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Existence of Pauli-like stabilizers for every quantum error-correcting code

Jhih-Yuan Kao 1,2,* and Hsi-Sheng Goan 1,2,3,†

1Department of Physics and Center for Theoretical Physics, National Taiwan University, Taipei 106319, Taiwan
2Center for Quantum Science and Engineering, National Taiwan University, Taipei 106319, Taiwan

3Physics Division, National Center for Theoretical Sciences, Taipei 106319, Taiwan

(Received 1 September 2022; accepted 28 July 2023; published 15 September 2023)

The Pauli stabilizer formalism is perhaps the most thoroughly studied means of procuring quantum error-
correcting codes, whereby the code is obtained through commutative Pauli operators and “stabilized” by them. In
this work we will show that every quantum error-correcting code, including Pauli stabilizer codes and subsystem
codes, has a similar structure, in that the code can be stabilized by commutative “Paulian” operators which
share many features with Pauli operators and which form a Paulian stabilizer group. By facilitating a controlled
gate we can measure these Paulian operators to acquire the error syndrome. Examples concerning codeword
stabilized codes and bosonic codes will be presented; specifically, one of the examples has been demonstrated
experimentally and the observable for detecting the error turns out to be Paulian, thereby showing the potential
utility of this approach. This work provides a possible approach to implement error-correcting codes and to find
new codes.
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I. INTRODUCTION

Quantum information is stored as quantum states. Due to
defects in the devices or executions, and the inevitable inter-
action of the quantum system with the environment, the state
of the quantum system can be changed in a nondeterministic
manner, which is an error; consequently, error correction is
vital for the information to stay hygienic. Using quantum
error-correcting codes, states are prepared in specific sub-
spaces such that if certain errors occur, we can detect and
correct them [1–5]. Even though quantum devices without
error correction may serve certain purposes such as simulating
physical systems [6,7], a universal quantum computer that is
scalable still requires error correction [8,9].

Pauli stabilizer codes [1,10,11] are an extremely important
class of quantum error-correcting codes. Some of the most
promising codes, such as topological codes [12–16], which
include surface codes [13,17–26] and quantum low-density
parity-check codes [27–30], are based on Pauli stabilizer
codes. An advantage of Pauli stabilizer formalism is that it
informs us of which measurements to implement to detect the
errors, namely, the stabilizer generators.

There are several ways of generalizing the Pauli stabi-
lizer formalism, for example, by generalizing Pauli groups,
or nice error bases to nonbinary cases [31–35], or by consid-
ering noncommutative groups on binary codes [36]. In this
work, instead of defining a certain group and constructing an
error-correcting code from it, we will do the opposite: We
investigate the structure of any error-correcting code, includ-
ing subsystem codes [37–43], to show that every code can
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be stabilized by a “Paulian” stabilizer group (Proposition 1
and Corollary 1), the exact meaning of being Paulian to be
explained in Sec. II B. Identifying the Paulian stabilizer group
of an error-correcting code may give us a guideline on how to
implement such a code: The error syndrome can be obtained
by measuring these Paulian operators, which can be conducted
via controlled operations (Sec. III D). We will also show how
to obtain the Paulian stabilizer group for a concatenated binary
code (Sec. IV) [1,2,44], and in Sec. V we will demonstrate
some examples. For conciseness, details of some topics can
be found in the Appendixes.

II. PRELIMINARIES

A ⊆ B means A is a subset of B, while ⊂ indicates it is a
proper subset. A map f : X → Y to the restriction of X′ ⊆ X,
denoted by f |X′ , is a map from X′ to Y with f |X′ (x) =
f (x) ∀x ∈ X′ [45–47], for which we will often shrink the
codomain to the image f |X′ (X′) = f (X′). The span of a set
of vectors is the set of all linear combinations thereof, which
is a subspace. We will use shorthand to label sets obtained
from others in a sensible way, e.g., H⊗3 is H ⊗ H ⊗ H. The
subscript beside an identity operator, denoted by I , or orthog-
onal projection, denoted by �, indicates the (sub)space the
operator acts on or projects onto; e.g., �C projects onto HC.

The code space HC of a quantum error-correcting code
is a subspace of the entire space H where the encoded state
is stored [1,4,48]; sometimes we simply refer to the code
space as the code. With Cn denoting a generic n-dimensional
complex vector space, a code is called an [[n, k]]-code if
H ∼= C2n

and HC
∼= C2k

for some integers n and k, where
A ∼= B indicates that A and B are isomorphic; such codes are
said to be binary. We use the term binary codes in a stricter
sense than, e.g., Ref. [49], as we require the code space to be
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binary too. Also, an ((n, k, d )) code has n qubits, a code space
of dimension k and distance d [50]. For a qubit system, | ± 1〉
instead of |0〉 and |1〉 will denote the ±1-eigenstates.

An operator is said to stabilize a subspace H′ if H′ is a
subspace of the operator’s 1-eigenspace. We will refer to the
subspace spanned by all simultaneous eigenvectors with the
same simultaneous eigenvalues as a simultaneous eigenspace.
Pn will denote the Pauli group on (C2)⊗n ∼= C2n

, and its
members will be called Pauli operators [1,31,32]; in this work
we will use Xi, Yi and Zi to denote Pauli X , Y , Z operators
on the ith site. If the code space of a code is the (1, . . . , 1)-
simultaneous eigenspace of commutative Pauli operators, the
code is called a Pauli stabilizer code, and the abelian group
generated by these operators is the stabilizer group [1,10,11].

A representation of a group G on a space V is a homomor-
phism � from G to the general linear group of V , and it is
said to be faithful if � is one-to-one [51]. Abusing the lan-
guage, we will call the image �(G) “a representation.” Two
representations G1 on H1 and G2 on H2 of G are said to be
unitarily equivalent if there exits a unitary map V : H1 → H2

such that G1 = V −1G2V [52–54].

A. Involutions

An operator is said to be an involution if it is its own
inverse, i.e., if it squares to I [45]; for instance, Pauli X , Y , Z
are all involutions. By definition, the spectrum of an involution
can only contain ±1, which by the spectral theorem leads to

Lemma 1. An involution on a Hilbert space is normal if
and only if it is self-adjoint and if and only if it is unitary.

Self-adjoint involutions are of great physical interest,
because they correspond to both physical observables (self-
adjoint) and evolution of a system (unitary). A Pauli group is
composed of unitary involutions and operators that square to
−I , which we call counterinvolutions. We can easily see that
a counterinvolution is an involution multiplied by i, and vice
versa.

If a pair of involutions or counterinvolutions A and
B anticommute, for an a-eigenvector |v〉 of A, BA|v〉 =
aB|v〉 = −AB|v〉, and since they are by definition automor-
phisms, B|v〉 �= 0 for all nonzero |v〉; therefore, B maps
the a-eigenspace of A to the −a-eigenspace, and the ±a-
eigenspaces are thus isomorphic.

B. Paulian operators

An operator will be called Paulian if
(1) It is either an involution or counterinvolution
(2) It is unitary and
(3) It has two isomorphic eigenspaces unless it has a single

eigenspace.
Accordingly, all Pauli operators are Paulian. A Paulian

operator is self-adjoint if and only if it is an involution, and
it is skew-self-adjoint if and only if it is a counterinvolution.

When the space is finite-dimensional, we could simply
require Paulian operators, except for those proportional to I , to
be traceless. As the eigenvalues have opposite signs, the two
eigenspaces have the same dimension and hence are isomor-
phic. However, a unitary operator on an infinite-dimensional
space is not trace class [54,55] and in general it does not have

a well-defined trace, so we simply demand the eigenspaces
be isomorphic. Having isomorphic eigenspaces, the unitary
map between them will play the role of Pauli Z [cf. (12) and
the proof for Proposition 1 (Sec. III A)]; besides, this makes
it possible to find anticommuting Paulian operators (cf. the
previous subsection).

To appreciate the significance of Paulian operators in
physics, we remark

(1) By Lemma 1, a Paulian involution is unitary and self-
adjoint at the same time, so it can not only describe the
evolution but also be an observable.

(2) Because a Paulian operator (except for those that
are proportional to I) is traceless or has two isomorphic
eigenspaces, very roughly speaking, if an observable has two
possible outcomes, and if both outcomes are equally likely on
average with all states considered, then it is Paulian.

Finally, in this work when we refer to an operator as Pau-
lian, it may not necessarily be Paulian on the entire domain,
but only Paulian to the restriction of a specific subspace,
which subspace has to do with the errors the operator can
detect or correct. This will be explained in more detail later.

C. Condition for error correction

The necessary and sufficient condition for a set of errors E
to be correctable is [31,32]

�CE†F�C ∝ �C ∀E , F ∈ E. (1)

There are other expressions for this condition, for exam-
ple, �CE†F�C = αE ,F �C where α is a Hermitian matrix
[1,2,4,48], or in terms of inner product and basis [1,2,56]. It
is worth mentioning that the common requirement that α is
Hermitian is somewhat superfluous: If two operators A and B
satisfy

�A†B� = c�

for some constant c and orthogonal projection �, then it must
be true that

�B†A� = (�A†B�)† = c∗�.

Hence the matrix α above is naturally Hermitian. If a code can
correct E, it can correct any error in the span of E.

From [4,48], we can find a maximal subset F of spanE
whose elements obey

�CE†F�C =
{

0, E �= F
�C, E = F

∀E , F ∈ F , (2)

and we call correctable errors in F orthonormal; the set F is
maximal in the sense that∑

E∈E
EHC =

⊕
F∈F

FHC, (3)

where ⊕ denotes an orthogonal direct sum, is satisfied. Note

EHC
∼= HC ∀E ∈ E, (4)

so
⊕

F∈F FHC is an orthogonal direct sum of isomorphic
spaces. On the other hand, if we have a set of errors or
operators such that the operators in it are “orthogonal” but not
necessarily “normalized,” i.e., �CE†E�C = cE�C for some
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scalar cE that is not necessarily 1, then the set is referred to as
orthogonal.

