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Macroscopic maximally-entangled-state preparation between two atomic ensembles
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We develop a scheme to prepare a macroscopic maximally entangled state between two atomic ensembles
using adaptive quantum nondemolition (QND) measurements. The quantum state of the system is evolved using
a sequence of QND measurements followed by adaptive unitaries such that the desired measurement outcome
is obtained with asymptotically unit probability. This procedure is repeated in z- and x-spin bases alternately
such that the state converges deterministically towards the maximally entangled state. Up to a local spin-basis
rotation, the maximally entangled state has zero total spin angular momentum, i.e., it is a singlet state. Our
protocol does not perform postselection and works beyond the Holstein-Primakoff regime for the atomic spin
degrees of freedom, producing genuine macroscopic entanglement.
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I. INTRODUCTION

Entanglement plays an important role in various quantum
information tasks such as teleportation [1], cryptography [2]
and its production is one of the essential capabilities when
constructing a quantum computer [3–5]. Entanglement is con-
sidered a resource in the context of quantum information
science [6–10]. In the standard model of quantum computing,
composite systems of qubits can be used to form a quan-
tum register [4,11]. However, quantum protocols based on
higher-dimensional systems have recently attracted a great
attention [12–16] and offer certain advantages such as a
higher information capacity and increased resistance to noise
[17–20]. Higher-dimensional systems are advantageous as
these allow for lower detection efficiency than qubits [21,22].
Several physical systems allow for the encoding of higher-
dimensional quantum information. These systems include
Rydberg atoms [23], trapped ions [24], cold atomic ensembles
[25], superconducting phase qudits [26], photonic systems
[27,28], and mechanical resonators [29]. Atomic gases are a
particularly fascinating physical platform for observing many-
body entanglement due to the high level of controllability and
low decoherence [30,31]. One of the most elementary type
of entangled states for an atomic gas is spin squeezed states,
where particular observables are reduced below the standard
quantum limit [32–34], and has numerous applications in
quantum metrology [35–42]. It has also been observed that
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Bell violations [43–45], which are a stronger form of quantum
correlations in the quantum quantifier hierarchy [46,47], can
be generated in Bose-Einstein condensates (BECs) [48,49].

Maximally entangled states such as Bell states in a
two-qubit system [11,43,50,51] are of great importance for
numerous quantum information tasks. Quantum communi-
cation schemes such as teleportation, dense coding, and
entanglement swapping require control over a basis of max-
imally entangled quantum states [1,52,53]. In optical systems
these states are routinely generated and detected [54]. In
higher dimensions, maximally entangled states can potentially
be used for the teleportation of more complex quantum states
in the larger Hilbert space [55–58]. While most of the work re-
lating to entanglement in atomic ensembles has been focused
on the entanglement that exists between atoms in a single
ensemble [35], works extending this to two or more spatially
separate ensembles have also been investigated both theoret-
ically and experimentally [30,59–62]. The first experimental
demonstration of entanglement between atomic gases was
observed in paraffin-coated hot gas cells [63] using quantum
nondemolition (QND) measurements where the entanglement
between two atomic ensembles had been produced in the form
of two-mode squeezed states. For BECs, entanglement has
been observed between two spatial regions of a single BEC
[64–66]. Recently, entanglement between two separate BECs
was also reported [67]. Such entanglement is fundamental
to performing various quantum information tasks based on
atomic ensembles, such as quantum teleportation [68–71],
remote state preparation [72], clock synchronization [73], and
quantum computing [74–76]. In the past, numerous theoreti-
cal and experimental works have been focused on generating
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macroscopic singlet states within single atomic ensembles us-
ing collective QND measurement [77–79]. This state is basis
invariant that finds considerable importance in quantum in-
formation processing [1,52,53,80,81]. Currently, the amount
of entanglement that can be experimentally generated is very
small, working within the Holstein-Primakoff approximation
of spins, such that Hilbert space of the spins is largely un-
used. As such, current experiments are far below levels where
a macroscopic maximally entangled state (MMES) can be
generated even in principle from the way the protocols are
constructed.

In this paper we propose a scheme for the generation of a
MMES between two atomic ensembles using collective QND
measurement and local spin rotations. In the QND scheme,
the atoms in ensemble interact with a photonic field, which
is subsequently measured, projecting the atoms into an en-
tangled state [82,83]. Our approach extends works which
have proposed sequential QND measurements to generate a
collective singlet state within single atomic ensembles with
postselection methods, such as in Refs. [77,79] and using
feedback techniques [78]. Our scheme, on the other hand, is
deterministic in the sense that the system converges towards
a MMES with asymptotically unit probability as opposed to
the stochastic evolution based on the random measurement
outcomes in the sequential QND [83]. Our scheme does not
approximate spins as a bosonic mode under the Holstein-
Primakoff approximation as is often done by restricting to the
short time interaction regime and holds for longer evolution
times. In addition, our scheme does not rely upon individual
atom control because we employ collective spin operations,
projective measurements, and local unitary rotations that can
be implemented in experimental settings.

The paper is structured as follows: In Sec. II we review the
theory of QND measurement induced entanglement [82,83]
and introduce the basic physical system that we are dealing
with. In Sec. III we describe the maximally entangled state
for macroscopic atomic ensembles and show its connection to
the macroscopic singlet state. The former can be transformed
into the latter state through a local unitary transformation. In
Sec. IV we explain the protocol for deterministic preparation
of the MMES and show that multiple sequential QND mea-
surement produces a convergence of the desired state with
the adaptive unitary. In Sec. V we numerically simulate our
proposed protocol and show that convergence is obtained to-
wards the MMES. In Sec. VI, we have discussed the overall
effectiveness of the protocol with imperfections such as atom
number fluctuations and initial ensemble prepared in the max-
imally mixed state. In Sec. VII, we propose an experimental
setup to realize the protocol. Finally, in Sec. VIII we summa-
rize our results.

II. QUANTUM NONDEMOLITION MEASUREMENTS

Here we review the theory of QND measurements on the
atomic ensembles as introduced in Ref. [82]. The effect of
multiple such QND entanglement operations is studied in
Ref. [83].

