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Resource theory of dephasing estimation in multiqubit systems
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We present a resource theory to investigate the power of a multqubit system as a probe in the task of
dephasing estimation. Our approach employs the quantum Fisher information about the dephasing parameter
as the resource measure. Based on the monotonicity of quantum Fisher information, we propose two sets of free
operations in our resource theory: the Hamming distance preserving operations and the selectively Hamming
distance preserving operations. We derive a necessary condition for the state transformation under these free
operations and demonstrate that uniform superposition states are the golden states in our resource theory. We
further compare our resource theory with the resource theory of coherence and thoroughly investigate the relation
between their free operations in both single-qubit and multiqubit cases. Additionally, for multiqubit systems, we
discover the incompatibility between the resource theory of dephasing estimation and that of U(1) asymmetry,
which is responsible for phase estimation. The condition for enhancing the performance of a probe state in phase
estimation while preserving its ability in dephasing estimation is also discussed. Our results provide insights into
quantum parameter estimation by the resource-theoretic approach.
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I. INTRODUCTION

In quantum resource theories [1–5], certain quantum prop-
erties of physical systems are treated as resources. By the
resource-theoretic approach, the advantages of these quan-
tum resources are quantified for various quantum information
processing tasks such as quantum teleportation [6], chan-
nel discrimination [7,8], and quantum key distribution [9].
Moreover, the quantum resource theory provides a general
framework to characterize laws for state transformations
under certain classes of restricted operations called free op-
erations, and thus sheds new light on the research field of
fundamental physics, including thermodynamics [10].

Quantum parameter estimation is a task which employs
quantum properties to make precise estimation of given
parameters [11–15]. For instance, in phase estimation, max-
imally entangled probe states can improve the error scaling
of the estimator [12,16]. This improvement inspires re-
searchers to investigate the role of quantum properties in
quantum parameter estimation [17]. It has been found that
there are quantum enhanced estimation tasks without en-
tanglement [13,18], indicating that entanglement is not the
unique resource which underlies the quantum advantage in
parameter estimation. In particular, for the estimation of noise
in teleportation-covariant channels, including phase-damping
(PD) channels [19,20], entanglement is not a necessary con-
dition for the optimal probe states [13,21–23].

Recently, the notions of quantum parameter estimation
have been introduced to the framework of resource theories
and made significant progresses. The quantum Fisher infor-
mation (QFI), which represents the precision limit of probe
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states [24], can be used as a resource measure of coher-
ence and asymmetry [3,25–28], due to its nice mathematical
properties such as convexity and monotonicity [11,29]. Fur-
thermore, by the resource-theoretic approach, an operational
interpretation of the QFI is proposed in quantum thermody-
namics [30]. In this work, we propose and give answers to
the following questions: What is the nature of the quantum
resource for dephasing estimation? How does this resource
relate to some well-known resources, such as quantum coher-
ence and U(1) asymmetry?

We establish a resource theory of dephasing estimation
in multiqubit systems. We first prove that incoherent states
are free states in this present resource theory. Due to the
monotonicity of QFI, we define two sets of free operations
in the resource theory of dephasing estimation, the Hamming
distance preserving operations (HDP) and the selectively
Hamming distance preserving operations (SHP). Then we
derive a necessary condition for the transformed states un-
der HDP. Furthermore, uniform superposition states can be
transformed into any state under SHP, that is, uniform su-
perposition states are golden states in the resource theory of
dephasing estimation. Moreover, by comparing our resource
theory and the resource theory of quantum coherence, we
show the relation between their free operations in both single-
qubit and multiqubit cases. Finally, we consider the resource
theory of U(1) asymmetry. By employing SHP, it is possible
to improve the performance of the probe state in phase estima-
tion, while also preserving the ability of dephasing estimation.

II. NOTIONS AND PRELIMINARIES

We denote the Hilbert space associated with the qubits
of our consideration by H. Let L(H) be the set of linear
operators on H. Any quantum operation on a physical system
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can be mathematically represented by a completely positive
and trace-preserving (CPTP) map E : L(H) → L(H). In this
paper, we focus on the situations where the input and output
spaces are the same. We use I as the identity matrix of the
input (output) space. In the following, we briefly review the
definitions of the Fisher information (FI), the QFI, and the PD
channels [11,19].

A. Fisher information (FI) and quantum
Fisher information (QFI)

In a general parameter estimation task, a probe system,
initially in state ρ, is sent through a parametrized quantum
channel Eθ . The output state ρ(θ ) ≡ Eθ (ρ) is then measured
by a positive-operator-valued measurement (POVM) {Mx},
where Mx is the positive-semidefinite operator satisfying∑

x Mx = I, and each measurement result x is obtained with
the probability p(x|θ ) = tr[ρ(θ )Mx]. Finally, the parameter θ

is estimated based on the probability distribution of measure-
ment results.

The Cramér-Rao bound provides a lower bound for the
variance of an unbiased estimator [11–13]

Var(θ ) � 1

F (θ )
� 1

F (ρ(θ ))
. (1)

Here the Fisher information F (θ ) is defined as [11,13,27]

F (θ ) =
∑

x

[∂ p(x|θ )]2

p(x|θ )
, (2)

where ∂ := ∂/∂θ . It depends on both the probe state ρ and the
measurement {Mx}. The QFI F (ρ(θ )) is defined as [11–13,27]

F (ρ(θ )) = tr[ρ(θ )L2], (3)

where L is the symmetric logarithmic derivative (SLD) and
defined by 1

2 [Lρ(θ ) + ρ(θ )L] = ∂ρ(θ ). The QFI satisfies the
following properties [11,13]:

(P1) Additivity. F (ρ(θ ) ⊗ ρ ′(θ )) = F (ρ(θ )) +
F (ρ ′(θ )). It implies F (ρ(θ )⊗n) = nF (ρ(θ )).

(P2) Convexity. F (
∑

j p jρ j (θ )) �∑
j p jF (ρ j (θ )).

(P3) Monotonicity. F (ρ(θ )) � F (E[ρ(θ )]), for any
CPTP map E which is independent of θ .

B. Phase-damping channels

In this paper, we focus on the phase-damping (PD) channel
for single-qubit and multiqubit states, which is denoted by
EPD

θ .
A single-qubit state σ = 1

2 (I + r cos φσx + r sin φσy +
zσz ), where σx, σy, and σz are two-dimensional Pauli matrices,
can be represented as a Bloch vector (r cos φ, r sin φ, z),
where −1 � z � 1, 0 � r � 1, and 0 � φ < 2π . Then the
density matrix of the state σ can be written as

σ = 1

2

[
1 + z re−iφ

reiφ 1 − z

]
. (4)

After the action of a PD channel [19], the state becomes

EPD,1
θ (σ ) = 1

2

[
1 + z re−θ−iφ

re−θ+iφ 1 − z

]
, (5)

where θ is the parameter of the PD channel.

Now consider a general n-qubit state ρ =∑2n−1,2n−1
x=0,y=0 ρxy|x〉〈y|, where x and y are binary strings of

length n and ρxy = 〈x|ρ|y〉. Let each qubit transmit through a
PD channel EPD,1

θ , and the output n-qubit state reads as

EPD
θ (ρ) =

2n−1,2n−1∑
x=0,y=0

e−h(x,y)θρxy|x〉〈y|, n = 1, 2, . . . (6)

where h(i, j) is the Hamming distance between two binary
strings i and j. The mathematical definition of the Hamming
distance is h(i, j) = ∑n

m=1 im ⊕ jm, where im ( jm) represents
the mth bit of the string i ( j). The task, which is to estimate θ

by a probe state, is called dephasing estimation.