III. PAULIAN STABILIZER GROUP

Here is the main result of this work, which will be ex-
plained in detail soon after; dim below refers to the dimension
of a vector space:

Proposition 1. Consider an error-correcting code, with the
code space HC belonging in H. There exist operators which
stabilize HC and satisfy the following properties:

(1) To the restriction of a 2mk′-dimensional subspace H′
for some positive integer m with HC ⊆ H′ ⊆ H and k′ �
dim HC, these operators are mutually commutative Paulian
operators, forming an abelian group S called the Paulian
stabilizer group, which is generated by m operators. If H is
infinite-dimensional, H′ can be as well.

(2) S is an abelian subgroup of a group of Paulian opera-
tors Pm

S , which is a faithful representation of Pm.
(3) A subset of all correctable errors can be detected by

measuring these operators and corrected by applying proper
inverses.

A. The minimal stabilizer group

First, we will prove a “minimal” version of this proposi-
tion, which yields a “minimal” Paulian stabilizer group. The
reader may skim over the proof and come back later when
necessary.

Proof. With F defined in (2), we choose a subset of F ′ ⊆ F
whose cardinality is a positive integral power of 2, m, with
I ∈ F ′. As long as the code is nontrivial, such a subset always
exists. We want F ′ to be as large as possible, so we choose

m = �log2 |F |�, (5)

where �·� is the floor function; we thus have |F ′| = 2m.
Let T be the set of all tuples of ±1 with length m and

(t ) be the symbol for elements in T , which we will use for
indexing. For each F ∈ F ′, choose a a unique tuple (t ) ∈ T ;
to put it another way, we define a bijective “syndrome map”
fsym : F ′ → T such that fsym(F ) ∈ T is the tuple correspond-
ing to F , which, as we will see, is the syndrome of F . F(t ) will
denote the error (t ) ∈ T refers to,

F(t ) := f −1
sym((t )), (6)

and likewise1

H(t ) = F(t )HC. (7)

Among all such binary tuples (t ),

(I ) := (1, . . . , 1) (8)

will serve as a convenient abbreviation; in particular we re-
quire

F(I ) = I, (9)

1Later H(t ) will be defined as the (t )-simultaneous eigenspace of
the stabilizers. Hence (7) is not the definition of H(t ), but it is true
here.

namely, fsym(I ) is selected to be (I ) = (1, . . . , 1). We also
define

H :=
⊕
F∈F ′

FHC =
⊕
(t )∈T

H(t ) ⊆ H. (10)

Here let H′ of this proposition be H. With

dim H = 2m dim HC, (11)

it means k′ is dim HC. We have the following isomorphism:

HB := HC ⊗
m⊗

i=1

C2
i

∼= H, (12)

where the subscript i of C2
i is for indexing.

Let’s construct a unitary map U : H → HB as follows:
Since H(t )

′s are isomorphic, there exist unitary maps

V(t ) : H(t ) → HC ∀(t ) ∈ T , (13)

among which we let V(I ) : HC → HC be IC. Let’s also choose
an orthonormal basis {| ± 1〉i} for each C2

i . For any (t ) =
(i1, . . . , im) ∈ T and any |v〉 ∈ H(t ), let

U |v〉 := (V(t )|v〉) ⊗ |(t )〉, (14)

where

|(t )〉 := |i1〉1 ⊗ · · · ⊗ |im〉m ∈
m⊗

i=1

C2
i . (15)

By definition (10), H is the direct sum of H(t )’s, so U of (14)
is defined on the entirety of H. U is unitary because V(t )’s are
unitary and {| ± 1〉i}’s are orthonormal bases.

Now, for every i = 1, . . . , m let Xi and Zi denote the oper-
ators on HB that apply Pauli X and Z on C2

i and act trivially
on the other subsystems including HC. Their counterparts on
H via U are

ZS
i := U −1ZiU, X S

i := U −1XiU ; (16)

that is, Xi and X S
i , and Zi and ZS

i , are unitarily similar, and
in the language of group theory, this is conjugation by U
[57]. The group generated by Xi and Zi is IC ⊗ Pm, which is a
faithful representation of Pm, so the group generated by ZS

i ’s
and X S

i ’s, denoted by Pm
S , is also a faithful representation of

Pm: IC ⊗ Pm and Pm
S are unitarily equivalent representations,

i.e.,

Pm
S := U −1(IC ⊗ Pm)U . (17)

With these observations, the proposition is proved:
(1) IC ⊗ Pm is a group of Paulian operators, so is Pm

S .
Note unless HC is (isomorphic to) C2p

for some integer p,
IC ⊗ Pm is not a group of Pauli operators. Besides, Zi’s, m
in total, generate a maximal linearly independent and abelian
subgroup2 of IC ⊗ Pm; by unitary equivalence, ZS

i ’s, m in to-
tal, also generate a maximal linearly independent and abelian
subgroup of Pm

S :

S := 〈
ZS

1 , . . . , ZS
m

〉
. (18)

2Please see the discussion near the end of Sec. III C.
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(2) Because HC ⊗ |(t )〉 are the (t )-simultaneous
eigenspaces of Zi’s, H(t ) are the (t )-simultaneous eigenspaces
of ZS

i ’s. HC = H(I ) is hence stabilized by ZS
i ’s.

(3) For any |ψ〉 ∈ HC, if F(t ) ∈ F ′ occurs, |ψ〉 ∈ HC be-
comes F(t )|ψ〉 ∈ H(t ), and it is a (t )-simultaneous eigenvector
of ZS

i ’s; performing the syndrome measurement by measuring
ZS

i ’s we obtain the simultaneous eigenvalues (t ), which are the
error syndrome [2], and we can correct the error by inverting
F(t ). Hence, any correctable error E for which

EHC ⊆ H (19)

can be detected and corrected by measuring ZS
i . �

In a nutshell, via the isomorphism (12) and U of (14), we
borrow the structure from HB and apply it to H′ = H ⊆ H:
ZS

i and X S
i are essentially Pauli Z and X on different sub-

systems or sites, and such a structure can be established for
any quantum error-correcting codes. Treating H and HB as
identical, C2

i ’s of HB are the stabilizer qubits [38]. For Pauli
stabilizer codes if we consider H = H and HB as the same
space, the unitary map U , which becomes an operator now, is
in the Clifford group [2,11,38,58].

We will call members of S Paulian stabilizers. Like Pauli
stabilizer codes, we can choose any generating set of S for
syndrome measurements. From now on, rather than (7), H(t )

will refer to the (t )-simultaneous eigenspace of ZS
i ’s, and we

will call it a (t )-syndrome space. Defining them this way will
help us extend the Paulian stabilizers later.

B. A larger stabilizer group

The stabilizers depicted in Sec. III A are the minimal ver-
sion of Proposition 1 with H′ = H, as the procedures laid out
above are applicable to every code; however, when log2 |F | is
not an integer, F ′ ⊂ F , and there are correctable errors that
cannot be detected by ZS

i ’s.
Now suppose the code obeys

2�log2 |F |� dim HC � dim H, (20)

where �·� is the ceiling function. Let

m = �log2 |F |�, (21)

and we can consider a larger family of orthogonal operators
F ′′ such that F ⊆ F ′′, and that in addition to errors in F
obeying (2) we require

EHC
∼= HC and EHC ⊥ FHC ∀E �= F ∈ F ′′. (22)

Like before, for each element in F ′′ we will associate with
it a unique binary tuple of length m, i.e., a bijection between
F ′′ and T ; cf. Sec. III A. In this way, the Paulian stabilizers
associated with F ′′ cover all errors in F . The operators in
F ′′ \ F may be uncorrectable as they may not satisfy (2), but
they are instrumental in constructing a larger Paulian stabilizer
group.

In short, we would like the Paulian stabilizers to cover all
correctable errors, hence choosing m = �log2 |F |� if possible;
if (20) cannot be satisfied, we resort to m = �log2 |F |�. In
particular, given a code with distance d , we have

|F | �
�(d−1)/2�∑

j=0

(
n
j

)
3 j, (23)

which serves as an upper bound for |F | and is exact when the
code is nondegenerate [1,2]; cf. the quantum Hamming bound
[2,48]. Expression (23) combined with (20) is a sufficient con-
dition to judge whether it is possible to find Paulian stabilizers
to correct all the errors for this code, explicitly,

2

⌈
log2

∑�(d−1)/2�
j=0

(
n
j

)
3 j

⌉
dim HC � dim H, (24)

which is necessary and sufficient if the code is nondegenerate.

C. Extending the domain

If 2m dim HC < dim H, we may extend the domains of
ZS

i ’s, and they should remain self-adjoint so that they are
measurable. The following fact may be utilized [59]:

Theorem 1. For a self-adjoint or unitary operator A with an
invariant subspace H′, A|H′ and A|H′⊥ are both self-adjoint or
unitary operators.

Hence, to extend a self-adjoint operator, we can define
another self-adjoint operator on the space orthogonal to the
domain and add them.

In particular, let’s extend ZS
i ’s as follows: We enlarge all

syndrome spaces H(t )’s while keeping them isomorphic and
orthogonal to each other, and let their dimension be k′, which
would be no smaller than dim HC. Following how ZS

i ’s were
originally constructed on H in Sec. III A, we reach the final
form of Proposition 1, where H′ is the direct sum of all
syndrome spaces and ZS

i ’s are commutative Paulian operators
to the restriction of H′. Thus, the proof in Sec. III A and the
discussion in Sec. III B and this subsection together illustrate
the complete picture of Proposition 1.

We remark
(1) F(t )HC is a subspace of the corresponding syndrome

space H(t ), in particular

HC ⊆ H(I ). (25)

The code space is stabilized by ZS
i ’s, but it is not necessarily

the (I )-syndrome space, but a subspace thereof.
(2) If H is infinite-dimensional, syndrome spaces can

be made infinite-dimensional while keeping them isomor-
phic and mutually orthogonal; an example will be given in
Sec. V B.

(3) When dim H/ dim HC is an integral power of 2, it is al-
ways possible to construct a Paulian stabilizer group that uses
the space to its full capacity for error correction; specifically,
this is true for binary codes.