A. Definitions and physical system

The physical system we shall consider consists of two
neutral atomic ensembles or BECs, where each atom has two

populated internal states. A common choice for the internal
states are hyperfine ground states, such as the F = 1, mF =
−1 and F = 2, mF = 1 states in the case of 87Rb [84]. For
BECs we denote the bosonic annihilation operator for the two
states as gl , el , respectively, where l ∈ {1, 2} labels the two
BECs. These operators can be used to define an effective spin
using the Schwinger boson operators

Sx
l = e†

l gl + g†
l el ,

Sy
l = −ie†

l gl + ig†
l el ,

Sz
l = e†

l el − g†
l gl . (1)

The commutation relation for the spin operators are

[S j, Sk] = 2iε jklS
l , (2)

where ε jkl is the Levi-Civita symbol.
For atomic ensembles, the total spin operators are written

in terms of collective spin operators:

Sx
l =

N∑
n=1

σ x
l,n,

Sy
l =

N∑
n=1

σ
y
l,n, (3)

Sz
l =

N∑
n=1

σ z
l,n,

where σ k
l,n is a Pauli operator for the nth atom in the lth en-

semble. For simplicity, we consider that each ensemble has the
same number N of atoms. For the case that all the operations
on the atomic ensembles are completely symmetric under
particle interchange from the initialization of the states to the
final measurement, the formalism (1) and (3) for the BECs
and atomic ensembles, respectively, are completely equivalent
[85]. We use the bosonic formulation (1) henceforth, although
it should be understood that our calculations apply to both the
BEC and atomic ensemble cases.

The spin coherent states for N uncorrelated atoms in an
ensemble is defined as

|θ, φ〉〉l =
(
cos θ

2 e−iφ/2e†
l + sin θ

2 eiφ/2g†
l

)N

√
N!

|vac〉, (4)

where θ , φ are the angles on the Bloch sphere and |vac〉 is the
vacuum state containing no atoms. The Fock states are defined
as

|k〉l = (e†
l )k (g†

l )N−k

√
k!(N − k)!

|vac〉. (5)

The Fock states are eigenstates of the Sz operator according to

Sz
l |k〉l = (2k − N )|k〉l . (6)

B. Quantum nondemolition entanglement

Here we summarize the elementary entangling operation
that we use in our protocol for deterministic preparation of
maximally entangled states. Coherent light is used to perform
an indirect measurement of two atomic ensembles arranged
in a Mach-Zehnder configuration (Fig. 1). The atoms in the
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FIG. 1. Entanglement generation between two atomic ensembles
using the QND scheme. Coherent light |α〉 is used to interact two-
mode BECs via the QND Hamiltonian interaction (7) arranged in
a Mach-Zehnder configuration. The photon mode detections nc, nd

after the second beam splitter B2 entangles the two spins S1 and S2.

ensemble are prepared in a product state of two spin coher-
ent states and the interaction between photons and atoms is
governed by the Hamiltonian [34]

H = κ
(
Sz

1 − Sz
2

)
Jz, (7)

where κ is the coupling constant and Jz = a†
1a1 − a†

2a2 is the
Stokes operator for the two optical modes a1, a2 that enter into
each arm of the interferometer.

After interacting with the atoms, the photonic modes are
interfered with a beam splitter, giving rise to new modes c, d
and the photons are detected by the detectors with counts nc,
nd , respectively. After the measurement, the atomic ensembles
collapse in the Sz

1 − Sz
2 spin observable basis [82,83].

As shown in Ref. [83], the QND entanglement scheme
between two atomic ensembles can be described in terms of a
positive operator valued measure (POVM) as

Mncnd (τ ) =
∑

k1,k2=0

Cnc,nd [(k1 − k2)τ ]|k1, k2〉〈k1, k2|, (8)

where the modulating function is defined as

Cnc,nd (χ ) = αnc+nd e−|α|2/2

√
nc!nd !

cosnc (χ ) sinnd (χ ), (9)

and τ = κt is the interaction time. The resulting state after the
measurement is

|ψ̃ncnd (τ )〉 = Mncnd (τ )|ψ0〉
=

∑
k1,k2

〈k1, k2|ψ0〉Cnc,nd [(k1 − k2)τ ]|k1, k2〉. (10)

According to Eq. (10), the initial wave function is modulated
by an extra factor of Cnc,nd [(k1 − k2)τ ] which can result in a
measurement-induced generation of entanglement.

For large photon counts, the modulating function
Cnc,nd [(k1 − k2)τ ] takes a Gaussian form [82] and is sharply
peaked at

sin2 [(k1 − k2)τ ] = nd

nc + nd
. (11)

Taking the interaction time τ = π/2N and assuming
|ατ |2 � 1, as defined in Ref. [83], we may then approximate
the POVM (8) as a measurement operator according to

Mncnd

(
τ = π

2N

)
≈ �, (12)

where the projections  = k1 − k2 and photonic measure-
ments nc, nd are related according to (11), and we defined

� = 1

2δ

(
N−∑
k=0

|k, k + 〉〈k, k + |

+ (−1)(1−δ )nd

N∑
k′=

|k′, k′ − 〉〈k′, k′ − |
)

. (13)

Here δ is the Kronecker delta which is one if  = 0 and zero
otherwise.

As it is clear from the definition of modulating function
(9) and noted in Ref. [83], there is a sign difference between
the two terms for odd nd photonic measurements. Since the
shot-to-shot photonic outcome nd is random, the two measure-
ments (13) occur randomly and leads to stochastic evolution
of the system. An exception is the outcome  = 0 which
is independent of photonic count nd . We show that, in our
protocol, it is possible to construct an adaptive unitary that is
independent of nd (and thus avoids explicit photon counting)
and still converges towards the MMES.

The measurement operators are defined in different spin
bases by applying suitable unitary rotation as [85]

�
(θ,φ)
 = U (θ, φ)�(z)

 U†(θ, φ), (14)

where

U (θ, φ) = e−i(Sz
1+Sz

2 )φ/2e−i(Sy
1+Sy

2 )θ/2, (15)

and �
(z)
 is the same measurement operator as in (13), but we

explicitly specified the basis with the (z) label.

III. THE MAXIMALLY ENTANGLED STATE

In this section we discuss the nature of the maximally
entangled state between two BECs. Namely, we would like
to create the state

|MMES〉 = 1√
N + 1

∑
k

|k〉1|k〉2. (16)

This state has an entanglement of E = log2(N + 1) using the
von Neumann entropy, which is the maximum value for two
(N + 1)-level systems. This state is also known as the spin-
EPR state for atomic ensembles [86].

