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Solving a Poisson equation is generally reduced to solving a linear system with a coefficient matrix A of entries
ai j , i, j = 1, 2, . . . , n, from the discretized Poisson equation. Although the variational quantum algorithms are
promising algorithms to solve the discretized Poisson equation, they generally require that A be decomposed
into a sum of O[poly(log2n)] simple operators in order to evaluate efficiently the loss function. A tensor product
decomposition of A with 2log2n + 1 terms has been explored in previous works. In this paper, based on the
decomposition of sparse Hamiltonians we greatly reduce the number of terms. We first write the loss function
in terms of the operator σx ⊗ A with σx denoting the standard Pauli operator. Then for the one-dimensional
Poisson equations with different boundary conditions and for the d-dimensional Poisson equations with Dirichlet
boundary conditions, we decompose σx ⊗ A into a sum of at most 7 and (4d + 1) Hermitian, one-sparse, and
self-inverse operators, respectively. We design explicitly the quantum circuits to evaluate efficiently the loss
function. The decomposition method and the design of quantum circuits can also be easily extended to linear
systems with Hermitian and sparse coefficient matrices satisfying ai,i+c = ac for c = 0, 1, . . . , n − 1 and i =
0, · · · , n − 1 − c.
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I. INTRODUCTION

Variational quantum algorithms (VQAs) have emerged as
the leading strategy to attain quantum advantage on noisy
intermediate-scale quantum devices [1–3]. VQAs are a class
of hybrid quantum-classical algorithms which have been suc-
cessfully applied to a plethora of applications such as solving
nonlinear problems [4], linear systems [5–7], and combinato-
rial optimization problems [8–10].

The Poisson equation has fundamental importance in
numerous areas of science and engineering, such as quantum-
mechanical continuum solvation [11,12], computational fluid
dynamics [13], and the theory of Markov chains [14,15].
Driven by its importance, there is immense interest in solving
the Poisson equation by using VQAs recently [16]. The main
idea is to first discrete the Poisson equation to a linear sys-
tem with a coefficient matrix A by using the finite-difference
method [17], and then approximate the solution to the linear
system through VQAs.

However, the application of VQAs on the linear system
always requires that the coefficient matrix A be decomposed
into a sum of O[poly(log2n)] simple operators to evaluate
efficiently the loss function, where n is the dimension of A. For
general linear systems, to find a strategy satisfying the above
requirements is a nontrivial problem [16]. Due to the special
structure of the discretized Poisson equations, the authors in
[16] find an explicit tensor product decomposition of A under
a set of simple operators {I, σ+ = |0〉〈1|, σ− = |1〉〈0|}, for
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which the number of terms is 2 log2 n + 1. The observables
are constructed to evaluate the expectation values of these
simple operators.

In this paper, inspired by the idea introduced in [18], we
present a different decomposition strategy to greatly reduce
the number of the decomposition terms in order to apply
VQAs. We first write the loss function in terms of the op-
erator σx ⊗ A with σx denoting the standard Pauli operator,
as σx ⊗ A can be directly decomposed into a sum of Her-
mitian, one-sparse, and self-inverse operators. Then, for the
one-dimensional Poisson equations with different boundary
conditions and for the d-dimensional Poisson equations with
Dirichlet boundary conditions, we decompose σx ⊗ A into a
sum of at most 7 and (4d + 1) Hermitian, one-sparse, and
self-inverse operators, respectively. Finally, the quantum cir-
cuits are explicitly constructed to evaluate efficiently the loss
function. Although the idea of introducing ancilla qubits for
sparse matrix decomposition with the number of decompo-
sition terms being independent of the dimension n has been
proposed in [18,24], the queries to decomposition terms are
usually referred to as black box. Thus, our method has practi-
cal significance as we adapt the decomposition strategy for
the discretized Poisson equation and construct exactly the
quantum circuits to realize the queries.

Our algorithm is effective as the number of the decom-
position terms is only polynomial of the dimension d of
the Poisson equation, and is independent of n. Therefore,
our algorithm greatly reduces the number of measurements.
This advantage is particularly outstanding in dealing with the
linear systems with large dimension n. In addition, the num-
ber of the ancilla qubits required for realizing the quantum
circuits corresponding to the decomposition terms is at most
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log2 n + 2 and is independent of d . The circuit complexity is
also polynomial of log2 n and independent of d , which implies
that the benefit of our algorithm is still obvious for the high-
dimensional Poisson equations. Moreover, the decomposition
method and the quantum circuit design are still suitable and
efficient for linear systems with Hermitian and sparse coef-
ficient matrices satisfying ai,i+c = ac for c = 0, 1, . . . , n − 1
and i = 0, . . . , n − 1 − c, where ai,i+c denotes the element of
the coefficient matrices. Additionally, inspired by our method,
for the coefficient matrices which slightly violate the above
conditions one may also find the corresponding decomposi-
tions and circuit designs.

The paper is structured as follows. In Sec. II, we briefly
review the definition of Poisson equations, the linear sys-
tem generated by discretizing the Poisson equations, and the
Hamiltonian whose ground state encodes the solution to the
linear system. In Sec. III, we demonstrate how to approximate
the ground state of the Hamiltonian by using VQAs based
on the decomposition of sparse Hamiltonians. In Sec. IV, we
numerically illustrate the performance of our algorithm for the
one-dimensional Poisson equations with Dirichlet boundary
conditions. We discuss our results and conclude in Sec. V.

II. HAMILTONIAN FOR DISCRETE POISSON EQUATIONS

We first review the definition of Poisson equations. The
one-dimensional Poisson equations with different boundary
conditions can be written as [16,19–21]

−�μ(x) = f (x), x ∈ (0, 1), (1)

with the unified boundary conditions α1μ
′(0) − α2μ(0) = 0

and β1μ
′(1) + β2μ(1) = 0, where � is the Laplace operator;

α1, α2, β1, and β2 are all positive constants; and f : D → R
is a sufficiently smooth function. The boundary conditions are

given by α1, α2, β1, and β2. It corresponds to the Dirichlet
boundary condition when α1 = 0, α2 = 1, β1 = 0, and β2 =
1. For the d-dimensional Poisson equations, we consider the
case with Dirichlet boundary conditions, namely, −�μ(x) =
f (x), x ∈ (0, 1)d with the boundary condition μ(x) = 0, x ∈
{0, 1}d .