III. STRUCTURE OF THE RESOURCE THEORY
OF DEPHASING ESTIMATION

In the resource theory of dephasing estimation, we use the
QFI as a resource measure. Precisely, we define the power of
a probe state ρ in dephasing estimation as follows:

FPD
θ (ρ) := F

(
EPD

θ (ρ)
)
. (7)

The free states are those which do not have the ability of
dephasing estimation, i.e., ρ is a free state if and only if
FPD

θ (ρ) = 0. Apparently, an incoherent state ρinc on computa-
tional basis belongs to the set of free states because EPD

θ (ρinc)
is independent of θ . In the following, we prove that any state
which is not incoherent is a resourceful state.

Assume that there is at least one nondiagonal element
ρxy = |ρxy|e−iβ 	= 0 in the probe state ρcoh. After the action
of EPD

θ , one implements the following measurement:

M1 = (|x〉〈x| + e−iβ |x〉〈y| + eiβ |y〉〈x| + |y〉〈y|)/2,

M2 = (|x〉〈x| − e−iβ |x〉〈y| − eiβ |y〉〈x| + |y〉〈y|)/2,

M3 = I − |x〉〈x| − |y〉〈y|,
(8)

and obtains the outcome a ∈ {1, 2, 3} with probability
p(a|θ ) = tr[EPD

θ (ρcoh )Ma]. Direct calculation leads to

p(1|θ ) = 1
2 (ρxx + ρyy + 2|ρxy|e−h(x,y)θ ),

p(2|θ ) = 1
2 (ρxx + ρyy − 2|ρxy|e−h(x,y)θ ),

p(3|θ ) = 1 − p(1|θ ) − p(2|θ ).

(9)

It follows that

F (θ ) =
3∑

a=1

[∂ p(a|θ )]2

p(a|θ )

= [h(x, y)|ρxy|e−h(x,y)θ ]2

p(1|θ )
+ [h(x, y)|ρxy|e−h(x,y)θ ]2

p(2|θ )
> 0.

(10)

Because the QFI is lower bounded by the FI, we have
FPD

θ (ρcoh ) � F (θ ) > 0. Therefore, a free state in the resource
theory of dephasing estimation is of the form

ρfree =
2n−1∑
x=0

ρx|x〉〈x|. (11)
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As for free operations, the minimum requirement is that
they do not increase the resource of states. Nevertheless, con-
sidering the complexity in calculating the QFI, defining the
free operations to be the whole set of FPD

θ -nonincreasing op-
erations would cause difficulties in analyzing the properties of
the present resource and generalizing the method of studying
the resources in dephasing estimation. With this in mind, we
propose two sets of free operations in the following.

The first set of free operations F1 is defined as the set of all
CPTP maps commutative with any PD channel,

E ◦ EPD
θ = EPD

θ ◦ E, ∀ E ∈ F1, (12)

and will be thoroughly studied in Sec. III A. The second
set of free operations F2, studied in Sec. III B, is defined
as those with a Kraus decomposition E = ∑

j K j [with

K j (·) = Kj (·)K†
j and Kj being the Kraus operators satisfying∑

j K†
j Kj = I], such that each Kraus branch K j can commute

with PD channels, i.e.,

K j ◦ EPD
θ = EPD

θ ◦ K j, ∀ j, ∀ E ∈ F2. (13)

By definition, F2 ⊆ F1. The detailed comparison between
these two sets will be discussed in Sec. III C.

The monotonicity of FPD
θ under these free operations can

be proved by employing the monotonicity (P3) of the QFI.
Precisely, if E ∈ F1, we have

FPD
θ (E (ρ)) = F

(
E
[
EPD

θ (ρ)
])

� F
(
EPD

θ (ρ)
) = FPD

θ (ρ),

(14)

for any n-qubit state ρ.
Also, it is worth noting that, even in the single-qubit case,

F1 is a strict subset of the FPD
θ -nonincreasing operations. See

Appendix A for detailed discussion.

A. Hamming distance preserving operations (HDP)

In this subsection, we first give the definition of Hamming
distance preserving operations (HDP) and then prove that
HDP is equivalent to F1 defined in Eq. (12). Moreover, we
derive a necessary condition for state transformations under
HDP.

Definition 1. A CPTP map EHDP : L(Hn) �→ L(Hn) be-
longs to the set of Hamming distance preserving operations
(HDP) if and only if

〈i|EHDP(|x〉〈y|)| j〉 = 0, (15)

for all i, j, x, y ∈ Sn satisfying h(i, j) 	= h(x, y), where Sn is
the set of n-bit strings.

The following proposition shows the equivalence between
the Hamming distance preserving condition and the condition
of commutativity with PD channels for completely positive
maps.

Proposition 1. Let Ẽ be a completely positive (CP) map.
Then,

Ẽ ◦ EPD
θ = EPD

θ ◦ Ẽ, (16)

if and only if

〈i|Ẽ (|x〉〈y|)| j〉 = 0, (17)

for all i, j, x, y ∈ Sn satisfying h(i, j) 	= h(x, y).

Proof. From Eq. (6), Eq. (16) can be rewritten as

(e−h(i, j)θ − e−h(x,y)θ )〈i|Ẽ (|x〉〈y|)| j〉 = 0 ∀ i, j, x, y. (18)

Equivalently, 〈i|Ẽ (|x〉〈y|)| j〉 = 0 if h(x, y) 	= h(i, j). �
By setting Ẽ in the above proposition to be a CPTP map E ,

we directly have F1 = HDP. Therefore, we will label the first
set of free operations defined in Eq. (12) as HDP.

The following proposition characterizes a necessary condi-
tion of state transformations under HDP.

Proposition 2. For any n-qubit state ρ, it holds that

|〈i|EHDP(ρ)| j〉| �
∑
x,y

′|ρxy|√pi|x p j|y, (19)

where EHDP ∈ HDP, pi|x = 〈i|EHDP(|x〉〈x|)|i〉, and
∑′

x,y
stands for a summation over all x, y which satisfy h(x, y) =
h(i, j).

Proof. Based on Eq. (15), each element of the output den-
sity matrix is given by

〈i|EHDP(ρ)| j〉 =
∑
x,y

′
ρxy〈i|EHDP(|x〉〈y|)| j〉. (20)

Now write EHDP in a Kraus decomposition form EHDP(·) =∑
a Da(·)D†

a and define the vector �X xy = (X xy
1 , X xy

2 , . . . )
with X xy

a ≡ 〈x|Da|y〉. Then we have 〈i|EHDP(|x〉〈y|)| j〉 = �X ix ·
�X jy∗, which implies pi|x = | �X ix|2. It follows from the Cauchy-
Schwarz inequality that∣∣〈i|EHDP(|x〉〈y|)| j〉∣∣ � √

pi|x p j|y. (21)

The equality sign holds for one of the two cases: (1) either pi|x
or p j|y vanishes; (2) a parameter ξ exists such that �X ix = ξ �X jy.
Therefore,

|〈i|EHDP(ρ)| j〉| �
∑
x,y

′|ρxy||〈i|EHDP(|x〉〈y|)| j〉|

�
∑
x,y

′|ρxy|√pi|x p j|y. (22)

The equality sign in the first line holds if the terms in the
summation of Eq. (20) have the same phase. �

If we focus on the diagonal elements of the output state,
the condition h(x, y) = h(i, i) = 0 leads to x = y, and Eq. (20)
reduces to

〈i|EHDP(ρ)|i〉 =
∑

x

ρxx pi|x. (23)

It means that the diagonal elements of the output state are
independent of the off-diagonal elements of the input state.