We now show that the MMES (16) has a very close con-
nection with the spin-zero singlet state. This fact shall be used
to construct our protocol. Each BEC can be considered to be
a macroscopic qubit state with spin value s1 = s2 = N/2. Due
to each boson being symmetric under interchange, the total
spin is always in the maximum spin sector. For two spins,
one can define the collective state that can be formed, with
quantum numbers of the total spin stot = s1 + s2, here we have
used the notation sl = Sl/2, to connect our notation to the
standard conventions of quantum angular momentum and l ∈
{1, 2} labels two atomic ensembles. We can explicitly write
this state in terms of the total angular momentum eigenstate
|s, m〉 where the two spins are coupled with m = m1 + m2, m
is the orientation of total spin quantum number s along the z
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direction such that(
sz

1 + sz
2

)|s, m〉 = m|s, m〉,
s2

tot|s, m〉 = s(s + 1)|s, m〉. (17)

There is a unique singlet state |s0, m0〉 which satisfies(
sz

1 + sz
2

)|s0, m0〉 = 0,

s2
tot|s0, m0〉 = 0, (18)

with s0 = m0 = 0. Using the coupling rule for two spins [87],
the singlet state then reads

|s0, m0〉 =
∑

m

(−1)s−m

√
2s + 1

|s, m〉1|s,−m〉2. (19)

The state (19) has perfect correlations and anticorrelations in
the linear combination of spin observables. The state could be
realized as the ground spin state of the Hamiltonian S2.

For atomic ensembles of collection of N atoms, we de-
scribe the state in Fock space (5) that can be equivalently
described in the angular momentum basis as well

|k〉 =
∣∣∣∣s = N

2
, m = k − N

2

〉
. (20)

The singlet state (19) is defined for atomic ensemble using
the relation (20):

|s0, m0〉 = 1√
N + 1

N∑
k=0

(−1)k|k〉1|N − k〉2. (21)

We see that there is a close connection between the max-
imally entangled state (16) and the singlet state (21). In fact,
the singlet state is a MMES up to a local basis transformations.
The local spin basis rotation,

e−iSy
2

π
2 |k〉 = (−1)k|N − k〉, (22)

transforms the singlet state to the maximally entangled state
as

|MMES〉 = e−iSy
2

π
2 |s0, m0〉. (23)

From (23) we may deduce the operator that has the anal-
ogous relation as (18) for the MMES. Applying the operator
e−iSy

2π/2 to (18) and using (23) we have

e−iSy
2π/2s2

tote
iSy

2π/2|MMES〉 = s̄2
tot|MMES〉 = 0, (24)

where

s̄2
tot =

(
Sx

1 − Sx
2

)2 + (
Sy

1 + Sy
2

)2 + (
Sz

1 − Sz
2

)2

4
(25)

has same correlations in the spin observables as seen in QND
interactions [82,83].

For a two-qubit system, the maximally entangled state (16)
is the Bell state

|0〉1|0〉2 + |1〉1|1〉2√
2

. (26)

This state is an eigenstate of the operators σ z
1 − σ z

2 and σ x
1 −

σ x
2 with zero eigenvalue.

IV. DETERMINISTIC PREPARATION OF MAXIMALLY
ENTANGLED STATE

As discussed in Sec. II, QND measurements can be used to
entangle two different atomic ensembles or BECs. Depending
on the photonic measurement outcomes, the state of BEC
collapses on different entangled states in general (10). For
instance, an initial state |ψ0〉 is collapsed by measurement (13)
as

�
(z)
 |ψ0〉 =

N−∑
k=0

ψ+
k |k + 〉|k〉 +

N∑
k′=

ψ−
k′ |k′ − 〉|k′〉, (27)

where the coefficients in (27)

ψ+
k = 1

2δ
〈k + |〈k|ψ0〉,

(28)

ψ−
k = (−1)(1−δ )nd

2δ
〈k − |〈k|ψ0〉,

which is an entangled state for a particular measurement out-
come . It is, however, not a MMES due to the amplitudes ψ±

k
being not necessarily of equal magnitude, and the difference
 between the Fock states in the BECs. Our aim now will be
to devise a protocol such that the MMES (16) can be prepared
deterministically using quantum measurements which are in-
herently random.

A. Basic idea

To gain some intuition about the protocol that we introduce
later, let us introduce some basic properties of the QND mea-
surements and the MMES.

The MMES is a unique state that is an eigenstate of both
the measurement operators �

(z)
0 and �

(x)
0 ,

�
(z)
0 |MMES〉 = |MMES〉,

�
(x)
0 |MMES〉 = |MMES〉. (29)

It then follows that an alternating sequence of such measure-
ments has the |MMES〉 as an eigenstate(

�
(x)
0 �

(z)
0

)M |MMES〉 = |MMES〉. (30)

Due to the unique nature of the MMES satisfying (29), the
QND measurements (13) applied alternately on an arbitrary
state |ψ0〉 converges to the MMES (16),(

�
(x)
0 �

(z)
0

)M |ψ0〉 M→∞−−−→ |MMES〉. (31)

According to (29), since the MMES is an eigenstate of both
�

(z)
0 and �

(x)
0 measurement operators, once the state |MMES〉

is obtained, further application of the measurement operators
do not change the state. This is in fact a unique state for the
same reasons that a singlet state is a unique state for two
sl = N/2 spins. Therefore it is a fixed point of the evolution.
The MMES is obtained for the QND measurement (13) cor-
responding to outcome  = 0. However, Eq. (31) does not
constitute a physically realizable protocol because obtaining
the  = 0 measurement outcome is set by Born’s probability
rule and due to the randomness of quantum measurements,
we cannot guarantee that only the  = 0 outcome will be
obtained.
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To overcome the randomness of quantum measurements
and make a deterministic scheme, we use an adaptive strategy.
Our scheme involves applying a unitary transformation to the
state in the event that a  �= 0 is obtained, and repeating the
measurements many times until the desired  = 0 outcome
is obtained. The protocol is deterministic in the sense that
eventually a measurement sequence will always end up with
the  = 0 outcome. The adaptive unitary is chosen such as to
maximize the probability of obtaining the  = 0 outcome in
the next step. Our approach can be considered a special case
of the measurement-based imaginary time evolution protocol
proposed in Refs. [88,89].

