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Perfect state transfer and maximal entanglement in a trimer of three-level systems

Abuenameh Aiyejina ,* Ethan Wyke ,† and Roger Andrews ‡

Department of Physics, The University of the West Indies, St. Augustine, Trinidad and Tobago

Andrew D. Greentree §

ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, Victoria 3001, Australia

(Received 26 May 2023; accepted 11 September 2023; published 25 September 2023)

We analyze a quantum wire that consists of a linear chain of three qutrits with nearest-neighbor interactions
and detuning on the central qutrit. We derive the detuning conditions for perfect state transfer of a double
excitation and for maximal entanglement between the first and third qutrits. We also analytically determine
the times for perfect state transfer and maximal entanglement, which are found to be periodic. We also show that
perfect state transfer is a necessary condition for maximal entanglement, with the first occurrence of maximal
entanglement at half the time for the first occurrence of perfect state transfer.
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I. INTRODUCTION

Quantum information science has emerged as one of the
most critical technologies for the 21st century [1], fuel-
ing new concepts in physics and engineering, and forcing
critical reappraisals of known results [2]. Classical infor-
mation science is typically based around bits due to the
robustness that arises from placing a threshold level between
two distinguishable states. For example, with transistors, a
threshold level between the current levels for on and off
provides a natural form of error suppression. Although most
quantum information technologies are based around qubits,
i.e., the quantum analog of bits, in most quantum sys-
tems there is no analogy of classical thresholding, and most
quantum systems can only be approximated as two-state
systems.

Trimers, which are configurations (e.g., a linear chain) of
three two-level systems (2LSs) or three-level systems (3LSs),
have recently been studied by several authors. Trimers can
exhibit perfect state transfer, which occurs when there is unit
probability of finding the excitation on the end site of the
trimer when starting with the excitation on the first site of
the trimer. Bengtson and Sjöqvist [3] analyzed quantum co-
herence in a trimer of 2LSs. They found that in the trimer,
the Hamiltonian parameters that give maximum coherence in
the site basis are different from those that give perfect state
transfer across the trimer. Wyke et al. [4] considered quantum
excitation transfer and entanglement in a trimer of 2LSs with
detuning on the second 2LS. They found that in the absence
of a bath, the amplitude of the oscillations of the excitation
probability does not change with the detuning on the second
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2LS, whereas the presence of the detuning on the second 2LS
increases the entanglement between the first and third 2LSs.
Christandl et al. [5] examined a linear chain of 2LSs and
showed that perfect state transfer along a chain of arbitrary
length can be obtained by using suitably engineered cou-
plings between the 2LSs without the need for any dynamical
control.

Extending beyond qubits, d-dimensional quantum states
are usually termed qudits, with three-state systems termed
qutrits. Qutrits have certain advantages over qubit systems,
motivating further investigation into systems that use them.
Physical implementations of qutrits occur in several situa-
tions, including a spin-one particle in an external magnetic
field, three states of an atom coupled by lasers, and some
superconducting quantum circuits [6–8]. Such systems can
have a �, V , or � (also called ladder or cascade) energy
level configuration. They exhibit phenomena such as electro-
magnetically induced transparency (EIT) [9], Autler-Townes
splitting (ATS) [10], and stimulated Raman adiabatic passage
(STIRAP) [11].

In certain systems, qutrits can optimize the available
Hilbert space [12] and provide efficiency advantages over
qubit-based systems [13–16]. Qutrits also offer advantages
such as higher channel capacities and noise resilience in
communication systems [17]. Recently, researchers have been
successful in performing experiments with qutrits. Luo et al.
[18] demonstrated quantum teleportation of a photonic qutrit
with a fidelity of 75%. Senko et al. [19] experimentally
realized a linear chain of qutrits with controllable interac-
tions. They observed the time evolution of the system and
entangled a pair of qutrits with 86% fidelity. We expect
that these applications and advantages will also apply in
solid-state systems which utilize quantum wires consisting
of linear chains of qutrits, which forms the basis of this
paper.

Gokhale et al. [16] showed that using qutrits instead
of qubits significantly reduces the resources required for
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quantum computations. They also demonstrated exponential
improvements to the generalized Toffoli gate by using qutrits.
Goss et al. [7] generated two universal two-qutrit gates with
a measured process fidelity for a two-qutrit entangling gate
of 97%. They were also able to establish a protocol for
characterizing gate noise and determining the fidelity of gate
operations.

Greentree and Koiller [20] demonstrated qutrit state trans-
fer via dark state adiabatic passage in a chain of qutrits.
Recently, Aiyejina et al. [21] demonstrated numerically near-
perfect state transfer of a double excitation in a chain of
three qutrits, in which the first qutrit is initially excited by
a Gaussian laser pulse and there is a detuning on the second
qutrit.

Perfect state transfer has important applications in quantum
information processing. For example, in quantum communi-
cation and cryptography, entanglement is usually generated
between an initial site and an end site of a commu-
nication channel. In solid-state systems, linear arrays of
qubits or qutrits can act as quantum wires, which are the
quantum information channels in devices and quantum net-
works. Perfect state transfer has already been analytically
demonstrated in a quantum wire of qubits, where periodic
perfect state transfer was obtained using specific interqubit
interactions [5].

In this paper, we analytically investigate quantum excita-
tion transfer and entanglement in a trimer of ladder-type 3LSs.
In particular, we examine the transfer of a double excitation
and we use the negativity as a measure of the entanglement
between the first and third 3LSs. In Sec. II, we introduce the
theory for the trimer Hamiltonian, and in Sec. III, we analyt-
ically solve the Hamiltonian and derive analytic expressions
for the excitation probabilities and the negativity describing
the entanglement between the first and third 3LSs. In Sec. IV,
we derive analytic expressions for the detunings and times
which give perfect state transfer and maximal entanglement.
Finally, in Sec. V, we present simulations for the excitation
probabilities and negativities for various detunings that either
give perfect or imperfect state transfer.

