notable fluctuations) while for
ζ = 2.0 it nearly does so. This strongly supports the notion
that the suppression per iteration is at least close to 1

4 for
sufficiently large ζ .

However, the evidence that the (ensemble) average sup-
pression per iteration is 1

2 for large enough ζ is also
compelling. From Eq. (4), the suppression for a component
with energy E = h̄ω for n iterations of the algorithm is s(ω) =∏n

j=1 cos2( ωTj

2 ) and since the Tj are chosen randomly and
independently of each other, the ensemble average of the
suppression is given by Eq. (15). Clearly as ζ gets large, s,
the ensemble average suppression, approaches 2−n, not 4−n.

These two asymptotic scaling behaviors may seem incom-
patible, but they need not be. It is perfectly possible that
“typical” suppression factors scale at least roughly as 4−n for
sufficiently large ζ , while the average is dominated by atypical
suppression factors that occur relatively infrequently but are
orders of magnitude larger than the typical ones.

It is easy to verify that this is happening. In Table I the
geometric mean and root-mean-square (r.m.s.) values for the
suppression for the ensemble used in RRA are given along
with the arithmetic mean computed earlier. The expressions
are derived analogously to the arithmetic mean.

From the expressions for r.m.s. and arithmetic mean one
can easily construct the ratio of the standard deviation σ to
the (arithmetic) mean sAvg:

σ

sAvg
=

⎡
⎢⎣
(

3

2

)n

⎛
⎜⎝
(

1 + exp(−4π3ζ 2 )
3 + 4 exp(−π3ζ 2 )

3

)
(1 + exp (−π3ζ 2))2

⎞
⎟⎠

n

− 1

⎤
⎥⎦

1
2

large n−−−→

×
(

3

2

) n
2

⎛
⎜⎝
(

1 + exp(−4π3ζ 2 )
3 + 4 exp(−π3ζ 2 )

3

)
(1 + exp (−π3ζ 2))2

⎞
⎟⎠

n
2

large ζ−−−−→
(

3

2

) n
2

. (19)
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TABLE I. Three statistical quantities characterizing the suppression factor as a function pf ζtot given by the ensemble used in the random
rodeo algorithm. The second column gives an expression for the quantity as a function of ζtot for fixed n. The third column gives the asymptotic
value of these forms at large ζtot . In all cases the asymptotic form is reached to very good approximation whenever ζtot > 1. The fourth column
gives the best exponential fit analogous to the separatrix in the ζtot-s plane which were calculated analogously to the method described in the
discussion surrounding Eqs. (16a)–(16e). As there, the exponential fit to the separatrix determines the minimal time needed to ensure that the
statistically weighted suppression factor achieves a fixed level or better for all energies.

Statistical s(ζtot ) for fixed total Asymptotic form Best exponential fit for separatrix
quantity average time and fixed n for large ζtot in the ζtot-s plane

Geometric mean exp{n ∫ ∞
−∞ dT ln[cos2(πT ζtot )]p(T, 1)} 4−n exp(−β ζtot ) with β ≈ 4.46

Arithmetic mean ( 1
2 )n[1 + exp(−π 3ζ 2

tot )]
n 2−n exp(−β ζtot ) with β ≈ 2.244

Root-mean-square ( 3
8 )n/2(1 + exp(−4π3ζ 2

tot )
3 + 4 exp(−π3ζ 2

tot )
3 )n/2 ( 3

8 )n/2 exp(−β ζtot ) with β ≈ 1.637

The behavior for large n follows because the quantity

(
3

2

)⎛⎜⎝
(

1 + exp(−4π3ζ 2 )
3 + 4 exp(−π3ζ 2 )

3

)
[1 + exp (−π3ζ 2)]2

⎞
⎟⎠

is larger than unity for nonzero values of ζtot and becomes
much large than one for large n. Empirically, both the r.m.s.
and arithmetic mean approach their asymptotic quite rapidly
at even modest values ζtot.

Clearly, at large n, the fluctuations in the distribution of s
values become exponentially larger as a function of n.

The three statistical quantities which are all sample from
the same distribution are different. If the suppression factors
were dominated by one characteristic scale, all of these quan-
tities would be at the same scale. But as seen explicitly in the
third column, three differ and the differences between them
are exponentially large as a function of n.

To see how the large scale of the fluctuations affects the
ability of the scheme to reliably accomplish a projection, the
exponential fits in the fourth column of the Table I are shown
in Fig. 2. The implication of this is quite striking. If, for

FIG. 2. Exponential fits to average (arithmetic mean) suppres-
sion factor (long dashed), root-mean-square suppression factor
(short-dashed), and geometric mean (dotted) as a function of ζtot .

example, one considers the case of ζtot = 5, RRA can be used
to ensure that the geometric mean of suppression is below
2.07×10−10, but the arithmetic mean of the suppression factor
is at best 1.34×10−5, nearly 5 orders of magnitude worse than
the geometric mean; the best that can be achieved for the r.m.s.
is 2.79×10−4 which is almost 6 orders of magnitude worse
than the achievable value from the geometric mean.

