PHYSICAL REVIEW A 108, 032413 (2023)

Quantifying information extraction using generalized quantum measurements

Dominik Safranek ®!-2

** and Juzar Thingna

L3.§

! Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
2SCIPP and Department of Physics, University of California, Santa Cruz, California 95064, USA
3Basic Science Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea

® (Received 28 January 2022; accepted 30 August 2023; published 14 September 2023)

Observational entropy is interpreted as the uncertainty an observer making measurements associates with a
system. So far, properties that make such an interpretation possible rely on the assumption of ideal projective
measurements. We show that the same properties hold even when considering generalized measurements. Thus,
the interpretation still holds: Observational entropy is a well-defined quantifier determining how influential a
given series of measurements is in information extraction. This generalized framework allows for the study
of the performance of indirect measurement schemes, which are those using a probe. Using this framework,
we first analyze the limitations of a finite-dimensional probe. Then we study several scenarios of the von
Neumann measurement scheme, in which the probe is a classical particle characterized by its position. Finally,
we discuss observational entropy as a tool for quantum-state inference. Further developed, this framework could
find applications in quantum information processing. For example, it could help in determining the best read-out
procedures from quantum memories and providing adaptive measurement strategies alternative to quantum-state

tomography.
DOI: 10.1103/PhysRevA.108.032413

I. INTRODUCTION

Entropy is a fundamental concept spanning diverse fields
such as thermodynamics [1], machine learning [2], cosmology
[3], and many others. It is also one of the most misunderstood
concepts due to the abundance of definitions. Some definitions
come from thermodynamics, such as Clausius [4], micro-
canonical (surface) [5—7], and Gibbs entropy [8,9], whereas,
some come from an information-theoretic perspective, such
as Shannon [10], von Neumann [11], or entanglement entropy
[12-15]. Among these, various permutations can be made
using different types of coarse grainings, such as Boltzmann
[9,16,17], coarse-grained [3,18-24], or Kolmogorov-Sinai en-
tropy [25-28].

These notions often overlap under certain circumstances.
For instance, Boltzmann entropy defined for a general coarse
graining reduces to microcanonical entropy for energy coarse
graining. In general, since each definition corresponds to a
different physical scenario, it needs to be carefully applied
to the problem at hand. Despite these subtleties, there is one
common denominator to all of these entropies: An increase in
every type of entropy represents loss of a specific type of in-
formation, and a decrease represents an information gain [29].

In this work, we will focus on a coarse-graining-based
type of entropy, called observational entropy (see Appendix A
for a historical overview). It has been studied in relation to
black holes [3,30], the Big Bang [31], high-resolution mea-
surement setups [32], correlated finite baths [33], nonequilib-
rium entropy growth [22,24,34], entanglement entropy [35],
historically standard entropies [9], and various other scenar-
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ios [20,36-40]. Moreover, in open quantum systems, it has
also been used to systematically bind the first and second
laws of quantum thermodynamics [41]. All of these works
consider only projective coarse grainings, i.e., those given
by a complete set of projectors, which represent a projective
measurement. Projective measurements are a natural first step,
since they can be cleanly connected to macrostates. This is
simply because each projector corresponds to a Hilbert space
subspace and defines a set of states that give the same value
of a macroscopic observable, i.e., a macrostate.

In this work we aim to go beyond the restraints of projec-
tive measurements and extend the properties of observational
entropy to generalized measurements given by a set of quan-
tum operations, called a positive operator-valued measure
(POVM) [42]. In these generalized measurements, the mea-
surement probe (a.k.a. a pointer) can briefly interact with the
quantum system collecting information about the measured
observable. The pointer stores this information and can be
read out at any time without the need to measure the system
directly. Within such generalized measurements, the measured
observable need not commute at different times or with the
system Hamiltonian (unlike quantum nondemolition measure-
ment [43,44]). Also, such generalized measurements cannot
always be described by rank-1 POVMs [45]. Moreover, the
pointer can even be reused to store the sum of values of an
observable [46], without any constraints on how the system
dynamically interacts with the pointer.

The notion of such generalized measurements is not new
and dates back to original works by von Neumann (see
pg. 410 in [47]). The idea has been implemented to study
unambiguous quantum-state discrimination [48-52], measur-
ing noncommuting observables [53], certification and device
independence testing [54,55], postselection of experimental
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outcomes [56], and information-theoretic uncertainty rela-
tions [57].

Given the generality of these measurements and their ex-
perimental relevance, we reintroduce observational entropy
within the framework of generalized measurements. The
resulting observational entropy measures the remaining un-
certainty about the initial state of the system that was not
uncovered by a sequence of given (possibly noncommuting)
generalized measurements. In other words, its value mea-
sures how much information these measurements extract—the
smaller the value, the more extracted information. Since
this entropy can be calculated for different coarse grainings,
representing different measurements, its value serves as a
performance quantifier of different (and completely general)
measurement schemes in information extraction. Overall, our
work provides a fundamental backbone to information extrac-
tion: (1) it presents a quantifier for how much information
we can extract, justified by the presented theorems, and (2)
it is both computable and measurable by experimentalists per-
forming any generalized measurements on quantum systems.

A. Contributions and assumptions

The paper is organized as follows: In Sec. II we first review
the known results on observational entropy with projective
coarse grainings. Then we extend this concept to general-
ized measurements and show that with our definition, the
corresponding three fundamental theorems on observational
entropy follow. These confirm the interpretation of this quan-
tity as a measure of observers’ ignorance given that they can
perform several, but not all, types of measurements. This
represents our main result. The measurements we consider
are the most general ones: thus, no further generalization of
observational entropy with regard to a type of measurement
is possible. Section III considers the scenario of an indirect
measurement scheme. Specifically, it aims to answer how well
an indirect measurement performs as compared to a direct
measurement, based on general considerations such as the di-
mension of our auxiliary system (pointer or probe). Section IV
shows a specific example of an indirect measurement scheme
called the von Neumann measurement scheme. In this scheme
the probe is a massive particle whose position is measured. In
Sec. V we perform a number of numerical simulations of this
scheme and illustrate how our general theory can be applied
to quantitatively describe which measurement strategy outper-
forms others in information extraction. In Sec. VI we show
that if a measurement is found such that its corresponding ob-
servational entropy is equal to the von Neumann entropy, it is
possible to reconstruct the quantum state of the system. Thus,
we provide an explicit algorithm for quantum-state inference.
This opens an exciting direction, potentially providing an
alternative to quantum tomography. Finally, in Sec. VII we
summarize our results and provide possible future directions
and applications.

II. OBSERVATIONAL ENTROPY WITH GENERALIZED
MEASUREMENTS: BOUNDS ON EXTRACTED
INFORMATION

In this section we first review previously found analytical
properties of observational entropy. These properties inspired

the interpretation of observational entropy as a measure of the
observer’s uncertainty about a quantum system. Until now,
however, observational entropy was defined only for coarse
grainings given by a projective measurement. To see whether
this interpretation holds in general, we extend this notion to
include completely general measurements. As the main result
of this section, we prove that all properties of the original
definition translate also to this general case. This shows that
its interpretation as a measure of the observer’s uncertainty is
still valid. Also, these results will illuminate the way to use
this quantity in its full generality.

A. Observational entropy with projective
measurements: Review

First, we review the basic ideas governing observational
entropy for projective coarse grainings, which have been ex-
tensively discussed in Refs. [21,22,24,34].

Defining P2 as the projector onto a subspace #,, we col-
lect these projectors into a set C = {P.}, which we call a
coarse graining. Projectors in this set are Hermitian (1’3;r =P)
and orthogonal (IA’i}A’j = Ps; i), and they satisfy the complete-
ness relation (Ziﬁi =I). Conversely, any coarse graining
C = {P,} with the above properties defines a decomposition
of the Hilbert space H = @, H;, in which a subspace H;
(macrostate) is spanned by eigenvectors of £;. Thus, in this
construction we can either decompose the unity operator into
orthonormal projectors (I = > P,), or equivalently decom-
pose the Hilbert space into subspaces (H = €D, H.).

Each observable defines a coarse graining C; = {P,}
through its spectral decomposition A = >, aP,. Thus, it also
defines the corresponding decomposition of the Hilbert space
M = @, Ha. Here each eigenvalue a represents the macro-
scopic property and is one of the measurement outcomes
obtained when measuring that observable. Generally, any
coarse graining can be viewed as a type of measurement. It
does not need to be complete, i.e., it does not have to project
onto a pure state (which corresponds to rank-1 projectors).
Instead, we allow projectors £, to have an arbitrary rank.
By definition, this rank is the same as the dimension of the
subspace H,, that the projector projects onto.

Given a single coarse graining, observational entropy (also
known as coarse-grained entropy [3,19,47]) is defined as
[21,22,34,35,41,58],

Se=-Y piln? (1)

where p; = tr[P; 0] denotes the probability of finding the state
in macrostate H;. The volume of that macrostate V; = tr[P] =
dim H; is the number of orthogonal states in it. Equivalently,
we can call p; the probability of obtaining a measurement
outcome i, when measuring in a basis given by coarse
graining C.

This can be generalized to multiple coarse grainings, for
which observational entropy is defined as [22]

i
Se.c, ==Y piln . 2)

Above i = (i1, ...,I,) is a vector of outcomes (properties
of the system), p; = tr[P, - - -13,-] ,?)13;] .- -13,-”] is the probability
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of obtaining these outcomes in the given order, and V; =
tr[IA’,-” - -lA’il - 131] is an (ordered) volume of the correspond-
ing macrostates. Note that here the equivalence between the
projectors and subspaces has already been lost: volume V;
can be a fraction, and it does not, in general, correspond to a
dimension of any subspace (the correspondence remains only
if all of the coarse grainings commute, in which case a joint
subspace exists).