B. Protocol

Here we more concretely describe the full procedure for
deterministic preparation of the MMES using sequential QND
measurements performed in z and x basis. We define the
“repeat-until-success” adaptive QND scheme which applies
a sequence of QND measurements (13) and unitary operators
until the measurement outcome  = 0 is obtained as

T (z)
� =

L∏
j=1

U (z)
 j

�
(z)
 j

= �
(z)
0 U (z)

L−1
�

(z)
L−1

· · ·U (z)
1

�
(z)
1

, (32)

where L = 0 and U (z)
0 = I . A particular repeat-until-success

measurement sequence is labeled according to the notation

� = (1,2, . . . ,L ). (33)

To make the state convergent towards MMES, we aim to
correct those projections ( �= 0) through unitary U (z)

 that
ensures the convergence,

�
(z)
0 |ψ̃ �〉 = |ψ̃ �〉, (34)

where the unnormalized state after the repeat-until-success
sequence is

|ψ̃ �〉 = T (z)
� |ψ0〉. (35)

Then analogously to (31), we replace each of the projectors
in the z and x basis with the measurement sequences (32) such
that ∣∣ψ̃ f

��
〉 =

M∏
r=1

(
T (x)

�x
r

T (z)
�z

r

)|ψ0〉 M→∞−−−→ |MMES〉, (36)

where the product is evaluated in the reverse order such that
r = 1 is applied first. The full sequence for the adaptive se-
quential QND measurements is written

�� = ( �z
1, �x

1, �z
2, �x

2, . . . , �z
M , �x

M

)
. (37)

The two repeat-until-success sequences in the z and x basis are
repeated until convergence is attained and defined as obtaining
the outcome  = 0 for the first measurement in each repeat-
until-success sequence.

Here we summarize, for the sake of clarity, the entire pro-
tocol for preparing the MMES using adaptive QND scheme
(Fig. 2). The protocol follows the following sequence:

FIG. 2. Protocol for obtaining the MMES. A “repeat-until-
success” measurement sequence T (z)

� is applied to an initial state,

where a sequence of projective measurements �
(z)
 and adaptive

unitary rotations are made until the  = 0 result is obtained. The
same repeat-until-success sequence is repeated in the x basis. The
two sequences are repeated until convergence is attained, where both
z and x measurements yield  = 0 on the first measurement. This
procedure converges to the MMES (16).

(1) Perform the repeat-until-success �
(z)
 QND measure-

ment sequence in the z basis. If  �= 0, then apply unitary
U (z)

 as a correction and reapply �
(z)
 until the measurement

outcome  = 0 is obtained (32).
(2) Do the same as step 1 in the x basis in order to converge

towards  = 0 measurement outcome.
(3) Repeat steps 1 and 2 until the outcome  = 0 is ob-

tained for both on the first measurement for a satisfactory
number of cycles (36).

The above sequence, using adaptive QND, deterministi-
cally converges an initial state to a MMES (23).

C. The adaptive unitary

In this section we discuss the choice of unitary rotation that
is employed in the repeat-until-success sequence. There is in
fact no unique choice for the adaptive unitary and we take
advantage of this to choose a convenient form that has a sim-
ple experimental implementation. To understand the different
choice of the unitary rotation, we first analyze the state∣∣ψ̃c



〉 = U (z)
 �

(z)
 |ψ0〉. (38)

The main criterion for the unitary correction is that it
maximizes the probability that  = 0 is obtained in the next
outcome. As may be seen by the measurement operator (13),
there are two outcomes which occur randomly depending on
detection count of the photonic outcomes nd . We assume that
nd is not measurable, since it requires single-photon resolution
of a bright laser, which is experimentally challenging. To over-
come this, we choose a unitary correction that rotates the state
such that it has a significant overlap with the  = 0 sector, re-
gardless of the random outcome of nd in QND measurements
(13). In the previous works of Refs. [77,79], postselection
based on the measurement outcomes was utilized to target
singlet states with S = 0. Additionally, a feedback mechanism
[78] was employed to enhance the spin correlations with
S = 0. Our scheme shares similarities with these coherent
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FIG. 3. Choice of optimum angle of unitary transformation: Plot

of the matrix element 〈k + |eiSy θ
2 |k〉 given in (A1) as a function of

the angle of unitary rotation θ in (39) with the measurement outcome
 in (33) for (a) k = 0, (b) k = 1. Total number of the atoms is
N = 150, (c) Variation of the fidelity (42) with the angle of unitary
rotation (39) in the adaptive QND measurement outcomes, N = 10.
θmax
 represents angle of unitary rotation that maximizes the fidelity

(42) for a particular measurement outcome . (d) Plot of maximized
angles of unitary rotation for different measurement outcome (38),
N = 10. The dashed line in panels (a), (b), and (d) depicts the opti-
mized choice of unitary rotation that maximizes the fidelity, which is
fit with the line θ

opt
 = π 

N .

feedback techniques because it aims to create the spin cor-
relations present in a MMES in subsequent rounds of QND
measurements in a deterministic sense.

We choose a unitary transformation that is based on a spin
rotation

U (z)
 = eiSy

1
θ
2 ⊗ I2. (39)

We require a relationship between the measurement outcome
 and the corresponding angle of rotation θ . An adaptive
unitary (39) changes the QND measured initial state (27) as

U (z)
 �

(z)
 |ψ0〉 =

N−∑
k=0

N∑
k′=0

ψ+
k 〈k′|eiSy

1
θ
2 |k + 〉|k′〉1|k〉2

+
N∑

k=

N∑
k′=0

ψ−
k 〈k′|eiSy

1
θ
2 |k − 〉|k′〉1|k〉2.

(40)

We see that the modified state (40) involves the matrix ele-
ments of unitary rotations eiSyθ/2.

To maximize the probability that the outcome  = 0 in
the next measurement is obtained, we require performing a
rotation within the state space that transforms the random pro-
jected state to MMES while maintaining the overall coherence
and entanglement properties. Mathematically, it translates to
maximizing the amplitudes of the terms with k′ = k in (40),
such that the matrix elements 〈k|eiSyθ/2|k ± 〉 have a large
value (see Appendix for an explicit expression of the matrix
elements).

Figures 3(a) and 3(b) show the plot of the amplitude of
matrix element 〈k + |eiSyθ/2|k〉 for two values of k = 0, 1,
respectively. We can see that the largest amplitudes occur for

a unitary rotation corresponding to a particular outcome 

near to the curve

θ ∝ 

N
. (41)

We see that, as k increases in Figs. 3(a) and 3(b), the re-
gion where the matrix elements have a significant magnitude
broadens.

To find the proportionality constant in (41), we analyze the
overlap of the transformed state with MMES. The fidelity of
the normalized state (38) with the MMES (16) is calculated
after the first QND measurement as

f =
∣∣〈MMES

∣∣ψ̃c


〉∣∣2〈
ψ̃c



∣∣ ψ̃c


〉 . (42)

Figure 3(c) shows the variation of the fidelity of the state when
the angle of unitary rotation is varied. We can see that the
fidelity is maximum for a particular angle of unitary rotation
θmax
 . It is clear that the choice of the angle is unique that

maximizes the fidelity.
Figure 3(d) shows the possible choice for the angle of

unitary rotation, we see that the largest amplitude occurs near
to the line

θ
opt
 = π



N
. (43)

This corrects the state (38) in such a way that it has a large
overlap with the MMES (16) in the next round of measure-
ment. We note that it is possible to further improve upon the
choice (43), but we find that this is a simple but effective
choice that works for all N .