It was suggested earlier that “typical” values of the sup-
pression factors scale at least roughly as 4−n for sufficiently
large ζ , explaining the results seen in Ref. [29]. It is easy
to understand why this occurs. The suppression factor is the
product of many variables each of which is randomly chosen
from the same distribution. In such a situation one expects
a log-normal distribution to emerge when the number of
samples, n, becomes large: the central limit theorem can be
applied to the logarithms of the variables which are combined
additively.2 The geometric mean of a log-normal distribution
is known to be its median. This implies that at large n one ex-
pects that the median of the suppression factor—a reasonable
proxy for a “typical” value—should be the geometric mean;
in this case the geometric mean is easily shown to be 4−n.

B. Fluctuations in a single run

So far, we have focused on the fluctuations of statistical
quantities for fixed values of ζtot evaluated over the statistical
ensemble of RRA. However, intuitively, one might also expect
that the large fluctuations seen in the ensemble average would
be reflected as large fluctuations as a function of ζ for any
given run. This subsection provides numerical evidence that
this occurs by looking at a representative example. Indeed, one
sees that typical suppression factors are of order 4−n, the aver-
age suppression is of order 2−n, and the average suppression

2Analogously with the central limit theorem for normal distribu-
tions, when the underlying distribution has a limited range, the range
of the underlying distribution can put constraints on the ability of the
tail of the log-normal distribution to correctly describe the true distri-
bution for n samples. In the present context, the suppression factor is
bounded from above by unity. However, the log-normal distribution
has support for S > 1. Thus, quantities which evaluated with the log-
normal distribution receive significant contributions from regions of
S > 1 will not be correctly described by the log-normal distribution.
It turns out that the r.m.s. is such a quantity.
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FIG. 3. The solid line represents the suppression factor for a random run with six iterations with time chosen from the positive side of a
normal distribution and an average time of unity. The long-dashed curve is the ensemble average for six iterations with that distribution for the
suppression, the short-dashed curve is the r.m.s., and the dotted line in the log plot is the geometric mean.

is dominated by narrow peaks in ζ with suppression factors
that are much less suppressed than the average.

In Fig. 3 a representative sample is given for the sup-
pression factor obtained after six iterations with times picked
from the half-normal distribution with an average of unity and
plotted over a range of 1 < ζ < 10. (Six-iteration was chosen
so that the ensemble average 1/64 was still large enough to be
easily discerned from zero by eye.) The existence of very large
fluctuations compared to the average is readily apparent. The
highest peak is 13 times larger than the average, while typical
values between the peaks are so exceptionally small that they
can only be discerned in a log plot.

The minimum value showed in the log plot gives an indica-
tion of just how small it is. It is clear that the fraction of value
of ζ in the regime from 2 to 10 (where the average function
has essentially asymptoted to 2−6) that has s < 4−6 is close
to half: a numerical integral of �(4−6 − s[ζ ]) where � is the
Heaviside step function yields an estimate that approximately
58% of the points in this range have s(ζ ) < 4−6 for this set of
iterations. This is consistent with the notion that a “typical”
point has S(ζ ) of order 4−n.

Similarly, the average value of s in the region from 2 to
10 has an average value of s(ζ ) of order 2−n. Numerically
it is approximately 0.014 while 2−6 ≈ 0.0156, so for this
particular run it is about 90% of what one would expect the
average to be, assuming that individuals reflect the ensem-
ble average at large n and that n = 6 is sufficiently large.
Given the paucity of large peaks in this range of ζ and the
fact that only six iterations were used, this is remarkably
close.

The existence of these large fluctuations represents a se-
rious challenge for using RRA in an efficient way. In order
to ensure that the suppression factor has a high probability of
reaching a needed level of suppression for all relevant compo-
nents of the initial state, one must use computational resources
that are several times larger than the times needed for a typical
component to be suppressed to that level. If computational re-
sources are fixed (as is likely when the first quantum computer
becomes available for which the rodeo algorithm is viable for
a particular problem) then the fluctuations imply that one does
not even have a reliable estimate of the order of magnitude of

the suppression, making one quite unsure of just how well an
initial state has been projected onto the ground state.

V. SUPER-ITERATIONS

There are two reasons why nonrandom variants of rodeo
projection might be preferable to RRA. The first is related
to the previous section: the random algorithm produces ex-
ponentially large fluctuations (in n) which greatly restrict the
efficiency of the approach if one wishes to reliably know the
level of suppression. Ideally one could intentionally choose
parameters that control these fluctuations. The second is sim-
ply that for any particular well-defined quantity associated
with suppression there exists an optimal choice (in terms of
n and the various values of ζ—or equivalently T —for each
iteration) that maximizes (or minimizes as the case may be)
the quantity. At best, a random algorithm can approximate this
optimal choice. Thus, as a matter of principle an appropriate
intentional choice of the parameters should always perform
better than the random algorithm—regardless of the quantity
one is attempting to optimize.