D. Measuring Paulian operators

Suppose the state is currently in H′. To measure a ZS
i ,

we can make use of a generalized-controlled NOT (GCNOT):
Consider an ancilla qubit HA

∼= C2 initialized at |1〉A. To the
restriction of H′ ⊗ HA, define

GCNOT|H′⊗HA := �− ⊗ XA + �+ ⊗ IA (26)

= IH′ ⊗ |+〉A〈+|A + ZS
i ⊗ |−〉A〈−|A, (27)

where �± project onto the ±1-eigenspaces of ZS
i and |±〉A

are ±1-eigenstates of XA; in Appendix A it will be explained
why (26) and (27) are equal and how unique the GCNOT is. On
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the entire space H ⊗ HA it is thus

GCNOT = �− ⊗ XA + �+ ⊗ IA + �H′⊥ ⊗ UA, (28)

where UA can be any unitary operator; �H′⊥ ⊗ UA is there
for GCNOT to be unitary; cf. Theorem 1. If the system is in
a −1-eigenstate of ZS

i , the state of the qubit will be mapped
to | − 1〉A, else it remains at |1〉A, so measuring ZA on the
ancilla afterwards is equivalent to measuring ZS

i . This oper-
ator derives from the generalized CNOT or controlled-X in
Refs. [60–63], but we do not require that the system and
ancilla have the same dimension. From now on for simplicity
we will ignore the restriction.

Quite many implementations of Pauli measurements in-
volve these controlled operations implicitly [3,13,20]: For
example, to measure Z1 · · · Zj , with the (regular) CNOT on the
ith (data) qubit with the ancilla as the target denoted by CNOTi,
it can be found

j⊗
i=1

CNOTi = �− ⊗ XA + �+ ⊗ IA : (29)

�± are the ±1-eigenspaces of Z1 · · · Zj , so the composition is
a generalized CNOT.

Using a nonqubit system as the control may not be as
intuitive, so let’s instead consider the controlled-ZS

i :

CZS
i = ZS

i ⊗ |−1〉A〈−1|A + IH′ ⊗ |1〉A〈1|A, (30)

which is a controlled-U operation with U being the Paulian
operator ZS

i [4]. Compared with (27), we have

GCNOT = (IH′ ⊗ HA)CZS
i (IH′ ⊗ HA), (31)

where HA is the Hadamard gate. In other words, if the ancilla
is initialized at |1〉A, we can perform an inverse Hadamard
gate to map it to |+〉A and apply the CZS

i gate. Measuring XA

on the ancilla, if the result is ±1, then it means the system
was in a ±1-eigenstate of ZS

i , so the overall effect is identical
to measuring ZS

i .
Equation (31) is in the same vein as exchanging the target

and control qubits of a (regular) CNOT by composing with
Hadamard gates or change of basis [4]: Indeed, (27) can be
understood as using the |±〉A states of the ancilla qubit to
determine whether to perform ZS

i , so the ancilla qubit is the
control in this sense; with (31) we simply change the “control
states” from |±〉A to | ± 1〉A.

Regarding the ancilla qubit as the control as in (27) or
(30) also brings the following benefit: Suppose the system
is composed of qubits, and that we have a quantum circuit
for ZS

i using fundamental gates, comprising single-qubit gates
and CNOT or two-qubits controlled gates; let ZS

i = ∏
i Ui, and

we have

CZS
i =

∏
j

CU j . (32)

If Ui is a single-qubit gate, then we can again decompose
CU j as single-qubit gates and CNOT’s; if Uj is a CNOT or
a controlled-Vj for some Vj , then CU j is a Toffoli gate or
C2(Vj ), and we can again decompose it as fundamental gates
[4,64,65]. Thus, if we are able to carry out ZS

i as an operation,
then we are also able to measure it. Equation (29) can also be
better comprehended with the ancilla as the control.

We discussed extending Paulian-ness to a larger space H′
in Sec. III C. From a measurement point of view, how the
Paulian stabilizers should be extended depends on whether
the corresponding controlled operations are natural, that is,
whether we can couple the system with the ancilla via the
controlled operations relatively easily.

We can tweak (27) to use an ancilla qudit (which may be
composed of several qubits) for the setup to be less error-
prone [1,2,58]: Omitting �H′⊥ ⊗ UA again, let the system be
coupled with the qudit initialized at |1〉A through this general-
ized CNOT ∑

i+,i−

(|i−〉〈i−| ⊗ Xi− + |i+〉〈i+| ⊗ Xi+ ), (33)

where
(1) {|i±〉} are orthonormal bases of the ±1-eigenspaces

of ZS
i

(2) Each Xi± is an X operator between the states |1〉A and
|i±〉A of the qudit [60] and

(3) We have an observable Z ′
A on the qudit, with |i±〉A

being ±1-eigenstates of Z ′
A; |i−〉A’s may not be orthogonal

with or even different from each other, likewise for |i+〉A’s.
|1〉A is a +1-eigenstate of Z ′

A, and some of the |i+〉A’s may
be |1〉A.

Afterwards, we measure Z ′
A, and all this combined is equiv-

alent to measuring the Paulian operator. Expression (33) is
again an adaption of the generalized CNOT from Refs. [60–63].

E. Subsystem codes

Subsystem codes can be considered a generalization of reg-
ular error-correcting codes [37–43]: The code space becomes

HC = HL ⊗ HG ⊆ H. (34)

The information is stored in the logical subsystem HL and the
state of the gauge subsystem HG does not matter.

Proposition 1 is also applicable to subsystem codes,
explicitly:

Corollary 1. The code space of every subsystem code can
be stabilized by operators with properties identical to those
listed in Proposition 1. Hence, after obtaining the Paulian
stabilizer group S, for any nonzero A ∈ L(HG), all elements
in (IL ⊗ A)S leave the encoded state intact.

Let’s provide a simple argument as to why this is true:
According to Ref. [66], with E denoting the set of correctable
errors, for a subsystem code it is possible to find a set F
of “orthogonal” correctable errors that obeys (3), just like
an ordinary error-correcting code. Utilizing F and the corre-
sponding syndrome spaces, we can obtain Paulian stabilizers
by following the steps in Sec. III A.

IV. CONCATENATION OF BINARY CODES

Binary codes with appropriate parameters can be con-
catenated, and we will illustrate how to acquire the Paulian
stabilizer group of the new code, in a similar fashion to Pauli
stabilizer codes [48]. A symbol with sub- or superscript in,
out, or + (+ for “adding”) indicates it belongs to the inner,
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outer, or concatenated codes, respectively, and the sub- or
superscript w means it can be one of those three.

Let them be [[nw, kw]]-codes, and the inner and outer codes
have Paulian stabilizers Zw

i ’s. To concatenate them,

q := nout/kin (35)

should be an integer. Let Hw be the space each code belongs
in, and

H+ = H⊗q
in . (36)

Define the following operators on H+:

Z+
i, j := Iin ⊗ · · · ⊗ Iin︸ ︷︷ ︸

j−1 subsystems

⊗ Z in
i︸︷︷︸

jth Hin

⊗Iin ⊗ · · · ⊗ Iin, (37)

which are independent and commute with each other, and
which stabilize

H⊗q
in,C ⊆ H+, (38)

where Hin,C is the code space of the inner code.
Next, let the logical Pauli operators on the inner code

commute with all Z in
i ’s, and expand every Zout

i in terms of
Pauli operators. Since Hin,C and Hout are composed of kin and
qkin qubits, respectively, regarding every kin qubits of Hout as
Hin,C we can replace each Pauli operator in every Zout

i by the
corresponding logical Pauli operator on the inner code, and
the resultant operator will be denoted by Z+

i . Z+
i ’s together

with Z+
j,k’s are mutually commutative and independent Paulian

operators, composing the stabilizer generators of the concate-
nated code.

How to get Z+
i ’s may be a little hard to comprehend, so

here’s a quick demonstration: Suppose nout = 4 and kin = 2.
As q = 4/2 = 2,

H+ = Hin ⊗ Hin. (39)

If Zout
1 = (X ⊗ X ⊗ Z ⊗ Y + Z ⊗ Z ⊗ X ⊗ I2)/2, then

Z+
1 = (X 1X 2 ⊗ Z1Y 2 + Z1Z2 ⊗ X 1Iin)/2, (40)

where Li denotes the logical L operator of the i-th logical
qubit. In (40), X 1X 2 and Z1Z2 act on the first Hin of (39), and
Z1Y 2 and X 1Iin on the second one. Notice logical operators
acting on different logical qubits commute with one another,
so, e.g., X 1X 2 = X 2X 1. Also a logical identity operator is
simply the identity operator on the system, so in (40) instead
of X 1I2 we had X 1Iin = X 1; we spelled Iin out for clarity.

The methods to find the parameters and codewords of con-
catenated codes are well established [1,44,67,68], on which
we will provide a short discussion in Appendix B.

V. EXAMPLES

Here we will show the Paulian stabilizers of some codes,
or how to find them.

A. Transformed from Pauli stabilizer codes

Given a Pauli stabilizer code that can correct a set of
operators E with stabilizers ZS

i , we can perform a unitary
transformation U on the system, which can be seen as a

change of orthonormal basis. The transformed stabilizer gen-
erators

ZS
i

′ = UZS
i U −1 (41)

will be Paulian, and they can correct a set of operators
UEU −1. If the unitary transformation is local in each (physi-
cal) qubit, the distance shall stay the same.

For illustration, consider an n-qubit repetition code with
stabilizers [48,69]

Z1Z2, . . . , Zn−1Zn, (42)

which can fix an X error on every qubit. We can construct a
generalized repetition code for normal operators with

Lemma 2. An operator on C2 is normal if and only if it
can be a linear combination of the identity and a Paulian
operator that is not proportional to the identity. Note as the
Paulian operator is not proportional to the identity, it has two
eigenvalues.

The proof can be found at Appendix E. From the discussion
in Secs. II A and II B, the Paulian operator in Lemma 2 can be
chosen to be self-adjoint so that it has eigenvalues 1 and −1.