Observational entropy satisfies two important properties
[22]:

¢, <Indim¥H, 3)

yeeey

S CoCors < SCy Co 4

The first property shows that observational entropy S¢, ...c, is
upper bounded by the maximal uncertainty allowed by the size
of the system, and lower bounded by the uncertainty inherent
to the system (measured by von Neumann entropy Sy =
—tr[p In p]). The second property shows that every additional
measurement can only decrease the entropy. These proper-
ties justify interpreting observational entropy as a measure
of uncertainty an observer making measurements associates
with a system. In more detail, observational entropy is the
uncertainty an observer would associate with the initial state
of the system if they had infinitely many copies of this state
and performed sequential measurements in bases Cy, ..., C,
on each copy. This would allow them to build up statistics
of measurement outcomes, and thus determine this entropy
exactly.

B. Observational entropy with generalized measurements

The definition and the related properties above include
only projective measurements, which are not the most gen-
eral measurement an observer can perform. A generalized
measurement includes the case of a projective measurement,
but it also includes situations in which the system is al-
lowed to interact with an auxiliary system (probe), and then a
joint projective measurement is performed on the system plus
the probe. Further, it includes cases where indirect measure-
ments are performed only on the probe. Such measurements
are described by a set of linear superoperators (quantum
operations/quantum instruments) {A;}. Each element of this
set can be expressed in terms of its Kraus decomposition [59],

Aip) =Y RinbK},, (5)

in which the Kraus operators satisfy the completeness relation

(601,
Z Z R Rim=1. (6)
i m
Upon obtaining a measurement outcome #, the density matrix
of the system is projected onto
w A(D
b N (D) 7
Pi
with probability p; = tr[A4;(D)].
In order to define observational entropy to include gener-
alized measurements, we define each coarse graining as a set

of quantum operations C;, = {4, }. Correspondingly, observa-
tional entropy is defined as

i
Se=Sc,..c,=—_ piln Vl ®)
. l
l

where C = (Cy,...,C,) is a vector of coarse grainings.
The probability p; of obtaining a sequence of out-
comes i is obtained by combining the superoperators [61]

Ai(e) = A, ... A;, A (o) such that

pi = u[Ai(D)]. (€))
Further, we define

Vi = u[Ai(D)] (10)

as the corresponding volume of a macrostate (/ being
the identity matrix). From Egs. (9) and (10), we view
the vector of coarse grainings as a single coarse graining
with vector-labeled elements C = (Cy, ..., C,) = {A;}. The
original definition is obtained by considering coarse grain-
ings made of projective superoperators [62] C = {P;(e)P;}.
Therefore, each projective coarse graining is lifted into its
superoperator form, and we will use these two notations
interchangeably (C = {P;} = {P;(e)P}}). See Table I for the
overview of different types of measurements and their cor-
responding coarse grainings.

C. Main results: Properties of observational entropy
with generalized measurements

What if, let us say, Eq. (3) or (4) did not hold for the general
case described above? For example, consider that there is a
generalized measurement, such as an indirect measurement
using a probe, that can push observational entropy below
the inherent uncertainty of the system, violating Eq. (3). Or
performing a measurement results in an increase in the ob-
servers’ uncertainty (making them “forget” something about
the system), violating Eq. (4)? Such outcomes would imply
that observational entropy is not a good measure of the ob-
servers’ uncertainty. However, in this section we show that
even with the inclusion of generalized measurements, the two
properties [Eqs. (3) and (4)] still hold.

To state the theorems that are proved in Appendix B, we
first define the following:

Definition 1. (Coarse graining defined by an observable—
a Hermitian operator): Assuming spectral decomposition of
a Hermitian operator A = doa aP, (where a’s are assumed to
be distinct), we define coarse graining given by the Hermitian
operator as C; = {P,(8)P,}.

Second, we define POVM elements given a coarse grain-
ing:

Definition 2. For a vector of coarse graining C=
(Ci,....C) ={A;}, where A4; =", I?im(o)K;n and K;, =
Kim, - - - Kiym, » we define POVM elements {I1;} as

=) Ky Kin- (1)
m

This allows us to write the probabilities of outcomes and
related volumes as p; = tr[I1;p] and V; = tr[IT;].

Third, we define the notion of finer coarse graining. Intu-
itively, the finer coarse graining is such that it provides at least
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TABLE I. Different types of measurements and their corresponding coarse grainings.

Measurement Operator form Superoperator form

Projective = (B} C ={P(e)P}

Kraus rank-1 generalized ={K}) = {1%,.(.)16,,*}

Generalized None ={A), A=Y, Kn(®)K]

Multiple generalized None C= (Cl,., Co), G ={A,}, Ay, = Z szu( oK' -

This is equivalent to a single coarse grammg with

vector-labeled elements, C = {A;}, A4; = A;, - - - A, A,

as much information as a coarse graining, irrespective of the for any vector of coarse grainings C = (Cy, ..., C,) and any

specific state of the system. The following theorem will show
that we can also view the finer coarse graining as that which
never increases the observational entropy.

Definition 3. (Finer vector of coarse grainings) [63]: We
say that a vector of coarse grainings C = {A;} is finer than a
vector of coarse grainings C = {A;} (and denote C <> C or
C C) when the POVM elements of C can be built from the
POVM elements of C, i.e., when we can write

;=Y T () (12)

icl)

where 1) are disjoint index sets whose union is the set of all
indices |J; 1Y) = {i}. ~

It is clear from this definition that for C <~ C, the proba-
bilities of outcomes and related volumes can be also written
as sums, pj = Y ;o pi and V; = Y, ) Vi. This creates an
impression that the finer coarse graining offers the lens by
which the state of the system is studied. This is because the
Hilbert space is cut into smaller volumes with a finer coarse
graining, and each one of this volume has its own associ-
ated probability p;. On the other hand, the coarser coarse
graining just adds together to create pj, ignoring this finer
structure. With this definition, it is straightforward to realize
that there are some coarse grainings that are equivalent in
the sense that both C <= C and C — C. For example, such
cases are C = {A;} and C= {A },where A4; =), K,m(o)K;”
and .Z, =Y m UinKim (K, ;n oAl .m- Lhe only difference between
these two coarse grainings is that with the second coarse
graining, the state was unitarily evolved with unitary operators
Ui after the measurement. These two coarse grainings have
the same POVM elements and thus are equivalent.

This definition of finer coarse graining, while simple look-
ing, represents a major stepping stone in our understanding.
It looks different from the previously introduced Definitions 2
and 6 in Ref. [22], which considered vectors of only projective
coarse grainings. However, as we show in Appendix C, it turns
out that this definition is equivalent to the older definition
when applied on the same restricted set and therefore repre-
sents its direct generalization.

Generalizations of Theorems 7 and 8 from Ref. [22] [rep-
resented here by Eqs. (3) and (4)] follow.

Theorem 1. Observational entropy (8) with multiple coarse
grainings is bounded,

SN < Se < Indim#H, (13)

density matrix p. Syx = S¢ if and only if C <= C;. S¢ =
Indim® if and only if Vi, p; = V;/dimH.

The meaning of the first equality condition in Theorem 1,
C < Cp, can be inferred from Definition 1 applied to Her-
mitian operator p. It means that for every eigenvalue p of the
density matrix p = Y o pf’p, the corresponding projector onto
an eigenspace can be written using the POVM elements as

p,=> "1 (14)

This means that an informationally complete measurement is
any measurement that is finer than the measurement in the
eigenbasis of the density matrix. Moreover, the above identity
represents a connection between observational entropy and
state identification, since it can be used to infer the quantum
state in case when one can find a coarse graining C for which
Syn = Sc. This connection is described in detail in Sec. VI.

Theorem 2. Observational entropy (8) is nonincreasing
with each added coarse graining,

Se.c... <S¢, (15)

for any vector of coarse grainings (C, C,41) and any density
matrix p. The inequality becomes an equality if and only if
Vi, int1, Piiye = (Vi /ViPi

The equality condition in Theorem 2 is satisfied, among
other cases, when the sequence of measurements C projects
onto a pure state (meaning that all information about the
initial state was depleted by the first n measurements and
there is no information left in the remaining state). Another
case when the equality condition is satisfied is when C <=
C}: 41> expressing that the information the (n+ 1)th mea-
surement could provide was already provided by the first n
measurements, making the (n + 1)th measurement redundant.
Above we have defined C™ = (Cn, e, ClT) = {A:}, where

=) . K;,,(O)Kim (see the end of the proof in Sec. B 2).

Finally, we generalize an elegant and intuitive Theorem
2 from Ref. [22], which we also foreshadowed here when
motivating the definition of finer coarse graining.

Theorem 3. Observational entropy (8) is a monotonic
function of the coarse graining. If C <— C then

Se < Sz. (16)

The inequality becomes an equality if and only if Vj, Vi €
The validity of these three theorems means that consid-
ering observational entropy as a measure of an observers
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uncertainty about the initial state of the system is conceptu-
ally justified. We will further consolidate this justification in
Sec. VI, in connection with quantum-state identification.

While the framework for projective and generalized mea-
surements seems very similar and the main theorems hold
for both, there are several nontrivialities that one encounters
while trying to generalize observational entropy. The partic-
ular choice for the definitions delineated above is justified
a posteriori; that is, by showing that equivalent theorems
can be proven when considering these particular definitions.
We elaborate on these difficulties and other key differences
between observational entropy with projective and general
coarse grainings in Appendix D.