Note that large fluctuations arise when multiple iterations
have suppression factors near unity. Suppression factors of
unity occur when πζ

j
c is an integer while suppression factors

of zero occur when πζ
j

c is an half-integer. One can restrict the
scale of such large fluctuations by requiring that suppression
factors of unity are always multiplied by suppression factors
of zero for all nonzero values of ζ . A key insight is that this
can be arranged to occur with a finite total time (or ζ ) (and
indeed only twice the time of the underlying distribution).

This can be done using “super-iterations,” rather than the
single iterations considered heretofore. A super-iteration con-
sists of an infinite set3 of iterations each of which takes half
the time (or ζc) of the previous one. Since the times form a
geometric series the net time for a super-iteration is exactly
twice of the underlying iteration.

3Of course, in practice this will need to be large but finite; the
effects of keeping it finite will be discussed in Sec. VII A.
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FIG. 4. The solid line represents the suppression factor for a
single “super-iteration” as a function of the excitation energy in
units of �, the minimum excitation energy. The time was fixed
to be T0 = 2π h̄/�. The dotted line uses the same total (average)
time and gives the ensemble average suppression factor for three
iterations—the number of iteration that ensures that the maximum
value of the average suppression factor is as small as possible.

Note from Eq. (4) that the second stage of the super-
iteration with a time given by T j/2 has a suppression factor
of zero whenever cos2(πζ

j
c /2) is zero, which occurs when

ζ
j

c is twice an half-integer (odd integer). Thus it coincides
with places where the first stage has a suppression factor of
unity and exactly cancels them. It does not cancel all of the
place where the initial iteration was unity. However, the next
stage—where the a time is given by T j/4—will cancel when
ζ

j
c is four times an half-integer, the stage after that when ζ

j
c is

eight times an half-integer and so forth. Thus, as a whole the
super-iteration will cancel every place where original iteration
was unity at a cost of spending twice the time.4

The suppression factor for the jth super-iteration at given
ζ

j
c sup (which is twice ζ

j
c , the base iteration, since a super-

iteration takes twice as long) is given by

s j
c sup =

∞∏
k=0

cos2

(
πζ

j
c

2k

)
=

∞∏
k=1

cos2

(
πζ

j
c sup

2k

)

= j2
0

(
πζ j

c sup

) =
(

sin(π ζc sup)

π ζc sup

)2

, (20)

where j0(x) is the 0th spherical Bessel function.
From Eq. (2), ζ = (E/�)(T/T0). Thus if one allocates a

time of T0 = 2π h̄/�—one period of phase evolution for the
lowest excited state—and does just a single super-iteration,

4It is analogous to the method suggested in [32] to remove states
with discrete quantum numbers.

the suppression factor has a function of energy will be given
by j0(πE/�))2 and is shown in Fig. 4.

Figure 4 plots s for E/� � 1, since � is the minimum
excitation so that all excited state components in the initial
state have E � �. The choice of T = T0 ensures that for the
lowest excited state s = 0, the components with a minimal
excitation energy are completely suppressed. There are two
other important salient features. The obvious one is evident
from the scale of the suppression factor. Note that the maxi-
mum suppression factor is less than 0.05 for all energies above
the lowest excited state. The other is that s falls off rapidly
with E/� or equivalently ζ .

The overall small scale of s for all relevant energy is quite
striking given that the net time is very modest—only a single
period of the lightest excitation. A useful comparison is with
RRA: if one restricted the (average) total time of a single
period of the lightest excitation, and optimized the average
for E > �, then one should use three iterations (see Fig. 1).
The average suppression factor is plotted as a dotted line.
Note that for all values of E/� > 1 the super-iteration is well
below the average value of the random algorithm; it is always
at a factor of 2.6 smaller. Moreover, for larger E/� > 1 the
single super-iteration rapidly becomes orders of magnitude
better than three iterations of the random algorithm. The fact
that super-iterations drop off so rapidly at large ζ is a clear
benefit in attempting to construct optimized versions of the
rodeo algorithms—if a scheme using multiple super-iterations
concentrates on improving the suppression at values of ζ

between one and two, it will be essentially guaranteed to have
excellent suppression everywhere for ζ > 1. This is not true
of the random algorithm.

VI. OPTIMIZING RODEO PROJECTION

The demonstration that a single super-iteration achieves
substantially more suppression at all energies than the random
algorithm with the same fixed time—and does so without
suffering from large uncontrolled fluctuations—makes clear
the advantages of intentionally choosing the parameters of the
rodeo algorithm rather than relying on randomness to achieve
optimal suppression.