By this lemma, consider any normal operator E = aI + bV
on C2, where a, b ∈ C and V is self-adjoint and Paulian. After
obtaining V , as X and V have the same spectrum, X and V
are unitarily similar via some unitary U ; in other words, we
can perform local unitary transformations Vi such that Vi =
UiXiU

−1
i for all the (physical) qubits, where the subscript i

indicates which qubit the operator act on nontrivially. In this
way, we acquire Paulian stabilizers that can correct E on a
single qubit:(

UiZiU
−1
i

)(
Ui+1Zi+1U

−1
i+1

)
, i = 1, . . . , n − 1. (43)

Hence, we can correct any error that is a normal operator on
a single qubit; specifically, the normal operator can be any
unitary operator.

B. Bosonic codes

Let’s first consider this bosonic binomial code [70–72]:

|1〉 := |2〉, |−1〉 := (|4〉 + |0〉)/
√

2, (44)

which was experimentally demonstrated in Ref. [71] and can
correct orthogonal errors I and the annihilation operator a.
The space can be partitioned according to parity [70–73]—
The code space HC ⊂ H(1) has even parity while aHC ⊂
H(−1) has odd parity. With N := a†a, the parity operator

ZS = eiπN (45)

is actually Paulian (see Sec. II B):
(1) It is clear that (45) is unitary.
(2) Because its eigenvalues are ±1, it is an involution.
(3) Finally, because {|2n − 2〉}n∈N and {|2n − 1〉}n∈N are

the bases of its ±1-eigenspaces, their orthonormal bases have
the same cardinality. Namely we can establish a bijection be-
tween {|2n − 2〉}n∈N and {|2n − 1〉}n∈N . The two eigenspaces
are thus isomorphic.

The parity operator is Paulian on the whole space, i.e.,
H′ = H, which is infinite-dimensional. To measure the syn-
drome, the controlled phase gate I ⊗ | − 1〉〈−1| + eiπN ⊗
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|1〉〈1| [73,74] is the controlled operations (27) and (30) along
with appropriate rotation on the ancilla.

The next one is the bosonic code from Ref. [75]:

|1〉 := |22〉, |−1〉 := (|40〉 + |04〉)/
√

2, (46)

which protects up to one photon loss, and we have the follow-
ing orthogonal correctable errors [72,75]:

E = {I, A1,1, A1,2}, (47)

where Ai, j is the damping operator for which the jth mode
losing i photons (hence I corresponds to A0,1 and A0,2). We
can again choose parity operators as the Paulian stabilizers:

ZS
1 = eiπN1 , ZS

2 = eiπN2 . (48)

The correctable errors I , A1,1 and A1,2 will have syndromes
(I ) = (1, 1), (−1, 1), and (1,−1), respectively. Note in this
case, we not only extend the domains to the entire space but
also enlarge the Paulian group as 2 = �log2 3� > �log2 3� =
1; see Secs. III B and III C. Photon loss for the bosonic four-
legged cat code can also be detected by parity [72,76–78], so
we also have a Paulian stabilizer for such a code.

Finally, in Appendix G we will have a brief discussion
about Gottesman-Kitaev-Preskill codes [72,79,80], where we
will show a way to construct commutative Paulian stabilizers
for these codes and issues with them.

C. Codeword stabilized code

For an n-qubits system, a codeword stabilized code
[49,50,81] is obtained in the following way:

(1) We start with a maximally linearly independent and
abelian subgroup of a Pauli group (please refer to Appendix D
for the exact meaning), called the word stabilizer.

(2) We also need a set of Pauli operators {Wi}, called the
word operators.

(3) As the word stabilizer is maximally linearly inde-
pendent and abelian, each of its simultaneous eigenspace is
one-dimensional, i.e., it stabilizes a unique quantum state; let
it be |ψ〉.

(4) The codewords are then Wi|ψ〉’s; i.e., the code space is
span{Wi|ψ〉}.

The following result can be utilized to construct Paulian
stabilizers of a codeword stabilized code:

Corollary 2. For a codeword stabilized code:
(1) If P1 and P2 are correctable Pauli errors, they are either

orthonormal or act identically on the code space bar a multi-
plication factor.

(2) Assuming the code has distance d , it is nondegenerate
[1,2] if and only if every operator in the word stabilizer except
I has distance no smaller than d .

In Appendix F, specifically Sec. F 2, we provide a pro-
cedure to construct Paulian stabilizers that is applicable to
every codeword stabilized code; here is the essence: We first
determine whether there exist Paulian stabilizers that can cor-
rect all the relevant errors by (20) or (24); then according to
Corollary 2 we can choose linearly independent Pauli errors
as orthonormal correctable errors, and to be definite we can
check whether the code is nondegenerate again by Corollary
2. We then use the simultaneous eigenspaces of the word

stabilizer to build syndrome spaces, which lead to Paulian
stabilizers.

An example would be the ((9, 12, 3)) code from
Refs. [50,82]: Each element of the word stabilizer except I
has at least weight 3, so the code is nondegenerate according
to Corollary 2, and we can choose all linearly independent
weight-1 Pauli errors, along with I as the orthonormal errors
F of (2). By (23),

|F | = 3 × 9 + 1 = 28,

so (20) [or (24)] is satisfied, and we can construct a Paulian
stabilizer group to correct all the relevant errors, generated by
log2 |F | = 5 Paulian operators. Furthermore, we can extend
the stabilizers so that each is Paulian on the whole space.

In fact, “Paulian stabilizers” for this code have already
been found in Ref. [82], among which some are Pauli.3 Note,
however, that the “Paulian stabilizers” from Ref. [82] possess
a different structure from those presented in this work: The
Paulian stabilizers of Proposition 1 are elements of a faithful
representation of the Pauli group, so they are reminiscent
of Pauli stabilizers of a Pauli stabilizer code. On the other
hand, those from Ref. [82] are not, so different sequences of
measurements are needed for different errors, and more than
five observables are needed to detect all the errors, whereas
with the Paulian stabilizers of Proposition 1 we require only
five commutative observables for measurement. Even though
Paulian stabilizers like those in Ref. [82] are interesting and
useful per se, we will not delve into them. More details about
this code can be found in Appendix F 4.

Now let’s consider the ((5, 6, 2)) code from Refs. [50,83].
Due to its distance, this code is an error-detecting code. It can
be found that, with P1 denoting the set of all weight-1 Pauli
errors, we have

H⊥
C =

∑
P∈P1

PHC, (49)

which implies for the stabilizers to detect all errors in P1, we
must have

HC = H(I ), (50)

H⊥
C =

⊕
(t )∈T\{(I )}

H(t ), (51)

where T is the set of all syndromes; see Sec. III A. For the
stabilizers to be Paulian and commutative, each syndrome
space must have the same dimension, so (50) and (51) together
imply

dim H = 2m dim HC (52)

for some positive integer m, which is impossible for this
system as dim HC = 6 and dim H = 25 = 32.

Hence, we cannot find commutative Paulian stabilizers
for the ((5, 6, 2)) code to detect all weight-1 errors. This is
one of the cases where Paulian stabilizer groups may not be
suitable for error correction or detection; cf. the discussion in

3That this code can be stabilized by nontrivial Pauli operators can
also be verified with Corollary 3 in Appendix F.
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Sec. III B. Regardless, because this code has low dimensions,
it is easier to demonstrate how to find its Paulian stabilizers
as every step can be made explicit without being too clumsy;
in addition, we can show how to adapt our approach to error-
detecting codes. Details can be found in Appendix F 3.

VI. DISCUSSION AND CONCLUSION

We showed that every quantum error-correcting code, in-
cluding the subsystem code, can be stabilized by operators
which are Paulian and commutative to the restriction of a
subspace H′, which may or may not be the entire system
H (Proposition 1 and Corollary 1), with examples given in
Sec. V. Also, we showed that the error syndrome can be
obtained by measuring the Paulian stabilizers ZS

i ’s, which can
be achieved by performing controlled operations CZS

i ’s, so the
quantum circuits for conducting ZS

i ’s can be transferred to
those for measuring them (Sec. III D).

In terms of tensor product structure [84–86], H′ is com-
posed of m stabilizer qubits [38] generated by the Paulian
operators, and a subsystem isomorphic to the syndrome
spaces, whose dimension k′ is no less than dim HC, so we
can embed HC into them. This generalizes the observation
made in Refs. [38,86], that for a system composed of qubits,
commutative Paulian operators can partition the system into
virtual qubits; if the Paulian operators are Pauli it becomes a
Pauli stabilizer code.

Paulian stabilizers may be employed to realize codes that
are not Pauli stabilizer codes, showcased in Sec. V B. As
discussed in Sec. III B, (20) is the condition for Paulian stabi-
lizers to cover all correctable errors. Hence, binary codes may
in particular benefit from the existence of Paulian stabilizers,
because (20) is always satisfied; the same is true in the case
where the code space is finite-dimensional while the entire
system is infinite-dimensional, such as the bosonic codes in
Sec. V B. Furthermore, as we have demonstrated how to ob-
tain the Paulian stabilizer group of a binary concatenated code
in Sec. IV, it may help us obtain a code with higher distance
along with the means to realize it.

There are questions still left unanswered that may be
worthy of further investigation: There is no unique Paulian
stabilizer group for a code, and the ideal Paulian stabilizers
are those that are easy to measure or conduct. With a uni-
versal set of quantum gates, we can in theory approach them
[4,48], but it may need many gates to implement. Hence, for
Paulian stabilizers to be useful, how to find the ideal ones is
a key issue, which depends on the physical system in ques-
tion. Also, we showed the existence of Paulian stabilizers for
error-correcting codes, but knowing this, can it help us find
nontrivial new codes by using Paulian operators that are not
Pauli as the stabilizers or correctable errors?
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APPENDIX A: GENERALIZED CNOT

Consider any self-adjoint Paulian operator P on H, and an
ancilla qubit HA

∼= C2. We define the corresponding general-
ized CNOT as the following unitary operator on H ⊗ HA:

GCNOT := �− ⊗ XA + �+ ⊗ IA, (A1)

where �± are the orthogonal projections onto the ±1-
eigenspaces of P and A refers to the ancilla qubit. Here let’s
have a quick discussion about why GCNOT is equal to

IH ⊗ �A
+ + P ⊗ �A

−, (A2)

where

�A
± := |±〉A〈±|A (A3)

are orthogonal projections onto the ±1-eigenspaces of XA.
If P has only one eigenvalue, then P is either IH or −IH.