Aiming to solve the Poisson equations numerically, the
finite-difference method is used to discretize Poisson equa-
tions to generate linear systems [16,17]. Specifically, solving
the one-dimensional Poisson equation with the unified bound-
ary conditions can be transformed to the problem of solving
the following linear system:

Âx = b, b ∈ Rn (2)

with

Â =

⎡⎢⎢⎢⎢⎢⎢⎣

2 − c −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2 − d

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ Rn×n,

(3)
where c = α1

α1+α2h , d = β1

β1+β2h , h = 1/(n + 1), n comes from
evenly dividing (0,1) into n + 1 parts during the discretization,
and b is the vector obtained by sampling f (x) on the interior
grid points.

Similarly, the d-dimensional Poisson equation with the
Dirichlet boundary conditions can be discretized to be the
following linear system:

A(d )x = b, b ∈ Rnd
, A(d ) ∈ Rnd ×nd

(4)

with

A(d ) = Ã ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
d

+ I ⊗ Ã ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
d

+ · · · + I ⊗ · · · ⊗ I ⊗ Ã︸ ︷︷ ︸
d

,

where Ã =

⎡⎢⎢⎢⎢⎣
2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2

⎤⎥⎥⎥⎥⎦ ∈ Rn×n, I ∈ Rn×n. (5)

Note that the error between the exact solution and the nu-
merical solution obtained by solving the corresponding linear
system is O(1/n2) [22]. In other words, the fidelity between
the exact solution and the numerical solution increases with
the increase of n. However, the computation of the linear
system can be inefficient for large n.

In order to compute the linear systems (2) and (4) effi-
ciently for large n, the problem of solving the linear system
is transformed into finding the unique ground state of the
Hamiltonian [16]:

H = A†(I − |b〉〈b|)A, (6)

where the prepared quantum state |b〉 ∝ b and A is the coeffi-
cient matrix of the target linear system. The ground state |x〉

of Hamiltonian (6) is proportional to the solution of the linear
system (2) and (4) with A = Â and A(d ), respectively. Here, we
assume n = 2m for some positive integer m. Additionally, we
assume that there exists an efficient unitary operator Ub that
can prepare a quantum state |b〉 from the initial state |0〉.

III. VARIATIONAL QUANTUM ALGORITHMS FOR
POISSON EQUATIONS BASED ON DECOMPOSITION OF

SPARSE HAMILTONIANS

VQAs aim to find the ground state of the Hamiltonian (6)
by minimizing the loss function [1,23]:

E (	θ ) = 〈H〉 = 〈ψ (	θ )|H |ψ (	θ )〉
= 〈ψ (	θ )|A2|ψ (	θ )〉 − |〈b|A|ψ (	θ )〉|2, (7)
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where |ψ (	θ )〉 = U (	θ ) |+〉⊗N with |+〉 = |0〉+|1〉
2 is the varia-

tional wave-function ansatz used to approximate the ground
state of the target Hamiltonian, 	θ are the variational parame-
ters to be optimized on the classical computer, and N is the
number of qubits which are required to encode the solutions
for the argued linear systems. It is straightforward to see that
N is required to be m and md , respectively, for the linear
system (2) and (4).

Efficient evaluation of the loss function E (	θ ) is limited
due to the requirement that A be decomposed into a sum
of O[poly(log2n)] simple operators that can be easily mea-
sured or realized by quantum circuits. Although the coefficient
matrix A of the discretized Poisson equation is three-sparse
Hamiltonian, the graph with adjacency matrix A is not bipar-
tite, which implies that one cannot directly decompose A into
a sum of Hermitian, one-sparse, and self-inverse operators by
using the idea introduced in [24]. Therefore, we rewrite the
loss function as

E (	θ ) = 〈H〉 = 〈ψ (	θ )|H |ψ (	θ )〉
= 〈+|〈ψ (	θ )|(σx ⊗ A)2|+〉|ψ (	θ )〉

− |〈+|〈b|σx ⊗ A|+〉|ψ (	θ )〉|2 (8)

by noting that 〈+|σx|+〉 = 1 and 〈+|σ 2
x |+〉 = 1. It is straight-

forward to see that the graph with adjacency matrix σx ⊗ A
is bipartite. Hence, σx ⊗ A can be directly decomposed into a
sum of Hermitian, one-sparse, and self-inverse operators.

Note that the decomposition of (σx ⊗ A)2 is natural when
σx ⊗ A is decomposed into a sum of Hermitian, one-sparse,
and self-inverse items since the product of such two decom-
position items is still Hermitian, one-sparse, and self-inverse.
Next, we first elaborate how to decompose σx ⊗ A into a
sum of Hermitian, one-sparse, and self-inverse terms, then
construct the quantum circuits to evaluate efficiently E (	θ ) for
the linear systems (2) and (4) based on the method framework
introduced in [18].

A. Evaluation of E(�θ) for the linear system (2)

For the linear system (2), we first construct the bipartite
graph corresponding to σx ⊗ Â and adopt the edge coloring
strategy in [24] to obtain its decomposition into a sum of
Hermitian and one-sparse terms. We take n = 4 for example
to illustrate the decomposition process. For n = 4, σx ⊗ Â has
the following form:

σx ⊗ Â =

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 2 − c −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2 − d

2 − c −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 − d 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(9)

for which the corresponding bipartite graph is shown in
Fig. 1(a).

Based on the coloring of the edges in the bipartite graph
shown in Fig. 1(a), σx ⊗ Â can be decomposed into a sum
of Hermitian and one-sparse items, which can be found in

(a) (b)

FIG. 1. Edge coloring decomposition of σx ⊗ Â with n = 4.
(a) The bipartite graph with the adjacency matrix σx ⊗ Â. The edge
〈u, v〉 formed by the nodes u and v is assigned to a color labeled
by 〈i, j〉 where i denotes that the node v is the ith neighbor of u
and j denotes that u is the jth neighbor of v. (b) The one-to-one
correspondence between color and label 〈i, j〉.

Fig. 2. However, this decomposition process is not intu-
itive in obtaining the decomposition for the high-dimensional
discretized Poisson equations, since the corresponding co-
efficient matrix A(d ) will be more complex. Moreover, the
quantum circuits for realizing the queries to the Hermitian,
one-sparse, and self-inverse decomposition terms of H〈i, j〉 are
difficult to design due to the lack of regularity in the structure
of H〈i, j〉.