As noted in Sec. III, in order to optimize the rodeo pro-
jection algorithm one needs to know the quantity that one
is optimizing. Even if one poses a problem as one fixes the
total computational resources to be used (or more precisely
its proxy, the total time in units of T0 = 2π h̄

�
) and asks to

optimize the suppression factor, one has not fully specified
the optimization problem since the suppression factor is a
function of excited energies.

If one knew a significant amount about the spectral density
of the initial state, then one might choose to optimize the
algorithm in a manner which suppresses components that have
high probabilities more heavily. Merely knowing information
about the spectrum of the theory, without any addition infor-
mation about the initial state could influence the choice of
what we wish to optimize. For example, if one knew that the
spectrum contained no states with energies between � and
2�, then it would not make sense to expend computational
resources suppressing components with energies in that region
since one knows that they do not appear in the initial state.
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The most straightforward approach to optimization has two
steps: the first is to choose some quantity Q(s, Ttot ) that is a
functional of the suppression factor s(ζtot ), and the total time,
and has the property that when minimized yields strong sup-
pression given the state of interest. The second step is to seek
the s produced by the rodeo algorithm subject to constraints
on the total time that minimizes Q as best one can.

Note that whatever strategy one adopts in choosing Q, there
exists an optimal choice of parameters that minimizes Q once
Ttot is specified. That said, it may not be practical to find
the optimal choice or even come close. One can explore a
range of possibilities and ultimately use the one which pro-
vides the smallest value of Q.

We start by considering the situation where nothing is
known about the initial state beyond the fact that all unwanted
components have energies greater than or equal to �, and
one wishes to adopt a conservative strategy in which one has
a rigorous bound on the total suppression of excited states.
There is a clear strategy: one can choose Q to be the largest
value as a function of E in the physically relevant regime
E � �:

Q = max
E��

s

(
E

�

Ttot

T0

)
, (21)

which, in effect, implies choosing the worst possible value of
the suppression in the possible physical range. By choosing Q
to be the worst case, one ensures that the suppression factors
for all components of the state are not larger than Q, which
in turn puts an upper bound for SE , and the total amount by
which the excited state components are suppressed:

SE ≡
∫∞
�−ε

dE s
(

E
�

Ttot
T0

)
ρ(E )∫∞

�−ε
dE ρ(E )

� Q. (22)

Moreover, it does so without using any information about
the initial state or the spectrum (beyond the fact that lowest
excitation is �). Also, Q depends solely on s(ζtot ) and the
total time, but not on the initial state. Thus one merely needs
to seek to optimize Q once for each Ttot and not undergo the
daunting task of repeating the optimization for each initial
state.

A potential downside of strategy [Eq. (21)] is its very
conservative nature. As noted it will provide an upper bound
for SE , but it may be a very large upper bound compared
to the least upper bound. Note that if we construct s from
super-iterations with energies which are a few times �, the
suppression factor becomes extremely small near chosen en-
ergies even if only a few super-iterations are used. If the initial
state is heavily weighted towards such energies, the actual
overall suppression of excited components, SE , will be much
smaller than the bound produced given by Q, and if the bound
on SE is fixed at the level of projection needed for the problem
at hand, substantially more computational resources would
be expended than needed. After considering this conservative
bound, we will consider ways to improve upon it.

Unfortunately, even for this most conservative approach,
the mathematical problem of finding s such that it yields the
minimum value of maxE�� s( E

�
Ttot
T0

) subject to the condition
that s is obtained through some number of rodeo iterations
with fixed total time is an open one. However, one can adopt

FIG. 5. The solid points are an absolute upper bound on the sup-
pression factor using intentionally fixed times the scheme outlined in
Appendix B for various number of super-iterations as a function of
total time. For comparison, the dashed line represents a lower bound
for the time for the ensemble average of S to be greater than a fixed
amount using the random rodeo algorithm of Ref. [29].

ad hoc prescriptions and test how well they do. It is natural to
consider prescriptions based on super-iterations as these seem
very efficient.

We illustrate the existence of prescriptions for which the
times are chosen intentionally rather than randomly and that
yield exceptionally small suppression factors in quite modest
times using a scheme outlined in Appendix B. The prescrip-
tion entails generating suppression factors based on a fixed
number of super-iterations of various times (all of order T0),
with each super-iteration generated from the previous one.
The times for each super-iteration and the maximum sup-
pression factors (for E > �) are listed in Table II. Note
that the maximum suppression factors are remarkably small:
for Ttot/T0 ∼ 3. the suppression factor is ∼10−6 while for
Ttot/T0 ∼ 6.4 the suppression factor is ∼1.5×10−14.