For the former, it is fairly easy to see both (A1) and (A2) are
IH ⊗ IA, so they are identical. For the latter, (A1) becomes
IH ⊗ XA, whereas (A2) becomes

IH ⊗ �A
+ − IH ⊗ �A

− = IH ⊗ (�A
+ − �A

−)

= IH ⊗ XA, (A4)

so they are again the same.
If P has two eigenvalues, namely, ±1, then we have

�− ⊗ XA + �+ ⊗ IA = �− ⊗ (�A
+ − �A

−)

+ �+ ⊗ (�A
+ + �A

−)

= (�+ + �−) ⊗ �A
+

+ (�+ − �−) ⊗ �A
−

= IH ⊗ �A
+ + P ⊗ �A

−, (A5)

which is (A2).
In fact, as the relations above do not depend on the di-

mension of the eigenspaces of XA, we can replace the ancilla
qubit with a system with even dimension and XA with another
Paulian operator, and identical results will hold.

Second, let’s try to answer this question: Given a Paulian
operator P, is the generalized CNOT of (A1) the only [besides
a global phase factor or a phase difference between the two
terms on the right-hand side of (A1)] unitary operator that can
achieve what we want of it? Specifically, let GCNOT denote the
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“most general” GCNOT for P; the property we desire is

(I ⊗ �A
+)GCNOT(|ψ〉 ⊗ |1〉) = eiθ+ (�+|ψ〉) ⊗ |1〉,

(I ⊗ �A
−)GCNOT(|ψ〉 ⊗ |1〉) = eiθ− (�−|ψ〉) ⊗ |−1〉, (A6)

for every |ψ〉 ∈ H, where θ± ∈ [0, 2π ). Thus,

GCNOT(|ψ〉 ⊗ |1〉) = (I ⊗ �A
+ + I ⊗ �A

−)GCNOT(|ψ〉 ⊗ |1〉)

= eiθ+ (�+|ψ〉) ⊗ |1〉
+ eiθ− (�−|ψ〉) ⊗ |−1〉. (A7)

This defines the action of GCNOT on H ⊗ |1〉,4 so we can
complete it by defining it on the orthogonal complement,
namely, H ⊗ | − 1〉. Note

GCNOT(H ⊗ |1〉) = H+ ⊗ |1〉 ⊕ H− ⊗ |−1〉, (A8)

where H± are the ±1-eigenspaces of the Paulian operator P.
As GCNOT is unitary,

GCNOT(H ⊗ |1〉) ⊥ GCNOT(H ⊗ |−1〉), (A9)

which suggests

GCNOT(H ⊗ |−1〉) = H− ⊗ |1〉 ⊕ H+ ⊗ |−1〉. (A10)

GCNOT|H⊗|−1〉 can therefore be any unitary map from H ⊗ | −
1〉 to H− ⊗ |1〉 ⊕ H+ ⊗ | − 1〉; a simple example is

GCNOT(|ψ〉 ⊗ |−1〉) := (U−�−|ψ〉) ⊗ |1〉
+ (U+�+|ψ〉) ⊗ |−1〉, (A11)

where U± are any unitary maps from H± to themselves (i.e.,
operators); we may also choose

GCNOT(|ψ〉 ⊗ |−1〉) := (U ′
+�+|ψ〉) ⊗ |1〉

+ (U ′
−�−|ψ〉) ⊗ |−1〉, (A12)

where U ′
± are any unitary maps from H± to H∓. (A1) is a

special case of (A11) with U± being identities and θ± of (A6)
both being 0.

APPENDIX B: CODE PARAMETERS AND CODEWORDS
OF A CONCATENATED BINARY CODE

Because H+ is H⊗q
in and there are q(nin − kin) of Z+

i, j’s and
nout − kout of Z+

i ’s,

n+ = ninq, (B1)

k+ = ninq − q(nin − kin ) − (nout − kout) = kout. (B2)

When kout = kin = 1, n+ = ninnout and k+ = 1, as expected
[2,48]. That k+ = kout is also obvious from the way the code-
words are obtained, as will be shown below.

To find the distance, in the simple case of kin = 1, to change
the logical state of the concatenated code an operator has to
act nontrivially on at least dout inner logical qubits; for the
logical state of the inner code to change, the operator needs
to act nontrivially on at least din physical qubits of Hin, so the
distance is at least doutdin [1,2,67].

4H ⊗ |1〉 and H ⊗ span(|1〉) are identical, so the former is a space
as well.

More generally:
(i) To change the logical state of the concatenated code at

least dout inner logical qubits should be acted upon nontriv-
ially.

(ii) Each Hin subsystem contains kin inner logical qubits.
(iii) To change the logical state of an Hin system, i.e., the

state of its logical qubits, at least din physical qubits need to
be acted on nontrivially.

Therefore, the distance of the concatenated code satisfies
[1,2,67]

d+ � �dout/kin�din. (B3)

We can obtain the codewords given those of the outer
and inner codes. For example, say that (|1,−1,−1, 1〉 + | −
1,−1,−1,−1〉)/

√
2 is a codeword of the outer code, and the

inner code has two logical qubits. This codeword will become

(|1,−1〉 ⊗ | − 1, 1〉 + | − 1,−1〉 ⊗ | − 1,−1〉)/
√

2,

where |i, j〉 ∈ Hin,C are logical states of the inner code, i for
the first logical qubit and j for the second one.

So far we have taken the outer code as composed of nout

qubits, but we can treat it as composed of q subsystems each
with dimension dim Hin,C instead. We can then follow the
standard procedure for finding the codewords and parameters
of a concatenated code as in, e.g., Refs. [1,44,67,68]: Replac-
ing each dim Hin,C-dimensional subsystem of the outer code
by Hin, the concatenated code hence has dim H+ = (2nin )q

and dim H+,C = 2kout . The distance is no smaller than the
product of that of the outer code and that of the inner one; note
as compared to when it is regarded as composed of qubits, the
distance of the outer code now should be reduced by a factor
of kin because each of its q subsystems is composed of kin

qubits.

APPENDIX C: PHASELESS GROUP

For a group of operators G containing {I,−I, iI,−iI} as a
subgroup, we define

Ĝ := G/{I,−I, iI,−iI}. (C1)

As {I,−I, iI,−iI} is clearly normal, Ĝ is a quotient group
[87]. Specifically, for the Pauli group P̂n can be regarded as a
“phaseless” version of the Pauli group: Abusing the language,
we will regard the coset representatives as elements of P̂n;
consequently, we will also call P̂n a Pauli group and its ele-
ments Pauli operators. By removing the phases, P̂n becomes
linearly independent; in particular, P̂n is a basis of L(C2n

)
[1,31,32]. The phaseless Pauli group P̂1 is isomorphic to the
Klein four-group and P̂n is isomorphic to the direct product of
n copies of the Klein four-group [88].

For the same reason as why we introduced the phase-
less Pauli group, given a subgroup of a Pauli/Paulian group,
it is convenient to consider the phaseless version of it. As
{I,−I, iI,−iI} may not always be in such a subgroup, we
define the following:

(1) If G has {I,−I, iI,−iI} as a subgroup, then its phase-
less counterpart is defined like before, i.e., (C1).

(2) If iI /∈ G but −I ∈ G, then

Ĝ := G/{I,−I}. (C2)

032414-9



JHIH-YUAN KAO AND HSI-SHENG GOAN PHYSICAL REVIEW A 108, 032414 (2023)

(3) Finally, if −I /∈ G,

Ĝ := G. (C3)

Like before, we take the coset representatives as elements
of such a quotient group, which is the reason why we “de-
fined” Ĝ as G in (C3). Correspondingly there is arbitrariness
in the choice of its elements: Indeed, saying P ∈ Ĝ is no
different from saying P ∈ G. It is only when we compare sets
does it make a difference: For example, if we say a set S
is equal to Ĝ, then there should exist no two elements in S
that differ by a nontrivial multiplication factor; cf. (C3) and
later (D1).

APPENDIX D: COMMUTATIVITY OF PAULI SUBGROUPS

Here is a property concerning subgroups of Pauli groups:
Lemma 3. For any subgroup G of a Pauli group, −I /∈ G

if and only if G is linearly independent, and only if G is
composed wholly of involutions and is abelian.

Proof. Suppose −I ∈ G. Being a subgroup of the Pauli
group, every element of G is either an involution or a counter-
involution. If A ∈ G were a counterinvolution, then A2 = −I
would also be in G, a contradiction, so every element is
involutory. Next, a pair of Pauli operators either commute
or anticommute. If A, B ∈ G anticommuted, ABA−1 = −B =
(−I )B ∈ G, so ABA−1B−1 = −I ∈ G, a contradiction. Hence
every element in G commutes with one another, meaning G is
abelian. Note that because −I is an involution and commutes
with all operators, G being abelian and comprising purely
involutions does not imply −I ∈ G

Because {I,−I} is linearly dependent, clearly a linearly
independent subgroup should not contain −I . The other way
around, assume −I /∈ G. Since the phaseless Paulian group
(or the collection of its coset representatives) is a basis
[1,31,32], any subset of it is also linearly independent. In other
words, any subset of a Pauli group, if no element differs from
another by a multiplication factor, is linearly independent. As
(iI )2 = −I , −I /∈ G implies that iI and −iI are not in G either;
if A ∈ G and aA ∈ G for some nontrivial multiplication factor
a (namely, a is −1 or i or −i), then aI ∈ G because A−1(aA) =
aI , a contradiction. Hence G is linearly independent. �

As −I and ±iI commute with all operators, an abelian
subgroup of Pn can contain the subgroup {I,−I} or
{I,−I, iI,−iI}, in which case the abelian subgroup is linearly
dependent. To get rid of these extra factors, we can take the
phaseless group of it, as we did in (C1). When we refer
to a subgroup S of a Pauli, or Paulian, group as maximally
linearly independent and abelian, it means that we cannot
add any more Pauli or Paulian operators to it while keeping
the subgroup both linearly independent and abelian; to put it
another way, S is abelian and

Ŝ = S. (D1)

Some properties of such a group are revealed by Lemma 3;
in particular this lemma shows that for a Pauli or Paulian5

subgroup to be linearly independent, it must be abelian, so

5In this work a Paulian group is unitarily similar to a “Pauli” group
(see Sec. III A), so Lemma 3 also holds for Paulian subgroups.

calling it abelian is actually redundant, but it helps show off
this important attribute.