Moreover, an n-qubit state ρ can be written as

ρ =
n∑

h=0

ρ (h), ρ (h) ≡
∑

x,y:h(x,y)=h

ρxy|x〉〈y|. (24)

We call ρ (h) a Hamming mode of ρ. Then, Proposition 2
indicates that each Hamming mode of the input state is in-
dependently mapped by HDP to the corresponding Hamming
mode of the output state, namely,

EHDP(ρ (h) ) = [EHDP(ρ)](h). (25)
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It follows that, if ρ (h) = 0 for some h, then [EHDP(ρ)](h) =
0. For example, the state |ψ1〉 = 1√

2
(|0〉 + |1〉) cannot be

transformed by HDP to state |ψ2〉 = 1√
2
(|0〉 + |3〉) because

(|ψ1〉〈ψ1|)(2) = 0 but (|ψ2〉〈ψ2|)(2) = 1
2 (|0〉〈3| + |3〉〈0|) 	= 0.

This sets the essential difference between the present resource
theory and the resource theory of coherence because |ψ1〉 and
|ψ2〉 can be transformed to each other by incoherent unitary
operators. More details of the comparison between the two
resource theories are to be illustrated in Sec. IV.

An immediate problem is then whether the bound in
Eq. (19) can be reached. We will prove the attainability in
single-qubit cases, and show that it cannot be reached for
general n-qubit input states. Further, we will characterize a
set of n-qubit input states, for which the bound in Eq. (19) can
be reached.

The set of states, which can be obtained from a given state
ρ by HDP, is called the HDP cone of ρ. By Propostion 2, the
HDP cone can be obtained for any single-qubit state.

Corollary 1. For two single-qubit states with Bloch vectors
�r = (r cos φ, r sin φ, z) and �r′ = (r′ cos φ′, r′ sin φ′, z′), �r can
be transformed to �r′ via HDP if and only if

r′ �

⎧⎨
⎩r
√

1−z′2
1−z2 , |z′| � |z|

r, |z′| < |z|.
(26)

Proof. If �r′ can be obtained from �r via HDP, Eq. (19) gives

r′ � r(
√

p0|0 p1|1 + √
p0|1 p1|0)

= r cos(θ0 − θ1), (27)

where we set p0|0 = cos2 θ0, p1|1 = cos2 θ1, and θ0, θ1 ∈
[0, π

2 ]. Furthermore, from Eq. (23), we have

1 + z′

2
= cos2 θ0

1 + z

2
+ (1 − cos2 θ1)

1 − z

2
. (28)

It follows that

z′2 = [
1
2 cos 2θ0(1 + z) − 1

2 cos 2θ1(1 − z)
]2

= 1
4 (Re[e2iθ0 (1 + z) − e2iθ1 (1 − z)])2

� 1
4 |e2iθ0 (1 + z) − e2iθ1 (1 − z)|2

= 1 − (1 − z2) cos2(θ0 − θ1) (29)

or, equivalently,

cos2(θ0 − θ1) � min

{
1,

1 − z′2

1 − z2

}
. (30)

By combining Eqs. (27) and (30), we conclude that Eq. (26)
is a necessary condition for the transformation from �r to �r′.

The sufficiency of Eq. (26) is proved by constructing a
channel EHDP

∗ ∈ HDP such that the boundary states satisfying
the equality sign in Eq. (26) can be reached. Precisely, we have
EHDP

∗ (·) = K1(·)K†
1 + K2(·)K†

2 with

K1 =
(

cos θ0 0
0 ei(φ−φ′ ) cos θ1

)
,

K2 =
(

0 ei(φ−φ′ ) sin θ1

sin θ0 0

)
, (31)

FIG. 1. The colored region is the projection of the SHP cone in
the x-z plane, when the initial Bloch vector is (0.6,0,0.6). The initial
state is marked by the star. The area bounded by the dotted line
contains all single-qubit states.

where θ0, θ1 ∈ [0, π
2 ] are determined by the parameters in the

input and output states as follows.
If |z′| < |z|, we choose sin 2θ0 = sin 2θ1 = z′

z . It can be
checked that the channel EHDP

∗ transforms the state �r to �r′ with
r′ = r and z′ = z sin 2θ0.

If |z′| � |z|, the equality sign in Eq. (29) holds when

sin 2θ0(1 + z) − sin 2θ1(1 − z) = 0. (32)

Combining this equation with Eq. (28), we obtain

cos 2θ0 = z + z′2

z′(1 + z)
, cos 2θ1 = z − z′2

z′(1 − z)
. (33)

The channel EHDP
∗ with the above parameters gives an out-

put state with z′ =
√

1 − (1 − z2) cos2(θ0 − θ1) and r′ =
r cos(θ0 − θ1). �

The unitary operator U (φ) = diag(1, e−iφ ) belongs to
HDP. Based on these unitary operations, the HDP cone
is rotationally symmetric about the z axis. That is, the
Bloch vector (r′, 0, z′) can be transformed to Bloch vector
(r′ cos φ′, r′ sin φ′, z′). In Fig. 1, we plot the projection of the
SHP cone in the x-z plane for a given initial state, whose Bloch
vector is (0.6,0,0.6).

In the above proof, we show that the bound in Eq. (19) can
be reached for single-qubit input states. Nevertheless, we will
show in the following that this bound cannot be reached in
general. A counterexample goes as follows. Consider a two-
qubit state in the form

ρ = 1

4

⎛
⎜⎜⎜⎜⎜⎝

1 1√
2

1√
2

0

1√
2

1 0 0

1√
2

0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠. (34)

We aim to maximize |〈0|E (ρ)|1〉| for E ∈ HDP. The bound in
Eq. (19) gives

|〈0|E (ρ)|1〉| � √
p0|0 p1|1|ρ01| + √

p0|1 p1|0|ρ10|

032415-4



RESOURCE THEORY OF DEPHASING ESTIMATION IN … PHYSICAL REVIEW A 108, 032415 (2023)

+√
p0|0 p1|2|ρ02| + √

p0|2 p1|0|ρ20|
� |ρ01| + |ρ02|. (35)

The second equality sign holds if and only if p0|0 = p1|1 =
p1|2 ≡ cos2 φ and p1|0 = p0|1 = p0|2 ≡ sin2 φ.

Now suppose cos2 φ 	= 0. It follows that the first equal-
ity sign in Eq. (35) holds only if �X 00 = eiη1 �X 11 = eiη2 �X 12,
which in turn gives cos2 φ = | �X 11 · �X 12∗| = |〈1|E (|1〉〈2|)|1〉|.
However, the right-hand side of the above equation equals
zero from the Hamming distance preserving condition. This
violates the assumption that cos2 φ 	= 0. Therefore, we have
sin2 φ = 1. Then the first equality sign in Eq. (35) holds
only if �X 10 = eiξ1 �X 01 = eiξ2 �X 02, which in turn gives sin2 φ =
| �X 01 · �X 02∗| = 〈0|E (|1〉〈2|)|0〉, but again the right-hand side
equals zero because of the Hamming distance preserving con-
dition. Therefore, it is impossible to transform ρ into

ρ ′ = 1

4

⎛
⎜⎜⎝

1
√

2 0 0√
2 2 0 0

0 0 0 0
0 0 0 1

⎞
⎟⎟⎠, (36)

while this transformation is allowed by the condition as
Eq. (19).