It is instructive to compare the results using suppression
factors obtained from the scheme in Appendix B with the
random approach. In Fig. 5 the absolute upper bound of the
suppression factor is compared with the lower bound for
the time for the ensemble average of S to be greater than
a fixed amount. It is clear that for fixed total times the in-
tentional approach gives suppression factors that are orders
of magnitude better than the random approach, when T is a
couple of time T0 or more. For example, when T/T0 = 6.4,
the intentional approach yields an upper bound on the total
suppression that is a factor of 3.77×107 smaller than the
lower bound ensemble average. If the calculation is restricted
to short times (which is likely to be true when quantum
computers first become large enough to implement the rodeo
algorithm with sufficient coherence times), the existence of
achieving order of magnitude better performance at fixed
times is striking.

032422-10



OPTIMIZING THE RODEO PROJECTION ALGORITHM PHYSICAL REVIEW A 108, 032422 (2023)

TABLE II. The times for each super-iteration and the maximum value of the suppression factors for E > � using the ad hoc scheme
described in Appendix B.

Maximum
suppression factor

Total time in
units of T0

Number of
super-iterations

Times for each
super-iteration
in units of T0

maxE�� s( E
�

Ttot
T0

) Ttot/T0 n T1/T0 T2/T0 T3/T0 T4/T0 T5/T0 T6/T0 T7/T0 T8/T0

4.719×10−2 0.8129 1 0.8129
8.508×10−4 1.5906 2 0.9361 0.6545
2.421×10−5 2.4222 3 0.9494 0.6638 0.8090
7.549×10−7 3.0752 4 0.9785 0.6841 0.8338 0.5788
7.385×10−9 3.9865 5 0.9764 0.6827 0.8320 0.5776 0.9180
8.948×10−11 4.7944 6 0.9881 0.6908 0.8419 0.5845 0.9290 0.7601
5.689×10−12 5.4500 7 0.9925 0.6939 0.8457 0.5871 0.9331 0.7634 0.6343
1.539×10−14 6.4010 8 0.9895 0.6918 0.8431 0.5853 0.9303 0.7611 0.6324 0.9675

A less dramatic way to view the improvement is to focus on
the total time needed to achieve a certain level of suppression,
in which case the gain looks to be something like a factor
of two in total time. Whichever way one views this, how-
ever, the comparison understates the advantages of using an
intentional approach. As noted earlier, the random approach
yields exponentially large fluctuations making it complicate
the achievement with reliable levels of suppression. In con-
trast, this problem is entirely vitiated by choosing the times
intentionally: it provides an upper bound for the suppression
factor that is truly reliable.

Moreover, the scheme discussed in Appendix B was con-
structed entirely ad hoc to provide a concrete example of a
scheme that substantially outperforms the random approach.
It is not implausible that a broad search over parameter space
could yield substantially improvements. We leave such a
search to future research.

As a practical matter, implementing rodeo projection ef-
ficiently would be helped greatly if one produces a table,
similar to Table II, but containing a denser set of total times
and ideally, better suppression factors. It would then be a
simple matter to either pick out the suppression required for
the problem at hand and find the time needed to ensure that
this is achieved or alternatively fix a maximum time that can
be allotted and find the level of suppression that could be
achieved. In either case one could then use the times of various
super-iterations (or regular iterations) associated with that row
of the table to implement the projection efficiently.

A. Incorporating information about the initial state

If one had full information about the spectral function of
the initial state, one could choose to optimize things differ-
ently. Instead of attempting to minimize Q = maxE�� s( E

�
T
T0

)
and thereby put an upper bound on SE , the net suppression
factor for the excited states, one could attempt to find a set
of (super) iterations with fixed total time that minimized SE

or a set with a fixed value of SE that minimized the time.
This is unlikely to be done since one would need to do this
minimization separately for each initial state whose spectral
function is known.

On the other hand, if one had access to a table of the sort
described above (or even just Table II) and knowledge of the

spectral function, one could either pick a time that one wishes
to spend and find the precise value of SE associated with
it (rather than merely having an upper bound that could be
orders of magnitude larger than SE ) or perhaps more practi-
cally identify the level of suppression in SE required for the
problem at hand and choose the shortest time from the table
that achieves it. This time will likely be significantly shorter
than the time obtained from the upper bound on SE .

However, circumstances in which one has access to the
full information of spectral function will presumably be quite
rare. It seems far more likely that partial information about
the spectral function might be available. Even with partial
information one may be able to find significantly stronger
upper bounds than Eq. (21).

To do this it is useful to construct a function that is the
least upper bound of s( E

�
T
T0

) subject to the constraint that
it is monotonically decreasing. Let us denote this function
sUB( E

�
T
T0

). In Fig. 6 this is done for the n = 3 case given in
Table II.