APPENDIX E: PROOF FOR LEMMA 2

If: Let A = aI + bU be an operator for which a and b are
scalars and U is a unitary operator. Since I and U commute,
apparently A†A = AA†. Note this holds true whether A is on
C2 and whether U is Paulian.

Only if: Let A be a normal operator on C2. Because it is
normal, it is unitarily diagonalizable and the eigenspaces are
orthogonal. If there is only one eigenvalue, then A is propor-
tional to I; if it has two different eigenvalues c1 and c2, we
can solve the equations c1 = a + b and c2 = a − b. Suppose
A becomes diagonal under a unitary V , which in terms of a
matrix means

VAV −1 =
(

a + b 0
0 a − b

)
. (E1)

Consider the matrix of Pauli Z:

Z =
(

1 0
0 −1

)
; (E2)

we have VAV −1 = aI + bZ , so A = aI + bV −1ZV . Because
V −1ZV is unitarily similar to Z , it has the same spectrum
{1,−1} and is Paulian.

APPENDIX F: CODEWORD STABILIZED CODES

First, we will establish some properties of codeword
stabilized codes that are essential in constructing Paulian sta-
bilizers in Sec. F 1, and then we will provide the steps to do so,
and details of the two codes from Sec. V C. In the following
discussion we will assume the system is composed of n qubits;
please refer to Sec. V C for the relevant terminologies and how
codeword stabilized codes are constructed.

In this section we will express Pauli operators in the fol-
lowing way, e.g.,

XIZ = X ⊗ I ⊗ Z, (F1)

and suppose the system is composed of three qubits:

X2 = I ⊗ X ⊗ I = IX I. (F2)

In addition, I in this subsection will refer to the identity
operator on a single qubit. To distinguish the identity operator
on the whole system from those on individual qubits, we will
label the former as In, assuming the whole system is composed
of n qubits, so, e.g.,

I3 = III. (F3)

1. Preliminaries

Let Sw denote the word stabilizer. In general we will con-
sider a particular generating set g of Sw, which will be taken as
a tuple of generators, so we can associate each simultaneous
eigenspace of Sw with a unique n-tuple of ±1 that is the
simultaneous eigenvalues with respect to g, just like the error
syndromes in relation to Paulian stabilizers. Such a tuple of
simultaneous eigenvalues will be denoted by t̂ , and the set
of all these tuples by W . Like the tuples of syndromes (t ),
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we will use t̂ to label spaces and the like, e.g., Ht̂ is the
t̂-simultaneous eigenspace of g, which, to put another way, is
a bijective map from W to the collection of all simultaneous
eigenspaces of Sw or g:

W � t̂ �→ Ht̂ ; (F4)

cf. the syndrome map in Sec. III A.
Let the state stabilized by the word stabilizer be |s〉, and

W be any Pauli operator in Pn. Due to commutativity and
anticommutativity, for any simultaneous eigenvector of a set
or group of commutative Pauli operators, after acted upon by a
Pauli operator it is still a simultaneous eigenvector of the same
set or group of Pauli operators, so W |s〉 is also a simultaneous
eigenvector of Sw, which implies the following:

Lemma 4. Given a codeword stabilized code, for two Pauli
operators P1, P2 ∈ Pn, either P1|s〉 ∝ P2|s〉 or P1|s〉 ⊥ P2|s〉.
Hence, either P1HC ⊥ P2HC or P1HC ∩ P2HC �= {0}, i.e.,
P1HC ⊥ P2HC if and only if P1HC ∩ P2HC = {0}.

Proof. Since P1|s〉 and P2|s〉 are both simultaneous eigen-
vectors of Sw, and because each simultaneous eigenspace is
one-dimensional, they are either in the same eigenspace, i.e.,
proportional or orthogonal. Likewise, as HC is an orthogonal
direct sum of simultaneous eigenspaces of Sw, so are P1HC

and P2HC. Again, because the simultaneous eigenspaces of
Sw are one-dimensional, either P1HC ⊥ P2HC or P1HC ∩
P2HC �= {0}. �

This lemma leads to
Corollary 3. For a codeword stabilized code, a Pauli oper-

ator P obeys P|C ∝ IC if and only if P ∈ Sw{In,−In, iIn,−iIn}
and P commutes, or anticommutes, with all the word oper-
ators at the same time. In other words, a Pauli operator P
stabilizes the code if and only if

(1) Either P ∈ Sw and P commutes with all the word
operators

(2) Or P ∈ −Sw and P anticommutes with all the word
operators.

Clearly, if In is a word operator, the only possibility is P
commuting with all the word operators.

As we discussed in Sec. D, because Sw is a max-
imal linearly independent and abelian subgroup of Pn,
Sw{In,−In, iIn,−iIn} is a maximal abelian subgroup. A Pauli
stabilizer for a codeword stabilizer code that is guaranteed to
exist is I . As shown in Ref. [50], Pauli stabilizer codes are
a special case of codeword stabilizer codes, which of course
have nontrivial Pauli stabilizers.

Proof. Given a Pauli operator W ∈ Pn, for W |s〉 to be an
eigenvector of another Pauli operator P, P must commute
with all elements in Sw as W |s〉 is a simultaneous eigenvector
of Sw; because Sw is a maximal linearly independent and
abelian subgroup of Pn, it implies P ∈ Sw{In,−In, iIn,−iIn}.
Furthermore, if PW = ±W P, PW |s〉 = ±W P|s〉, which leads
to the requirement on commutation relations between P and
the word operators. The other direction is pretty obvious and
hence omitted. �

An error E is detectable if and only if E satisfies [48,50]

�CE�C ∝ �C. (F5)

The following lemma considers a property of detectable er-
rors:

Lemma 5. Let E be a unitary operator which obeys
�CE�C = a�C for some scalar a; note |a| � 1 by unitarity
of E . For such an operator we can find the following:

(i) |a| = 0 if and only if EHC ⊥ HC, in which case
EHC ∩ HC = {0}.

(ii) |a| = 1 if and only if E |C = eiθ IC for some real θ , in
which case EHC = HC.

(iii) |a| ∈ (0, 1) if and only if EHC and HC are not orthog-
onal and EHC ∩ HC = {0}.

Correspondingly, the following conditions are equivalent:
(I) |a| = 1.
(II) E |C = eiθ IC for some real θ .
(III) EHC = HC.
(IV) EHC ∩ HC �= {0}.
Proof. (i) is obvious.
(ii) It is apparent that E |C = eiθ IC implies a = eiθ and thus

|a| = 1. To show the converse, we first note

||�C|w〉|| � |||w〉|| (F6)

which becomes an equality if and only if |w〉 ∈ HC. Now,
consider any |v〉 ∈ HC and let a = eiθ we have

|||v〉|| = ||�CE�C|v〉||
� ||E |v〉|| = |||v〉||, (F7)

implying E |v〉 ∈ HC. As this is true for all |v〉 ∈ HC and E is
unitary, we have EHC = HC. Next, since eiθ |v〉 = �CE |v〉 =
E |v〉 for all |v〉 ∈ HC, we obtain E |C = eiθ IC.

(iii) If EHC ∩ HC = {0}, for any nonzero |v〉 ∈ HC, be-
cause E�C|v〉 = E |v〉 /∈ HC,

|a| |||v〉|| = ||�CE�C|v〉||
< ||E |v〉||
= |||v〉||, (F8)

implying |a| < 1, and because EHC and HC are not orthog-
onal, |a| > 0. On the contrary, when |a| ∈ (0, 1), since a �=
0, EHC must not be orthogonal to HC. Should EHC and
HC have nontrivial intersection, there exist nonzero |v〉 ∈ HC

such that E |v〉 ∈ HC, and for such |v〉, we have ||E�C|v〉|| =
||E |v〉|| = |||v〉||, so

|a| |||v〉|| = ||�CE�C|v〉|| = |||v〉||, (F9)

a contradiction; therefore EHC ∩ HC = {0}.
Let’s go on to show why conditions (I) to (IV) are equiva-

lent:
(1) By (ii), (I) → (II), and (II) → (III).
(2) Clearly (III) → (IV).
(3) Because only when |a| = 1 do EHC and HC intersect

nontrivially, (IV) implies (I).
This completes the proof. �
Corollary 4. For a codeword stabilized code:
(a) Every detectable Pauli error P obeys either PHC ⊥ HC

or P ∈ Sw{In,−In, iIn,−iIn}; in the latter case P|C ∝ IC and it
is hence also correctable.

(b) For every pair of correctable Pauli errors P1 and
P2, either P1 and P2 are orthonormal or there exists S ∈
Sw{In,−In, iIn,−iIn} such that P2 = P1S; in the latter case
S|C ∝ IC so P2|C ∝ P1|C.
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Note that a correctable unitary operator is “normalized”
according to our definition, so a correctable Pauli error is
normalized.

Proof. (a): As the Pauli error P is detectable, we will
make use of Lemma 5: If PHC = HC, it obeys condition
(ii) of Lemma 5, and according to Corollary 3 it must be in
Sw{In,−In, iIn,−iIn}; if not, it satisfies either (i) or (iii) of
Lemma 5. As Lemma 4 shows, (iii) cannot occur, so only (i)
and (ii) are possible, completing the proof for (a).

(b): For correctable Pauli operators P1 and P2, they sat-
isfy �CP†

1 P2�C ∝ �C. By Lemma 4, either P1HC ⊥ P2HC or
P1HC ∩ P2HC �= {0}. If it is the former, �CP†

1 P2�C = 0, i.e.,
they are orthonormal. If the latter, �CP†

1 P2�C �= 0, in which
case we must have P1HC = P2HC and they must act identi-
cally except for a multiplication factor on HC, else one could
not invert the action of the other on HC. As S := P−1

1 P2 is
also a Pauli operator and S|C ∝ IC, S ∈ Sw{In,−In, iIn,−iIn}
by Corollary 3. �

Corollary 2 is (iv) of the following corollary combined
with (a) of Corollary 4; below “wt” refers to the weight of
an operator:

Corollary 5. Consider an n-qubit codeword stabilized code
with distance d , for which wtS � d for all S ∈ Sw \ {In}.