II. THEORY

We examine a chain of three dipole-coupled 3LSs with
ladder configurations having states |0〉, |1〉, and |2〉, as shown
in Fig. 1. We include a detuning of the transition energies
of the second 3LS with respect to the other two 3LSs. The
Hamiltonian for this system is

H =
3∑

i=1

(
ω Si

11 + 2ω Si
22

) + � S2
11 + 2� S2

22

+ J
2∑

i=1

[(
Si

01 +
√

2Si
12

)(
Si+1

10 +
√

2Si+1
21

) + H.c.
]
, (1)

where ω is the energy separation of adjacent atomic levels
for the first and third 3LSs, � is the detuning of the sec-
ond 3LS, J is the dipole coupling strength of adjacent 3LSs,
and Si

nm = |n〉ii〈m| is the operator for transitions from state
|m〉 to state |n〉 of the ith 3LS. This Hamiltonian has been
generalized from the Hamiltonian in Ref. [22] to allow for

FIG. 1. Energy levels for the trimer system described by the
Hamiltonian in Eq. (1). The energy levels of each 3LS are equally
spaced, with the central 3LS detuned from the other two by �,
as indicated. Excitations hop along the network with coupling
constant J .

interatomic couplings that vary with the atomic transitions. In
order to obtain analytic results, we have chosen the coupling
for transitions involving the states |0〉 and |1〉 on both 3LSs to
be J , and the coupling for transitions involving the states |0〉
and |1〉 on one 3LS and the states |1〉 and |2〉 on the other
3LS to be

√
2J . Finally, we have chosen the coupling for

transitions involving the states |1〉 and |2〉 on both 3LSs to
be 2J .

We solve the Schrödinger equation with an initial state of
|ψ0〉 = |200〉, with the first 3LS in state |2〉 and the other
two 3LSs in state |0〉. We calculate the probability of double
excitations on the ith 3LS, which is given by

P(2)
i (t ) = Tr[ρS|2〉ii〈2|], (2)

where ρS is the density matrix of the system. We also use the
negativity as a measure of the entanglement between the first
and third 3LSs. This negativity, N13, is given by [23]

N13 =
∥∥ρ

T3
13

∥∥
1 − 1

2
. (3)

Here, ρ13 = Tr2[ρS] is the density matrix describing the first
and third 3LSs after tracing out the second 3LS. Also, ρ

T3
13 is

the partial transpose of ρ13 with respect to the third 3LS and
‖‖1 is the trace norm. It is equivalently given by the absolute
value of the sum of the negative eigenvalues of ρ

T3
13 [23].

III. ANALYTIC SOLUTION

Since the initial state has a total of two excita-
tions and the Hamiltonian conserves the total number
of excitations, we write the Hamiltonian in matrix form
in the two-excitation subspace. In the ordered basis
{|200〉, |020〉, |002〉, |110〉, |101〉, |011〉}, the Hamiltonian in
the two-excitation subspace is

H2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2ω 0 0
√

2J 0 0
0 2(ω + �) 0

√
2J 0

√
2J

0 0 2ω 0 0
√

2J√
2J

√
2J 0 2ω + � J 0

0 0 0 J 2ω J
0

√
2J

√
2J 0 J 2ω + �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(4)
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If we define the angle θ such that

tan θ = 2
√

2J

�
(5)

and 0 < θ < π , then we can diagonalize the Hamiltonian H2

to give the eigenvalues Ei,

E1 = 2ω, (6a)

E2 = 2ω + 2
√

2J cot θ, (6b)

E3 = 2ω − 2
√

2J tan

(
θ

2

)
, (6c)

E4 = 2ω + 2
√

2J cot

(
θ

2

)
, (6d)

E5 = 2ω −
√

2J tan

(
θ

2

)
, (6e)

E6 = 2ω +
√

2J cot

(
θ

2

)
, (6f)

with corresponding eigenvectors |φi〉,

|φ1〉 = 1

2

(
|200〉 + |002〉 −

√
2|101〉

)
, (7a)

|φ2〉 = 1

2
√

2

(
sin θ |200〉 − 2 sin θ |020〉 + sin θ |002〉 + 2 cos θ |110〉 +

√
2 sin θ |101〉 + 2 cos θ |011〉

)
, (7b)

|φ3〉 = 1

2

[
cos2

(
θ

2

)
|200〉 + 2 sin2

(
θ

2

)
|020〉 + cos2

(
θ

2

)
|002〉 − sin θ |110〉 +

√
2 cos2

(
θ

2

)
|101〉 − sin θ |011〉

]
, (7c)

|φ4〉 = 1

2

[
sin2

(
θ

2

)
|200〉 + 2 cos2

(
θ

2

)
|020〉 + sin2

(
θ

2

)
|002〉 + sin θ |110〉 +

√
2 sin2

(
θ

2

)
|101〉 + sin θ |011〉

]
, (7d)

|φ5〉 = 1√
2

[
cos

(
θ

2

)
|200〉 − cos

(
θ

2

)
|002〉 − sin

(
θ

2

)
|110〉 + sin

(
θ

2

)
|011〉

]
, (7e)

|φ6〉 = 1√
2

[
sin

(
θ

2

)
|200〉 − sin

(
θ

2

)
|002〉 + cos

(
θ

2

)
|110〉 − cos

(
θ

2

)
|011〉

]
. (7f)

To simplify the expression for the wave function, we introduce

a1(t ) = 1

2

[
e−i

√
2 cot ( θ

2 )Jt sin2

(
θ

2

)
+ ei

√
2 tan ( θ

2 )Jt cos2

(
θ

2

)
+ 1

]
, (8a)

a2(t ) = 1

2
√

2

(
e−i

√
2 cot ( θ

2 )Jt − ei
√

2 tan ( θ
2 )Jt

)
sin θ, (8b)

a3(t ) = 1

2

[
e−i

√
2 cot ( θ

2 )Jt sin2

(
θ

2

)
+ ei

√
2 tan ( θ

2 )Jt cos2

(
θ

2

)
− 1

]
. (8c)