To tackle these difficulties, we note that H〈1,1〉 + H〈2,2〉,
H〈1,2〉 + H〈1,3〉, and H〈2,1〉 + H〈3,1〉 are all still Hermitian and
one-sparse. Thus, σx ⊗ Â can be first decomposed as σx ⊗
Â = H0 + H+1 + H−1, where

H0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 2 − c 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2 − d

2 − c 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 − d 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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FIG. 2. The Hermitian and one-sparse decomposition items of σx ⊗ Â. H〈i, j〉 corresponds to the adjacency matrix of the graph formed by
the edges with the color labeled by 〈i, j〉.

H+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

H−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

from which we can see that we can directly obtain the decom-
position of σx ⊗ Â based on its structure instead of applying
the edge coloring strategy. Moreover, the decomposition of
H0, H+1, and H−1 into a sum of Hermitian, one-sparse, and
self-inverse operators can be obtained, respectively, as

H0 = 2G0 − c

2

(
G0 − G f −

0

) − d

2

(
G0 − Gl−

0

)
,

H+1 = −1

2
(G+

+1 + G−
+1), H−1 = −1

2
(G+

−1 + G−
−1),

where

G0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G f −
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Gl−
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

G±
+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 ±1 0 0 0 0
0 0 0 0 ±1 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G±
−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

±1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 ±1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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It is straightforward to verity that G0, G f −
0 , Gl−

0 , G±
+1, and G±

−1 are all Hermitian, one-sparse, and self-inverse
operators.

Consequently, the decomposition of σx ⊗ Â into a sum of Hermitian, one-sparse, and self-inverse operators is obtained for
general n as

σx ⊗ Â = 2G0 − 1

2
(G+

+1 + G−
+1) − 1

2
(G+

−1 + G−
−1) − c

2

(
G0 − G f −

0

) − d

2

(
G0 − Gl−

0

)
=

(
2 − c + d

2

)
G0 + c

2
G f −

0 + d

2
Gl−

0 − 1

2
(G+

+1 + G−
+1 + G+

−1 + G−
−1). (10)

On the other hand, although the decomposition of (σx ⊗ Â)2 is obtained based on Eq. (10), σx ⊗ Â2 can be directly
decomposed into a sum of Hermitian, one-sparse, and self-inverse operators with a much smaller number of terms since Â2

is a four-sparse Hamiltonian of the form

Â2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

6 −4 1 0
−4 6 −4 1

1 . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . 1

1 −4 6 −4
0 1 −4 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎣

0 c
c 0 0

. . .
. . .

. . .

0 0 0
0 0 d

d 0

⎤⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎣

4c + 1 − c2 0
0

. . .

0
0

0 4d + 1 − d2

⎤⎥⎥⎥⎥⎥⎥⎦. (11)

Due to its structure, the decomposition of σx ⊗ Â2 is obtained as

σx ⊗ Â2 = 6G0 − 2(G+
+1 + G−

+1 + G+
−1 + G−

−1) + 1

2
(G+

+2 + G−
+2 + G+

−2 + G−
−2) + c

2

(
G f +

1 − G f −
1

) + d

2

(
Gl+

1 − Gl−
1

)
− 4c + 1 − c2

2

(
G0 − G f −

0

) − 4d + 1 − d2

2

(
G0 − Gl−

0

)
=

(
5 + c2 + d2

2
− 2c − 2d

)
G0 + 4c + 1 − c2

2
G f −

0 + 4d + 1 − d2

2
Gl−

0 + c

2

(
G f +

1 − G f −
1

) + d

2

(
Gl+

1 − Gl−
1

)
− 2(G+

+1 + G−
+1 + G+

−1 + G−
−1) + 1

2
(G+

+2 + G−
+2 + G+

−2 + G−
−2), (12)

where the decomposition items will be exactly illustrated later. Therefore, to evaluate the loss function more efficiently, we
compute the value 〈+|〈ψ (	θ )|σx ⊗ Â2|+〉|ψ (	θ )〉 instead of 〈+|〈ψ (	θ )|(σx ⊗ Â)2|+〉|ψ (	θ )〉.

Let |qm · · · q0〉, or |g〉 with g = ∑i=m
i=0 qi2i, be a computational basis state with m + 1 qubits. In the computational basis the

decomposition terms can be expressed as

G0 : |qm · · · q0〉 → |(1 − qm)qm−1 · · · q0〉,
G f −

0 : |qm · · · q0〉 → (−1)
∏m−1

i=0 (1−qi )|(1 − qm)qm−1 · · · q0〉,
Gl−

0 : |qm · · · q0〉 → (−1)
∏m−1

i=0 qi |(1 − qm)qm−1 · · · q0〉,

G±
+1 : |g〉 → ±

m−1∏
i=0

qi|g〉 +
(

1 −
m−1∏
i=0

qi

)
|g + 2m + 1〉, g = 0, 1, . . . , 2m − 1,

|g〉 → ±
m−1∏
i=0

(1 − qi )|g〉 +
(

1 −
m−1∏
i=0

(1 − qi )

)
|g − 2m − 1〉, g = 2m, . . . , 2m+1 − 1,

G±
−1 : |g〉 → ±

m−1∏
i=0

(1 − qi )|g〉 +
(

1 −
m−1∏
i=0

(1 − qi )

)
|g + 2m − 1〉, g = 0, 1, . . . , 2m − 1,
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|g〉 → ±
m−1∏
i=0

qi|g〉 +
(

1 −
m−1∏
i=0

qi

)
|g − 2m + 1〉, g = 2m, . . . , 2m+1 − 1,

G f ±
1 : |qm · · · q0〉 → ±

m−1∏
i=1

(1 − qi )|(1 − qm)qm−1 · · · q1(1 − q0)〉 +
(

1 −
m−1∏
i=1

(1 − qi )

)
|qm · · · q0〉,

Gl±
1 : |qm · · · q0〉 → ±

m−1∏
i=1

qi|(1 − qm)qm−1 · · · q1(1 − q0)〉 +
(

1 −
m−1∏
i=1

qi

)
|qm · · · q0〉,

G±
+2 : |g〉 → |g + 2m + 2〉, g = 0, 1, . . . , 2m − 3,

|g〉 → ±|g〉, g = 2m − 2, 2m − 1, 2m, 2m + 1,

|g〉 → |g − 2m − 2〉, g = 2m + 2, . . . , 2m+1 − 1,

G±
−2 : |g〉 → ±|g〉, g = 0, 1, 2m+1 − 2, 2m+1 − 1,

|g〉 → |g + 2m − 2〉, g = 2, . . . , 2m − 1,

|g〉 → |g − 2m + 2〉, g = 2m, . . . , 2m+1 − 3, (13)

which can be easily obtained from the decomposition term structure of the example analyzed above. Sequentially, we have