However, for n-qubit states satisfying the following two
conditions, we construct a quantum operation E ∈ HDP such
that the equality sign in Eq. (19) is reached. The two condi-
tions can be stated as follows:

(C1) ∃c ∈ Z+, if h(x, y) 	= c, then ρxy = 0.
(C2) ∀ ρxy, ρx′y′ 	= 0, where x 	= x′, span{|x〉, |y〉} is or-

thogonal to span{|x′〉, |y′〉}.
Condition (C1) means that the Hamming distance between

the supports of each nonzero off-diagonal element equals to a
constant. Condition (C2) means that the supports of any two
off-diagonal elements do not have overlap. Therefore, for any
nonzero off-diagonal element ρxy, y uniquely depends on x,
and hence we write y as y(x).

Assume the above two conditions are satisfied by the
input state. Let i, j be n-bit strings satisfying h(i, j) =
h(x, y(x)). We construct E ∈ HDP as E (·) = K0(·)K†

0 +∑
x Kx,1(·)K†

x,1 + Kx,2(·)K†
x,2 with

Kx,1 = √
pi|xe−iφx |i〉〈x| + √

p j|y(x)| j〉〈y(x)|,
Kx,2 = √

p j|xe−iφx | j〉〈x| + √
pi|y(x)|i〉〈y(x)|,

K0 =
[
I −

∑
x

(K†
x,1Kx,1 + K†

x,2Kx,2)

] 1
2

, (37)

where x is the n-bit string such that ρxy 	= 0 and x < y(x), and
φx is the phase of ρxy. It follows that

〈i|E (ρ)| j〉 =
∑

x

(
√

pi|x p j|y(x) + √
p j|x pi|y(x) )|ρxy|, (38)

which means that the bound in Eq. (19) is reached by the chan-
nel E . Furthermore, if one aims to maximize 〈i|E (ρ)| j〉 over
all HDP, we choose pi|x = p j|y(x) and p j|x = pi|y(x) = 1 − pi|x,
and obtain

〈i|E (ρ)| j〉max =
∑

x

|ρxy|. (39)

It means that, if conditions (C1) and (C2) are satisfied by input
state, then the off-diagonal elements of the same Hamming
mode can be merged together by HDP.

B. Selectively Hamming distance preserving operations (SHP)

We give the definition of selectively Hamming distance
preserving opertions (SHP) as follows.

Definition 2. Let ESHP : L(Hn) �→ L(Hn) be a CPTP map.
Then ESHP belongs to selectively Hamming distance pre-
serving operations (SHP) if it has a Kraus decomposition
ESHP(·) = ∑

l Kl (·)K†
l such that

〈i|Kl |x〉〈y|K†
l | j〉 = 0, ∀ l (40)

if h(i, j) 	= h(x, y).
By Proposition 1, SHP is equivalent to the second set of

free operations F2 defined in Eq. (13). Hence, we denote F2

as SHP here and after.
The following proposition gives the explicit form of the

Kraus operators of a selectively Hamming distance preserving
operation.

Proposition 3. If ESHP ∈ SHP, then ESHP has a Kraus de-
composition ESHP(·) = ∑

l Kl (·)K†
l such that every Kraus

operator can be written as

Kl =
2n−1∑
x=0

clx

∣∣πn
l (x)

〉〈x|, (41)

where
∑

l |clx|2 = 1, and πn
l : Sn �→ Sn is a one-to-one map

such that

h(x, y) = h
(
πn

l (x), πn
l (y)z

)
,∀ x, y. (42)

We define {πn
j } as Hamming distance preserving functions

and discuss them in Appendix B.
Proof. For x = y, Eq. (40) reduces to

〈i|Kl |x〉〈x|K†
l | j〉 = δi j |〈i|Kl |x〉|2. (43)

Similarly, we have

〈i|Kl |x〉〈y|K†
l |i〉 = δxy|〈i|Kl |x〉|2. (44)

Hence, there is at most one nonzero element in each row
and each column of Kl . The Kraus operators can then be
written as

Kl =
2n−1∑
x=0

clx| fl (x)〉〈x|, (45)

where fl : Sn �→ Sn is a one-to-one map and the completion
identity

∑
l K†

l Kl = I demands
∑

l |clk|2 = 1.
In order to prove that fl (x) is a Hamming distance preserv-

ing function, we substitute the above form of Kl in Eq. (40). It
follows that the necessary condition for

〈i| fl (x)〉〈 fl (y)| j〉clxc∗
ly 	= 0 (46)

is that fl (x) = i, fl (y) = j, and h(x, y) = h(i, j). In other
words, for any two coefficients clx, cly 	= 0, it holds that

h(x, y) = h( fl (x), fl (y)) (47)

or, equivalently, fl (x) is a Hamming distance preserving
function. �
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For a resource theory, the states, which can be transformed
to any state of the same dimension under free operations, are
called golden states. To explore the existence of golden states
is one of the most notable problems for a resource theory. Here
we will prove that the uniform superposition states, denoted as

|+(n)〉 = 1√
2n

2n−1∑
x=0

e−iηx |x〉, ηx ∈ [0, 2π ) (48)

are the golden states in the present resource theory.
Proposition 4. An n-qubit uniform superposition state can

be transformed to any n-qubit state by SHP.
Proof. By definition, SHP is convex. Hence, it is sufficient

to prove that any n-qubit pure state can be obtained from
|+(n)〉 by SHP. The general form of an n-qubit pure state
reads as |ψ (n)〉 = ∑2n−1

x=0 e−iφx
√

ψx|x〉, where φx ∈ [0, 2π )
and ψx � 0 satisfying

∑
x ψx = 1.

Here we design a selectively Hamming distance preserving
operation S (·) = ∑2n−1

z=0 Kz(·)K†
z , which transforms |+(n)〉 to

|ψ (n)〉. Each Kraus operator is in the form

Kz =
2n−1∑
x=0

e−i(φx−ηq(z,x) )
√

ψx|x〉〈q(z, x)|, (49)

where q(z, x) is an n-bit string with the mth bit defined as

(q(z, x))m = zm ⊕ xm. (50)

Therefore, {|q(z, x)〉}z is a basis of n-qubit Hilbert space for
any x or, equivalently,

∑2n−1
z=0 |q(z, x)〉〈q(z, x)| = I. It is di-

rectly checked that
∑

z K†
z Kz = I, which ensures that S is

a CPTP map. Besides, h(x, x′) = h(q(z, x), q(z, x′)), which
ensures that S ∈ SHP.

Then we calculate

Kz|+(n)〉 = 1√
2n

2n−1∑
x=0

e−i(φx−ηq(z,x) )
√

ψx|x〉〈q(z, x)|
2n−1∑
y=0

e−iηy |y〉

= 1√
2n

2n−1∑
x=0

e−iφx
√

ψx|x〉

= 1√
2n

|ψ (n)〉. (51)

Consequently, S (|+(n)〉〈+(n)|) = |ψ (n)〉〈ψ (n)|. �
The set of golden states contains n-qubit product states.

For such states, the resource of entanglement does not
provide any advantage in dephasing estimation. In fact,
FPD

θ (|+(n)〉〈+(n)|) = nFPD
θ (|+(1)〉〈+(1)|). This is consistent

with the results in [21–23], where it is found that dephasing
estimation cannot beat the standard quantum limit.

It is interesting to notice that the set of golden states also
contains maximally entangled states, e.g., the two-qubit state
1
2 (|00〉 + |01〉 + |10〉 − |11〉). For such states, the local co-
herence of each qubit vanishes but the entanglement reaches
maximum.

Next, we introduce the concept of Hamming distance pre-
serving unitary operations, which are free unitary operations
in the resource theory of dephasing estimation.