V. PERFORMANCE OF THE ADAPTIVE QUANTUM
NONDEMOLITION SCHEME

To demonstrate that the MMES is prepared using our pro-
tocol, we have performed a numerical analysis to check the
effectiveness of the protocol.

A. Convergence to desired measurements

We first examine the probability distribution of the state
after one QND measurement and correction step (35) in the z
basis according to the protocol. The probability of a particular
sequence is defined by,

p � = 〈
ψ̃ �

∣∣ ψ̃ �
〉

= 〈ψ0|T (z)†
� T (z)

� |ψ0〉, (44)

where the normalized state (35) of the protocol is given by

|ψ �〉 =
∣∣ψ̃ �

〉√〈
ψ̃ �

∣∣ψ̃ �
〉 . (45)
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FIG. 4. Plots for the probability distribution (48) of the initial state (46) after sequential adaptive QND measurement (36) in the z and
subsequently in the x basis for operators (a) �z

0, (b) �z
1, (c) U z

1 �z
1, (d) �z

0U
z
1 �z

1, (e) �x
0�

z
0, (f) �x

2�
z
0, (g) U x

2 �x
2�

z
0, and (h) �x

0U
x
2 �x

2�
z
0. The

number of atoms in each ensemble is N = 10.

We consider the initial state of the two atomic ensembles
to be an Sx-polarized state,

|ψ0〉 =
∣∣∣π

2
, 0

〉〉
1

∣∣∣π
2

, 0
〉〉

2

= 1

2N

N∑
k1,k2=0

√(
N

k1

)(
N

k2

)
|k1, k2〉. (46)

The operator T (z)
� applied on the initial state (46) produces

correlations between the BECs in the z basis. In the case of
obtaining  = 0 outcome on the first measurement, the state
that is obtained is

�z
0|ψ0〉 = 1

2N

N∑
k=0

(
N

k

)
|k, k〉

=
N∑

k=0

√
p0(k, k)|k, k〉, (47)

where p(k1, k2) = |〈k1, k2|�z
|ψ0〉|2 is the probability of the

measured state for a particular outcome  in the Fock basis.
The outcome  = 0 signifies the MMES-like correlations
(16).

In general, for a random measurement sequence (36), the
probability distribution in the Fock states is described as

p ��(k1, k2) = |〈k1, k2|T (x)
�x

T (z)
�z

|ψ0〉|2. (48)

In Fig. 4 we plot the probability distribution of the state (48)
after performing a QND measurement and correction opera-
tions in the z and x bases, respectively. In Figs. 4(a)–4(d) we
show the probability distributions for one measurement and
unitary correction sequence in the z basis. In Fig. 4(a) we
see that the probability distribution for z = 0 is correlated
along k1 = k2 in the Fock state space of two ensembles and it

resembles that of the MMES distribution (16). It is, however,
not the MMES because of the binomial factors in (47). For
the projection outcomes z = 1 in Fig. 4(b), we see the off-
set in Fock state probability distribution with k2 = k1 ± z

according to the definition of operator (13). By applying a
unitary correction (39), mostly the probability distribution is
restored along the diagonal, as shown in Fig. 4(c), such that
in the subsequent measurement there is a high probability of
obtaining z = 0 in Fig. 4(d).

Figures 4(e)–4(h) show the effect of another application
of the sequence of QND measurements (32), where the basis
is changed from z to x. Correlations are further improved in
Fig. 4(e) because of suppression of the binomial factors (47).
Unlike Fig. 4(b), we observe weaker offsets in the Fock state
space as it is clear from Figs. 4(g)–4(h). It is because of the
fact that in subsequent QND measurement and corrections,
stronger spin correlations are developed only for the MMES.
Hence, the probability of obtaining the prepared state in other
measurement outcomes, such as x �= 0, is less likely and the
probability distribution converges solely towards that of the
MMES in Fig. 4(f) which implies the deterministic prepara-
tion of an initial state from the scheme.

B. Probability distribution

We now turn to the probability (44) of the various mea-
surement outcomes in the protocol, shown in Fig. 5. We define
the marginal probability distribution of obtaining the measure-
ment outcomes in a particular sequence (33) as

pL =
∑

1,2,...,L−1

p �. (49)

The marginal probability gives the total probability of ob-
taining an outcome L in a sequence of L measurements
(33). This gives the probability of obtaining an outcome
L in a sequence, regardless of the previous measurement
outcomes.
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FIG. 5. Marginal probability (49) for different measurement out-
comes in sequential adaptive QND measurement (36) is shown for
two atomic ensembles prepared in Sx-polarized state (46). Conver-
gence is attained for measurement outcome  = 0 after three rounds
of iterations. A zoomed in plot is shown in the inset for better
visibility of the probability values and its convergence in a sequence.
The number of atoms in each ensemble is N = 10.

In Fig. 5 we have plotted the marginal probabilities for var-
ious levels of iteration for different measurement sequences
(32). Figure 5(a) shows a single z-basis measurement se-
quence. As we can see, the marginal probability for the initial
state is generally largest for the outcome  = 0 and the
probability decreases for other outcomes  �= 0. The prob-
ability to obtain the MMES increases with larger numbers
of measurements (L = 5) in a sequence. Figure 5(b) shows
an x-basis sequence after an initial measurement sequence in
the z basis, where the final outcome was z = 0. The prob-
ability for obtaining the MMES increases successively with
the measurement sequences as compared with Fig. 5(a) and
hence, other probabilities corresponding to the measurement
outcomes  �= 0 are suppressed further. Similarly, Figs. 5(c)
and 5(d) show other z- and x-basis measurement sequences
respectively (M = 2) after the first z- and x-basis sequence
(M = 1), in this case the state converges to the MMES at a
faster rate. The state is prepared in the measurement outcome
 = 0 with almost unit probability and the other measure-
ment outcomes  �= 0 occur with low probability. Finally,
Figs. 5(e) and 5(f) best describes the overall performance
of the protocol as the probability of obtaining the outcome
 = 0 is dominant in the subsequent QND measurements in
the z and x bases, respectively (M = 3), and the MMES is pre-
pared with nearly 100% success with very little contribution
from the other measurements because of the increasing spin

FIG. 6. Success probability (50) for obtaining the MMES af-
ter sequential adaptive QND measurement (36) for M = 1, 2, 3 is
plotted. It shows the convergence to the desired state after each mea-
surement in the z and x bases. A zoomed in plot is shown for M = 3
in the inset. The number of atoms in each ensemble is N = 10.

correlations. This shows that the MMES can be prepared in a
deterministic way.