III. APPLICATION OF OBSERVATIONAL ENTROPY
FRAMEWORK TO GENERAL INDIRECT
MEASUREMENT SCHEMES

In this section we apply our framework to find an optimal
indirect measurement scheme by computing the observational
entropy of a measurement that is performed on an auxiliary
system (probe) that interacts with our system of interest. As-
suming perfect control of the interaction between the system
and the probe, we find that in order to extract all the infor-
mation from the system, the dimension of the probe must be
one dimension larger than the rank of the density matrix of
the system. Specifically, it is enough to use a two-dimensional
probe to extract full information about any pure state of the
system. This is in perfect alignment with previous findings
of Ref. [64], which studied very similar questions from the
perspective of minimal normal measurement models.

Consider a scenario where the system (system A) is first
coupled to an auxiliary system (system B). As a consequence,
the state of the auxiliary system (probe) is affected by the sys-
tem. Alternatively, we could say that the probe collects some
information about the system. Thus, measuring the probe pro-
vides information about the state of the system. This protocol
can be schematically written as

P> pP®6—->UpsU"
; (IA®FA’,)U,?) R6UTIQP) tracing out the probe
Di
wp[(@P)Up @ 6UTUIRP)]  Ai(p)
Di B Pi '

A7)

Above U is the unitary evolution operator that incorporates the
interaction between the system and the probe, p is the initial
density matrix of the system, and & is that of the probe. Since
only the probe is measured in this scenario, the projection
operator P; acts only on the probe, with the identity / being
acted upon the system. The full Hilbert space is the tensor
product of the system and the probe H = Hy ® Hp.

By tracing out the probe, this protocol gives an explicit
form of the measurement superoperators acting on the system,

Ai(p) =l @ PYUp @ 607 (T @ P)]. (18)

We denote coarse graining consisting of these superoperators
as

C = {A;}. (19)

This refers to coarse graining given by indirect measurement
scheme protocol, Eq. (17), on the state of the system. In
other words, this quantum operation acts solely on the density
matrix of the system, and not on the probe.

By inserting the spectral decomposition of the probe & =
> . Om|m){m| we can also obtain the Kraus decomposition of
the superoperator

AiD) =D Ko DK (20)

where Ky = /O (m'|(I ® P;)U|m) are the Kraus operators.

While the Kraus operators can be useful in expressing
the superoperator (and we will use this decomposition in our
examples), we do not need this decomposition to calculate the
observational entropy Sc. This is because p; and V; in Eq. (8)
depend only on the superoperator, thus we can obtain directly

pi=tul AP =ul(®@P)YUp 60U I ® P)],
Vi=tu[AD] =uld @ PYUT @ 6U T ®P)].  (21)

Note that this p; is identical to the p; in the protocol expressed
by Eq. (17), and it represents the probability with which the
outcome i was measured. Also, V; represents the correspond-
ing volume in the Hilbert space of the system (not the probe
Hilbert space).

A. Limitations of the finite-dimensional probe

Now that we set up the general framework, we can ask
the first natural question. Considering an indirect measure-
ment, how low can the observational entropy get? Can it,
for example, go as low as the ultimate minimum given by
Theorem 1, that is, the von Neumann entropy, and therefore
be as informative as a direct measurement that achieves this
lower bound?

That of course depends on the amount of control over the
system, as well as the size of the probe that is being used.
In the case of perfect control, i.e., the ability to design any
interaction unitary U, the answer is fairly straightforward.

Note that the following protocols depend on the potentially
unknown state of the system: a method that achieves these
bounds would have to be applied adaptively, so these bounds
could be reached in the limit of many copies of the initial state
of the system. See more discussion on this in Sec. VI.

1. High-dimensional probe

First, we assume that the size of the probe is (at least) as big
as the size of the system, i.e., N = dim H, = dim Hg = M.
We take the interaction to be a swap gate U(p @ 6) = 6 ® p,
which defines U = szzl |m, k){k, m|. This gives

pi=uld®P)s ® pd ® P)) =ulfpl,  (22)
Vi=ul(l ® B)6 @ I ® P)] = u[P]. (23)
The corresponding observational entropy reduces to

Sc = Sc, (24)

projective ’

where Cp ... = {B} = {P:(8)P;} (in the operator and super-
operator notation) denotes the projective coarse graining on
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the probe. According to Theorem 1, taking Cg,.... to be
consisting of the projectors onto eigenvectors of the density
matrix, Cp < C;, leads to SCpgome. = Svn and thus also
Sc = Syn. Therefore, if we have a probe that is at least as big
as the system, we can extract all the information by applying
the swap gate and then measuring in the eigenbasis of the sys-
tem density matrix. In other words, an indirect measurement

is as good as a direct measurement in this case.

projective

2. Low-dimensional probe

In the case when the probe is smaller than the sys-
tem, dim Hg = M < N = dim H4, we can obtain low entropy
by diagonalizing the system and the probe density matri-
ces and then performing a partial swap. We define U=
Upartial swap(Udiag[) by Udiag& ), where

Udiagp P Ugogp = diag(pr, o2, - -.), (25)

Utigs 6 Ujygo = diag(or, 02,...), (26)
with the eigenvalues being ordered as p;(o1) = pa(02) > ...,

and where

k<M,

, jm. k)
lew 5 @

Upu.rtial swap|k» m) = |k m)

In terms of eigenvectors this gives

M N M
U= Imktkm+ > Y lkmyk.m. (28)
1

k,m=1 k=M+1 m=

Above, p =YV, pclk) (k| and 6 = "M o,,|m)(m|. This
yields

pi = tr[P(p' + pé), (29)
V; = r[P(f + (N — M)6)], (30)

with p©@) ="M o, |m)(m| being the part of the system
density matrix that was swapped into the probe Hilbert
space. The part that remains in the system Hilbert space is
prest =SV pelk) (K|, and p = t[pCV] = YN o
is the sum of eigenvalues that remained in the system Hilbert
space. Note that both ®) + pé and [ 4+ (N — M)é are diag-
onal in the same basis {|m)}.

Now that we specified our interaction, we need to inves-
tigate two additional factors over which we will optimize to
obtain the lowest possible observational entropy: (1) the state
of the probe 6 and (2) the choice of measurement performed
on the probe Cz = {P}}.

First, we choose a probe that is in a completely mixed state
& = I/M.In this case the observational entropy is minimized
when the coarse graining on the probe Hilbert space is in
the diagonal basis Cg = {P.} = {|m) (m|} [65]. Using Eqs. (29)
and (30) we obtain

M N
Sc=—Z(pi+Aﬁ4)1n(pi+A%)+1nA—4. 31)

Depending on the size of the probe, this may be fairly close
to the von Neumann entropy, and it will converge to it for
M — N (since in this limit p — 0).

Second, we consider a case when the probe is at least one
dimension larger than the rank R of the system density ma-
trix, M > R + 1. Here we have p = 0 (due to ordering p; >
p2 = --+). We choose & = |R + 1)(R + 1| and coarse grain-
ing of the probe in the diagonal basis Cz = {£;} = {|m)(m|}
again. This yields

e i<R, |1, i#R+1,
pi = {0, iR VT {1+N—M, i=R+1. %
This results in
R
Se =~ pilnpi=Su. (33)
i=1

Thus observational entropy achieves its minimum in this case.

3. Takeaways from the analysis of a low-dimensional probe

Equation (33) shows that when (1) interaction U is chosen
to be a partial swap gate, (2) the probe dimension is chosen
as R+ 1, where R is the rank of the system density matrix,
and (3) the projective measurement performed on the probe
is given by the eigenbasis of the system density matrix, then
observational entropy equals the von Neumann entropy. We
can intuitively rephrase this conclusion as follows:

The minimal uncertainty can be achieved by measuring a
probe that is one dimension larger than the rank of the state of
the system.

As a special case, we conclude that any pure state of the
system can be exactly determined by using a two-level probe.

Physically, this is fairly straightforward to comprehend.
Making a projective measurement on a two-level probe leads
to (at most) two possible outcomes. In an ideal case, when
observational entropy is zero, we obtain the first outcome with
100% probability, and we never see the second outcome. This
is because the interaction unitary U translates the measure-
ment on the probe into a measurement on the system as if
one were to measure in the {|V)(¥|, I — |¥)(¥|} basis on
the system, where p = |{) (| is the state of the system. In
other words, eigenvectors of the density matrix with nonzero
eigenvalues are mapped onto one state of the probe, and all
the others onto the other state.

The explicit algorithm that describes how to infer the quan-
tum state is detailed in Sec. VI.

Note that the findings of this section corroborate those
of Ref. [64], which also studied the minimal dimensionality
of the auxiliary system for optimal measurements from the
perspective of minimal normal measurement models.

IV. APPLICATION OF THE OBSERVATIONAL ENTROPY
FRAMEWORK TO THE VON NEUMANN
MEASUREMENT SCHEME

In this section we take an example of an indirect measure-
ment scheme, called the von Neumann measurement scheme,
and analyze it with the lens of the observational entropy
framework. This is to illustrate the theory of observational
entropy as a measure of observers’ uncertainty and to demon-
strate this measure as a useful figure of merit that helps
in determining the type of measurement that performs best
in information extraction. The derived expressions for the
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initial
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initial .
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particle
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FIG. 1. Schematic picture of the von Neumann measurement
scheme. A classical particle is localized at position x = 0. Its position
uncertainty is given by the Gaussian distribution with standard devi-
ation Q2. Through the interaction (34), the spin becomes correlated
with the classical particle: if the spin is pointing up, the classical
particle is moved by «u;, where p; is the first eigenvalue of the
measurement operator M (in this case the spin operator). If the spin
is pointed horizontally, the particle is moved by « i, (with u, being
the second eigenvalue). Thus, the spin information is translated into
a position measurement of the classical particle.

probabilities and corresponding volumes will be used for our
simulations in the next section.