Definition 3. Let U (·) = Uj (·)U †
j be a unitary operation,

where Uj is a unitary operator. Then U is said to be a Ham-

ming distance preserving unitary operation if and only if

EPD
θ (UjρUj

†) = UjEPD
θ (ρ)Uj

†, ∀ ρ. (52)

Because a Hamming distance preserving unitary operation
belongs to SHP, from Proposition 3, we arrive at the following
structure of these unitary operators.

Corollary 2. Any n-qubit unitary operator satisfies
Eq. (52) if and only if it can be written as the form

Uj =
2n−1∑
x=0

e−iωx
∣∣πn

j (x)
〉〈x| ∀ j, ρ, (53)

where πn
j (·) is a Hamming distance preserving function.

It is worth noticing that the inverse of Uj also belongs to
free unitary operations for dephasing estimation. It follows
that the probe state preserves the ability of dephasing estima-
tion under Hamming distance preserving unitary operations.

C. Relation between SHP and HDP

In this subsection, we investigate the relation of SHP
and HDP for single-qubit and multiqubit states. We first re-
view the definition of the Choi-Jamiołkowski matrix, which
plays a role in exploring the relation of SHP and HDP. The
Choi-Jamiołkowski matrix of the d-dimension operation E is
defined as [31,32]

JE =

⎡
⎢⎢⎢⎢⎢⎣

E (|0〉〈0|) . . . E (|0〉〈 j|) . . . E (|0〉〈d|)
...

. . .
...

. . .
...

E (|i〉〈0|) . . . E (|i〉〈 j|) . . . E (|i〉〈d|)
...

. . .
...

. . .
...

E (|d〉〈0|) . . . E (|d〉〈 j|) . . . E (|d〉〈d|)

⎤
⎥⎥⎥⎥⎥⎦.

(54)

Proposition 5. HDP is equivalent to SHP in the single-
qubit case.

Proof. Let D(·) = ∑
a Da(·)D†

a be a single-qubit CPTP
map which belongs to HDP. When the operation D belongs to
HDP, the corresponding Choi-Jamiołkowski matrix is written
as

JD =

⎡
⎢⎢⎢⎢⎣

p0|0 0 0 γ0

0 p1|0 γ1 0

0 γ ∗
1 p0|1 0

γ ∗
0 0 0 p1|1

⎤
⎥⎥⎥⎥⎦, (55)

where γ0 = ∑
a〈0|Da|0〉〈1|D†

a|1〉, γ1 = ∑
a〈1|Da|0〉〈1|D†

a|0〉,
and px|y = ∑

a〈x|Da|y〉〈y|D†
a|x〉 with x, y = 0, 1.

Now consider an operation S ∈ SHP, which is related to D
as S (·) = ∑

a Sa(·)S†
a +∑

a Ta(·)T †
a with

Sa =
[〈0|Da|0〉 0

0 〈1|Da|1〉
]
,

Ta =
[

0 〈0|Da|1〉
〈1|Da|0〉 0

]
.

(56)
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It is directly checked that the Choi-Jamiołkowski matrix of S
is also Eq. (55) and, therefore, S = D. �

Furthermore, in Appendix A we prove that, for single-qubit
states, HDP is a strict subset of operations which do not
increase the QFI of dephasing estimation.

Proposition 6. In the multiqubit case, SHP � HDP.
SHP is a subset of HDP by their definitions. Then we give

a channel which belongs to HDP but not to SHP. The channel
can be written as W (·) = ∑4

i=0 Wi(·)W †
i , where

W0 = 1

2
|0〉〈1| + 1

2
√

2
(|1〉〈0| + |2〉〈0|),

W1 = 1

2
|1〉〈1| + 1

2
√

2
(|0〉〈0| + |3〉〈0|),

W2 = 1

2
|2〉〈1| + 1

2
√

2
(|0〉〈0| − |3〉〈0|),

W3 = 1

2
|3〉〈1| + 1

2
√

2
(|1〉〈0| − |2〉〈0|),

W4 = I − |0〉〈0| − |1〉〈1|.

(57)

By the definition of HDP [Eq. (15)], this channel W is a Ham-
ming distance preserving operation. The following lemma is
used to prove that W does not belong to SHP.

Lemma 1 (Theorem 8.2 of [19]).Consider two given quan-
tum channels E (·) = ∑m

i=1 Ei(·)E†
i and F (·) = ∑n

j=1 Fj (·)F †
j .

Then E = F if and only if there is a m × n linear isometry u
such that Ei = ∑

j ui jFj .
We find that the linear combination of {Wi} cannot be

expressed as Eq. (41). Based on Lemma 1, W is not a selective
Hamming distance preserving operation.

IV. COMPARISON BETWEEN THE RESOURCE
THEORIES OF DEPHASING ESTIMATION AND

QUANTUM COHERENCE

In this section, we compare free operations between the
resource theories of dephasing estimation and quantum co-
herence. Our results show that coherence cannot be regarded
as the quantum resource which underlies the precision of
dephasing estimation.

A. A brief review of the resource theory of quantum coherence

In the resource theory of quantum coherence [33], a
computational basis {|i〉}2n−1

i=0 is prefixed. The completely de-
phasing (CD) channel is defined as

�(·) =
2n−1∑
i=0

|i〉〈i|(·)|i〉〈i|. (58)

Then a state ρ is free if and only if �(ρ) = ρ. These free
states are called incoherent states.

In the following, we briefly review two sets of free oper-
ations. The first set is called dephasing-covariant incoherent
operations (DIO) [34,35], defined as quantum operations
which commute with the CD channel, i.e.,

E ∈ DIO ⇔ � ◦ E = E ◦ �. (59)

The second set is called strictly incoherently operations (SIO)
[34,36], defined as

E ∈ SIO ⇔ � ◦ E j = E j ◦ �, ∀ j (60)

where E = ∑
j E j, E j (·) = Ej (·)E†

j , and Ej are Kraus opera-

tors satisfying
∑

j E†
j E j = I. It is worth noting that, the form

of every Kraus operator Ej can be written as

Ej =
2n−1∑
x=0

c jx|e j (x)〉〈x|, (61)

where e j : Sn �→ Sn is one to one and
∑

j |c jx|2 = 1.
It is worth noticing that the resource theory of coherence is

symmetric under permutations of states in the computational
basis. Direct calculation shows that the widely studied sets of
free operations [33,34–36,43], including maximally incoher-
ent operations (MIO), incoherent operations (IO), DIO, SIO,
and physically incoherent operations (PIO) (see Ref. [35] for
their definitions and comparisons), are closed under permuta-
tions of states in the computational basis. Therefore, the two
states

∑
i ψi|i〉 and

∑
i ψi|π (i)〉, where π is a permutation,

should contain the same amount of coherence.

B. Single-qubit case

We first explore the relation between the sets of free oper-
ations in the single-qubit case.

Proposition 7. In the single-qubit case, SHP, HDP, SIO,
and DIO are equivalent to each other.

Proof. It has been proved in Ref. [34] that DIO = SIO in
the single-qubit case. In Proposition 5, we proved that SHP =
HDP. Therefore, here we only need to prove the equivalence
between SIO and SHP.