C. Success probability

In the previous section, we have seen that in the sequential
adaptive QND measurements, the probability of obtaining
 �= 0 measurement outcomes is low and the system is pre-
pared deterministically in the MMES with outcome  = 0.
We define the success probability for obtaining the MMES
as a sum of the probability of all the measured states in
a QND measurement sequence with measurements that end
with  = 0:

psuc = pL=0

=
∑

Lε{0}

∑
1,2,...,L−1

p �. (50)

Figure 6 shows the success probability of obtaining the
MMES in our protocol for various levels of iteration. We see
that after a single z-basis measurement sequence (e.g., the
M = 1 case), the success probability increases monotonically,
as expected, although it is not sufficient to drive towards a
perfect MMES because other measurement outcomes are still
possible [see also Fig. 5(a)]. Another measurement sequence
in x basis leads to enhanced spin correlations and an increased
probability for obtaining  = 0 outcome, so it shows better
success probability. Similarly in the next round of measure-
ments in the z and x bases, i.e., M = 2, near unit success
probability is achieved. After three rounds of measurements
(M = 3), the success probability of obtaining the MMES is
close to unity. The convergence to unit probability is shown in
the inset for better clarity.

D. Fidelity calculation

Finally, we calculate the fidelity of the final state obtained
from the protocol. The fidelity of the normalized state (36)
with respect to the MMES in an adaptive QND measurement
sequence (37) is calculated as

F�� =
∣∣〈MMES

∣∣ψ̃ f
��
〉∣∣2〈

ψ̃
f
��

∣∣ψ̃ f
��
〉 . (51)
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FIG. 7. Average fidelity (52) of the initial state (46) for different
measurement outcomes is calculated in adaptive QND measurement
(36) for M = 1, 2, 3. Convergence is attained after three rounds of
measurements. A zoomed-in plot is shown for M = 3 in the inset.
The number of atoms in each ensemble is N = 10.

We also define the fidelity over all possible outcomes, the
average fidelity is calculated as

Favg =
∑

��

p ��F��

= |〈MMES|
M∏

r=1

(
T (x)

�x
r

T (z)
�z

r

)|ψ0〉|2, (52)

where the probability of a state in a particular sequence is

p �� = 〈
ψ̃

f
��

∣∣ψ̃ f
��
〉
. (53)

Figure 7 shows the average fidelity for obtaining the MMES
for our protocol (36). In the first z-basis measurement, the
average fidelity is low and it increases with the number of
measurements made in a sequence. An x-basis measurement
after an initial measurement sequence in the z basis in the final
outcome z = 0 improves the average fidelity as the proba-
bility for obtaining the MMES increases. In the next round of
measurements in the z and x basis, i.e., M = 2, 3, the average
fidelity increases to unity implying perfect preparation of the
MMES only.

VI. EFFECT OF IMPERFECTIONS

Here we discuss the performance of the protocol with the
possible sources of decoherence included. Specifically, we
discuss the effect of the atom number fluctuations and the
initial ensembles prepared in a maximally mixed state.

A. Initial maximally mixed state

We consider the initial state of the system to be a maxi-
mally mixed state described by

ρ0 = I1 ⊗ I2

(N + 1)2 , (54)

where I j is the identity matrix in the Hilbert space for the
jth ensemble. The procedure is identical to the pure state
calculation performed earlier using the equations (50)–(52).
The action of the first QND measurement in z-spin basis (32)
transforms the density matrix, such that the protocol leads to

FIG. 8. The success probability (50) and average fidelity (52) of
the initial mixed state (54) for obtaining the MMES after sequen-
tial adaptive QND measurement (36) for M = 1, 2, 3 is plotted. A
zoomed in plot is shown for M = 3 in the inset. The number of atoms
in each ensemble is N = 10.

the convergence to the MMES state,

ρ �� =
M∏

r=1

(
T (x)

�x
r

T (z)
�z

r

)
ρ0

(
T (x)

�x
r

T (z)
�z

r

)†
. (55)

The fidelity is calculated as

F mixed
��

=
〈MMES|ρ ��|MMES〉

Tr(ρ ��)
, (56)

and the average fidelity is expressed as

F mixed
avg =

∑
��

p ��F mixed
��

, (57)

where the probability of a particular sequence is

p �� = Tr(ρ ��). (58)

Figures 8(a) and 8(b) show the success probability and av-
erage fidelity using the above procedure. In Fig. 8(a), the
probability of achieving the MMES increases in a similar
sequential manner to that observed in Fig. 6. However, in
Fig. 8(b), the fidelity of the prepared state is initially lower
compared with that of Fig. 7. This discrepancy is in contrast
to the initial spin coherent states (46) that collapses to the state
(47) in a single QND measurement. This does not happen with
the initial state in (54) and the convergence rate to the MMES
is slower in the initial rounds of adaptive QND measure-
ments. After two rounds, M = 2, this converges to the MMES
rapidly, as seen in Fig. 8(b). Since the initial maximally mixed
state lacks coherence, and any coherence is entirely produced
by the subsequent QND and unitary rotations, its evolution
within the adaptive QND scheme towards the MMES shows
the overall robustness of the protocol.

B. Atom number fluctuations

In a typical experimental setup, BECs are not prepared with
fixed atom number. In this section, we discuss the effect of the
atom number fluctuations when both BECs are prepared as the
statistical distribution of different atom numbers N . Here we
consider an initial state that is a mixed state of various atom
numbers according to

ρ0 =
∑
N1N2

p(N1)p(N2)|ψ0〉N1,N2〈ψ0|N1,N2 . (59)

032420-9



MANISH CHAUDHARY et al. PHYSICAL REVIEW A 108, 032420 (2023)

FIG. 9. Effect of the atom number fluctuations on the protocol:
the success probability (50) and average fidelity (52) of the initial
state (46) for obtaining the MMES after sequential adaptive QND
measurement (36) for M = 1, 2, 3 is plotted. The corrective uni-
tary rotation is applied considering the atom number variation in
the range (60). The number of atoms in each ensemble is N = 10
and δN/N = 14%.

Here, ρ0 is the initial-state density matrix and the probabilities
p(Nl ) are taken to be Gaussian distributions. When accounting
for the fluctuations in the atom number for jth atomic ensem-
ble, denoted Nj ± δNj , we observe different potential effects
that could impact the performance of the protocol. First, the
QND interaction and the adaptive unitary rotations themselves
do not depend on the atom number N . All the operations are
atom-number conserving. Hence the overall protocol is not
modified with the change in Nj . For this reason, we have
analyzed each particle number sector separately and calculate
the fidelity for each sector with the initial state (46). The only
thing that is sensitive is the angle of rotation, which involves
the Nj dependence. With fluctuations in the atom number
N ′ = N ± δN , the unitary rotation angle is modified to

θ
′opt
 ≈ θ

opt


(
1 ± δN

N

)
. (60)

In the recent experimental work of Ref. [90], it was found that
δN/N ranges between 10%–15%.