A. Single measurement von Neumann scheme

A special type of indirect measurement scheme, given
by protocol of Eq. (17), is the von Neumann measurement
scheme (see Fig. 1 for illustration). In this scheme the auxil-
iary system (probe, also called a pointer specifically in this
scheme), which is initially decoupled from the system, is
assumed to be a heavy mass particle (although represented by
a quantum state) initially localized at some position x with
some uncertainty €2. It interacts with the system through a
unitary,

U = exp(—ikM ® p). (34)

Above, M is an Hermitian system observable, and
p=-i— (35)

is the momentum operator of the probe [66]. The parameter
k = AAT is a product of interaction strength A and the time
of interaction At. Using the eigenstates of the observable
(M|m) = p|m)), the operator M can be represented as M=
X wP,, where P, = > =y Im)(m| is a projector. Writing
the state of the system in the eigenbasis of the measurement
operator as |{/) = Y a,,|m), the interaction unitary acts as
[67]

O1)lex) =D cmlm)@e—icp,) (36)

on a initial product state.

For a general decoupled system and probe, we have
Up ® 1o (.07
=" o lm) (| & s, x|, BT

m,m’

where p = )", Puny|m)(m’| is the mixed initial state of the
system. ’

After the interaction of the system and the probe, the posi-
tion of the probe is measured. This measurement corresponds
to a coarse graining, Cz = {P,} (P, = |x)(x|), on the probe.
The von Neumann measurement scheme translates measuring
a system observable M into a problem of measuring the posi-
tion of the probe. To illustrate that, consider an extreme case in
which the probe is completely localized, i.e., its state is given
by a position eigenstate |¢,) = |x). The outcome of a position
measurement on the probe after the interaction is x — k u with
probability p, = tr[ﬁu pl=>" su=y Pmm- After obtaining this
measurement outcome, the system state is projected onto the
state P, pP,/p,.. Thus, in such an idealized case in which the
probe is completely localized, the von Neumann measurement
scheme corresponds to a projective measurement of observ-
able M on the system.

The protocol of the von Neumann measurement scheme
can be summarized by a map,

e tp[((®@PHYUD @ 6UTHRP)]  Al(p)
o — =
Dx Dx

where U = exp(—ikM @ p), p. = tr[A(p)], and C = {A4,}
defines the coarse graining on the system. It is assumed that
we can measure the probe exactly, so there is no uncertainty
coming from measuring the position directly. However, typ-
ically the probe itself is assumed not to be fully localized
(in order to imitate the quantum uncertainty in measuring the
position); in this paper we choose a probe initially prepared in
a pure Gaussian state,

(38)

b

& =l sl o) = / dx ok, (39)

where

1 x?
Q
= —c¢ —-—— 40
= oo (i) “
and Q > 0. A completely localized probe corresponds to
€ — 0. This probe state is a common choice in the liter-
ature [46,47,68,69] due to its straightforward interpretation

and possibility to realize such a state in an experiment
[51,70].

B. Other types of von Neumann schemes

The protocol that we described so far is called the single
measurement von Neumann scheme. There are other, more
complicated types of von Neumann measurement schemes
[46]. We specifically name repeated measurements, in which
multiple probes are used sequentially, and the repeated con-
tacts scheme, in which the probe is reused, interacting with
the system several times before being measured. We use ob-
servational entropy as a quantifier and illustrate the influence
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FIG. 2. Different types of von Neumann measurement schemes.
(a) Single measurement: the quantum system (illustrated by an arrow
denoting spin) interacts with a single probe (illustrated by a red
circle) that is then measured, revealing information about the system.
(b) Repeated measurements: the quantum system interacts with N
different probes. After each interaction, the probe that just interacted
is measured. The system evolves with the free Hamiltonian for time
At between the interactions. (c) Repeated contacts: the quantum
system interacts N times with the same single probe. This probe
retains its state in between the interactions while the system evolves
with the free Hamiltonian. At the very end, the probe is measured.

of different measurement schemes on information extraction
from a quantum system.

To highlight the differences, let us summarize an ob-
servation from Ref. [46]: in situations with no free-time
evolution between measurements or contacts, both repeated
measurements and repeated contacts can be used to extract
the full available information. Repeated measurements have
the advantage of collecting information about the system
continuously (through many measurements) and therefore
updating our information about the quantum system. How-
ever, due to the frequent measurements, the system dynamics
are significantly affected by the back action for a large
number of interactions, resulting in slower acquisition of
information.

In repeated contacts, we lose the ability to track the
quantum system continuously, because we perform only one
measurement in the end; however, the acquisition of infor-
mation by the probe is faster, i.e., N contacts provide more
information than N measurements. We will see this behavior
exactly quantified by observational entropy in Sec. V, as well
as other interesting scenarios. For example, when the free time
evolution does not commute with the measurement operator,
there can be a back flow of information from the probe to the
system. This information loss from the probe can be quantified
using observational entropy.

The different types of von Neumann measurement schemes
considered in this work are illustrated in Fig. 2 and their math-
ematical descriptions are summarized in the next subsection
and in Appendix F.

C. Observational entropy in von Neumann
measurement schemes

1. Projective measurement

Before diving into observational entropy of von Neumann
measurement schemes, we first define observational entropy
of a projective measurement, which is performed directly on
the system itself. The value of this entropy will serve as a
reference to which we compare entropies of the different types
of von Neumann measurement schemes. The probabilities of
outcomes of a projective measurement and related volumes
are given by p, = tr[P,p] and V,, = tr[P,] respectively. This
defines observational entropy of a projective measurement as
S =Sc, ==, PuIn(pu/Vy).

2. Single measurement

The evolution superoperator of a single von Neumann mea-
surement will be derived by combining Egs. (37) and (39),
which gives

Adp) = (XIUD @ lp.) (@l U |x)
= P (Xl Py, ) (P, 1) ) (|

m,m’
= P/ 8/ 8y, ) (0|
m,m’
= K. pK], 41)

where l?x = Zm & cumIm)(ml. Clearly, from the normalization

of Gaussian function we have ff;o KiK. dx = I. This further
yields

Px = tr[AA()a)] = Z Z pmmgiz_,(u = Zp,ugiz_,(u,
m

H Hm=p

Ve=tfADI=)" Y gl = Vigl (42
"

K =i

These probabilities and volumes will be used for calculating
observational entropy of a single von Neumann measurement
§™ = — [dx p.In(p,/V,). Using Jensen’s inequality, one
can easily prove SP™ < S < Indim A, while the bounds
SP™ and Indim H are reached by S$*™ in limits 2 — 0 and
Q — +o00, respectively. The results for this single measure-
ment protocol are shown in Fig. 3 using a two-level system
example whose details are described in Sec. V A.

3. Repeated measurements

Repeated von Neumann measurement consists of N in-
teractions with N different probes, all prepared in the same
initial state (39). The position of the probe is measured im-
mediately after the system interacts with it. The time of
interaction with each probe is At = « /A, chosen to be much
smaller than the evolution timescale of the system between
two interactions. When this process is repeated N times with
N different probes, we obtain N measurement outcomes of
the positions of the probes, x = (x|, ..., x,). Assuming that
the system freely evolves with Hamiltonian H between the
interactions, U = exp(—iﬁ At) of the system, the total time
of free evolution 7 = N At. Additionally, we assume that the
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FIG. 3. Observational entropy of a single von Neumann mea-
surement S*" (blue curve) as a function of the standard deviation
of the probe 2, compared to the observational entropy of related
projective measurement SP™ (red dashed line) and the von Neumann
entropy (black dot-dashed line). In the limit & — 0, $*™ = SP™ [see
discussion below Eq. (42)]. The green dotted vertical line marks the
transition below which SP™ & $°™. Within this regime, 62 < k(u, —
/1), the two Gaussian distributions of the probe, corresponding to
the two measurement outcomes, barely overlap with each other (see
Fig. 1). This allows the observer to infer the quantum state of the
system exactly. In other words, for highly (but not necessarily in-
finitely) localized probes, indirect measurement can extract as much
information as a direct measurement. In the other limit, SP™ = 1 for
2 — +oo indicating that when the Gaussian probe is highly spread,
inference about the system state is impossible, thus resulting in the
maximal entropy. The initial state is chosen as p(0, 7w /16, 7 /16)
[Eq. (52)], k = 1, and the free evolution between contacts U = I.

probes themselves do not evolve outside of the interaction (the
timescale of their evolution is much slower than the timescale
of the experiment). The above description can be illustrated as
follows:

b AP

Px

(43)

where, defining evolution superoperator Uy = Uy(e)U}, the
superoperator of repeated measurement is ‘

A" (0) =Up Ay, -+ - Up Ay (o). (44)

Above, A, are defined by Eq. (41). The probabilities and
volumes for the observational entropy are py = tr[ AT"(p)]
and Vi = tr[A™(1)], which gives S$™ = — [dx;---
dxy pxIn(px/Vy).