It can be shown that |a1|2 + |a2|2 + |a3|2 = 1. As derived in Appendix A, the wave function of the system at time t , |ψ (t )〉,
starting from the initial state |ψ0〉 is given by

|ψ (t )〉 = a2
1|200〉 + a2

2|020〉 + a2
3|002〉 +

√
2a1a2|110〉 +

√
2a1a3|101〉 +

√
2a2a3|011〉. (9)

The double-excitation probability of the ith 3LS is given by

P(2)
i (t ) = |ai|4. (10)

In terms of the detuning �, the double-excitation probabilities are given by

P(2)
1 (t ) =

[
cos2

(
� − √

8J2 + �2

4
t

)
− 2J2

8J2 + �2
sin2

(√
8J2 + �2

2
t

)
+ � − √

8J2 + �2

2
√

8J2 + �2
sin

(
�

2
t

)
sin

(√
8J2 + �2

2
t

)]2

,

(11a)

P(2)
2 (t ) = 16J4

(8J2 + �2)2 sin4

(
1

2

√
8J2 + �2 t

)
, (11b)

P(2)
3 (t ) =

[
sin2

(
� − √

8J2 + �2

4
t

)
− 2J2

8J2 + �2
sin2

(√
8J2 + �2

2
t

)
− � − √

8J2 + �2

2
√

8J2 + �2
sin

(
�

2
t

)
sin

(√
8J2 + �2

2
t

)]2

.

(11c)
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FIG. 2. Probabilities of the states (a) |200〉 (P(2)
1 ), (b) |020〉 (P(2)

2 ), (c) |002〉 (P(2)
3 ), (d) |110〉 (P(2)

12 ), (e) |011〉 (P(2)
23 ), and (f) |101〉 (P(2)

13 ) as
functions of the dimensionless parameter Jt for � = 0. The first two instances of perfect state transfer occur at Jt = π√

2
and 3π√

2
, as indicated

by the dashed lines in (c).

From Eq. (8), |ai|4 is invariant under the transformation
θ → (π − θ ). This corresponds to the transformation � →
−�. Therefore, P(2)

i is invariant under a change in sign of �

and only depends on the magnitude of �. In the special case
of zero detuning, the probabilities are given by

P(2)
1 (t ) = cos8

(
J√
2

t

)
, (12a)

P(2)
2 (t ) = 1

4
sin4

(√
2Jt

)
, (12b)

P(2)
3 (t ) = sin8

(
J√
2

t

)
. (12c)

The probability of a single excitation each on the ith and
jth 3LSs is given by

P(2)
i j (t ) = 2|aia j |2. (13)

Let us now define

p = |a2|8 + 10|a2|4|a1a3|2 + 7|a1a3|4, (14a)

q = |a2|12 + 15|a2|8|a1a3|2 + 69

2
|a2|4|a1a3|4 − 10|a1a3|6.

(14b)

FIG. 3. Probabilities of the states (a) |200〉 (P(2)
1 ), (b) |020〉 (P(2)

2 ), (c) |002〉 (P(2)
3 ), (d) |110〉 (P(2)

12 ), (e) |011〉 (P(2)
23 ), and (f) |101〉 (P(2)

13 ) as

functions of the dimensionless parameter Jt for � = 2
√

2J√
35

. Perfect state transfer first occurs at Jt = π√
2

√
35, as indicated by the dashed line in

(c).
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FIG. 4. Probabilities of the states (a) |200〉 (P(2)
1 ), (b) |020〉 (P(2)

2 ), (c) |002〉 (P(2)
3 ), (d) |110〉 (P(2)

12 ), (e) |011〉 (P(2)
23 ), and (f) |101〉 (P(2)

13 ) as

functions of the dimensionless parameter Jt for � = 4
√

2J√
21

. Perfect state transfer first occurs at Jt = π√
2

√
21, as indicated by the dashed line in

(c).

As derived in Appendix B, the negativity is then given by

N13(t ) = (|a1|2 + |a3|2)(
√

|a2|4 + 2|a1a3|2 − |a2|2)

+ 2

3
√

p sin

[
1

3
arccos

(
q

p
√

p

)
+ π

6

]

− 1

3
(|a2|4 + 2|a1a3|2). (15)

IV. PERFECT STATE TRANSFER AND MAXIMAL
ENTANGLEMENT

As derived in Appendix C, we get periodic perfect state
transfer of the double excitation to the third 3LS for angles θP

that satisfy

cot2

(
θP

2

)
= 2n + 1

2m + 1
, (16)

where n, m = 0, 1, 2, . . .. This corresponds to detunings of

�P = 2
√

2J (n − m)√
(2n + 1)(2m + 1)

. (17)

A positive detuning is obtained when n > m and a negative
detuning of equal magnitude is obtained by interchanging n
and m. Perfect state transfer occurs at time τP, given by

τP = π
√

(2n + 1)(2m + 1)√
2J

. (18)

Equation (18) gives the first occurrence of perfect state trans-
fer for values of n and m, which result in a fraction for the
right-hand side of Eq. (16) that is irreducible. For example,
for n = 2 and m = 7, the right-hand side of Eq. (16) is 5

15 and

we get τP = 5π
J

√
3
2 . However, the time for the first occurrence

of perfect state transfer would be obtained by reducing 5
15

to 1
3 , which corresponds to n = 0 and m = 1, resulting in

τP = π
J

√
3
2 .

FIG. 5. The negativity N13 as a function of the dimensionless time Jt for (a) � = 0, (b) � = 2
√

2J√
35

, and (c) � = 4
√

2J√
21

. Maximal

entanglement first occurs at Jt = π

2

√
35
2 for � = 2

√
2J√
35

, as indicated by the dashed line in (b).
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FIG. 6. Double-excitation probability P(2)
3 of the third 3LS as a function of � at time τp for six values of �p and τp.