According to [2], the general form of a single-qubit strictly
incoherent operation is ESIO(·) = ∑4

l=1 Kl (·)K†
l , where

K1 =
[

a1 0
0 b1

]
, K2 =

[
0 b2

a2 0

]
,

K3 =
[

a3 0
0 0

]
, K4 =

[
0 0
a4 0

]
,

(62)

where ai is real for i = 1, 2, 3, 4 and
∑4

i=1 a2
i = ∑2

j=1 |b j |2 =
1. These Kraus operators satisfy Eq. (40), so SIO ⊂ SHP for
single-qubit states. Moreover, Proposition 3 implies SHP is
a subset of SIO because Hamming distance preserving func-
tions are one to one. Hence, SHP = SIO. This completes the
proof. �

In fact, the HDP cone (26) is also the SIO cone [2,37],
which reveals the equivalence of SIO and HDP for single-
qubit states.

C. Multiqubit case

In this subsection, we explore the comparison between
SHP, HDP, SIO, and DIO in the multiqubit case. The hier-
archy of these sets of operations is shown in Fig. 2. It is
inferred by the definitions that SIO ⊆ DIO, HDP ⊆ DIO, and
SHP ⊆ SIO ∩ HDP.

In the following, we will first show that neither SIO
nor HDP contains the other quantum operations belonging
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FIG. 2. The comparison between SHP, HDP, SIO, and DIO in the
multiqubit case. The boundary between SHP and the intersection of
SIO and HDP is marked with the chain line. This boundary is unclear
in the two-qubit case but clear in the m-qubit case, where m � 3.

to SIO \ HDP and HDP \ SIO. Consider an n-qubit (n � 2)
unitary operator

U = I − |2〉〈2| + |2〉〈3| + |3〉〈2| − |3〉〈3|. (63)

The corresponding unitary operation belongs to SIO because
it satisfies Eq. (61). However, because U |0〉〈2|U † = |0〉〈3|
and h(0, 2) = 1 	= 2 = h(0, 3), this unitary operation does not
belong to HDP.

Next consider the n-qubit (n � 2) operation W in Eq. (57).
It belongs to HDP. It can be checked that any linear combi-
nation of the five Kraus operators of W is not of the form as
Eq. (61). Based on Lemma 1, W ∈ HDP \ SIO.

Now we will show that SHP is a strict subset of SIO ∩
HDP in the m-qubit case, where m � 3. This is achieved
by constructing the following channel R(·) = ∑4

i=0 Ri(·)R†
i ,

where

R0 = 1√
2
|0〉〈0| + 1

2
|2〉〈1| + 1

2
|3〉〈6|,

R1 = 1√
2
|6〉〈0| + 1

2
|2〉〈1| − 1

2
|3〉〈6|,

R2 = 1

2
|1〉〈1| + 1

2
|6〉〈6| + 1√

2
|7〉〈7|,

R3 = 1

2
|4〉〈1| − 1

2
|3〉〈6| + 1√

2
|7〉〈7|,

R4 = I − |0〉〈0| − |1〉〈1| − |6〉〈6| − |7〉〈7|.

(64)

The channel R belongs to the intersection of SIO and HDP but
not to SHP by Lemma 1, that is, R ∈ SIO ∩ HDP \ SHP for
m-qubit states. However, it is unclear whether SHP = SIO ∩
HDP in the two-qubit case.

Finally, we show that SIO ∪ HDP is a strictly subset of
DIO. As proved in Ref. [38], the quantum operation N (·) =

∑4
i=0 Ni(·)N†

i with

N0 = 1

2
|0〉〈1| + 1

2
√

3
|1〉〈0| − 1

2
√

3
|2〉〈0| + 1

2
√

3
|3〉〈0|,

N1 = 1

2
√

3
|0〉〈0| + 1√

2
|0〉〈2| + 1√

6
|0〉〈3| + 1

2
|1〉〈1|

+ 1

2
√

3
|2〉〈0| + 1

2
√

3
|3〉〈0|,

N2 = 1

2
√

3
|0〉〈0| − 1√

2
|0〉〈2| + 1√

6
|0〉〈3| + 1

2
√

3
|1〉〈0|

+ 1

2
|2〉〈1| − 1

2
√

3
|3〉〈0|,

N3 = 1

2
√

3
|0〉〈0| −

√
6

3
|0〉〈3| − 1

2
√

3
|1〉〈0|

− 1

2
√

3
|2〉〈0| + 1

2
|3〉〈1|,

N4 = I − (|0〉〈0| + |1〉〈1| + |2〉〈2| + |3〉〈3|), (65)

belongs to DIO \ SIO. Because N (|1〉〈2|) = 1
2
√

2
(|1〉〈0| −

|2〉〈0|), and h(1, 2) 	= h(0, 1) [or h(1, 2) 	= h(0, 2)], N is not
in HDP. Hence, the set DIO \ (SIO ∪ HDP) is not empty.

Different from the sets of free operations in the resource
theory of coherence, neither SHP nor HDP is closed under
permutations of states in the computational basis. There-
fore, off-diagonal elements of a density matrix are not
equivalent in the present resource theory if they belong to
different Hamming modes. For example, the states |ψ1〉 =
(|0〉 + |1〉)/

√
2 and |ψ2〉 = (|0〉 + |3〉)/

√
2 contain the same

amount of coherence, but as |0〉〈1| (or |1〉〈0|) and |0〉〈3|
(or |3〉〈0|) belong to different Hamming modes, the powers
of the two probe states in dephasing estimation are differ-
ent. In fact, we have FPD

θ (|ψ1〉〈ψ1|) = e−2θ /(1 − e−2θ ), but
FPD

θ (|ψ2〉〈ψ2|) = 4e−4θ /(1 − e−4θ ). Therefore, despite some
similarities between the two resource theories, coherence
cannot be regarded as the quantum resource underlying the
precision of dephasing estimation.

V. COMPARISON BETWEEN THE RESOURCE THEORIES
OF DEPHASING ESTIMATION AND U(1) ASYMMETRY

The QFI of phase estimation is a resource measure of U(1)
asymmetry [26,30,39]. It has been shown that there is a probe
incompatibility between phase estimation and dephasing es-
timation, namely, no optimal probe states exist for detecting
phase and dephasing parameters simultaneously [20,40]. This
motivates us to compare the resource theories of U(1) asym-
metry and dephasing estimation.

A. A brief review of quantum Fisher information
of phase estimation

In this subsection, we briefly review the QFI of phase
estimation. Given Hamiltonian H and the probe state ρ,
ρ(t ) ≡ e−iHtρeiHt represents the state of system at time t .
The task of phase estimation is to estimate the parameter t by
quantum measurement. Let ρ = ∑

i pi|ψi〉〈ψi| be the spectral
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decomposition of the probe state ρ. The QFI of phase estima-
tion can be calculated as [12,24,41]

FPE
H (ρ) = 2

∑
i,k

(pi − pk )2

pi + pk
|〈ψi|H |ψk〉|2. (66)

Furthermore, when the probe is in a pure state |ψ〉〈ψ |, the QFI
reduces to

FPE
H (|ψ〉〈ψ |) = 4�H2, (67)

where �H2 := 〈ψ |H2|ψ〉 − 〈ψ |H |ψ〉2 is the variance of
Hamiltonian H .

In this section, we consider the setting of n qubits with no
interaction. For each qubit, the ground-state energy is zero and
the excited-state energy is ε. The form of n-qubit Hamiltonian
is given by

H =
2n−1∑
i=0

Ni
1ε|i〉〈i|, (68)

where Ni
1 represents the number of 1’s in the binary string i.