4. Repeated contacts

In sharp contrast to repeated measurements, repeated con-
tacts consist of N interactions with a single probe, without
resetting or measuring the probe after each interaction. The
probe is measured only once with a position measurement at
the very end. Similar to repeated measurements, here we also
assume that the evolution time of the probe is very slow as

compared to the timescale of the experiment, and the interac-
tion time interval At = « /A is very short such that the system
does not evolve within that time. It is described by

Lo A (D)
o — —.
Dx
The superoperator of repeated contacts reads

A (o) = trp[(f @ P)UU) (0 @ )T ® Py)],  (46)

where we have defined evolution superoperator U, = 0 r®
f)(o)(ljf ® D' and interaction superoperator U = U(e)Ut
with U being defined by Eq. (34). Probabilities and volumes
for the observational entropy are given by p, = tr[.AX(p)] and
V, = tr[A®(])], which yields S = — [ dx pxIn(pe/Vy).
There are several different scenarios of repeated contacts,
depending on the time step At in the evolution operator U r.
In the case where the total time of interaction 7 = N At and
the ratio of interaction time and free evolution time « /At =
AAT /At are fixed, we can solve this problem analytically for
a large N. This solution is found to be
A (0) = trpl (@ P)Uiimic(0 ® 6)U;

imit

(45)

T®P)l. 47

Above trp represents the trace over the probe and the unitary
operator

Ulimic = expl—i(H @ [ + RM & p)T] (48)

was obtained from the Lie-Trotter product formula & =

limNﬁoo(eXﬁeY %)N . We denote the corresponding observa-
tional entropy as Symi. This particular value is plotted as a
solid blue line in Fig. 6.

The explicit forms of the repeated measurement and
repeated contact superoperators, which we used for our simu-
lations in the next section, can be found in Appendix F.

V. NUMERICAL RESULTS

We perform several simulations (see Appendix G for de-
tails) of von Neumann measurement schemes, to study how
different types of schemes perform in information extrac-
tion. The quantifier of this performance will be observational
entropy. Specifically, we show how good these indirect mea-
surements are in comparison with direct measurements and
with each other. This depends on several model parameters
such as the amount of localization of the auxiliary system, the
number of indirect measurements performed, and the number
of contacts between the auxiliary and the measured system.

Due to the computational complexity of the given task, our
analysis is restricted to a two-dimensional system. However,
these simulations are mainly a demonstration of the general
theory, proven for systems of arbitrary dimension.

A. General parameters of our model

The computational basis will be defined by the eigenbasis
of the measurement operator,

~ 0 O
M=<o 2), (49)

whose eigenvalues are «; =0 and u, = 2. We evolve the
system with two types of Hamiltonian: one that commutes
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FIG. 4. (a) The repeated measurement entropy S™ (blue solid line) and the repeated contacts entropy S™ (green dotted line) in comparison
with the observational entropy given by the projective measurement SP™ (red dashed line), as a function of number of interactions or number of
contacts N. The two-level system evolves with Hamiltonian (50), which commutes with the measurement operator M. Both entropies converge
to the projective measurement entropy for a large number of measurements and contacts. We choose the initial state to be p(0, 7 /16, 7 /16),
Eq. (52), but the same qualitative behavior is observed for any initial state. For any initial state, for N = 1 the corresponding observational
entropies are equal, both converge to the projective measurement entropy, and the repeated contacts scheme always converges faster in N than
that of the repeated measurement scheme. The von Neumann entropy (black dash dotted line) is a lower bound to all other entropies, as expected
from Theorem 1. (b) Corresponding probability distribution p(x) for repeated contacts as a function of a position measurement outcome x,
for various number of repeated contacts N, and the corresponding normalized macrostate volumes V (x)/V (where V = dim H = 2). For
increasing N the distributions p(x) and V (x)/V become more distinguishable as expected from Eq. (54), which in this case specifically gives
S§ =log, V — Dgr(p(x)||V (x)/V). (c) The probability distribution of position measurements of two probes p(x;, x,) and the corresponding
weighted volumes [N = 1 case is identical to repeated contacts as shown in (b). Outcomes x; and x, are correlated but symmetric (p(x;, x,) =
p(x2, x1)]. Also here we have S™ = log, V — Dk [p(x)||V (x)/V]. In panel (a) we see that the repeated contacts entropy converges faster than
the repeated measurements entropy. Intuitively, this is because it is easier to move the two Gaussians apart in one dimension to make them
more distinguishable, as is shown in (b), rather than to increase the number of dimensions as shown in (c), in which case the overlap between
p(x) and V(x)/V decays slower—expected to be roughly by a +/N slower (see the final paragraph of Sec. V). For all panels we choose
k = 2 =1, and the time step of free-time evolution between the measurements and contacts to be fixed at Ar = 1. Thus, the total time of
free-time evolution is given by 7' = N Ar.

with the measurement operator M , to be log, instead of the natural logarithm in all of the exam-
ples (this changes only the scale).

0n= <0 0) (50) The results are shown in the following figures, whose

0 2) captions contain additional discussion: Fig. 3 depicts observa-

tional entropy of a single measurement scheme (Sec. IV C2).
Figures 4 and 5 show the case of repeated measurements
. ( 0 1+ i) 51) (Sec. IVC3) and repeated contacts (Sec. IV C4) schemes,
1—1 2 ) for an evolution Hamiltonian that does and does not commute

with the measurement operator, respectively. Figure 6 depicts

The exact form of the commuting Hamiltonian is irrelevant. , gifferent type of repeated contacts limit, wherein the ratio of
Due to [H, M] =0, the Hamiltonian will not play a role in e action time and free evolution time k /Af = AAT/A? is

the probabilities (py and py) and volumes (V; and V), thereby fixed [see Eq. (47)], such that the large N limit can be taken
having no effect on the value of observational entropy.

We parametrize the initial qubit state as

and another that does not,

unlike previous figures.

2 . . . . oy
o ~ [COS“ & 0 A B. Relation to distinguishability of the observed
p(9.0,0)=U < 0 sin? a) v, (52) and expected probabilities
where Panels (b) and (c) of Figs. 4 and 5 depict the evolution
) ' of the quantum system via the probabilities of position mea-
U= e'? 0 CO§9 sin 6 (53) surements and normalized volumes, respectively. They also
0 e )\—sinf cos6) shed light on the behavior of observation entropy through the
Moreover, to fix the maximum of observational entropy, we relation
chose the basis of the logarithm for the observational entropy Se =InV — Dgy (pi||Vi/V), 54)
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FIG. 5. Panels (a)—(c) are similar to Figs. 4(a)—(c), respectively, with the same initial state p(0, 7 /16, 7/16). However, here we choose
Hamiltonian (51), which does not commute with the measurement operator M. Panels (d)—(f) consider initial states p(0, 0, 0), p(0, 7 /4, 7 /16),
p(r /3, /3, w/16), Eq. (52), respectively, with other parameters identical to case (a). Panel (e) shows that repeated contact and repeated
measurement entropies are not bounded by each other. In particular, unlike in the commuting case of Fig. 4, one cannot say that either repeated
contacts or repeated measurement schemes perform better than the other [compare (a) and (d) vs (f)]. Which performs better depends on the
specific initial state, evolution, measurement operators, and the number of measurements and contacts (e). In (e) and (f), the evolution by
a Hamiltonian that does not commute with the measurement operator pushes both the repeated measurement and repeated contact entropy
below the projective measurement entropy. It does this by aligning the state better with the measurement basis through the evolution (making
the eigenvectors of the transformed state more similar to the eigenvectors of the measurement operator M than it was before the evolution).
All panels show that repeated measurement entropy always decreases with N because each new measurement provides new information and
does not cause the observer to forget information they already obtained. This is not true for repeated contacts, because there is only a single
measurement at the very end, so there may be times when the information leaks back from the probe to the system through the evolution,
thus becoming inaccessible at the time of measurement. In all cases, entropies start from the same value, because for N = 1 the repeated
contacts scheme is equal to the repeated measurements scheme. Panel (c) shows that unlike in the commuting case shown in Fig. 4, in this
noncommuting case, i.e., [H, M] # 0, the probability distribution p(x;, x,) is not symmetric. All other parameters are same as Fig. 4.

where V = dim H is the dimension of the Hilbert space. This
identity shows that observational entropy can be expressed in
terms of Kullback-Leibler (KL) divergence, defined as

gence shows how far are we from having absolutely no
information.

C. Comparison of repeated measurements

(55) and repeated contacts

l

D
Dx(pillg) =Y _ piln j.
i

Finally, let us comment on different scalings with which

KL divergence is a measure of distinguishability of two
classical probability distributions {p;} and {g;}. Thus, we
can interpret observational entropy as a measure of distin-
guishability between the observed probability {p;} and the
probability of outcomes {V;/V = tr[A;(Pmax)]}. The second
probability is the one that would be produced if one were
to measure on the maximally uncertain state Py = I /V,
i.e., a quantum system that we have absolutely no infor-
mation about. Thus, the probability distribution produced
by this state serves as our reference, and the KL diver-

the repeated measurements and repeated contacts approach
the projective entropy in Fig. 4. In Appendix F we show that
both p and V are a linear combination of Gaussians with peak
positions given by eigenvalues of the measurement operator
M. In the repeated contact scheme, the peaks of the farthest
Gaussians are N(f4max — Umin) far from each other. On the
other hand, in repeated measurements the peaks form corners
of a hypercube with (Umin, - - - Mmin) A0 (Umaxs - - - » Mmax)
being the farthest points. Hence the Euclidean distance gives
the result +/N. (Mmax — Mmin) for the distance between them.
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FIG. 6. Behavior of repeated contact entropy S as a function
of the number of contacts N where the total time of interaction
T =NAt =10 is fixed (a different limit as compared to Figs. 4
and 5 where At was fixed). The ratio of the interaction and the free
time evolution time is set as k /At = 1. The repeated contact entropy
converges to the predicted theoretical value Sy in the limit of large
N, Eq. (47).