As derived in Appendix D, the maximum value that the
negativity reaches in the evolution of the system is Nmax =
1
4 + 1√

2
≈ 0.9571. This occurs for detunings that satisfy

Eq. (17), with the added constraint that (n − m) is odd. There-
fore, maximal entanglement can only be obtained when there
is perfect state transfer. The maximal entanglement occurs at
time τN given by τN = 1

2τP. The wave function at time τN is
given by

|ψ (τN)〉 = i

2
|200〉 + (−1)n

√
2

|101〉 − i

2
|002〉. (19)

V. RESULTS

A. Perfect state transfer

We first consider three detunings, � = 0, 2
√

2J√
35

, 4
√

2J√
21

,
that give perfect state transfer. Figure 2 shows the results
for the probabilities P(2)

1 (for state |200〉), P(2)
2 (for state

|020〉), P(2)
3 (for state |002〉), P(2)

12 (for state |110〉), P(2)
13 (for

state |101〉), and P(2)
23 (for state |011〉) as functions of the

dimensionless parameter Jt for � = 0. The � = 0 case sat-
isfies Eq. (17) and the first instance of perfect state transfer
occurs at Jt = π√

2
, with an interval of Jt = √

2π between
consecutive occurrences. The double-excitation probabilities
P(2)

1 and P(2)
3 exhibit oscillations between 0 and 1 with

an angular frequency of
√

2J . On the other hand, P(2)
2 os-

cillates between 0 and 0.25 with an angular frequency of
2
√

2J .
Figure 3 shows the results for the various probabilities

for � = 2
√

2J√
35

. This value of � satisfies the perfect state
transfer condition in Eq. (17) for n = 3 and m = 2. The
first instance of perfect state transfer occurs at Jt = π√

2

√
35.

The double-excitation probabilities P(2)
1 and P(2)

3 exhibit

oscillations between 0 and 1, while P(2)
2 oscillates

between 0 and 0.236, with an angular frequency of
2.87J .

Figure 4 shows the results for the various probabilities
for � = 4

√
2J√
21

. This value of � satisfies the perfect state
transfer condition in Eq. (17) for n = 3 and m = 1. The first
instance of perfect state transfer occurs at Jt = π√

2

√
21. The

double-excitation probabilities P(2)
1 and P(2)

3 exhibit oscilla-

tions between 0 and 1, while P(2)
2 oscillates between 0 and

0.176 with an angular frequency of 3.09J .
For all three detunings, the probabilities P(2)

12 , P(2)
13 , and

P(2)
23 exhibit oscillations, indicating the propagation of single

excitations in the system in superposition with the double
excitations.

Figure 5 shows the results for the negativity N13 for the

detunings � = 0, 2
√

2J√
35

, 4√
3

√
2
7 J as functions of the dimen-

sionless parameter Jt . Figure 5(a) shows that for � = 0, the
negativity oscillates between 0 and 0.144 with an angular
frequency of 2

√
2J . Even though we have perfect state trans-

fer in this case, maximal entanglement is not achieved since
n − m = 0, which is not odd. Figure 5(b) shows that for � =
2
√

2J√
35

, the negativity oscillates between 0 and 0.9571. Since
in this case n − m = 1, which is odd, maximal entanglement
is obtained. The first occurrence of maximal entanglement
is at Jt = π

2
√

2

√
35. Figure 5(c) shows that for � = 4√

3

√
2
7 J ,

the negativity oscillates between 0 and 0.899. In this case,
n − m = 2, which is not odd, so maximal entanglement is not
achieved.

TABLE I. Detuning values and associated times for perfect state
transfer.

�P − 244
√

2J√
1757

− 54
√

2J√
427

− 14
√

2J√
147

0 4
√

2J√
21

6
√

2J√
7

τP
π

√
1757√
2J

π
√

427√
2J

π
√

147√
2J

π√
2J

π
√

21√
2J

π
√

7√
2J
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FIG. 7. Probabilities of the states (a) |200〉 (P(2)
1 ), (b) |020〉 (P(2)

2 ), (c) |002〉 (P(2)
3 ), (d) |110〉 (P(2)

12 ), (e) |011〉 (P(2)
23 ), and (f) |101〉 (P(2)

13 ) as

functions of the dimensionless parameter Jt for � =
√

2J√
35

.

Figure 6 shows how the double-excitation probability of
the third 3LS varies with the detuning for the six occurrences
of perfect state transfer given in Table I. Aside from the case
of � = 0, there is a general trend where the width of the
resonance peak increases as the magnitude of the detuning
increases.

B. Imperfect state transfer

We now consider two detunings, � =
√

2J√
35

, J , that do not
satisfy Eq. (17) and, therefore, do not give perfect state trans-
fer. Figure 7 shows the results for the various probabilities

for � =
√

2J√
35

. The double-excitation probabilities P(2)
1 and

P(2)
3 show oscillations with an angular frequency of 2.84J

with varying peak amplitudes. The maximum value of P(2)
3

over the plotted interval is 0.966 and we get near-perfect
state transfer. The double-excitation probability P(2)

2 oscil-
lates between 0 and 0.246, also with an angular frequency of
2.84J .

Figure 8 shows the results for the various probabilities
for � = J . The double-excitation probability P(2)

1 oscillates
between 0.012 and 1 with an angular frequency of J , while
the double-excitation probability P(2)

3 oscillates between 0 and

FIG. 8. Probabilities of the states (a) |200〉 (P(2)
1 ), (b) |020〉 (P(2)

2 ), (c) |002〉 (P(2)
3 ), (d) |110〉 (P(2)

12 ), (e) |011〉 (P(2)
23 ), and (f) |101〉 (P(2)

13 ) as
functions of the dimensionless parameter Jt for � = J .
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FIG. 9. The negativity N13 as a function of the dimensionless parameter Jt for (a) � =
√

2J√
35

and (b) � = J .

0.562 with the same frequency as P(2)
1 but exhibiting two

maxima and two minima within each cycle. Also, P(2)
2 oscil-

lates between 0 and 0.198 with an angular frequency of 3J .
Figure 9 shows the results for the negativity N13 for the

detunings � =
√

2J√
35

, J as functions of the dimensionless pa-

rameter Jt . Figure 9(a) shows that for � =
√

2J√
35

, N13 oscillates
with angular frequency 2.84J . Within the plotted interval,
N13 has a maximum value of 0.9569. In this case, where
we have near-perfect state transfer, we also get near-maximal
entanglement. Figure 9(b) shows that for � = J , the nega-
tivity oscillates between 0 and 0.800 with angular frequency
J and exhibits two maxima and two minima within each
cycle.