〈b|A|ψ (	θ )〉 = 〈+|〈b|σx ⊗ A|+〉|ψ (	θ )〉

=
(

2 − c + d

2

)
〈+|〈b|G0|+〉|ψ (	θ )〉 + c

2
〈+|〈b|G f −

0 |+〉|ψ (	θ )〉 + d

2
〈+|〈b|Gl−

0 |+〉|ψ (	θ )〉

− 1

2

∑
G∈{G+

+1,G
−
+1,G

+
−1,G

−
−1}

〈+|〈b|G|+〉|ψ (	θ )〉 (14)

and

〈ψ (	θ )|A2|ψ (	θ )〉 = 〈+|〈ψ (	θ )|σx ⊗ A2|+〉|ψ (	θ )〉

=
(

5 + c2 + d2

2
− 2c − 2d

)
〈+|〈ψ (	θ )|G0|+〉|ψ (	θ )〉 + 4c + 1 − c2

2
〈+|〈ψ (	θ )|G f −

0 |+〉|ψ (	θ )〉

+ 4d + 1 − d2

2
〈+|〈ψ (	θ )|Gl−

0 |+〉|ψ (	θ )〉 + c

2
(〈+|〈ψ (	θ )|G f +

1 |+〉|ψ (	θ )〉 − 〈+|〈ψ (	θ )|G f −
1 |+〉|ψ (	θ )〉)

+ d

2

(〈+|〈ψ (	θ )|Gl+
1 |+〉|ψ (	θ )〉 − 〈+|〈ψ (	θ )|Gl−

1 |+〉|ψ (	θ )〉) − 2
∑

G∈{G+
+1,G

−
+1,G

+
−1,G

−
−1}

〈+|〈ψ (	θ )|G|+〉|ψ (	θ )〉

+ 1

2

∑
G∈{G+

+2,G
−
+2,G

+
−2,G

−
−2}

〈+|〈ψ (	θ )|G|+〉|ψ (	θ )〉. (15)

Let G be one of the Hermitian, one-sparse, and self-inverse terms. The problem of evaluating E (	θ ) for A = Â can be
transformed to the problem of computing the values of the terms 〈+|〈ψ (	θ )|G|+〉|ψ (	θ )〉 and 〈+|〈b|G|+〉|ψ (	θ )〉. Note that the
total numbers of items 〈+|〈b|G|+〉|ψ (	θ )〉 and 〈+|〈ψ (	θ )|G|+〉|ψ (	θ )〉 which are required to be computed are at most 7 and 15,
respectively. Particularly, only 5 terms 〈+|〈b|G|+〉|ψ (	θ )〉 and 11 terms 〈+|〈ψ (	θ )|G|+〉|ψ (	θ )〉 are needed to be computed for
the one-dimensional Poisson equation with Dirichlet boundary conditions. We emphasize that the total number of the items is
independent of n.

Here, we design the corresponding quantum circuits for the decomposition terms on the right-hand side of (10) and
(12) (see the Appendix). We adopt the Hadamard test circuit to obtain the values of the terms 〈+|〈ψ (	θ )|G|+〉|ψ (	θ )〉 and
〈+|〈b|G|+〉|ψ (	θ )〉. Specifically, after M repetitions of the circuits shown in Figs. 3(a1) and 3(a2) with controlled unitary operator
Ũ , one obtains the probabilities of observing zero on the ancilla qubit, denoted as PR and PI , respectively. The value of the item
〈0|Ũ |0〉 can be evaluated as

〈0|Ũ |0〉 = (2PR − 1) + i(2PI − 1). (16)

Therefore the values of the items 〈+|〈ψ (	θ )|G|+〉|ψ (	θ )〉 and 〈+|〈b|G|+〉|ψ (	θ )〉 can be estimated by using Eq. (16) when the
operator Ũ is selected to be of the forms shown in Figs. 3(b1) and 3(b2), respectively.
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FIG. 3. Hadamard test circuits for estimating the values of the items 〈+|〈ψ (	θ )|G|+〉|ψ (	θ )〉, 〈+|〈b|G|+〉|ψ (	θ )〉 and
〈+|〈ψ (	θ )|GG′|+〉|ψ (	θ )〉. (a1) The Hadamard test circuit to estimate the real part of the items 〈+|〈ψ (	θ )|G|+〉|ψ (	θ )〉, 〈+|〈b|G|+〉|ψ (	θ )〉, or
〈+|〈ψ (	θ )|GG′|+〉|ψ (	θ )〉 when the controlled unitary operator is selected to be of the forms shown in (b1), (b2), or (b3), respectively. (a2)
The Hadamard test circuit to estimate the imaginary part of the items 〈+|〈ψ (	θ )|G|+〉|ψ (	θ )〉, 〈+|〈b|G|+〉|ψ (	θ )〉, or 〈+|〈ψ (	θ )|GG′|+〉|ψ (	θ )〉
when the controlled unitary operator is selected to be the form shown in (b1), (b2), or (b3), respectively. (b1)–(b3) The circuits for the
controlled unitary operator used in estimating the value of 〈+|〈ψ (	θ )|G|+〉|ψ (	θ )〉, 〈+|〈b|G|+〉|ψ (	θ )〉, and 〈+|〈ψ (	θ )|GG′|+〉|ψ (	θ )〉.

B. Evaluation of E(�θ) for the linear system (4)

With respect to the linear system (4) with d � 2, we have

A(d ) =
d−1∑

s=0,s+t=d−1

Is ⊗ Ã ⊗ It , (17)

with Ix = I ⊗ · · · ⊗ I︸ ︷︷ ︸
x

. The term Is ⊗ Ã ⊗ It is shown to be of the form

Is ⊗ Ã ⊗ It =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[2] [-1]

ms︷ ︸︸ ︷
0 · · · 00

m︷ ︸︸ ︷
0 · · · 00

[-1] [2] [-1] 0 · · · 000 · · · 01
. . .

. . .
. . .

...
. . .

. . . [-1] 0 · · · 001 · · · 10
[-1] [2] 0 · · · 001 · · · 11

[2] [-1] 0 · · · 010 · · · 00
[-1] [2] [-1] 0 · · · 010 · · · 01

. . .
. . .

. . .
...