Relation (54) tells us that the minimum of observational en-
tropy is reached when the difference between distributions p
and V is maximal and their overlap is minimized. Since the
standard deviation 2 of these Gaussians is fixed and does not
change with N, to minimize the overlap one would ideally
create a distribution p with a peak that is the farthest possible
distance from the peak of V. Since the scaling of the distance
of the farthest peaks differs by a +/N we would expect that
also the speed of convergence scales with the same factor.
However, this argument does not represent proof, which we
leave for future work.

VI. OBSERVATIONAL ENTROPY AS A TOOL
FOR QUANTUM STATE INFERENCE

In this section we describe an algorithm through which we
can infer the state of the quantum system, when observational
entropy becomes equal to the von Neumann entropy. We will
show that it is possible to use an indirect measurement scheme
to determine the state of the system when

(1) We know the von Neumann entropy and

(2) We manage to find a measurement such that its corre-
sponding observational entropy is equal to the von Neumann
entropy,
with two additional implicit assumptions, namely,

(3) We know probabilities p;, for example, because we
experimentally determined them and

(4) We know the coarse grainings that define the observa-
tional entropy.

This finding holds for any type of measurement scheme
(projective, indirect, or any other generalized measurement
scheme). To show that, we will provide an explicit algorithm
of how to determine the quantum state when these conditions

are satisfied. This quantum-state inference algorithm is based
on the equality condition of Theorem 1, Eq. (14) specifically.

A. Algorithm for the quantum-state inference

Let us denote the coarse graining for which observational
entropy is equal to von Neumann entropy as C = {4;} and its
corresponding set of POVM elements as {I1;}. We will also
denote the index set of unused indices in the algorithm as I;.
The algorithm goes as follows:

(0) Initialize p = O (a null matrix at the beginning, which
will represent the inferred quantum state at the end of the
algorithm). Initialize the set of unused indices (measurement
outcomes) as the set of all indices, I, = {i}.

(1) Take an index i € I, that has not been used before in
this algorithm. Are there any? (In other words, is the set I,
nonempty?)

(a) YES: Update the set of unused indices by subtract-

ing that index, I, = I, \ i. Continue to 2.

(b) NO: Return p (this is the inferred state of the sys-
tem).

(2) Initialize P = I1; and set (or reset) I = {i} (a set of
indexes that defines P).

(3) Find all i’ that have not been used before such that
[1;P # 0. Are there any?

(a) YES: Update P =P + D>y 1, and I =1U {i'};.

Update the unused index set by subtracting all those indices

as Iy = Iy \ {#'}y. Go back to 3.

(b) NO: According to Lemma 1, P is a projector. Con-

tinue to 4.

(4) Calculate p = (3, pi)/tr[P] (where p;’s denote the
probabilities of outcomes). According to Lemma 2, p is an
eigenvalue.

(5) Update p = p + pP. Go back to 1.

The fact that p generated in this way is the state of the
system comes from the following lemmas.

Lemma 1. P’s generated by steps 1-3 form a complete
set of orthogonal projectors, and each P projects into an
eigenspace of the state of the system.

Lemma 2. p generated by step 4 is an eigenvalue of the
state of the system corresponding to projector P.

The proofs of these lemmas, which are a consequence of
Eq. (14), can be found in Appendix E. There we also show
how this algorithm works on an example of a single von
Neumann measurement scheme from Sec. IV C2.

B. Comparison with quantum tomography

The task of quantum tomography [71,72] is to determine
the state of the system by making measurements in many
different bases (while assuming we have access to an infinite
number of copies of the state of the system). Because a single
measurement provides at most N real parameters, but the
density matrix depends on N> — 1 real parameters, the number
of different bases that needs to be employed to achieve this
task is also V. If these bases are chosen properly, this always
leads to the identification of the quantum state.

Our inference algorithm requires just one measurement
basis in principle, but we have to be lucky to find exactly
the optimal measurement that diagonalizes the density matrix.
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However, this cannot be consistently done, at least not without
some additional optimization, because the density matrix is
not a priori known. This brings us to the limitations of the
presented scheme.

C. Limitations of the presented scheme

The main limitations of the present method lie in its two
inherent assumptions: First, in order to use the algorithm,
we need to know the value of the von Neumann entropy.
This might be a problem for a system about which we have
absolutely no information, and therefore also no knowledge
of the von Neumann entropy. In such a situation, it cannot
be determined whether the observational entropy has reached
its minimum or not. In other words, we cannot know whether
there is a better, yet undiscovered, coarse graining leading to
its lower value, closer or equal to the unknown von Neumann
entropy.

However, in some situations, this might not be an issue, for
example, in cases in which we know the initial state and the
system that evolves unitarily. If the unitary evolution operator
is unknown, quantum mechanics provides no means to esti-
mate the state of the system after its evolution. But in such
cases, since the von Neumann entropy does not evolve, the
algorithm can be readily applied.

Second, we need to find the measurement that will lead
the observational entropy to reach its minimum given by the
von Neumann entropy. Yet the algorithm itself does not give a
recipe for how to do that. One could, for example, randomly
try different types of measurements and pick a few of them
that give a very low entropy. They could then further minimize
the corresponding observational entropy using optimization
over local parameters. The method of finding this optimal
measurement should employ adaptive feedback, similar to that
developed for quantum tomography [73-77], in which the
next measurement is determined by the outcome of the pre-
vious measurements, so that in the limit of a large number of
measurements the minimum of observational entropy (given
by von Neumann entropy) is reached. This is akin to a global
optimization problem that requires adaptive feedback on the
set of measurements, which we leave for future work.

Finally, it is an interesting open problem whether the afore-
mentioned algorithm could be generalized to situations in
which the von Neumann entropy is not known, or to situations
when it is known but observational entropy after a finite set of
measurements is only approximately equal to the von Neu-
mann entropy. In such cases, it should be possible to provide
an error estimate for the density matrix that should tend to
zero when the observational entropy converges to the von
Neumann entropy.

VII. DISCUSSION, CONCLUSION,
AND FUTURE DIRECTIONS

In this paper we generalized the concept of observational
entropy to include general coarse grainings (given by general-
ized measurements). This was motivated by a growing interest
from the experimentalists in generalized quantum measure-
ments and to unravel the fundamental nature of observational
entropy and its interpretation. In this quest, we overcame and

resolved several important subtleties: answering how to define
a general coarse graining, how to treat POVM elements that
are not orthogonal with each other, what is an appropriate
definition of volume of a macrostate, and how we can compare
different coarse grainings.

The main message of this paper is that even with the
general definition of observational entropy, which is defined
by a series of possibly noncommuting, generalized measure-
ments, all of the important properties still hold. Observational
entropy therefore still can be interpreted as a measure of
uncertainty that an observer performing a series of measure-
ments would associate with the initial state of the system.
The properties can be summarized as follows: observational
entropy is lower bounded by the minimal uncertainty given
by von Neumann entropy, and upper bounded by the maximal
entropy given by the logarithm of the system dimension. With
each additional coarse graining, observational entropy cannot
increase, expressing that “each additional measurement can
only increase the observers’ knowledge of the state of the
system.” If one coarse graining is finer than the other, then
observational entropy is always lower for a finer coarse grain-
ing, implying that “an observer that makes a more precise
measurement will get to know at least as much as an observer
that makes an imprecise one.”

We applied this concept to study how indirect measure-
ments perform in information extraction as compared to a
direct measurement. Performing an analysis of a general
scenario of indirect measurements, we found, for example,
that any pure state of the system can be perfectly indirectly
determined by using a two-level auxiliary system—a result
which a posteriori seems very natural [64]. To illustrate the
application on a specific and timely example, we applied
this concept to various von Neumann measurement schemes,
in which a quantum system is probed through an auxiliary
system consisting of a classical particle. Since observational
entropy measures information extracted in different situations,
it serves as a performance quantifier for the different mea-
surement schemes. This not only provides insights into the
understanding of the various measurement schemes, but also
determines which one is the best given a situation.

Moreover, computing observational entropy is a relatively
simple, yet a powerful, test on the performance of any
sequence of measurements in information extraction. For ex-
ample, the construction of a quantum computer, which is
expected to solve complex problems beyond the capabilities
of a classical computer, will require a quantum memory and a
mechanism that reads the output of the computation [78,79].
Computing observational entropy can determine which are
the least invasive measurement schemes to read out both the
quantum memory and the computation output.

Finally, we showed that observational entropy can serve as
a tool for quantum-state identification. We did that by showing
that the knowledge of the coarse graining that leads to the
minimum of the observational entropy allows for a successful
inference of the state of the system. We presented a general
algorithm that achieves this goal to minimized observational
entropy. Generalizing this connection to situations when the
knowledge is not perfect, for example, for the cases in which
the coarse graining gives a low, but not the minimal value of
observational entropy, provides an exciting direction of study.
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An application of this theory could also lie in the study
of microscopic thermodynamic systems, and especially in un-
derstanding quantum entropy production [80—82]. While the
groundwork of using observational entropy for these purposes
was already established in Refs. [33,41], these works are
limited to the use of projective measurements, which meant
that the system and the bath had to be considered together as
a whole. The framework of observational entropy could also
help in answering critical questions of the impact of finite
baths [33,83-86], such as “how much information about the
system can be extracted by measuring a bath,” which requires
generalized (nonprojective) measurements on the bath.