Next, suppose that there is a good reason to believe that
the most of the spectral strength above the ground state is

FIG. 6. The solid line is sUB( E
�

T
T0

), the least upper bound of

s( E
�

T
T0

) subject to the constraint that it is monotonically decreasing

for the n = 3 case given in Table II; the dotted line is s( E
�

T
T0

) itself.
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predominantly at energies at least a few times �. One can
characterize this with an energy E0 and f , the fraction of the
excited state integrated spectral density above E0:

f ≡
∫∞

E0
dE ρ(E )∫∞

�−ε
dE ρ(E )

. (23)

The bound on SE then becomes

SE � (1 − f ) sUB

(
�

�

Ttot

T0

)
+ f sUB

(
E0

�

Ttot

T0

)

� Q. (24)

As an example, if one uses three super-iterations with the
simple scheme of Appendix B given in Table II, and has f =
0.99 and E0 = 3, then the bound becomes SE � 5.591×10−7,
which is more than a factor of 40 smaller than the bound in Ta-
ble II which assumes no knowledge of the initial state. If f =
0.9999 with E0 = 8 the bound becomes SE � 1.194×10−8,
which is a factor of 2000 smaller.

VII. PRACTICAL CONSIDERATIONS

A number of practical issues involving the implementation
of the rodeo projection algorithm will arise when suitable
quantum computers become available. This section will con-
sider a few of these and discuss ways to deal with them.

A. Cost of super-iterations

In the introduction it was suggested that the time of
computation in units of T0 is a reasonable proxy for the
computational cost. While this is largely true, there is an
important caveat, apart from allowing the system to evolve
in time according to Hamiltonian dynamics, there is an ad-
ditional overall computational cost associated with running
each iteration: one needs to both couple the auxiliary qubit
to the system of interest (which involves use of Hadamard
gates and a conditional coupling) and to measure the auxil-
iary qubit. While such costs may be negligible for any given
iteration, super-iterations as formally defined in Sec. V require
an infinite number of iterations and thus, these fixed costs per
iteration would become arbitrarily large.

The obvious solution is to simply use a fairly large but
finite number of iterations for each super-iteration. If one uses
N iterations in each super-iteration, then

ssup N(ζsup) =
N∏

k=1

cos2

(
πζ

j
sup

2k

)
= j2

0 (πζsup)

j2
0

(πζsup

2N

) . (25)

Since j2
0 ( πζsup

2N ) is very close to unity until ζsup is of order
2N−2, such a limitation will not noticeably alter any results
for suppression until ζsup gets very large.

One might worry that when ζsup is an integer multiple of
2N the super-iteration becomes unity and suppression is lost.
This is unlikely to be a practical problem, but it does mean
that theoretical upper bound for any given N , the suppression
factors given in a table analogous to Table II (or a more sophis-
ticated table) only hold for energies less than some calculable
maximum. Thus, if one knows the integrated spectral density
above that maximum is negligible, the bound remains valid.

Fortunately such maxima occur at very high energies for rela-
tively modest N . For example, when a single super-iteration is
used, the maximum energy (in units of �) consistent with the
suppression on the table will occur at approximately 2N . With
the values in Table II a more precise maximum energy consis-
tent with the quoted bound is Emax/� ≈ (2N − 1.430)/0.8129
so that for N = 15, it holds up to energies of 40, 308×�.
If more than one super-iteration is used, the maximum sup-
pression factor calculated for an arbitrarily large number of
iterations per super-iterations will continue to hold to much
higher energies than the case of a single iteration. In any case,
one can always make N sufficiently large that this is not a
practical problem.

B. False negatives

Up until now we have focused on reducing the proba-
bility of “false positives,” the survival of components other
than the ground state after the algorithm has run. We have
ignored the problem of “false negatives” since, in the ideal
case where the ground-state energy is known precisely and
the time evolution and control over timing are perfect, every
ground-state component will survive each iteration with unit
probability. However, in practice the energy of the ground
state is never known exactly and there will be errors due to
imperfections in the propagation of the state in time. These
can lead to “false negatives” in which the auxiliary qubit is
measured in the down state even though the physical system
is in the ground state. If one has a reasonable idea of the
scale of the uncertainty of the ground state, the effects of
imperfect calculation, and the probability that the state is in
its ground state, the likelihood of a false negative for any
given iteration can be estimated. Assuming that likelihood
is small but not totally negligible, the natural thing to do is
ignore the fact that the auxiliary qubit was measured down
and continue the calculation while keeping track of a nomi-
nally unsuccessful run. If the auxiliary qubit is measured to
be up through the next super-iterations one should simply
assume that a false negative occurred and continue. If a second
nominally unsuccessful iteration occurs anytime up through
the next super-iteration one should assume that the iteration
was truly unsuccessful. It should be very rare for this to care
accidentally unless the uncertainty in the ground-state energy
is very large.

C. Uncertainties in the energy of the first excited state

The formulation of the problem assumed that the energy
of the ground state and the first excited state were known. As
discussed above a lack of precise knowledge of the ground-
state energy can lead to false negatives, but there is a useful
strategy for dealing with these. A lack of precise knowledge
of �, the energy of the first excited state relative to the ground
state, is even easier to mitigate. There are two possibilities to
consider: either are the estimate of � is larger than the true
value, or it is smaller.