. . .
. . . [-1] 0 · · · 011 · · · 10
[-1] [2] 0 · · · 011 · · · 11

. . .
...

[2] [-1] 1 · · · 110 · · · 00
[-1] [2] [-1] 1 · · · 110 · · · 01

. . .
. . .

. . .
...

. . .
. . . [-1] 1 · · · 111 · · · 10
[-1] [2] 1 · · · 111 · · · 11

(18)

with

[c] =

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

c

mt︷ ︸︸ ︷
0 · · · 00

c 0 · · · 01
. . .

...

c 1 · · · 11

. (19)
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Therefore, it is observed that Is ⊗ Ã ⊗ It is a three-sparse Hamiltonian. Consequently, σx ⊗ Is ⊗ Ã ⊗ It can be decomposed
into a sum of Hermitian, one-sparse, and self-inverse terms:

σx ⊗ Is ⊗ Ã ⊗ It = 2Gd,0 − 1
2 (G+

d,+2mt + G−
d,+2mt ) − 1

2 (G+
d,−2mt + G−

d,−2mt ), (20)

where s = 0, 1, . . . , d − 1 and t = d − 1 − s. Let |qmd · · · q0〉, or |g〉 with g = ∑i=md
i=0 qi2i, be a computational basis state with

md + 1 qubits. In the computational basis we have

Gd,0 : |qmd · · · q0〉 → |(1 − qmd )qmd−1 · · · q0〉,

G±
d,+2mt : |g〉 → ±

i=m−1∏
i=0

qmt+i|g〉 +
(

1 −
i=m−1∏

i=0

qmt+i

)
|g + 2md + 2mt 〉, g = 0, . . . , 2md − 1,

|g〉 → ±
i=m−1∏

i=0

(1 − qmt+i )|g〉 +
(

1 −
i=m−1∏

i=0

(1 − qmt+i )

)
|g − 2md − 2mt 〉, g = 2md , . . . , 2md+1 − 1,

G±
d,−2mt : |g〉 → ±

i=m−1∏
i=0

(1 − qmt+i )|g〉 +
(

1 −
i=m−1∏

i=0

(1 − qmt+i )

)
|g + 2md − 2mt 〉, g = 0, . . . , 2md − 1,

|g〉 → ±
i=m−1∏

i=0

qmt+i|g〉 +
(

1 −
i=m−1∏

i=0

qmt+i

)
|g − 2md + 2mt 〉, g = 2md , . . . , 2md+1 − 1. (21)

Accordingly, the quantum circuits for the decomposition terms on the right-hand side of (20) are designed (see the Appendix).
Combining Eq. (17) with the decomposition (20), we obtain

σx ⊗ A(d ) = 2dGd,0 − 1

2

d−1∑
t=0

(G+
d,+2mt + G−

d,+2mt + G+
d,−2mt + G−

d,−2mt ),

〈b|A(d )|ψ (	θ )〉 = 〈+|〈b|σx ⊗ A(d )|+〉|ψ (	θ )〉

= 2d〈+|〈b|Gd,0|+〉|ψ (	θ )〉 − 1

2

d−1∑
t=0

[〈+|〈b|G+
d,+2mt |+〉|ψ (	θ )〉 + 〈+|〈b|G−

d,+2mt |+〉|ψ (	θ )

+ 〈+|〈b|G+
d,−2mt |+〉|ψ (	θ )〉 + 〈+|〈b|G−

d,−2mt |+〉|ψ (	θ )〉]. (22)

In other words, the total number of the items required to be computed to obtain the value of 〈b|A(d )|ψ (	θ )〉 is 4d + 1, which is
also independent of n. Additionally, the value of the items on the right-hand side of Eq. (22) can be obtained by using Eq. (16)
when the controlled operator Ũ is selected to be of the form shown in Fig. 3(b2).

On the other hand, (σx ⊗ A(d ) )2 can be expressed as a linear combination of (4d + 1)2 − (4d + 1) Hermitian, one-sparse, and
self-inverse operators, for which the identity operator is ignored. Thus, we have

〈ψ (	θ )|(A(d ) )2|ψ (	θ )〉 = 〈+|〈ψ (	θ )|(σx ⊗ A(d ) )2|+〉|ψ (	θ )〉

= (4d2 + d ) − d
d−1∑
t=0

[〈+|〈ψ (	θ )|Gd,0G+
d,+2mt |+〉|ψ (	θ )〉 + 〈+|〈ψ (	θ )|Gd,0G−

d,+2mt |+〉|ψ (	θ )〉

+ 〈+|〈ψ (	θ )|Gd,0G+
d,−2mt |+〉|ψ (	θ )〉 + 〈+|〈ψ (	θ )|Gd,0G−

d,−2mt |+〉|ψ (	θ )〉]

− d
d−1∑
t=0

[〈+|〈ψ (	θ )|G+
d,+2mt Gd,0|+〉|ψ (	θ )〉 + 〈+|〈ψ (	θ )|G−

d,+2mt Gd,0|+〉|ψ (	θ )〉

+ 〈+|〈ψ (	θ )|G+
d,−2mt Gd,0|+〉|ψ (	θ )〉 + 〈+|〈ψ (	θ )|G−

d,−2mt Gd,0|+〉|ψ (	θ )〉]

+ 1

4

∑
G,G′∈S,G′ 
=G

[〈+|〈ψ (	θ )|GG′|+〉|ψ (	θ )〉 + 〈+|〈ψ (	θ )|G′G|+〉|ψ (	θ )〉], (23)

where S = ∪d−1
t=0 {G+

d,+2mt , G−
d,+2mt , G+

d,−2mt , G−
d,−2mt }. Thus,

it is seen that only (4d + 1)2 − (4d + 1) items
〈+|〈ψ (	θ )|GG′|+〉|ψ (	θ )〉 are needed to be computed in

order to obtain the value of 〈ψ (	θ )|(A(d ) )2|ψ (	θ )〉, where
G and G′ denote two different Hermitian, one-sparse, and
self-inverse operators. Moreover, the value of the item
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FIG. 4. The value of the loss function and the fidelity |〈x| |ψ (	θ )〉 |2 obtained with different depth by using the variational ansatz argued
here. The value of the loss function E (	θ ) decreases with the increase of depths, while the fidelity |〈x| |ψ (	θ )〉 |2 generally raises with the increase
of depths except for the one case with m = 6.