Observational entropy has already been used to study black
holes [30] and the Big Bang [31]. In black holes, a common
question concerns the amount of information lost or gained
through evaporation [3]. Measuring the evaporated states that
escape the black hole provides some information on its in-
ner structure. However, performing a projective measurement
on these states mathematically corresponds to performing
a generalized measurement on the black hole instead. The
framework developed here allows for computing exactly how
much information on the black hole has been gained by doing
this measurement.

There are also many potential applications of this quantity:
it can be used in every scenario that involves information
gain while making a quantum measurement. We hope that
the future development of this framework, as well as finding
applications by experts in their respective fields, will demon-
strate its practicality beyond its current status.
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APPENDIX A: HISTORICAL OVERVIEW

The history of observational entropy goes all the way back
to John von Neumann. It first appeared in his paper [18] in
1929, where he motivated the introduction of this entropy
by criticizing the quantity which we know today as the von
Neumann entropy. He said, “The expressions for [the von
Neumann] entropy given by the author in [87] are not applica-
ble here in the way they were intended, as they were computed
from the perspective of an observer who can carry out all
measurements that are possible in principle—i.e., regardless
of whether they are macroscopic (for example, there every
pure state has entropy 0, only mixtures have entropies greater
than 0!).” He pointed out that von Neumann entropy cannot
represent a good generalization of thermodynamic entropy,
since any pure state, even those at high energies, would have
associated zero entropy. Additionally, von Neumann entropy

remains constant in an isolated quantum system, which would
suggest that in such a system, left to spontaneous evolution, no
information is lost. However, this is again for an observer that
can perform all measurements, even those that are in a very
complicated or highly entangled basis. On the other hand, a
realistic observer with limited capabilities or resources will
always observe an increase in entropy (see also Ref. [88]).

While referring to a discussion with Eugene Wigner [89],
John von Neumann proposed an alternative quantity to rectify
this unsatisfactory behavior,

S() ==Y (¥|Pely)In

E

<1/f|PE|1/’)’ (AD)
%

which does not suffer from the same drawbacks. Above,
Pg is a projector on an energy subspace (surface), and Vg
is the number of orbits (microstates) in an energy surface.
Here (V|Pg|y) = pg is the probability of finding the sys-
tem in an energy shell of energy E. This entropy measures
the lack of information due to an observer’s limited capa-
bility of distinguishing energy eigenstates within a small
energy gap AE. The above is a natural generalization of the
Boltzmann entropy [90] and has found several applications
[19,20,26,91-96], with the first one being the quantum gener-
alization of the celebrated Boltzmann’s H-theorem [18].

The idea of von Neumann’s alternative entropy [Eq. (A1)]
was recently revived [21,22] and generalized to include mul-
tiple noncommuting coarse grainings. It was also named
observational entropy, due to the fact that it is an observer’s
ability to measure a certain macroscopic variable that deter-
mines the coarse graining.

APPENDIX B: PROOFS OF THEOREMS

The proofs of Theorems 1 and 2 are a modification of
those done for projective measurements (Theorems 7 and 8
of [22]), and the spirit of the proof is exactly the same. The
proof of Theorem 3 is similar to the proof of Theorem 2. in
[22]), but modified more significantly, because it uses a more
general (and different-looking, although being equivalent on
the special cases) Definition 3.

All inequalities follow from the application of the follow-
ing well-known theorem.

Theorem 4. (Jensen; see, e.g., Refs. [97-99]) Let f be a
strictly concave function, 0 < a; <1, ) ;a; = 1. Then for
any b; € R,

f(Zm) > aif (by). (B1)

f(Zt aib[) = Zi a,‘f(b,‘) if and only if (Vl, j|a,‘ 75 0, a; 75
0)(b; = b)).

1. Proof of Theorem 1

Proof. In this subsection we are going to prove Syx < Se¢
and S¢ < Indim #, each with its equality condition. The vec-
tor of coarse graining

C=(C,....C) = {A} (B2)
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and
Aip) = KimpKj,, (B3)
m
with the Krauss operators Kj, = Ainmn . -I?i]ml and I%;n =
K:ml . I?flml The vector of outcomes is i = (iy, ..., i), and
= (my, ..., m,). We define the POVM element
=) K Kin- (B4)
m

From the definition of coarse graining, we also have

dof=1. (B5)
i

In these equations, to keep the notation short, we write

22 =22=) (B6)

We denote the spectral decomposition of the density matrix
as p = > pxlx) (x|, where |x) denotes the eigenvector of the
density matrix and p, is the corresponding eigenvalue. The
eigenvalues are not necessarily different for different x, thus
making this decomposition not unique. We also denote the
unique decomposition of the density matrix in terms of its
eigenprojectors p = > 0 oP,, where eigenvalues p are now
different from each other. It follows that for each x there is p
such that p, = p.

Now we prove Syx < S¢ together with its equality condi-
tion. We begin by defining

a)(gi) — (x| TT;]x) (B7)

Vi

for V; # 0 and a® = 0 for V; = 0. Using the spectral decom-
position of p we have

Di D, Px XIH |x)
AT Z pea). (B8)
The cyclicity of the trace dictates V; = tr[I1;] = > (x| 1] x),

from which follows
Z a? =1. (BY)
Applying the completeness relation (BS5), we also have

Y Vial? = i) =
i i

A series of identities and inequalities follow:

(x|x) = 1. (B10)

i X X

ot
i x
== Z (Z Via)(ci)) poxInp, = SiN.
X i

The third identity follows from Eq. (B8), and the last identity
follows from Eq. (B10). We have used Jensen’s Theorem 4 on
the strictly concave function f(x) = —x In x in order to obtain
the inequality. We have chosen a, = a and b, = p, for the
theorem. This is a valid choice due to 0 < @V < 1 and due to
Eq. (B9). This proves the inequality Syx < Sc.-

According to Jensen’s Theorem, this inequality becomes
identity if and only if

(B11)

pr=pr (Vi &V, (x| Tix) #0, (7119 #£0).  (B12)
Having (x|TL;]x) = 0is equivalent to [1;]x) (x| = 0. In order to
show this, we begin by considering (x|I1;|x) = 0 and inserting
Eq. (B4) to obtain

x|ZK Kimlx) = 0

= 1R |x) | =
m

= Kimlx) =0 (¥m)
= K RinlX)(x| =0 (Ym)

ZK Rim|x) (x| =

Mx) (x| =0.  (B13)

Moreover, trivially, IT;|x) (x| =0 implies (x|T1;]x) = 0. This
means that (x|TT;|x) =0 < IT;|x) (x| =0 and (x|IT;|x) #
0 < IT;|x) (x| # 0. Using this equivalence, we rewrite the
condition for the inequality to be the identity, Eq. (B12), as

pr=pr (Vi &Vx, | TTi|x) (x| #0, [1%) (£ #£0).  (B14)

We explain this condition as follows: the inequality (Syn <
Sc¢) becomes identity (Syx = S¢) when for a fixed multi-
index i, all eigenvectors of the density matrix |x) such that
f[i|x) (x| # 0 must have the same associated eigenvalue p,.
In other words, this unique eigenvalue can be associated with
the multi-index i itself, so we can relabel p; = p,, where
the eigenvalue p, is given by any representative x such that
I1;|x) (x| # 0. This must hold for every multi-index #, in or-
der for the inequality to become an identity. Therefore, this
defines a unique map that associates some eigenvalue of the
density matrix with each multi-index i. To highlight the exis-
tence of this map we can extend Eq. (B14) and write

(Vi &Vx, %] TT;]x) (x| £0, T1;]%) (] £0).

Px = Pz = Pi
(B15)
Then, defining a set
19 = {xlp. = o1}, (B16)
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using condition (B15), and ) |x){x| = I, we obtain

;=1L )] = 1LY x| = 1A,

xel®

(B17)

Assuming that p # p;, we can multiply this equation by f’p
from the right, and from the orthogonality of projectors we
obtain

[P, = 0. (B18)

In other words, this means that for every i’ such that p; # p;,

P, = 0. (B19)
Finally, for any eigenvalue p we define an index set
17 = {ilp; = p}. (B20)

Using the completeness relation ), I1; = I and combining
Egs. (B17) and (B19) gives

(B21)

which by definition means that C;, — C.

Conversely, for a contradiction we assume Eq. (B21) holds,
but Eq. (B12) does not, which would mean that there are x
and X such that (le [x)#£0 and (x|H |X) #0 while p, # ps.
We assume arbitrary i and if i € / [®) where p # p,; then
multiplying Eq. (B21) by pr gives

0 = (x|P, Py, |1x) = (x| P,|x) =

> (xlfTil),

iel0)

(B22)

which implies that for every i € /), (x|IT;|x) = 0, due to pos-
itivity of operators [1;. Thus, if |x) and |%) are associated with
different eigenvalues, at least one of the (x|IT;|x) or (%|IT;|%)
must be zero. This is a contradiction with our assumption.
Thus, Eq. (B21) implies (B12), which is equivalent to the
equality condition S,y = S¢. We have therefore shown that
Sy = S¢ if and only if C; — C, which concludes the first
part of the proof.

Next, we prove S¢
condition.

Se= ). p,ln—

i:pi#0

<In (Z V,~> = Intr/ = Indim .
i

Here the first inequality follows from Jensen’s Theorem,
which was applied on a strictly concave function f(x) = Inx,
while we have chosen a; = p; and b; = V;/p; for the theorem.
This is a valid choice, because 0 < ¢; < 1and ) ; a; = 1 hold.
The second inequality follows from V; > 0 while realizing
that the logarithm is an increasing function. The second iden-

< Indim A together with its equality

o X

it Pi

(B23)

tity follows from the completeness relation Zi’m 12,;16,,,, =T

and from the definition of V;.