In Fig. 9 we have analyzed the effect of atom fluctuations
on the protocol. Figures 9(a)–9(d) show the success probabil-
ity and average fidelity for obtaining the MMES for various
levels of iterations when N ′ = N ± δN . Within a sequence,
it follows a similar trend as observed with δN = 0 case in
Figs. 6 and 7. Relative atom number fluctuations result in a
random choice to the applied unitary corrections (60) and,
hence, it leads to a nonmonotonic convergence to the MMES.
Nevertheless the procedure converges to a MMES and it is
clear that rotation with a suboptimal angle does not signif-
icantly affect the convergence of the protocol, implying the
relative insensitivity of the atom number fluctuations on the
scheme.

VII. EXPERIMENTAL IMPLEMENTATION

There are various physical systems that can be employed
to implement the protocol and physical operations (Fig. 1)
described in the previous sections. One such system involves
the use of hyperfine states of 87Rb atoms, specifically F =
1, mF = −1 and F = 2, mF = 1, which form a two-level
atom system. Such a system of collection of indistinguishable
atoms can be implemented using either hot or cold atomic
ensembles or BECs [85]. To prepare two atomic systems in the
entangled state, QND measurements are employed depend-
ing on the photonic detection outcomes. QND measurements
have proven to be an effective method for inducing entan-
glement generation between atomic ensembles [34,63]. The
QND scheme that we employ features a remarkably versatile
geometry, enabling the measurement of physical qubits using
addressable optical modes. With the Mach-Zehnder configu-
ration, we can achieve entanglement between highly separated
qubits, even when the line of sight is obstructed. This unique
capability enhances the potential for robust and scalable en-
tanglement generation. In Sec. II, we have summarized the
formalism required to realize the QND measurement operator.
For a particular QND measurement, the outcome is a random
state and a sequence of QND pulses leads to a stochastic
evolution of the system. By applying the conditional unitary
operations, the desired state corresponding to the particu-
lar measurement outcome can be generated. The conditional
unitary rotations are controlled by resonantly driving the tran-
sitions between the two states using a laser of appropriate
resonant frequency.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have introduced an adaptive QND scheme
to generate the MMES between two atomic ensembles. The
state is equivalent to a singlet state formed from two macro-
scopic spins, with total angular momentum zero, up to a
local basis transform. Using the basic properties of the singlet
state, we have proposed a protocol that can be implemented
using QND measurements with adaptive unitary corrections
and converges towards the MMES in a deterministic way.
Our scheme is experimentally viable in the sense that it does
not use complex operations such as transformations on in-
dividual atoms and only involves collective spin operations,
projective measurements, and local unitary rotations. To check
the efficiency of the scheme so as to converge the system
towards MMES, we have calculated the fidelity, and the suc-
cess probability to achieve target state after multiple rounds
of measurements and corrections in a sequence. We observe
that the probability and fidelity of obtaining the desired state
increases in subsequent measurements. We have also checked
the probability distribution of the measured state in Fock
space and confirmed that it matches with spin correlations of
the MMES.

Maximally entangled states find number of important ap-
plications in quantum information tasks as these serve as
resource states for various quantum protocols. In Ref. [63],
generation of two-mode squeezed states (TMSSs) was
demonstrated under Holstein-Primakoff short interaction time
regime in two separate gas cells. Here it is important to
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understand the difference between TMSS and MMES.
The amount of entanglement, as calculated by von Neu-
mann entropy, in a TMSS is cosh2 rlog2(cosh2 r) − sinh2

rlog2(sinh2 r), [71,86], where r is the squeezing parameter.
Typically the squeezing parameter is in the region of r ≈
1, hence the amount of entanglement is of the order unity
[29,63]. Meanwhile, the value for a MMES between two en-
sembles of dimension N is log2(N + 1) [59]. This illustrates
that the MMES possesses much more entanglement than in
the TMSS. Moreover, in the MMES, the linear combination
of all spin observables show correlations (or anticorrelations)
[86], while in TMSS, only few spin observables are correlated
(or anticorrelated). Our work provides a simple yet powerful
method for producing a MMES and improves upon previous
methods [77,91], which rely upon postselection. In addition,
we have not preformed any approximation to spin variables
in our calculations and have considered the spins in an exact
way. The protocol works regardless of the initial state but we
have considered the state that has the largest fidelity with the
MMES, namely two spin coherent states polarized in the x
direction.

An important topic is how robust our scheme is in the pres-
ence of experimental imperfections. In Sec. VI we performed
two such case studies, of starting in a completely mixed state,
and studying the effect of atomic number fluctuations. We
have found that our scheme is very robust and converges to
the MMES despite the presence of imperfections. In addition
to this, we have made several studies of the effects of QND
measurements under decoherence previously [92–94], which
gives positive expectations of the performance of the current
scheme. We briefly comment on prospects in this regard. We
first point out that QND measurements have been shown to
be remarkably robust against photon loss. In a previous work,
decoherence effects on QND measurements were studied and
shown that as long as the QND interaction times are in
the short-time regime (as is the case with the measurements
considered in this paper), decoherence on the atoms can be
well-controlled [92].

Another technical challenge is the imperfect photonic res-
olution at the detectors. The primary effect of imperfect
detector efficiency η is to reduce the average photon number
α by an amount proportional to detection efficiency, i.e., α →
α
√

η, and modify the photon counts nc, nd in Eq. (9). Under
such a replacement, the general form of Eq. (9) remains,
however, of the same form, which suggests that the impact
on entanglement generation itself may be small. In practice
such imperfect photon detection may introduce further noise
[93], but the robustness in our scheme is provided by the fact
that only  = 0 is the convergence point. This corresponds

to nd = 0 according to Eq. (9), and the precise value of nc

itself does not matter. Hence, as long as the phase in the
interferometer is unaffected, the imperfect photonic detection
at the nc detector does not affect the protocol. In the case of
experimental realization with a bright laser source, limited
photon-number resolution therefore should not significantly
affect the fixed point at nd = 0 and hence the convergence
to the maximally entangled state is still expected to take place.
The critical part of the protocol is to effectively distinguish
the single measurement outcome at nd = 0 from other pos-
sible outcomes. As shown in Sec. VI B, the protocol is not
extremely sensitive to the particular rotation that is performed
for  �= 0, and affects the convergence speed moderately but
not the asymptotic state.