〈+|〈ψ (	θ )|GG′|+〉|ψ (	θ )〉 can be evaluated by using Eq. (16)
when the controlled operator Ũ is selected to be of the form
shown in Fig. 3(b3).

IV. NUMERICAL EXPERIMENTS

We test our algorithm for the one-dimensional Poisson
equations with Dirichlet boundary conditions. For con-
venience, we choose |b〉 = ∑m−1

i=0 ( |0〉+|1〉√
2

)⊗m. Namely, the

operator Ub in Fig. 3(b2) has a simple form, Ub = H⊗m. Con-
cerning the variational wave-function ansatz |ψ (	θ )〉, we adapt
the form introduced in [16] to obtain the following ansatz:

|ψ (	θ )〉 = UM ( 	βp)UD( 	γp) · · ·UM ( 	β1)UD( 	γ1) |+〉⊗m , (24)

with

UD( 	γl ) := exp

(
− i

j=m−2∑
j=0

γ
j

l Z jZ j+1

− iγ m−1
l Zm−1Z0 − iγ y

l Y0Y1

)
,

UM ( 	βl ) := exp

(
− i

j=m−1∑
j=0

β
j
l Xj

)
,

(25)

where 	γl = (γ 0
l , . . . , γ m−1

l , γ
y

l ), 	βl = (β0
l , . . . , βm−1

l ), 	θ =
( 	β1, 	γ1, . . . , 	βp, 	γp), and p is the depth of the variational
circuit. Note that this variational wave-function ansatz is
equivalent to that argued in [16] when choosing γ 0

l = · · · =
γ m−1

l = γ
y

l and β0
l = · · · = βm−1

l . Therefore, the quantum
circuit for realizing the variational ansatz |ψ (	θ )〉 can be simi-
larly obtained.

In order to avoid convergence to the local minimum, we
randomly choose ten angle values from [0, 2π ] as the initial
values for each parameter and execute the VQAs, respectively,
to get the optimal parameters by using Gradient-descent meth-
ods implemented on classical computers. The advantage of the
variational ansatz adopted here compared with the one used in
[16] is obvious (see Figs. 4 and 5).

From Fig. 4, we can see that the value of the loss function
E (	θ ) decreases with the increase of depths, while the fidelity
|〈x |ψ (	θ )〉 |2 generally raises at the same time except for one
case. Specifically, for the case m = 6, we observe that the
fidelity decreases when the depth is raised to 3 from 2 in
spite of the decreasing of the loss function value at the same
time. Even for this worse case, our algorithm still has a good
performance, i.e., the fidelity |〈x |ψ (	θ )〉 |2 can reach more
than 0.99 with a low-depth VQA for all the sizes considered
here.

To illustrate the above worse case, let H =∑i=2m−1
i=0 λi|hi〉〈hi| be a diagonal representation of the argued

Hamiltonian H . We have λ0 = 0 < λ1 � λ2 � · · · � λ2m−1

and |x〉 = |h0〉, as the ground state is unique. Assume
|ψ (	θ )〉 = ∑i=2m−1

i=0 ψi|hi〉. We have

E (	θ ) =
i=2m−1∑

i=1

λi|ψi|2, |〈x |ψ (	θ )〉 |2 = |ψ0|2. (26)

From Eq. (26), the decreasing of the loss function E (	θ )
must lead to the increasing of the fidelity |〈x| |ψ (	θ )〉 |2 when
λ1 = λ2 = · · · = λ2m−1, since E (	θ ) = λ1(

∑i=2m−1
i=1 |ψi|2) =

λ1(1 − |ψ0|2) in this case. Nevertheless, the fidelity may
decrease even if the value of E (	θ ) decreases when the con-
dition λ1 = λ2 = · · · = λ2m−1 is not satisfied. Suppose λ j >

λ1 and |ψ ( 	θ1)〉 = ∑i=2m−1
i=0 ψ̃i|hi〉 with ψ̃i = ψi for i 
= 1, j.
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FIG. 5. The result obtained by using the variational ansatz introduced in [16]. Only the fidelity |〈x| |ψ (	θ )〉 |2 for the size m = 2 reaches
more than 0.99.

We have

E ( 	θ1) − E (	θ ) = λ1(|ψ̃1|2 − |ψ1|2) + λ j (|ψ̃ j |2 − |ψ j |2),

|〈x |ψ ( 	θ1)〉 |2 − |〈x |ψ (	θ )〉 |2
= (|ψ1|2 − |ψ̃1|2) + (|ψ j |2 − |ψ̃ j |2). (27)

Set E ( 	θ1) − E (	θ ) < 0 and |〈x |ψ ( 	θ1)〉 |2 − |〈x |ψ (	θ )〉 |2 < 0.
We have λ1(|ψ̃1|2 − |ψ1|2) < λ j (|ψ j |2 − |ψ̃ j |2) and |ψ̃1|2 −
|ψ1|2 > |ψ j |2 − |ψ̃ j |2. Thus, the worse case occurs when

|ψ j |2 − |ψ̃ j |2 > 0, 1 <
|ψ̃1|2 − |ψ1|2
|ψ j |2 − |ψ̃ j |2

<
λ j

λ1
, (28)

which may be satisfied when λ j > λ1. Intuitively, the larger
the value λ j

λ1
, the more likely the worse case occurs. More-

over, we classically compute the eigenvalues of the target
Hamiltonian with m = 2, 3, 4, 5, 6, and obtain that the ratio
of the maximum eigenvalue to the subminimum eigenvalue
can reach 160 000 for m = 6. Therefore, it is understood that
the worse case occurs at m = 6 in our numerical experiments.
We emphasize that the form of the loss function and the eigen-
value distribution of the target Hamiltonian H both contribute
to the occurrence of the worse case argued above. How to
avoid or reduce the occurrence of such worse case is also an
interesting problem.

V. CONCLUSION

In this paper, we have focused on solving the one-
dimensional Poisson equations with different boundary condi-
tions and the d-dimensional Poisson equations with Dirichlet
boundary conditions by using VQAs. Given the Hamilto-
nian whose ground state encodes the solution to the dis-
cretized Poisson equation with coefficient matrix A, we have

effectively evaluated the loss function by utilizing the sparsity
of A. In detail, we have written the loss function in terms of the
operator σx ⊗ A with σx denoting the standard Pauli operator,
as σx ⊗ A can be directly decomposed into a sum of Her-
mitian, one-sparse, and self-inverse operators. Then, for the
one-dimensional Poisson equations with different boundary
conditions and for the d-dimensional Poisson equations with
Dirichlet boundary conditions, we have decomposed σx ⊗ A
into a sum of at most 7 and (4d + 1) Hermitian, one-sparse,
and self-inverse operators, respectively. Finally, the quantum
circuits have been explicitly constructed to evaluate efficiently
the loss function.