Figure 10 shows how the double-excitation probability of
the third 3LS varies with the detuning at the time of maxi-
mum probability for near-perfect state transfer with detuning
�I =

√
2J√
35

. At that time, there is a perfect state transfer at a
detuning less than �I and the double-excitation probability
slowly decays away from that maximum.

VI. CONCLUSION

We analytically determined the detuning condition, as
given by Eq. (17), for perfect state transfer of a double

FIG. 10. Double-excitation probability P(2)
3 of the third 3LS as a

function of � at the time of maximum probability τI = 2.21
J for the

detuning �I =
√

2J√
35

.

excitation in a trimer of 3LSs with a detuning on the central
3LS. We also determined the times at which perfect state
transfer occurred. Additionally, we determined that maximal
entanglement between the first and third 3LSs only occurred
for nonzero detunings that gave perfect state transfer, with
the constraint that (n − m) from Eq. (17) was odd. We found
that maximal entanglement preceded perfect state transfer
with an occurrence time that was half the time at which
perfect state transfer occurred. We also found that values
for the detuning that do not satisfy the perfect state transfer
condition can also give near-perfect state transfer as well
as near-maximal entanglement. These results are important
as we have analytically shown conditions for perfect state
transfer of double excitations that can be engineered using
only the detuning of a central 3LS in the model. We have
also demonstrated how to achieve maximal entanglement
between distant 3LSs without the need for any dynamical
control.

Since the perfect state transfer and maximal entanglement
are periodic, it is possible to perform information processing
on the transmitted qutrits along an array of trimers acting as
a quantum bus in a sequential and controllable manner. Also,
we can evolve multiple systems at the same time and select
the measurement times based on the length of time needed
for processing in different paths. These results should have
applications in quantum information processing and quantum
communication. Specific applications could be, for instance,
in quantum repeaters, quantum memories, quantum key dis-
tribution, and quantum error correction.

Since we have accurate time intervals in the probabilities,
the time difference between two clocks, each positioned at the
end of a chain, can be calibrated. Therefore, applications in
clock synchronization are possible. Additionally, the periodic
occurrence of maximal entanglement allows for the prepara-
tion of entangled qutrits that could be used in entanglement
swapping, which has applications in quantum teleportation.
However, because the perfect state transfer and maximal en-
tanglement are periodic, measurements would have to be done
within a small time frame since the time for which the state
exists at the end of the trimer is very short compared to the
repetition time. This could prove challenging for quantum
measurements on the state. If a longer time is needed for
measurement, then a technique such a dynamical decoupling
can be used since the state exists for a longer period of time in
that case.
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APPENDIX A: DERIVATION OF THE WAVE FUNCTION

The solution of the time-independent Schrödinger equation for the Hamiltonian in Eq. (1) with initial state |ψ0〉 results in the
wave function

|ψ (t )〉 = e−iHt |ψ0〉. (A1)

Expanding the matrix exponential using the eigenvalues and eigenvectors in Eqs. (6) and (7) gives

|ψ (t )〉 =
(

6∑
i=1

e−iEit |φi〉〈φi|
)

|ψ0〉

=
6∑

i=1

e−iEit 〈φi|200〉|φi〉. (A2)

If we let α = ei
√

2 tan( θ
2 )Jt and β = e−i

√
2 cot( θ

2 )Jt , then the wave function becomes

|ψ (t )〉 = e−i2ωt

[
1

2
|φ1〉 + 1

2
√

2
αβ sin θ |φ2〉 + 1

2
α2 cos2

(
θ

2

)
|φ3〉

+1

2
β2 sin2

(
θ

2

)
|φ4〉 + 1√

2
α cos

(
θ

2

)
|φ5〉 + 1√

2
β sin

(
θ

2

)
|φ6〉

]
. (A3)

Dropping the global phase e−i2ωt and substituting for the eigenvectors using Eq. (7) gives

|ψ (t )〉 =
[

1

4
+ 1

8
αβ sin2 θ + 1

4
α2 cos4

(
θ

2

)
+ 1

4
β2 sin4

(
θ

2

)
+ 1

2
α cos2

(
θ

2

)
+ 1

2
β sin2

(
θ

2

)]
|200〉

+
(

−1

4
αβ sin2 θ + 1

8
α2 sin2 θ + 1

8
β2 sin2 θ

)
|020〉

+
[

1

4
+ 1

8
αβ sin2 θ + 1

4
α2 cos4

(
θ

2

)
+ 1

4
β2 sin4

(
θ

2

)
− 1

2
α cos2

(
θ

2

)
− 1

2
β sin2

(
θ

2

)]
|002〉

+
[

1

4
αβ sin θ cos θ − 1

4
α2 sin θ cos2

(
θ

2

)
+ 1

4
β2 sin θ sin2

(
θ

2

)

−1

2
α sin

(
θ

2

)
cos

(
θ

2

)
+ 1

2
β sin

(
θ

2

)
cos

(
θ

2

)]
|110〉

+
[
− 1

2
√

2
+ 1

4
√

2
αβ sin2 θ + 1

2
√

2
α2 cos4

(
θ

2

)
+ 1

2
√

2
β2 sin4

(
θ

2

)]
|101〉

+
[

1

4
αβ sin θ cos θ − 1

4
α2 sin θ cos2

(
θ

2

)
+ 1

4
β2 sin θ sin2

(
θ

2

)

+1

2
α sin

(
θ

2

)
cos

(
θ

2

)
− 1

2
β sin

(
θ

2

)
cos

(
θ

2

)]
|011〉. (A4)