Another potential source of decoherence is the spontaneous
emission of photons by the atoms. Since the QND interaction
is a second-order effect, spontaneous emission via photon
emission of the excited state can be an eventual source of
dephasing of the atomic states [92]. We note, however, that
the MMES is in fact not the most sensitive state to dephasing
by its nature [59]. Other types of entangled states such as
Bell states composed of Schrödinger cat states are much more
sensitive to dephasing and we expect such states are poor
candidates for experimental realization. On the other hand,
the MMES as we consider here scales much better with the
system size, and are a much more realistic prospect for ex-
perimental realization. In a controlled experiment, where the
detuning is large, effects arising from spontaneous emission
can be controlled to be a small quantity. In summary, we
consider the most critical threat to experimental realization of
the MMES is the atomic dephasing that QND measurements
induce. However, this can be controlled, and with a careful
choice of parameters, we believe dephasing effects can be
minimized.
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APPENDIX: EXPRESSION FOR TRANSFORMATION OF FOCK STATES THROUGH SPIN ROTATION

The Fock states |k〉 are eigenstates of the Sz spin operator, one can transform it to an arbitrary direction |k〉(θ,φ) as defined in
Ref. [85] where the matrix elements of the Sy rotation are given by

〈k′|e−iSyθ/2|k〉 =
√

k!(N − k)!k′!(N − k′)!
min(k′,N−k)∑

n=max(k′−k,0)

(−1)n cosk′−k+N−2n (θ/2) sin2n+k−k′
(θ/2)

(k′ − n)!(N − k − n)!n!(k − k′ − n)!
, (A1)

where |k〉 = |k〉(z).

032420-11



MANISH CHAUDHARY et al. PHYSICAL REVIEW A 108, 032420 (2023)

[1] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[2] C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).
[3] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe,

and J. L. O’Brien, Nature (London) 464, 45 (2010).
[4] N. D. Mermin, Quantum Computer Science: An Introduction

(Cambridge University Press, New York, 2007).
[5] J. Preskill, arXiv:1203.5813.
[6] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,

Rev. Mod. Phys. 81, 865 (2009).
[7] E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001

(2019).
[8] M. M. Wilde, Quantum Information Theory (Cambridge Uni-

versity Press, New York, 2013).
[9] D. Bouwmeester and A. Zeilinger, The Physics of Quantum

Information (Springer Berlin, Heidelberg, 2000), pp. 1–14.
[10] W. P. Schleich, K. S. Ranade, C. Anton, M. Arndt, M.

Aspelmeyer, M. Bayer, G. Berg, T. Calarco, H. Fuchs, E.
Giacobino et al., Appl. Phys. B: Lasers Opt. 122, 130
(2016).

[11] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cambridge
University Press, New York, 2010).

[12] Y. Chi, J. Huang, Z. Zhang, J. Mao, Z. Zhou, X. Chen, C.
Zhai, J. Bao, T. Dai, H. Yuan et al., Nat. Commun. 13, 1
(2022).

[13] F. Bouchard, R. Fickler, R. W. Boyd, and E. Karimi, Sci. Adv.
3, e1601915 (2017).

[14] H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910
(2001).

[15] P. Facchi, G. Florio, G. Parisi, and S. Pascazio, Phys. Rev. A 77,
060304(R) (2008).

[16] D. Su, I. Dhand, and T. C. Ralph, Phys. Rev. A 106, 042614
(2022).

[17] Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, Front. Phys. 8,
589504 (2020).

[18] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys.
Rev. Lett. 88, 127902 (2002).

[19] A. J. Scott, Phys. Rev. A 69, 052330 (2004).
[20] E. T. Campbell, Phys. Rev. Lett. 113, 230501 (2014).
[21] T. Vértesi, S. Pironio, and N. Brunner, Phys. Rev. Lett. 104,

060401 (2010).
[22] V. Srivastav, N. H. Valencia, W. McCutcheon, S.

Leedumrongwatthanakun, S. Designolle, R. Uola, N. Brunner,
and M. Malik, Phys. Rev. X 12, 041023 (2022).

[23] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang,
S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi et al.,
Science 365, 570 (2019).

[24] C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen, A. Retzker,
and C. Monroe, Phys. Rev. X 5, 021026 (2015).

[25] D.-S. Ding, W. Zhang, S. Shi, Z.-Y. Zhou, Y. Li, B.-S. Shi, and
G.-C. Guo, Light: Sci. Appl. 5, e16157 (2016).

[26] M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E.
Lucero, A. D. O’Connell, D. Sank, H. Wang, J. Wenner, A. N.
Cleland et al., Science 325, 722 (2009).

[27] M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B.
Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little et al., Nature
(London) 546, 622 (2017).

[28] C. Zhang, J. F. Chen, C. Cui, J. P. Dowling, Z. Y. Ou, and T.
Byrnes, Phys. Rev. A 100, 032330 (2019).

[29] S. Kotler, G. A. Peterson, E. Shojaee, F. Lecocq, K. Cicak, A.
Kwiatkowski, S. Geller, S. Glancy, E. Knill, R. W. Simmonds
et al., Science 372, 622 (2021).

[30] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Rev. Mod.
Phys. 82, 1041 (2010).

[31] M. D. Lukin, S. F. Yelin, and M. Fleischhauer, Phys. Rev. Lett.
84, 4232 (2000).

[32] A. Sørensen, L.-M. Duan, J. I. Cirac, and P. Zoller, Nature
(London) 409, 63 (2001).

[33] J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, Phys. Rev.
Lett. 83, 1319 (1999).

[34] A. Kuzmich, L. Mandel, and N. P. Bigelow, Phys. Rev. Lett. 85,
1594 (2000).

[35] C. Gross, J. Phys. B: At., Mol. Opt. Phys. 45, 103001 (2012).
[36] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96,

010401 (2006).
[37] V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330

(2004).
[38] G. Tóth and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006

(2014).
[39] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222

(2011).
[40] C. You, S. Adhikari, Y. Chi, M. L. LaBorde, C. T. Matyas, C.

Zhang, Z. Su, T. Byrnes, C. Lu, J. P. Dowling et al., J. Opt. 19,
124002 (2017).

[41] H. Bao, J. Duan, S. Jin, X. Lu, P. Li, W. Qu, M. Wang, I.
Novikova, E. E. Mikhailov, K.-F. Zhao et al., Nature (London)
581, 159 (2020).

[42] P. Sekatski, M. Skotiniotis, J. Kołodyński, and W. Dür,
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