B. Single-qubit case

For n = 1, the Hamiltonian reads as H = ε|1〉〈1|. For
a single-qubit probe state σ , whose Bloch vector is
(r cos φ, r sin φ, z), its spectral decomposition is

σ = 1
2 [(1 +

√
z2 + r2)| + r〉〈+r|

+ (1 −
√

z2 + r2)| − r〉〈−r|], (69)

where eigenstates are given by

| + r〉 = (z + √
z2 + r2)|0〉 + reiφ|1〉√

r2 + (z + √
z2 + r2)2

,

| − r〉 = −r|0〉 + (z + √
z2 + r2)eiφ |1〉√

r2 + (z + √
z2 + r2)2

. (70)

Then the phase estimation QFI of σ is calculated as

FPE
H (σ ) = r2ε2. (71)

Therefore, in the single-qubit case, FPE
H cannot be increased

under HDP because Eq. (26) shows that r is nonincreasing
under HDP.

Nevertheless, by comparing Eqs. (71) and (A1), we find
that FPE

H and FPD
θ give different ordering of states even in

the single-qubit case. It means that even though both FPE
H

and FPD
θ reach maximum for uniform superposition states,

there is a possibility that for two single-qubit states σ1 and
σ2, FPE

H (σ1) > FPE
H (σ2) but FPD

θ (σ1) < FPD
θ (σ2).

C. Multiqubit case

In the multiqubit case, the golden states in the resource
theory of dephasing estimation are uniform superposition
states |+(n)〉, while FPE

H reaches its maximum for GHZ states
defined as |GHZ〉 = (|0〉 + e−iη0 |2n − 1〉)/

√
2 [16]. This dis-

cordance in the maximally resourceful states is a possible
origin of the probe incompatibility, which stands for the
absence of an optimal probe state for detecting phase and

dephasing parameters simultaneously [20,40]. It is then nat-
ural to ask the following question: In what circumstances can
one increase FPE

H of a probe state, and meanwhile preserve its
ability of dephasing estimation?

An illustrative example is as follows. Consider a two-qubit
pure state |ψ1〉 = 1√

2
(|1〉 + |2〉). Because it is an eigenstate of

the Hamiltonian, we have FPE
H (|ψ1〉〈ψ1|) = 0. However, by

applying a Hamming distance preserving unitary

V =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦, (72)

|ψ1〉 is converted to |ψ2〉 = V |ψ1〉 = (|0〉 + |3〉)/
√

2, which is
one of the two-qubit optimal probe states for phase estimation.
It means that a free unitary operation in the resource theory of
dephasing estimation can transform a free state in the resource
theory of U(1) asymmetry to a maximally resourceful state in
the latter resource theory. This shows the incompatibility of
the two resource theories.

This example is generalized to general two-qubit pure
states as follows.

Proposition 8. Let |ψ (2)〉 = ∑3
x=0 e−iφx

√
ψx|x〉 be a two-

qubit pure state. Hamming distance preserving unitary
operations can increase the QFI of |ψ (2)〉 in phase estima-
tion, if and only if g(ψ1, ψ2) > g(ψ0, ψ3), where g(x, y) ≡
x + y − (x − y)2.

Proof. The QFI of the state |ψ (2)〉 in phase estimation is
calculated as

FPE
H (|ψ (2)〉〈ψ (2)|) = g(ψ0, ψ3)ε2. (73)

After the action of the unitary V , the QFI of phase estimation
becomes

FPE
H (V |ψ (2)〉〈ψ (2)|V †) = g(ψ1, ψ2)ε2, (74)

which is larger than Eq. (73) if g(ψ1, ψ2) > g(ψ0, ψ3).
Moreover, when other Hamming preserving distance uni-

tary operations are performed on the state |ψ (2)〉, the resulted
FPE

H is either in the form of Eq. (73) or (74). Therefore, the
QFI of |ψ (2)〉 in phase estimation can be increased only if
g(ψ1, ψ2) > g(ψ0, ψ3). �

Interestingly, some nonunitary operations in SHP also have
the ability in improving FPE

H while preserving FPD
θ . Consider

an n-qubit mixed state in the form

ρ =
∑
x:x<x̄

px|ψ (x)〉〈ψ (x)|, (75)

where |ψ (x)〉 = cos ζ |x〉 + sin ζeiφx |x̄〉, x̄ stands for the bit-
wise bit flip of x, and ζ is independent of x. It satisfies
conditions (C1) and (C2) for coherence merge in the same
Hamming mode. Therefore, we apply the merging operation
defined in Eq. (37) with i = 0, j = 2n − 1, y(x) = x̄, pi|x =
p j|x̄ = 1, and p j|x = pi|x̄ = 0. This results in a pure state of
the form

ρ ′ = |ψ (0)〉〈ψ (0)|. (76)

By the convexity of QFI, we have FPE
H (ρ ′) >∑

x pxFPE
H (|ψ (x)〉〈ψ (x)|) � FPE

H (ρ). This means that FPE
H

is increased. Meanwhile, FPD
θ (ρ) = FPD

θ (ρ ′). The reason
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is as follows. On the one hand, from the monotonicity
of FPD

θ under SHP, we have FPD
θ (ρ) � FPD

θ (ρ ′). On
the other hand, from the convexity of QFI, we have
FPD

θ (ρ ′) = ∑
x pxFPD

θ [|ψ (x)〉〈ψ (x)|] � FPD
θ (ρ).

To sum up, one can use coherence merge in the same
Hamming mode to increase the ability of a probe state in phase
estimation and, meanwhile, preserve its ability of dephasing
estimation.

VI. CONCLUSION

In this work, we study the resource theory of dephasing
estimation in multiqubit systems. Due to the monotonicity of
QFI, we define two sets of free operations in the resource
theory of dephasing estimation, HDP and SHP. Under these
free operations, the problem of finding optimal probes can
be converted to the problem of state transformations. This
resource-theoretic approach reduces the complexity to cal-
culate the QFI. In the present resource theory, the uniform
superposition states are golden states. This implies that there
exists the connection between our resource theory and the
resource theory of quantum coherence. Therefore, we investi-
gate the relation between free operations of these two resource
theories. In the single-qubit case, SIO and DIO, which are
free operations of the resource theory of quantum coherence,
are equivalent to SHP (or HDP). Furthermore, for multiqubit
states, the relation of these operations is depicted in Fig. 2.
Finally, we also compare the resource theories of U(1) asym-
metry and dephasing estimation. By employing SHP, it is
possible to enhance the performance of a probe state in phase
estimation, while preserving its ability of dephasing estima-
tion, which implies the incompatibility of these two resource
theories.
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APPENDIX A: SINGLE-QUBIT HDP IS A STRICT SUBSET
OF SINGLE-QUBIT OPERATIONS WHICH DOES NOT
INCREASE THE QFI OF DEPHASING ESTIMATION

For a single-qubit state σ = (r cos φ, r sin φ, z), the QFI
of dephasing estimation is independent on the phase φ due to
the rotational symmetry. Therefore, we only consider the case
φ = 0 in the following discussion. For a single-qubit state
σ0 = (r, 0, z), the QFI of dephasing estimation is

FPD
θ (σ0) = r2e−2θ (1 − z2)

1 − z2 − r2e−2θ
. (A1)

In the following, we will show a channel Z /∈ HDP, which
cannot increase the QFI of phase estimation. The Choi matrix
of the channel Z is given by

JZ =

⎡
⎢⎢⎢⎢⎢⎣

1
2 0 1

4
1
4

0 1
2

1
4 − 1

4
1
4

1
4

1
2 0

1
4 − 1

4 0 1
2

⎤
⎥⎥⎥⎥⎥⎦. (A2)

Its Kraus operators are given by

Z0 = 1

2

[
1 0
0 1

]
, Z1 = 1

2

[
0 1
1 0

]
,

Z2 = 1

2

[
1 1
0 0

]
, Z3 = 1

2

[
0 0
1 −1

]
.