By using trigonometric identities and simplifying, this becomes

|ψ (t )〉 = 1

4

[
β sin2

(
θ

2

)
+ α cos2

(
θ

2

)
+ 1

]2

|200〉 + 1

8
(β − α)2 sin2 θ |020〉

+ 1

4

[
β sin2

(
θ

2

)
+ α cos2

(
θ

2

)
− 1

]2

|002〉 + 1

4

[
β sin2

(
θ

2

)
+ α cos2

(
θ

2

)
+ 1

]
(β − α) sin θ |110〉

+ 1

2
√

2

[
β sin2

(
θ

2

)
+ α cos2

(
θ

2

)
+ 1

][
β sin2

(
θ

2

)
+ α cos2

(
θ

2

)
− 1

]
|101〉

+ 1

4

[
β sin2

(
θ

2

)
+ α cos2

(
θ

2

)
− 1

]
(β − α) sin θ |011〉

= a2
1|200〉 + a2

2|020〉 + a2
3|002〉 +

√
2a1a2|110〉 +

√
2a1a3|101〉 +

√
2a2a3|011〉, (A5)

where a1, a2, and a3 are defined as given in Eq. (8), giving the result for the wave function shown in Eq. (9).
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APPENDIX B: DERIVATION OF THE NEGATIVITY

The density matrix of the system is given by

ρS = |ψ (t )〉〈ψ (t )|. (B1)

The reduced density matrix describing the first and third 3LSs is then given by

ρ13 = Tr2[ρS] =
2∑

j=0

2〈 j|ρS| j〉2 =
2∑

j=0

2〈 j|ψ (t )〉〈ψ (t )| j〉2. (B2)

Let

|�0〉 = 2〈0|ψ (t )〉
= 2〈0|

(
a2

1|200〉 + a2
2|020〉 + a2

3|002〉 +
√

2a1a2|110〉 +
√

2a1a3|101〉 +
√

2a2a3|011〉
)

= a2
1|20〉 + a2

3|02〉 +
√

2a1a3|11〉, (B3a)

|�1〉 = 2〈1|ψ (t )〉
= 2〈1|

(
a2

1|200〉 + a2
2|020〉 + a2

3|002〉 +
√

2a1a2|110〉 +
√

2a1a3|101〉 +
√

2a2a3|011〉
)

=
√

2a1a2|10〉 +
√

2a2a3|01〉, (B3b)

|�2〉 = 2〈2|ψ (t )〉
= 2〈2|

(
a2

1|200〉 + a2
2|020〉 + a2

3|002〉 +
√

2a1a2|110〉 +
√

2a1a3|101〉 +
√

2a2a3|011〉
)

= a2
2|00〉. (B3c)

Then we can write

ρ13 =
2∑

j=0

∣∣� j〉〈� j

∣∣. (B4)

We can write the partial transpose of ρ13 with respect to the third 3LS in the ordered basis
{|00〉, |10〉, |01〉, |20〉, |11〉, |02〉, |21〉, |12〉, |22〉} as

ρ
T3
13 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|a2|4 0 0 0 2a∗
1a3|a2|2 0 0 0 (a∗

1a3)2

0 2|a1a2|2 0 0 0 0
√

2 a∗
1a3|a1|2 0 0

0 0 2|a2a3|2 0 0 0 0
√

2 a∗
1a3|a3|2 0

0 0 0 |a1|4 0 0 0 0 0
2a1a∗

3|a2|2 0 0 0 2|a1a3|2 0 0 0 0
0 0 0 0 0 |a3|4 0 0 0
0

√
2 a1a∗

3|a1|2 0 0 0 0 0 0 0
0 0

√
2 a1a∗

3|a3|2 0 0 0 0 0 0
(a1a∗

3 )2 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B5)
The first six eigenvalues of this matrix are given by

λ1 = |a1|4, (B6a)

λ2 = |a3|4, (B6b)

λ3 = |a1|2
(

|a2|2 −
√

|a2|4 + 2|a1a3|2
)

, (B6c)

λ4 = |a1|2
(

|a2|2 +
√

|a2|4 + 2|a1a3|2
)

, (B6d)

λ5 = |a3|2
(

|a2|2 −
√

|a2|4 + 2|a1a3|2
)

, (B6e)

λ6 = |a3|2
(

|a2|2 +
√

|a2|4 + 2|a1a3|2
)

. (B6f)

032421-10



PERFECT STATE TRANSFER AND MAXIMAL … PHYSICAL REVIEW A 108, 032421 (2023)

The remaining three eigenvalues, λ7, λ8, and λ9 are the roots of the cubic equation

x3 − (|a2|4 + 2|a1a3|2
)
x2 − |a1a3|2

(|a1a3|2 + 2|a2|4
)
x + 2|a1a3|6 = 0. (B7)

If we define p and q as given in Eq. (14), then the roots of the cubic equation in trigonometric form are given in increasing order
by

λ7 = −2

3
√

p sin

[
1

3
arccos

(
q

p
√

p

)
+ π

6

]
+ 1

3

(|a2|4 + 2|a1a3|2
)
, (B8a)

λ8 = −2

3
√

p sin

[
1

3
arccos

(
q

p
√

p

)
+ 5π

6

]
+ 1

3

(|a2|4 + 2|a1a3|2
)
, (B8b)

λ9 = −2

3
√

p sin

[
1

3
arccos

(
q

p
√

p

)
+ 3π

2

]
+ 1

3

(|a2|4 + 2|a1a3|2
)
. (B8c)

From the properties of the roots of the cubic equation, we have

λ7λ8λ9 = −2|a1a3|6 � 0 and λ7 + λ8 + λ9 = |a2|4 + 2|a1a3|2 � 0. (B9)

Therefore, at most, one of the roots is negative and if none of them are negative then at least one of them must be zero. Thus,
the eigenvalues that are either zero or negative are λ3, λ5, and λ7. Since adding a zero eigenvalue has no effect on the sum, the
negativity is given by

N13(t ) = |λ3 + λ5 + λ7|
= −λ3 − λ5 − λ7

= (|a1|2 + |a3|2)

(√
|a2|4 + 2|a1a3|2 − |a2|2

)
+ 2

3
√

p sin

[
1

3
arccos

(
q

p
√

p

)
+ π

6

]
− 1

3
(|a2|4 + 2|a1a3|2), (B10)

giving the result in Eq. (15).