Underestimating � has a very modest cost. T0, the time
standard, will be larger than needed and hence all times (the
proxy for computational cost) will be slightly larger than
strictly necessary to achieve the level of suppression intended.
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However, the upper bound for suppression will be computed
in Table II or its generalization will remain valid since a given
value of ζtot occurs at a lower energy.

Overestimating � is more serious: a given value of ζtot

occurs at a lower energies and hence effectively probes the
suppression factor at values of the energy below the true value
� where the suppression factor can be and generically is
larger than the computed upper bound.

The obvious way to make sure that � is not overestimated
is to ensure that the value used is chosen conservatively to
be below the estimated value by an amount larger than the
uncertainty. This would guarantee a reliable upper bound and
a very modest computational cost.
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APPENDIX A: A RODEO ITERATION

This Appendix derives various properties of the density
matrix and reduced density matrix associated with a single
iteration of the rodeo algorithm.

The Hilbert space of the total system is enlarged by the
inclusion of an ancilla qubit, which is initialized to be in the
state |↑〉 (in the z basis) and the physical system is in a pure
quantum state. Given the inclusion of an additional degree of
freedom—which will be entangled with the state of the phys-

ical state, a natural description of the system the system is via
density matrices and reduced density matrices.

The physical system prior to the running of the jth iteration
of the algorithm is |ψ〉 j initial

phys given in Eq. (10); the full (pure
state) density matrix in the extended Hilbert space is given by
the tensor product

ρ̂
j initial
total = |↑〉〈↑| ⊗ ρ̂

j initial
phys ,

where the subscripts “phys” and “total” indicate the space de-
scribing the physical system being studied and the total system
including the ancilla qubit; j simply labels the iteration.

The total system is then subject to unitary evolution:

ρ̂
j final
total = Ûj ρ̂

j initial
total Û †

j where

Ûj = exp[−i( p̂↑
x ⊗ ĤphysTj )] with

p̂↑
x ≡ 1

2 (1 + σ̂x ); (A1)

p̂↑
x acts on the ancilla qubit and is a projector onto the up

state in the x basis. This is achieved by acting on the ancilla
qubit with a Hadamard gate, running Hamiltonian dynamics
for the physical system for a time Tj , conditionally on the
ancilla qubit being in the “up” state and then again acting on
the ancilla qubit with a Hadamard gate.

The crux of the algorithm is the quantum interference be-
tween the components in which the Hamiltonian time evolves
and the components where it does not.

Following the time evolution the density matrix for the full
system is given by

ρ̂
j final
total = |↑〉〈↑| ⊗

[∣∣α j
g

∣∣2|ψg〉〈ψg| +
∑
c,c′

cos

(
ωcTj

2

)
cos

(
ω′

cTj

2

)
(αcα

∗
c |ψc〉〈ψc′ | + α∗

c αc′ |ψc′ 〉〈ψc|)

+
∑

c

cos

(
ωcTj

2

)(
αgα

∗
c e−iωcTj/2 |ψg〉〈ψc| + α∗

gαceiωcTj/2 |ψc〉〈ψg|
)]

+ |↓〉〈↓|⊗
⎡
⎣∑

c

∣∣α j
c

∣∣2 sin2

(
ωcTj

2

)
|ψc〉〈ψc| +

∑
c �=c′

sin

(
ωcTj

2

)
sin

(
ωc′Tj

2

)
(αcα

∗
c |ψc〉〈ψc′ | + α∗

c αc′ |ψc′ 〉〈ψc|)
⎤
⎦

+ |↓〉〈↑| ⊗
(∑

c

1

2

(
e−iωcTj − 1

)
αc|ψc〉

)(
α∗

g〈ψg| +
∑

c′

1

2

(
eiωc′ Tj + 1

)
α∗

c′ 〈ψc′ |
)

+ |↑〉〈↓| ⊗
(

α∗
g |ψg〉 +

∑
c

1

2

(
e−iωcTj + 1

)
α∗

c |ψc′ 〉
)(∑

c

1

2

(
eiωc′ Tj − 1

)
α∗

c′ 〈ψc|
)

with ωa = Ea

h̄
. (A2)

The next step is to measure the state of the auxiliary qubit. This allows one to use Eq.(A2) to write the reduced density matrix
for the physical system at the end of the iteration in the following form:

ρ̂
j final
phys = ∣∣α j

g

∣∣2|ψg〉〈ψg| +
∑

c

∣∣α j
c

∣∣2|ψc〉〈ψc| +
∑

c

cos

(
ωcTj

2

)(
αgα

∗
c e−iωcTj/2 |ψg〉〈ψc| + α∗

gαceiωcTj/2 |ψc〉〈ψg|
)

(A3a)

+
∑
c �=c′

[
cos

(
ωcTj

2

)
cos

(
ω′

cTj

2

)
+ sin

(
ωcTj

2

)
sin

(
ω′

cTj

2

)]
(αcα

∗
c |ψc〉〈ψc′ | + α∗

c αc′ |ψc′ 〉〈ψc|)