(A3)

Then the Bloch vector of Z (σ0) can be written as ( 1
2 r, 0, 1

2 r).
The corresponding QFI of dephasing estimation is

FPD
θ (Z (σ0)) =

1
4 r2e−2θ

(
1 − 1

4 r2
)

1 − 1
4 r2 − 1

4 r2e−2θ
. (A4)

When r = 0, we find FPD
θ (σ0) = FPD

θ (Z (σ0)) = 0. Then
we discuss the case r 	= 0. The inequality FPD

θ (σ0) �
FPD

θ (Z (σ0)) is equivalent to

3

r2e−2θ
− 4

4 − r2
+ 1

1 − z2
� 0, ∀ r, z. (A5)

When z2 = 0 and r2 = 1, the left side of the inequality reaches
its minimum 3e2θ − 1

3 , which is always greater than 0. There-
fore, the channel Z cannot increase the QFI of dephasing
estimation and does not belong to HDP.

APPENDIX B: HAMMING DISTANCE
PRESERVING FUNCTION

In this Appendix, we first give the definition of a Hamming
distance preserving function and then derive the explicit form
of these functions.

Definition 4. Let Sn be the set of n-bit strings. The one-to-
one function πn

i : Sn �→ Sn is said to be a Hamming distance
preserving function if

h(x, y) = h
(
πn

i (x), πn
i (y)

)
, ∀ x, y ∈ Sn. (B1)

The set of n-bit Hamming distance preserving functions is
denoted as Mn.

Next we study the explicit form of Hamming distance
preserving functions. We start with the simplest case where
the input and output string consists of a single bit. Obviously,
M1 = {π1

0 , π1
1 } with

π1
0 : 0 �→ 0, 1 �→ 1,

π1
1 : 0 �→ 1, 1 �→ 0. (B2)

In the two-bit case, there are eight elements in M2. Pre-
cisely, we denote by xm the mth bit of string x, and define
two sets of two-bit functions, R2 = {r2

0 , r2
1} with r2

0 (x1x0) =
x1x0, r2

1 (x1x0) = x0x1, and Q2 = {qz}3
z=0 with (qz(x))l = zl ⊕

xl , l = 0, 1. Then the set of two-bit Hamming distance pre-
serving functions can be written as

M2 = Q2 ◦ R2. (B3)

Here by ◦ we mean A ◦ B = {m|m = ab, a ∈ A, b ∈ B}. This
two-bit case can be generalized to the n-bit case.

Proposition 9. The set of n-bit Hamming distance preserv-
ing functions can be written as

Mn = Qn ◦ Rn, (B4)
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where Qn := {qz|qz : Sn �→ Sn, (qz(x))l = zl ⊕ xl , l ∈
{0, . . . , n − 1}}2n−1

z=0 , and Rn represents the set of n-bit
functions which reorder the bits in an input string.

Proof. First, both r ∈ Rn and q ∈ Qn are Hamming distance
preserving functions, so their multiplications also preserve
Hamming distance, i.e., Qn ◦ Rn ⊆ Mn. In order to prove
Eq. (B4), we only need to prove that |Mn| = |Qn ◦ Rn|, where
|X | denotes the number of elements in the set X . For this
purpose, we check that |Qn| = 2n, |Rn| = n!, and |Qn ◦ Rn| =
|Qn||Rn|. In the following, we focus on proving that

|Mn| = 2nn!. (B5)

Let Mn
z := {m|m ∈ Mn, m : 0 �→ z} with z ∈ Sn be a subset

of Mn. Then |Mn
z | = |Mn

0 | for all z = 0, . . . , 2n − 1 because
Mz = qn

z M0. It follows that

|Mn| = 2n
∣∣Mn

0

∣∣. (B6)

Next we consider a function m ∈ Mn
0 which satisfies m :

20 �→ i. From the Hamming distance preserving condition
h(0, 1) = h(0, i), there is exactly one bit in string i which
equals to 1, and hence i = 2 j with j = 0, . . . , n. Now we
define Mn

0| j := {m|m ∈ Mn
0 , m : 20 �→ 2 j}, which is a subset

of Mn
0 . Then any element mj ∈ Mn

0| j is related to an element
m0 ∈ Mn

0|0 via mj = cn
j0m0, where cn

j0 represents an n-bit func-
tion which exchanges the position of the zeroth bit and jth
bit of its input string. It follows that Mn

0| j = c j0Mn
0|0 and,

consequently, ∣∣Mn
0

∣∣ = n
∣∣Mn

0|0
∣∣. (B7)

Further, consider a function m ∈ Mn
0|0, which satisfies m :

21 �→ i. The Hamming distance preserving condition requires
that h(0, 2) = h(0, i) and h(1, 2) = h(1, i). This is equivalent
to say that there is exactly one bit in the string i which equals
to 1 and, moreover, i0 = 0. Hence, we have i = 2 j with j =
1, . . . , n − 1. Let Mn

0|0 j := {m|m ∈ Mn
0|0, m : 21 �→ 2 j}, and

then we have |Mn
0|0| = ∑n−1

j=1 |Mn
0|0 j |, and |Mn

0|0 j | = |Mn
0|01|,∀ j = 1, . . . , n − 1, or, equivalently,∣∣Mn

0|0
∣∣ = (n − 1)

∣∣Mn
0|01

∣∣. (B8)

We apply the above discussion n times and arrive at∣∣Mn
0

∣∣ = n!
∣∣Mn

0|0...n−1

∣∣, (B9)

where Mn
0|0...n−1 = {m|m ∈ Mn, m : 2 j �→ 2 j,∀ j =

0, . . . , n − 1}.
For m ∈ Mn

0|0...n−1, the Hamming distance preserving con-
dition requires that h(m(x), 0) = h(x, 0) and

h(m(x), 2 j ) =
{

h(x, 0), x j = 0,

h(x, 0) − 1, x j = 1,
(B10)

for all x ∈ Sn and j = 0, . . . , n − 1. This immediately implies
that m(x) = x. Therefore, the only function in Mn

0|0...n−1 is
identity, and ∣∣Mn

0|0...n−1

∣∣ = 1. (B11)

Putting Eqs. (B6), (B9), and (B11) together, we arrive at
Eq. (B5).

APPENDIX C: CHANNEL W BELONGS TO HDP \ SIO

The channel W is defined as Eq. (57). Its Kraus operators
are given by

W0 = 1

2
|0〉〈1| + 1

2
√

2
(|1〉〈0| + |2〉〈0|),

W1 = 1

2
|1〉〈1| + 1

2
√

2
(|0〉〈0| + |3〉〈0|),

W2 = 1

2
|2〉〈1| + 1

2
√

2
(|0〉〈0| − |3〉〈0|),

W3 = 1

2
|3〉〈1| + 1

2
√

2
(|1〉〈0| − |2〉〈0|),

W4 = I − |0〉〈0| − |1〉〈1|.

(C1)

We first introduce the definition of the l1 norm of coherence

Cl1 (ρ) =
∑

i, j:i 	= j

|ρi, j |. (C2)

The l1 norm of coherence is monotonic under SIO [42], that
is, Cl1 (S (ρ)) � Cl1 (ρ), where S ∈ SIO. Let us take the state ρ

as follows:

ρ = 1
2 (|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|). (C3)

We calculate Cl1 (ρ) = 1 and Cl1 (W (ρ)) = √
2. Therefore, the

HDP channel W can increase the l1 norm of coherence. It
implies W ∈ HDP \ SIO.
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ibility in multiparameter quantum metrology, Phys. Rev. A 94,
052108 (2016).
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