APPENDIX C: DERIVATION OF THE PERFECT STATE TRANSFER CRITERION

From the triangle inequality for the complex numbers z1, z2, and z3, we have

|z1 + z2 + z3| � |z1| + |z2| + |z3|, (C1)

with equality when

arg(z1) ≡ arg(z2) ≡ arg(z3) mod 2π. (C2)

Therefore,

P(2)
3 (t ) = |a3|4

=
∣∣∣∣1

2

[
e−i

√
2 cot ( θ

2 )Jt sin2

(
θ

2

)
+ ei

√
2 tan ( θ

2 )Jt cos2

(
θ

2

)
− 1

]∣∣∣∣
4

= 1

16

∣∣∣∣e−i
√

2 cot ( θ
2 )Jt sin2

(
θ

2

)
+ ei

√
2 tan ( θ

2 )Jt cos2

(
θ

2

)
− 1

∣∣∣∣
4

� 1

16

[∣∣∣∣e−i
√

2 cot ( θ
2 )Jt sin2

(
θ

2

)∣∣∣∣ +
∣∣∣∣ei

√
2 tan ( θ

2 )Jt cos2

(
θ

2

)∣∣∣∣ + |−1|
]4

= 1

16

[∣∣∣∣sin2

(
θ

2

)∣∣∣∣ +
∣∣∣∣cos2

(
θ

2

)∣∣∣∣ + 1

]4

= 1

16

[
sin2

(
θ

2

)
+ cos2

(
θ

2

)
+ 1

]4

= 1

16
(2)4

= 1, (C3)

with equality when

arg

[
e−i

√
2 cot ( θ

2 )Jt sin2

(
θ

2

)]
≡ arg

[
ei

√
2 tan ( θ

2 )Jt cos2

(
θ

2

)]
≡ arg(−1) ≡ π mod 2π. (C4)
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Perfect state transfer occurs when P(2)
3 (t ) = 1. Therefore, perfect state transfer occurs for angles θP and times τP that satisfy

arg

[
e−i

√
2 cot( θP

2 )JτP sin2

(
θP

2

)]
= −

√
2 cot

(
θP

2

)
JτP = 2pπ + π, (C5)

for p = −1,−2,−3, . . . [since cot( θ
2 ) > 0 for 0 < θ < π ], and

arg

[
ei

√
2 tan( θP

2 )JτP cos2

(
θP

2

)]
=

√
2 tan

(
θP

2

)
JτP = 2mπ + π, (C6)

for m = 0, 1, 2, . . . [since tan( θ
2 ) > 0 for 0 < θ < π ]. Dividing Eq. (C5) by Eq. (C6) gives

− cot2

(
θP

2

)
= 2p + 1

2m + 1
⇒ cot2

(
θP

2

)
= −2p − 1

2m + 1
. (C7)

If we let n = −p − 1, then

cot2

(
θP

2

)
= 2n + 1

2m + 1
, (C8)

where n, m = 0, 1, 2, . . ., giving the condition in Eq. (16).
From Eq. (5), the corresponding detunings are given by

�P = 2
√

2J

tan θP
= 2

√
2J cot θP = 2

√
2J

[
1

2

(
cot

(
θP

2

)
− tan

(
θP

2

))]

=
√

2J

( √
2n + 1√
2m + 1

−
√

2m + 1√
2n + 1

)
=

√
2J

(
2(n − m)√

2n + 1
√

2m + 1

)
= 2

√
2J (n − m)√

2n + 1
√

2m + 1
, (C9)

giving the condition in Eq. (17).
From Eq. (C6), the times for perfect state transfer are given by

τP = (2m + 1)π√
2J

cot

(
θP

2

)
= (2m + 1)π√

2J

√
2n + 1

2m + 1
= π

√
(2n + 1)(2m + 1)√

2J
, (C10)

giving the condition in Eq. (18).

APPENDIX D: DERIVATION OF THE MAXIMAL NEGATIVITY CRITERION

Equations (B3a)–(B3c) can be written as

|�0〉 = √
p0|�0〉, |�1〉 = √

p1|�1〉, |�2〉 = √
p2|�2〉, (D1)

where

p0 = 〈�0|�0〉 = (|a1|2 + |a3|2)2, (D2a)

p1 = 〈�1|�1〉 = 2|a2|2(|a1|2 + |a3|2), (D2b)

p2 = 〈�2|�2〉 = |a2|4, (D2c)

and the normalized states |� j〉 are given by

|�0〉 = 1√
p0

(
a2

1|20〉 + a2
3|02〉 +

√
2a1a3|11〉

)
, (D3a)

|�1〉 = 1√
p1

(√
2a1a2|10〉 +

√
2a2a3|01〉

)
, (D3b)

|�2〉 = 1√
p2

a2
2|00〉. (D3c)

The reduced density matrix ρ13 can be written as a linear combination of density matrices as

ρ13 =
2∑

j=0

p jρ j, (D4)
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where

ρ0 = |�0〉〈�0|, ρ1 = |�1〉〈�1|, ρ2 = |�2〉〈�2|. (D5)

From the convexity of the negativity [23], we have

N13 = N (ρ13) �
2∑

j=0

p jN (ρ j ). (D6)

The partial transpose of ρ0 in the same basis used for ρ
T3
13 is given by

ρ
T3
0 = 1

p0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 (a∗
1a3)2

0 0 0 0 0 0
√

2 a∗
1a3|a1|2 0 0

0 0 0 0 0 0 0
√

2 a∗
1a3|a3|2 0

0 0 0 |a1|4 0 0 0 0 0
0 0 0 0 2|a1a3|2 0 0 0 0
0 0 0 0 0 |a3|4 0 0 0
0

√
2 a1a∗

3|a1|2 0 0 0 0 0 0 0
0 0

√
2 a1a∗

3|a3|2 0 0 0 0 0 0
(a1a∗

3 )2 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(D7)
The eigenvalues of this matrix are 1

p0
|a1|4, 1

p0
|a3|4, ± 1

p0
|a1a3|2, 2

p0
|a1a3|2, ±

√
2

p0
|a1|3|a3|, and ±

√
2

p0
|a1||a3|3. Therefore, using the

negative (or possibly zero) eigenvalues, the negativity for ρ0 is

N (ρ0) = 1

p0

[|a1a3|2 +
√

2|a1a3|
(|a1|2 + |a3|2

)]
. (D8)