= P j sρ̂ j s + P j uρ̂ j u with (A3b)

P j s = ∣∣αg

∣∣2 +
∑

c

∣∣α j
c

∣∣2 cos2

(
ωcTj

2

)
, Pu s =

∑
c

∣∣α j
c

∣∣2 sin2

(
ωcTj

2

)
, (A3c)
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ρ̂ j s =
[
αg|ψg〉 + ∑

c α
j
c

1
2 (1 + e−iωcTj )|ψc〉

][
α∗

g〈ψg| + ∑′
c α

∗ j
c′

1
2 (1 + eiωc′ Tj )|〈ψc′ |]∣∣α j

g

∣∣2 + ∑
c

∣∣α j
c

∣∣2 cos2
(ωcTj

2

) , (A3d)

ρ̂ j u =
[∑

c α
j
c sin

(ωcTj

2

)|ψc〉
][∑

c′ α
∗ j
c′ sin

(ωc′ Tj

2

)|〈ψc′ |]∑
c |α j

c |2 sin2
(ωcTj

2

) ; (A3e)

in Eq. (A3b), P j s is the probability that the auxiliary qubit is
in the up state (in the z). and P j u is the probability that it is
in the down state; the superscripts s and u denote “successful”
and “unsuccessful” iterations.

The nomenclature “successful” and “unsuccessful” are
associated with the measurement of the auxiliary. If it is mea-
sured to be down (in the z basis), the entanglement with the
auxiliary qubit ensures that the physical system is projected
onto the state described by ρ̂ j u which has no components in
the ground state. Since the goal of the algorithm is to enhance
the components in the ground state, such a measurement is
regarded as an unsuccessful iteration. If the measurement
yields an up state—a successful iteration—then the physical
system is projected onto the state described by ρ̂ j u. This is
the density matrix for a pure state: the effect of a successful
iteration is to transform the state of the physical system

|ψ〉 j initial
phys

successful−−−−−→
iteration

|ψ〉 j final
phys with

|ψ〉 j initial
phys = αg|ψg〉 +

∑
c

αc|ψc〉 and

|ψ〉 j final
phys = αg|ψg〉 + ∑

c
1
2 (1 + e−iωcTj )α j

c |ψc〉√∣∣α j
g

∣∣2 + ∑
c

∣∣α j
c

∣∣2 cos2
(ωcTj

2

) . (A4)

APPENDIX B: AN AD HOC PRESCRIPTION

Table II was obtained using a simple ad hoc prescription.
The purpose was simply to demonstrate explicitly that there
exist schemes that significantly outperform the average results
of RRA and they do so without suffering from the expo-
nentially large fluctuations which are inherent in the RRA
scheme. It should be noted, however that there is no reason
to assume, a priori, that this prescription achieves something
close to the actual optimum choice.

We denote this, the Whac-a-Mole (WAM) prescription
after the arcade game of that name, which bears a certain
resemblance to the prescription. In that game, “moles” pop up

in random places and need to be suppressed by whacking them
with a soft mallet, after which a mole emerges somewhere
else, which also needs to be suppressed via whacking.

The prescription is based on super-iterations. As a first
stage, one chooses a super-iteration with a time equal to T0.
This yields a suppression factor with zeros at all integer values
of E/�. Our interest is in energies greater than �. One can
identify the largest value of the suppression factor for ener-
gies greater than � and consider this to be the “mole” to be
whacked by choosing the time for the next supper iteration
to create a zero a precisely at the energy of the maximum.
Such a time will be larger than T0 so that smallest zero in
the suppression function will remain at E = �. To do a third
iteration one finds the maximum suppression factor for E > �

and treats it as the “mole” to be whacked by choosing the
time for the next super-iteration to create a zero a precisely
at the energy of the maximum. This can be continued for as
many cycles as one wishes. Each cycle of this prescription
yields progressively narrower peaks at progressively lower
scales of the suppression factor and the maxima appear for
E/� between one and two.

The scheme as described so far is constrained to preserve
E = � as the smallest zero of the suppression factor as a
function of energy. Such a constraint can be relaxed to further
optimize the time by simply using an overall scaling factor of
less than unity for the times. Such a scaling does not affect the
maximum value of the suppression factors but merely pushes
a given value to higher energies. In other words, it acts to
push energies that were previously below � to above �. Since
the suppression factor at E = � was initially zero, an overall
scaling factor in times that is slightly smaller than unity will
only push small suppression factors into the physical region,
E � �. To optimize the time, one chooses a scaling factor
such that the new suppression factor at E = � is equal to the
maximum, since any smaller one will increase the maximum.
This scaling provides a very modest reduction in time after
the first couple of cycles, but it is a nearly 20% effect if one is
using a single super-iteration.
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