We emphasize that our algorithm to evaluate the loss func-
tion is effective as the number of the decomposition terms is
only polynomial of d and is independent of n. Therefore, our
algorithm greatly reduces the number of measurements com-
pared with the algorithm presented in [16]. This advantage
is particularly outstanding in dealing with the linear systems
with large dimension n. In addition, the number of the ancilla
qubits required for realizing the quantum circuits correspond-
ing to the decomposition terms is at most log2 n + 2 and is
independent of d . The circuit complexity is also polynomial of
log2 n and independent of d , which implies that the benefit of
our algorithm is still obvious for the high-dimensional Poisson
equations.

It is noteworthy that the decomposition method and
the quantum circuit design presented here are still suit-
able and efficient for the linear systems with Hermitian and
sparse coefficient matrices satisfying ai,i+c = ac for all c =
0, 1, . . . , n − 1 and i = 0, . . . , n − 1 − c, where ai,i+c de-
notes the element of the coefficient matrices. Additionally,
inspired by our method, for the coefficient matrices which
slightly violate the above conditions one may also find the
corresponding decomposition.
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(a) (b2)

(b1)
(b3)

FIG. 6. The quantum circuit for the decomposition term G0 and
some simplified circuit denotations. (a) The quantum circuit for the
decomposition term G0. (b1)–(b3) Some simplified circuit denota-
tions used in this paper.

Numerically, we have adapted the variational ansatz in-
troduced in the previous works to test our algorithm for the
one-dimensional Poisson equations with Dirichlet boundary
conditions. It has been shown that the value of the loss func-
tion decreases with the increase of depths, while the fidelity
|〈x |ψ (	θ )〉 |2 generally raises at the same time except for one
case. Specifically, for the case m = 6, the fidelity decreases
when the depth is raised to 3 from 2 in spite of the decreasing
of the loss function at the same time. This poor phenomenon
is attributed to the form of the loss function and the eigenvalue
distribution of the target Hamiltonian H . How to avoid or
reduce the occurrence of such poor phenomenon is also an
interesting problem. We emphasize that, even for such worse
case, our algorithm still has such a good performance that the
fidelity |〈x |ψ (	θ )〉 |2 can reach more than 0.99 with low-depth
VQAs for all sizes.
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APPENDIX: QUANTUM CIRCUITS FOR THE
HERMITIAN, ONE-SPARSE, AND SELF-INVERSE TERMS

USED IN SECS. III A AND III B

The realization of the quantum circuits for the decomposi-
tion operators is the key in our algorithm. It is observed from
(13) and (21) that the quantum circuits corresponding to the
operators G0 and Gd,0 can be designed without any ancilla
qubits [see Figs. 6(a) and 7].

Let |0〉phase and |0m · · · 0100〉a be two ancilla registers used
to control the global phase and to realize the query to the

FIG. 7. The quantum circuit for the decomposition term Gd,0.

(a) (b)

FIG. 8. The quantum circuit for the decomposition terms Gf −
0

and Gl−
0 . (a) The quantum circuit corresponds to the term Gf −

0 when
the yellow boxes are both replaced by the operator Ûx shown in
(b), and corresponds to the term Gl−

0 when the yellow boxes do not
include any operation. (b) The explicit form of operator Ûx used in
this paper.

Hermitian, one-sparse, and self-inverse operator G. Namely,
for a given computational basis state |x〉, Gxyx |yx〉a corre-
sponds to the state obtained after executing G on |x〉, where
yx is the column index of the nonzero entry in row x of G and
Gxyx = ±1 is the corresponding element. The register |0〉phase

is used to determine whether Gxyx = −1 and to determine
whether yx = x. The register |0m · · · 0100〉a is used to store the
column index yx.

With respect to the operators G f −
0 and Gl−

0 , the column
index y(qm · · · q0) of the nonzero entry in the row qm · · · q0 can
be obtained by flipping the state of |qm〉. Moreover, only the
entries in rows 0 · · · 0 and 10 · · · 0 of G f −

0 (or in rows 01 · · · 1
and 11 · · · 1 of Gl−

0 ) are −1 instead of 1. Therefore, only the
ancilla register |0〉phase is used to construct the corresponding
quantum circuits [see Fig. 8(a)]. For the operators G f ±

1 , the
quantum states |qm〉 and |q0〉 are both flipped when qm−1 =
· · · = q1 = 0, and the global phase is set to be −1 (+1) at the
same time after executing G f −

1 (G f +
1 ) on the computational

basis state |qm · · · q0〉. Thus, the ancilla register |0〉phase is used
to design the circuits for G f ±

1 (see Fig. 9). Similarly, the quan-
tum circuits for the operators Gl±

1 are constructed (see Fig. 9).

FIG. 9. The quantum circuits for the decomposition terms Gf ±
1

and Gl±
1 . This circuit corresponds to the terms Gf ±

1 when the yellow
boxes are both replaced by the operator Ûx shown in Fig. 8(b),
and corresponds to the terms Gl±

1 when the yellow boxes do not
include any operation. Whether the operation Ûphase is removed or not
determines whether this circuit corresponds to the term Gf +

1 (Gl+
1 ) or

the Gf −
1 (Gl−

1 ).
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Aiming to give the general steps to realize the quantum circuits for other operators used in Secs. III A and III B, we first
analyze the operators G±

d,+2mt and G±
d,−2mt . It is observed from (21) that the operators G±

d,+2mt and G±
d,−2mt only work on the

quantum states |qmd〉 and |qmt+m−1 · · · qmt 〉. Let |g′〉, with g′ = ∑m−1
i=0 qmt+i2i + 2mqmd , denote the computational basis state

|qmd qmt+m−1 · · · qmt 〉. The actions of the operators G±
d,+2mt and G±

d,−2mt can be shown as

G±
d,+2mt : |g′〉 → ±

i=m−1∏
i=0

qmt+i|g′〉 +
(

1 −
i=m−1∏

i=0

qmt+i

)
|g′ + 2m + 1〉, g′ = 0, . . . , 2m − 1,

|g′〉 → ±
i=m−1∏

i=0

(1 − qmt+i )|g′〉 +
(

1 −
i=m−1∏

i=0

(1 − qmt+i )