Next, the partial transpose of ρ1 in the same basis as above is given by

ρ
T3
1 = 1

p1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 2a∗
1a3|a2|2 0 0 0 0

0 2|a1a2|2 0 0 0 0 0 0 0
0 0 2|a2a3|2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2a1a∗
3|a2|2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D9)

The eigenvalues of this matrix are 0 (repeated five times), 2
p1

|a1a2|2, 2
p1

|a2a3|2, and ± 2
p1

|a1a3||a2|2. Therefore, using the negative

(or possibly zero) eigenvalue and the relation |a1|2 + |a2|2 + |a3|2 = 1, the negativity for ρ1 is

N (ρ1) = 2

p1
|a1a3||a2|2 = 2

p1
|a1a3|(1 − |a1|2 − |a3|2). (D10)

Finally, the partial transpose of ρ2 in the same basis as above is given by

ρ
T3
2 = 1

p2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|a2|4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D11)

The eigenvalues of this matrix are 0 (repeated eight times) and 1
p2

|a2|4. Since the matrix has no negative eigenvalues, we have

N (ρ2) = 0. (D12)

Using Eqs. (D8), (D10), and (D12), Eq. (D6) becomes

N13 � |a1a3|2 +
√

2|a1a3|(|a1|2 + |a3|2) + 2|a1a3|(1 − |a1|2 − |a3|2). (D13)
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Now,

0 � (|a1| − |a3|)2 = |a1|2 + |a3|2 − 2|a1a3| ⇒ |a1a3| � 1
2 (|a1|2 + |a3|2), (D14)

with equality when |a1| = |a3|. Therefore,

N13 �
[

1

2
(|a1|2 + |a3|2)

]2

+ 1√
2

(|a1|2 + |a3|2)(|a1|2 + |a3|2) + (|a1|2 + |a3|2)(1 − |a1|2 − |a2|2)

= 1

4
(|a1|2 + |a3|2)[(2

√
2 − 3)(|a1|2 + |a3|2) + 4]. (D15)

Since 0 � |a1|2 + |a3|2 = 1 − |a2|2 � 1 and 1
4 x[(2

√
2 − 3)x + 4] is an increasing function of x for 0 � x � 1, we have

N13 � 1

4
+ 1√

2
, (D16)

with equality when |a1| = |a3| and |a1|2 + |a3|2 = 1. In this case, |a1| = |a3| = 1√
2

and |a2| = 0. Using Eq. (8b), the maximum
negativity occurs for angles θN and times τN that satisfy

|a2| =
∣∣∣∣ 1

2
√

2

(
e−i

√
2 cot( θN

2 )JτN − ei
√

2 tan( θN
2 )JτN

)
sin θN

∣∣∣∣ = 0

⇒
∣∣∣e−i

√
2 cot( θN

2 )JτN − ei
√

2 tan( θN
2 )JτN

∣∣∣ = 0

⇒ e−i
√

2 cot( θN
2 )JτN = ei

√
2 tan( θN

2 )JτN . (D17)

Using Eqs. (8a) and (D17), we have

|a1| =
∣∣∣∣1

2

[
ei

√
2 tan( θN

2 )JτN sin2

(
θN

2

)
+ ei

√
2 tan( θN

2 )JτN cos2

(
θN

2

)
+ 1

]∣∣∣∣ = 1√
2

⇒
∣∣∣∣ei

√
2 tan( θN

2 )JτN

[
sin2

(
θN

2

)
+ cos2

(
θN

2

)]
+ 1

∣∣∣∣
2

= 2

⇒
∣∣∣ei

√
2 tan( θN

2 )JτN + 1
∣∣∣2

= 2

⇒ ei
√

2 tan( θN
2 )JτN + e−i

√
2 tan( θN

2 )JτN + 2 = 2

⇒ ei
√

2 tan( θN
2 )JτN = e−i

√
2 tan( θN

2 )JτN+iπ

⇒
√

2 tan

(
θN

2

)
JτN = −

√
2 tan

(
θN

2

)
JτN + π + 2mπ

⇒ 2
√

2 tan

(
θN

2

)
JτN = (2m + 1)π, (D18)

where m = 0, 1, 2, . . .. From Eq. (D17), we have

−
√

2 cot

(
θN

2

)
JτN =

√
2 tan

(
θN

2

)
JτN + 2pπ

⇒ −2
√

2 cot

(
θN

2

)
JτN = 2

√
2 tan

(
θN

2

)
JτN + 4pπ

= (2m + 4p + 1)π (D19)

for integers p such that 2m + 4p + 1 < 0, since cot( θ
2 ) > 0. Dividing Eq. (D19) by Eq. (D18) gives

− cot2

(
θN

2

)
= 2m + 4p + 1

2m + 1
⇒ cot2

(
θN

2

)
= −2m − 4p − 1

2m + 1
= 2n + 1

2m + 1
, (D20)

where n = −m − 2p − 1. Since 2m + 4p + 1 < 0, we have n = −m − 2p − 1 > − 1
2 and so n = 0, 1, 2, . . .. Also, n − m =

−2(m + p) + 1, which is odd. Therefore, the maximum negativity occurs for angles θN that satisfy Eq. (16), with the added
constraint that (n − m) is odd. It follows that the maximum negativity occurs for detunings that satisfy Eq. (17), with the
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constraint that (n − m) is odd. From Eq. (D18), the maximum negativity occurs at times τN that satisfy

τN = (2m + 1)π

2
√

2J
cot

(
θN

2

)
= (2m + 1)π

2
√

2J

√
2n + 1

2m + 1
= π

√
(2n + 1)(2m + 1)

2
√

2J
, (D21)

with the constraint that (n − m) is odd.
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