(i) If P ∈ Pn has wtP < d and is not proportional to In,
then In and P are orthogonal.

(ii) For P1, P2, P1P2 ∈ Pn, suppose that their weights are
all less than d and that they are linearly independent; then
elements in {In, P1, P2, P1P2} are mutually orthogonal.

(iii) For a pair of operators in Pn, if their weights are both
no higher than �(d − 1)/2� and if they are not proportional to
each other, they are orthonormal.

(iv) The code is nondegenerate [1,2]: Indeed, for a code-
word stabilized code with distance d , it is nondegenerate if
and only if wtS � d for all S ∈ Sw \ {In}.

Note this corollary does not imply that a codeword sta-
bilized code whose word stabilizers obey the condition on
weights above will have distance d . The code having distance
d is part of the assumption. Also, it may seem weird at first
sight that word operators did not show up, even though they
are essential in formulating a codeword stabilizer code. Their
roles here are implicit: As we have assumed the code has
distance d , Pauli errors of certain weights must obey specific
conditions with the word stabilizer and word operators as
listed in Ref. [50].

Proof. (i) Because P is not in Sw{In,−In, iIn,−iIn} (due to
its weight) and is detectable, Corollary 4 implies P and In are
orthogonal.

(ii) First, due to their weights and linear independence,6

P1, P2, P1P2 are not in Sw{In,−In, iIn,−iIn}. Let G be the
group generated by P1, P2, and their adjoints. By linear in-
dependence and the fact that the adjoint of a Pauli operator
differs at most by a multiplication factor, we have

Ĝ = {In, P1, P2, P1P2}. (F10)

6By linear independence none of them can be proportional to In.

By Corollary 4 or (i) of this corollary, for all O ∈ Ĝ except In,
�CO�C = 0, so for all O1, O2 ∈ Ĝ with O1 �= O2

�CO†
1O2�C = 0, (F11)

because O†
1O2 is also in G and is not proportional to In; O1

and O2 are therefore orthogonal.
(iii) Suppose we have P1, P2 ∈ Pn that are not propor-

tional to each other and whose weights are no higher than
�(d − 1)/2�. If one of them is proportional to In, then they
are orthonormal by (i); else P1P2 will not be proportional to In

and wtP1P2 < d , so by (ii) P1 and P2 are orthonormal.
(iv) By (iii), the condition on weights is a sufficient condi-

tion for nondegeneracy. To show it is a necessary condition,
suppose there exists S ∈ Sw \ {In} whose weight is less than
d . From its weight, S is detectable, and because it is in Sw,
it must act like an identity on the code space (according to
Corollary 4). Then there would exist nontrivial Pauli oper-
ators P1 �= P2 for which wtPi � �(d − 1)/2�, i = 1, 2 such
that P1 = P2S, so P1 and P2 act the same on the code space,
implying the code is degenerate. �

2. Constructing Paulian stabilizers

In this part we will discuss how to construct Paulian sta-
bilizers for codeword stabilized codes, where we will make
heavy use of Ht̂ ’s, i.e., the simultaneous eigenspaces of Sw.
Unlike the proof for Proposition 1, we will not attempt to build
the minimal group first and expand upon it. A quick reminder:
g denotes a tuple of generators of Sw and W is the collection
of all the tuples of simultaneous eigenvalues with respect to
g; please refer back to the start of Sec. F 1. Let’s lay out the
procedure:

(A.1) First, check if (20) is satisfied to see whether it is
possible to correct all errors with Paulian stabilizers. Here we
will assume this is true; we then choose a set F of orthonormal
correctable Pauli errors. For a code with a given distance, we
can use (24), and select linearly independent Pauli errors with
weight no higher than �(d − 1)/2� as orthonormal correctable
errors; specifically, if the code is nondegenerate, which can be
easily checked via Corollary 5, we can choose all of them.

(A.2) As discussed in the proof for Lemma 4, PHC is a
direct sum of simultaneous eigenspaces of Sw for any Pauli
operator P; hence for F ∈ F , let WF denote the subset of W
such that

FHC =
⊕

t̂∈WF

Ht̂ . (F12)

WF can be found out by making use of the commutation
relations between the word operators and g, and those between
the word operators and F .

(A.3) Since ⊕
F∈F

FHC =
⊕
F∈F

⊕
t̂∈WF

Ht̂ , (F13)

and since for all F1, F2 ∈ F

WF1 ∩ WF2 = ∅ if F1 �= F2, (F14)
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where ∅ refers to the empty set, with

W⊥ := W \
⋃
F∈F

WF , (F15)

we have ⎛
⎝⊕

F∈F
FHC

⎞
⎠⊥

=
⊕

t̂∈W⊥

Ht̂ . (F16)

The set W⊥ and the associated simultaneous eigenspaces will
be used as “spares.”

(A.4) Let m = �log2 |F |�, and T , as before, be the col-
lection of all m-tuples of ±1, i.e., syndromes. Choose a
unique syndrome for each error in F , namely, a one-to-one
map fsym : F → T , the “syndrome map,”7 and we require
fsym(In) = (I ), where (I ) is the tuple whose components are
all 1. If m > log2 |F |, there will be “excess” syndromes that
do not correspond to correctable errors; i.e., they are members
of

T \ fsym(F ). (F17)

The total number of excess syndromes is

|T \ fsym(F )| = |T | − | fsym(F )| = 2m − |F |. (F18)

If m = log2 |F |, then this already gives us the “minimal”
Paulian stabilizers; see Sec. III A and A.6 on how to define
Paulian stabilizers given the syndrome spaces.

(A.5) Now let’s designate all the syndrome spaces. The
properties we desire of them are (cf. Sec. III C):

(a) The syndrome space associated with each error F ∈
F should contain FHC:

FHC ⊆ H fsym (F ) ∀F ∈ F . (F19)

(b) The syndrome spaces are orthogonal: For any two
distinct syndromes (s) and (t ),

H(s) ⊥ H(t ). (F20)

(c) All syndrome spaces are isomorphic:

H(s)
∼= H(t ) ∀(s), (t ) ∈ T . (F21)

To achieve them, for every (t ) ∈ T we choose a subset W(t )

of W and demand the syndrome spaces be

H(t ) :=
⊕

ŝ∈W(t )

Hŝ; (F22)

W(t )’s shall satisfy the following conditions:
(a) To comply with (F19), for all (t ) ∈ fsym(F ) we re-

quire

WF(t ) ⊆ W(t ); (F23)

see the definition of WF for all F ∈ F in (F12).
(b) To satisfy (F20),

W(s) ∩ W(t ) = ∅ ∀(s) �= (t ). (F24)

7The syndrome map in Sec. III A was defined on F ′ instead of F ,
so it was bijective besides injective.

(c) To obey (F21),

|W(s)| = |W(t )| ∀(s), (t ) ∈ T . (F25)

Since dim Ht̂ = 1, |W(t )| is the dimension of each syn-
drome space, and |W(t )| − dim HC can show how much we
extend the domain of the Paulian stabilizers.
Note

W(t ) \ WF(t ) ⊆ W⊥ ∀(t ) ∈ fsym(F ), (F26)

W(t ) ⊆ W⊥ ∀(t ) ∈ T \ fsym(F ), (F27)

so the spares—W⊥ of (F15) and the associated eigenspaces—
are used to fill in each syndrome space. Finally, if the
stabilizers are to be Paulian on the entire space H, the dimen-
sion of each syndrome space is

dim H(t ) = 2n/2m = 2n−m, (F28)

i.e., each is composed of n − m qubits.
(A.6) With the syndrome spaces specified, we have the

corresponding Paulian stabilizers: For all i = 1, . . . , m,

ZS
i := �⊕

(t )i=1,(t )∈T , H(t )
− �⊕

(t )i=−1,(t )∈T H(t )
, (F29)

where (t )i is the ith component of (t ). The domain of the
Paulian stabilizers, H′ of Proposition 1, is thus

H′ =
⊕
(t )∈T

H(t ). (F30)

Defined this way, each ZS
i is clearly Paulian to the restric-

tion of H′. They commute, with (t )-simultaneous eigenspaces
H(t ); i.e., (t )’s are the error syndromes and H(t )’s are the
corresponding syndrome spaces. Because we have demanded
In have syndrome (I ), ZS

i ’s are stabilizers.
In the examples to come, we will demonstrate how to put

them into practice.

3. ((5, 6, 2)) code

Let’s start off with the ((5, 6, 2)) code from Refs. [50,83].
As discussed in Sec. V C, it is impossible to find a Paulian
stabilizer group that can detect all the weight-1 errors for this
code, but due to its low dimensions, it is easier to demonstrate
the procedure shown in Sec. F 2 with this code, and we can
also show how to adapt the methods for error-detecting codes.

The word stabilizer of this code is generated by ZXZII and
all its cyclic shifts, i.e.,

g = (ZXZII, XZIIZ, ZIIZX, IIZXZ, IZXZI ), (F31)

and the word operators are

IIIII, ZZIZI, IZZIZ, ZIZZI, IZIZZ, ZIZIZ. (F32)

Now let’s follow the steps listed in Sec. F 2:
A.1: As this code is an error-detecting code, how do we

choose orthonormal Pauli errors? In fact, because the code
has distance 2, we infer from (ii) of Corollary 5 that F =
{Xi,Yi, Zi, I5} is orthonormal for a fixed i = 1, . . . , 5, and we
will use them as the orthonormal “correctable” errors.