)
|g′ − 2m − 1〉, g′ = 2m, . . . , 2m+1 − 1,

G±
d,−2mt : |g′〉 → ±

i=m−1∏
i=0

(1 − qmt+i )|g′〉 +
(

1 −
i=m−1∏

i=0

(1 − qmt+i )

)
|g′ + 2m − 1〉, g = 0, . . . , 2m − 1,

|g′〉 → ±
i=m−1∏

i=0

qmt+i|g′〉 +
(

1 −
i=m−1∏

i=0

qmt+i

)
|g′ − 2m + 1〉, g = 2m, . . . , 2m+1 − 1, (A1)

which are of similar forms to the ones given by the operators G±
+1 and G±

−1 [see (13)]. Similar results can be obtained for the
operators G±

+2 and G±
−2. Thus, we focus on illustrating the design for the quantum circuits corresponding to the operators G±

+1
and G±

−1 below.
Similar to the steps introduced in [18], we apply the following steps to design the quantum circuits for the operators G±

+1 and
G±

−1:

|qm · · · q0〉q|0m · · · 00〉a|0〉phase
ÔG−→ |qm · · · q0〉q|y(qm · · · q0)〉a|Gq,y(q)〉phase

Ûphase−−→ Gq,y(q)|qm · · · q0〉q|y(qm · · · q0)〉a|Gq,y(q)〉phase

swap q,a−−−−→ Gq,y(q)|y(qm · · · q0)〉q|qm · · · q0〉a|Gq,y(q)〉phase

(ÔG )−1

−−−→ Gq,y(q)|y(qm · · · q0)〉q|0m · · · 00〉a|0〉phase, (A2)

where |qm · · · q0〉q denotes any input computational basis state, y(qm · · · q0) is the column index of the nonzero entry in row
qm · · · q0 of G±

+1 or G±
−1, and the value of the single nonzero entry is denoted by Gq,y(q). It is straightforward to see that the

phase-control operator Ûphase can be removed when the nonzero entries are all 1, namely, the circuit for G+
+1 (G+

−1) is similar to
that for G−

+1 (G−
−1) except that the phase-control operator Ûphase is removed. Therefore, we focus on analyzing the circuit design

for the operators G−
+1 and G−

−1 below.
From (A2), we see that the circuit design for the operator ÔG is the key. In order to simplify the quantum circuit of ÔG, we

take into account the symmetry of G−
+1 and G−

−1, namely, the process |1qm−1 · · · q0〉 G−→ |y(1qm−1 · · · q0)〉 can be realized through
the following steps:

|1qm−1 · · · q0〉 flip all qubits−−−−−−→ |0(1 − qm−1) · · · (1 − q0)〉 G−→ |y[0(1 − qm−1) · · · (1 − q0)]〉 flip all qubits−−−−−−→ |y(1qm−1 · · · q0)〉. (A3)

|0qm−1 · · · q0〉 G−→ |y(1qm−1 · · · q0)〉 can also be realized in a similar way,

|0qm−1 · · · q0〉 flip all qubits−−−−−−→ |1(1 − qm−1) · · · (1 − q0)〉 G−→ |y[1(1 − qm−1) · · · (1 − q0)]〉 flip all qubits−−−−−−→ |y(0qm−1 · · · q0)〉, (A4)

where G represents either G−
+1 or G−

−1.
With respect to the operator G−

+1, its action on the state
|1qm−1 · · · q0〉 can be transformed to that on the state |0(1 −
qm−1) · · · (1 − q0)〉 by using the process (A3). It can be
seen from (13) that the state |0qm−1 · · · q0〉 is changed to be
|1(qm−1 · · · q0) + 1〉 after executing the operator G−

+1 when
qm−1, · · · , q0 are not all 1, and |0qm−1 · · · q0〉 is changed to
be −|0qm−1 · · · q0〉 when qm−1 = · · · = q0 = 1, where “+”
denotes the binary addition. Thus, we can design the opera-
tor Û+1 to realize the binary addition [see Fig. 10(b)]. The

register |0〉phase is flipped to |1〉phase when qm−1 = · · · =
q0 = 1 so that the effect on the state |0qm−1 · · · q0〉, where
qm−1, · · · , q0 are not all 1, can be realized with the help of
the operator Û+1 controlled by |0〉phase, while the effect on the
state |01 · · · 1〉 can be realized with the help of the operator
Rz(2π ) controlled by |1〉phase. Consequently, the quantum cir-
cuit for G−

+1 is designed in Fig. 10.
A similar argument applies to the circuit design for

the operators G−
−1 except that the action of G−

−1 on
the state |0qm−1 · · · q0〉 is transformed to that on the

032418-12



VARIATIONAL QUANTUM ALGORITHMS FOR POISSON … PHYSICAL REVIEW A 108, 032418 (2023)

( )a

( )b ( )c

FIG. 10. The quantum circuit for the decomposition terms G±
+1. (a) The circuit corresponds to the term G+

+1 when the operator Ûphase is
removed, and corresponds to the term G−

+1 when Ûphase is retained. (b) The quantum circuit for the operator Û+1 used in this paper. (c) The
explicit form of the operator V̂j included in the quantum circuit of Û+1.

FIG. 11. The quantum circuits for the decomposition terms G+
−1 and G−

−1 when the operator Ûphase is removed and retained, respectively.

FIG. 12. The quantum circuits for the decomposition terms G+
+2 and G−

+2 when the operator Ûphase is removed and retained, respectively.

032418-13



HUI-MIN LI, ZHI-XI WANG, AND SHAO-MING FEI PHYSICAL REVIEW A 108, 032418 (2023)

FIG. 13. The quantum circuits for the decomposition terms G+
−2 and G−

−2 when the operator Ûphase is removed and retained, respectively.

FIG. 14. The quantum circuits for the decomposition terms G+
d,+2mt and G−

d,+2mt when the operator Ûphase is removed and retained,
respectively.

FIG. 15. The quantum circuits for the decomposition terms G+
d,−2mt and G−

d,−2mt when the operator Ûphase is removed and retained,
respectively.

state |1(1 − qm−1) · · · (1 − q0)〉 by using the process (A4).
The corresponding quantum circuits can be found in
Fig. 11.

Combining the discussion (A1) and the circuits for G±
±1, all

the quantum circuits G±
+2, G±

−2, G±
d,+2mt , and G±

d,−2mt are also
constructed (see Figs. 12–15, respectively).
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