A.2: We should find WF for each F ∈ F . As a demonstra-
tion, we will show how to find WX1 . First, consider the word
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operator ZZIZI . Its commutation relation with g of (F31), if
expressed as a tuple of ±1 with +1 for commuting and −1 for
anticommuting, is

(−1,−1, 1,−1, 1), (F33)

which is exactly the simultaneous eigenvalues of the vec-
tor ZZIZI|s〉 with respect to g. Repeating for all the word
operators, we obtain HC as the direct sum of simultaneous
eigenspaces of g or Sw. To obtain WX1 , we check how X1

commutes with g: The commutation relation is

(−1, 1,−1, 1, 1), (F34)

which means X1(ZZIZI|s〉) has simultaneous eigenvalues

(−1 × (−1),−1 × 1, 1 × (−1),−1 × 1, 1 × 1)

= (1,−1,−1,−1, 1), (F35)

namely, multiplications component by component between
(F33) and (F34); (1,−1,−1,−1, 1) from (F35) is therefore
an element of WX1 . Doing this all over again for all the word
operators gives us WX1 .

A.3: After obtaining each WF , W⊥ should have 25 −
dim HC × 4 = 8 elements. When i = 1, they are

â := (−1,−1,−1, 1,−1),

b̂ := (−1,−1,−1, 1, 1),

ĉ := (−1, 1, 1, 1,−1),

d̂ := (1,−1,−1,−1,−1),

ê := (−1, 1, 1, 1, 1),

f̂ := (1,−1,−1,−1, 1),

ĝ := (1, 1, 1,−1,−1),

ĥ := (1, 1, 1,−1, 1). (F36)

A.4: Since log2 |F | = 2 is an integer, in this case we do not
have any excess syndromes. Let’s choose the syndrome for
each element of F , e.g.

F(1,1) = I5, F(1,−1) = Xi,

F(−1,1) = Yi, F(−1,−1) = Zi; (F37)

a quick reminder: (I ) = (1, 1) in this case. They give us the
minimal Paulian stabilizers:

ZS
1 |H = �HC⊕XiHC − �YiHC⊕ZiHC ,

ZS
2 |H = �HC⊕YiHC − �XiHC⊕ZiHC . (F38)

A.5: As addressed in the previous point, we have already
had the minimal Paulian stabilizers, and we would like to
extend their domain to the whole space while keeping them
Paulian. We can choose

W(1,1) \ WF(1,1) = {
â, b̂

}
,

W(1,−1) \ WF(1,−1) = {
ĉ, d̂

}
,

W(−1,1) \ WF(−1,1) = {
ê, f̂

}
,

W(−1,−1) \ WF(−1,−1) = {
ĝ, ĥ

}
, (F39)

so

H(1,1) = HC ⊕ Hâ ⊕ Hb̂,

H(1,−1) = XiHC ⊕ Hĉ ⊕ Hd̂ ,

H(−1,1) = YiHC ⊕ Hê ⊕ H f̂ ,

H(−1,−1) = ZiHC ⊕ Hĝ ⊕ Hĥ. (F40)

A.6: Now we have commutative stabilizers that are Paulian
on the whole space:

ZS
1 = �H(1,1)⊕H(1,−1) − �H(−1,1)⊕H(−1,−1)

ZS
2 = �H(1,1)⊕H(−1,1) − �H(1,−1)⊕H(−1,−1) . (F41)

With Xi, Yi, Zi, and I5 chosen as the orthonormal correctable
errors, they have distinct syndromes with respect to the Pau-
lian stabilizers, and we can correct their linear combinations,
i.e., all errors occurring on the ith qubit. As discussed earlier,
the Paulian stabilizers for this code cannot detect all weight-1
errors; however, it can be found that with our choice of the
syndrome spaces all single X errors can be detected: Each
single X error maps HC to a subspace of H⊥

(I ), so the syndrome
is different from (I ) and is detectable.

4. ((9, 12, 3)) code

Now let’s consider the ((9, 12, 3)) code from Refs. [50,82],
which, unlike the previous example, is a legitimate error-
correcting code. Since we have by and large demonstrated the
methods in our previous example, we will only focus on the
key points, and since the dimension is too large we will not
give explicit forms of the Paulian stabilizers.

(1) A.1: The word stabilizer is generated by ZXZIIIIII
and all its cyclic shifts, so it is apparent that

wtS � d = 3 ∀S ∈ SW \ {I}. (F42)

By Corollary 5 the code is nondegenerate, so we choose all
linearly independent Pauli errors with weight no larger than 2,
which means by (23) we have

|F | = 1 + 9 × 3 = 28.

Because

2�log2 |F |� dim HC = 25 × 12 < 25 × 24 = dim H = 29,

it is possible for this code to have Paulian stabilizers that
correct all the relevant errors.

(2) A.2 and A.3 are routine.
(3) A.4: As m = �log2 |F |� = 5 > log2 |F |, we will have

excess syndromes in this case, and they are 2m − |F | = 4 in
total.

(4) A.5: If we want the stabilizers to be Paulian on the
whole space, then each syndrome space is composed of n −
m = 4 qubits. For each syndrome (t ) that points to an error
F(t ) in F , dim H(t ) − dim F(t )HC = dim H(t ) − dim HC = 4,
so we need four elements of W⊥ to construct the associated
syndrome space H(t ), while for each excess syndrome we need
24 = 16 elements of W⊥.

(5) We can define the Paulian stabilizers following A.6.
As there are four excess syndromes, there are four syndrome
spaces no correctable errors will map the code space into.
They exist to make the stabilizers Paulian.
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If we want to use the three Pauli stabilizers from Ref. [82],
since they are also part of the word stabilizer (Corollary 3),
it is better to let them be in the tuple of generators g, and
steps A.4 and A.5 should be done accordingly; e.g., in A.4 the
syndrome for each orthonormal Pauli error should be chosen
by how the error commutes with the Pauli stabilizers—so that
these Pauli stabilizers will be among the Paulian stabilizers
built in step A.6.

APPENDIX G: GOTTESMAN-KITAEV-PRESKILL CODES

Let q = (a† + a)/
√

2 and p = i(a† − a)/
√

2 be conjugate
quadrature operators. A Gottesman-Kitaev-Preskill (GKP)
code for a single oscillator has two stabilizers, which are
e2iπq/α and e−inαp for some real α, where n is the dimension of
the code space [79,89]; clearly the stabilizers are not Paulian.
Such codes can correct small shifts in both q and p; specif-
ically, they can correct displacements with |�q| < α/2 and
|�p| < π/(nα) [79]. The eigenstates of these stabilizers are
not physical in that they are infinitely squeezed, so in practice
finitely squeezed states are used; the error probability can be
acceptably low if the state is squeezed sufficiently [79,80]. If
the anticipated errors in q and p are comparable in magnitude,
“square” GKP codes can be used, by choosing α = √

2π/n.
When n = dim HC = 2, the stabilizers are e2i

√
πq and e−2i

√
π p

[72,79,80].
To measure the syndrome, one way is by preparing the

ancilla in a GKP state, and utilizing the Steane circuit to
ascertain the amount of shifts by measuring the ancilla
[72,79,90,91]. The outcomes are analog (or connected) rather
than binary [72], and the corresponding measurement on the
system is therefore not Paulian. Another avenue is phase esti-
mation [72,89]: Given a unitary operator U on a system, if the
system is in an eiθ -eigenstate, the procedure to estimate the
phase, i.e., θ is called phase estimation. Because the stabiliz-
ers of GKP codes are unitary, we can obtain the syndrome this
way; furthermore, as the simultaneous eigenspaces of e2iπq/α

and e−inαp are translations of the code space in p and q, they
are orthogonal and isomorphic [79].

Phase estimation can be achieved by coupling the system
and ancilla qubits via controlled-U k gates, and after perform-
ing suitable operations and measurements on the ancilla qubits
we are able to approximate the phase θ [4,92–95]. It may
seem that each measurement of an ancilla qubit is equivalent
to measuring a Paulian operator on the system, as we have

two measurement outcomes and they are equally likely (cf.
Sec. II B); however, it can be easily checked that such mea-
surements in general are not orthogonal measurements, which
is also evident from the coupling between the system and the
ancilla being controlled-U k (cf. Sec. III D). Hence, we cannot
describe each measurement with a single self-adjoint operator,
let alone a Paulian operator.

Theoretically, we can construct commutative “Paulian”
operators ZS

j ’s for phase estimation: For convenience, let’s
rescale θ , so that the eigenvalues of U are e2iπθ with θ ∈
[0, 1) [4]. Each ZS

j is to measure the 2− j digit of θ in binary
representation, and θ = 0 would correspond to the (1, 1, · · · )-
simultaneous eigenvalues of ZS

j ’s. Hence, with Hθ denoting
the e2iπθ -eigenspace of U , we let the 1 and −1-eigenspaces
of ZS

j be the direct sums of Hθ over all θ whose 2− j digit
in binary representation are 0 and 1, respectively. Under
this construction, ZS

j ’s shall be commutative and stabilize
1-eigenvectors of U (i.e., θ = 0), and we can measure ZS

j ’s
to estimate the phase: For example, for an eigenvector of
U with θ = 0.1010 in binary representation, it is a (0,1,0)-
simultaneous eigenvector of ZS

j ’s for j = 1, 2, 3. However,
whether they are truly Paulian or not (as defined in Sec. II B)
depends on the spectral structure of U . The ±1-eigenspaces
may fail to be isomorphic.

For GKP codes, we can construct phase estimation op-
erators for e2iπq/α and e−inαp respectively according to the
previous paragraph, and these phase estimation operators are
truly Paulian. The issue is that, even though they exist, to
carry them out we need to couple very specific intervals
of θ with the ancilla; see the ±1-eigenspaces of each ZS

j
above and Sec. III D. Hence, existing schemes for error cor-
rection, such as those in Refs. [72,80,89,91,96], are more
practical.

A closing remark: As discussed in Sec. VI, commutative
Paulian stabilizers are not unique, nor are the ones shown
above. However, to construct practical Paulian stabilizers, ap-
propriate syndrome spaces should be chosen, and this poses
a great challenge, especially given the “continuous” nature
of the errors for GKP codes. That being said, in practice
states that approximate the true GKP codewords are used,
and if confined to these physical states, we might be able
to find suitable syndrome spaces to build practical Pau-
lian stabilizers. This is, however, beyond the scope of this
work.
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