The first inequality becomes equality if and only if
Vi Wy

_ = — =C
Di )24
for some real constant c. In order to determine the value of
this constant, we express this condition as V; = cp;, and then
we sum over all multi-indexes i for which p; # 0. This leads
toc= >_ipz0 Vi- Therefore, we can write the first equality
condition as

(Vi,i'|pi # 0, py # 0) (B24)

Vi
) pizo Vi
Since the logarithm is a strictly increasing function, the sec-
ond inequality becomes identity if and only if p; = 0 and V; =
0, for every multi-index i. If this is true, then also Zi: i0 V; =
Zi V; = dim H holds, where we have used the definition of
V; and the completeness relation Zi!m 12,;"12,,,, = [. When we
combine both of these equality conditions, we obtain that
S¢ = Indim H if and only if

Vi
dim H
This completes the proof. ]

pi = (Vpi #0). (B25)

pi = (Vpi). (B26)

2. Proof of Theorem 2

Proof. To make our notation easy to read, we denote
Ditrosimings = Pijine-and Vi =V, i while we also use
the same notation that we used in the previous proof. Using

pi = Zl’i,i,,w Vi= ZVi,in

int1 In+1

(B27)

in combination with Jensen’s Theorem 4 gives

Scz—Zp,ln—
= _ZZPUHI

i ipg

Z_Zv<zp11n+1 lln+1) (ZPUHH lln+1>

l I l 1,
ini1 n+1 Int1 n+l

Zl”+| pl Int+1

Vi

> Z v, Z Vi St <_pi,iu+| In Pii )
i1 Vi.,in+1 ‘/i’inJrl
pl in
= - Z Pisinir | V; lnill
[ A
= SC,C;erl N (BZS)
Above, we have used f(x) =—xInx, a;,, =Vi;,,/Vi and

b, = pi.i..,/Vii.,, to obtain the inequality using Jensen’s
Theorem 4.

The condition for Jensen’s inequality to become an identity
is
Piiny _ Piiy
V.

iyt L u+l

(l)(Vl&VllH-la n+1|‘/lln+| # Oa ll+l # 0)7

(B29)
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where ¢® is some i-dependent constant, which we can
compute using Y, pii,,, =Y, Vi, obtaining ¢V =

pi/V;. This enables us to rewrite Eq. (B29) as

V.. . .
—pi (Vi & Vi1 Vi, #0).

7 (B30)

DPiiyy =
For every V;; ., = 0 we also have p;; ., = 0, from which we
trivially obtain p; ;.. = piV;,.,,/Vi. Therefore, this condition
can be simplified further, which gives the final result that S¢ =
Se.c,., if and only if
Vi

Piis = —pi (Vi& Viygy).

7 (B31)

This completes the proof.

We make two interesting remarks about this condition:
Assuming that p; # 0, we can rewrite the above condition as
Plint1li) = pii,.,/Pi = Vii,,,/Vi- This shows that the entropy
will not decrease with additional coarse graining C,; if the
conditional probability of the outcome i, is proportional to
the ratio of the macrostate volumes.

As an example, this equality condition is satisfied when
the vector of coarse grainings C = (Cy, ..., C,) projects onto
a pure state. In other words, the equality is satisfied when
for every density matrix and every vector of outcomes i we
can write |y;)(¥;| = A;(p)/pi (Where it is important to note
that the left-hand side does not depend on the density matrix
0, even though the right-hand side does). Since this must
hold for any density matrix, it also holds for the maximally
mixed state pig = [/ dim #, which in turn yields |v;) (V] =
A;([)/V;. Therefore we can write

Piiyy = tl A, (1Va) (YiDlpi

A(f) V"‘"+
= tr|:Ain+1 (lT>:|pl = %Pi,

meaning that the condition (B31) is satisfied, and thus
Sc = Sc’cnﬂ.

As a second example, the equality condition is also satis-
fied is when C' <= C*, where C' = .. CT) CJr {AT}
and .AT Do tkmk(.)l(lkmk' To 31mp11fy our notation we

will use AJf AT A'

(B32)

This means that for every multi-

index i there is index lfl'j_l such that A! AI(,) 1 () = A;(I) holds,
and for every other index i, # zn 110 AlAT(i, (f) = 0 holds.

Fori, | = l()

41 We obtain a series of 1dent1tles
Py, = wl A A

S Ry KRR
=1 i1 Mg Bim P By, T 1 M1
m,ny,|

—ul| S RLRD R Kimd

im= iy My gy e 1M
RS ]
= u[AlA] (Dp]
= tu[Af(D)p]

= tr[I1;p]
V; i,
tr[-A »)] = T’th

13

(B33)

where we have used that V, .& /V; = 1. Further, when i, #
i+l

i), then Vi ;,., /Vi = 0 and thus

Dijin = tr[A,gjrlAt(lb)]
Vii

=0=—""pi B34
Vi Di ( )

Combining the last two equations, we get

Vi

Pii =~ 5P (B35)
for all i,.41, proving that also in this case, S¢ = S¢,c,,, - [ ]

3. Proof of Theorem 3

Proof. Let{A;} =C « C= {A;}. Then by definition, for
every multi-index j there exists an index set /%) such that

I; = I1;, (B36)
iclW)
where II; = mk;nk,m and ﬁj =3 K;m . Thus, we
have
pj = ulA;(p)] = ulf1;p]
=y ulfl;pl =) pi, (B37)
il iell)
and similarly
Vi=>Y V. (B38)
ielV)
The inequality then immediately follows as
P
Sa = — Z Pj In VJ
J
J el J
i Vi i Vi
— _ZVJ‘( &;) 1n( K;)
J iel) Vi VJ ielV Vi VJ
> Z 7 ( Pz Pz)
i el Vi Vi
=Y pn =, (B39)
Vi

l
where we have chosen a strictly concave function f(x) =
—xInx, a; =V;/V; and b; = p;/V; for i e 19 for Jensen’s
Theorem 4.

The equality conditions from Jensen’s inequality show that
S¢ = Sc if and only if
pi_Pr_ ()

Vj&Vi, i € IV).
VT (Vj )

(B40)
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To determine the constant ¥ we multiply the equation by V;
and sum over all Vi € I, which gives ¢¥) = p;/V;. There-
fore, Sz = S¢ if and only if

(Vj &Vi € IV).

Vi
i = —PDj B41
Di Vjp] ( )

APPENDIX C: EQUIVALENCE OF DEFINITIONS
OF FINER VECTOR OF COARSE GRAININGS

In [22] we defined a finer set of coarse graining (of projec-
tive measurements) in the following way.

Definition 4. (Finer vector of coarse grainings—old defi-
nition): A vector of coarse grainings C = (Cy, ..., C,) is finer
than coarse graining C = C (and denote C <= C) when for
every multi-index i = (iy, . . ., i,) there exists Isj € C such that

By BBy =B, By, 1
WhereIS,-k eCuk=1,...,n
We will prove that the more general Definition 3 coincides
with this older definition in the limit of projective measure-
ments. In other words, for a class of coarse grainings C =
{Ai}, C= {A]} where
Ai=P, -

Y AOLE (C2)

and

A; = Bi@)P;, (C3)
Cc<—C according to the new definition if and only if C <« C
according to the old definition.

Proof. We begin by assuming that C <= C according to the
new definition. This means that for all j there exists an index
set I/) such that

=Y 1, (C4)
iel)
where H _P’LP =P; and I _Islﬁi =B ---P ---P,.
Thus, we can rewrlte the identity as
Pp=>"P BB (C5)
iel)
Different P;’s are orthogonal to each other, therefore
A (Co)

PipB =Y By By BB =0
iel)

for any j # j. Applying an arbitrary vector |) on both sides,
we get

A

SO|[B, B =0 (C7)
iel)
Thus, for all j # j and for alli € IV,
||I3,-” b /W || (C8)
This holds for any |y), therefore also
P, - B P;=0. (C9)

We then pick arbitrary i that belongs to some of the index sets
I’. We therefore associate P; to this i and have

&~nﬁ=m~ﬂ(&+2%>
J#i
B Bi=B B (IO

where we have used Eq. (C9). This means that C < C ac-
cording to the old definition.

Now we prove the opposite implication, that a coarse grain-
ing which satisfies the old definition also satisfies the new
definition. Given j, we define /) as the set of all i which
correspond to j (according to the old definition). When multi-
plying Eq. (C1) by P;, j # j, from orthogonality of projectors

we obtain
B, BB =0 1)
for all i € /), which also implies that
B, ..-BB =0 (C12)
for all i ¢ /). Then we have identities
;= Aj=213i1" B, --- PP
i
- bbb
=Zﬁ BBy =) M. (C13)
iclU iel)

where we have used Eqs. (C12) and (Cl1). This implies
that C <= C according to the new definition, concluding
the proof. |

APPENDIX D: NONTRIVIALITIES IN GENERALIZING
OBSERVATIONAL ENTROPY TO GENERAL
MEASUREMENTS AND KEY DIFFERENCES

In this Appendix we point out several nontrivialities
encountered when generalizing observational entropy to gen-
eralized measurements (POVMs). This is to illustrate the
necessary shift in our understanding of this quantity, as well
as to motivate using this general definition, which is in many
ways elegant and superior to the projective measurement sce-
nario. Below we describe the main generalizations that have
made the extension to generalized measurements possible.

(1) Volume generalization. The original definition of ob-
servational entropy relies on the notion of macrostates, which
are defined as subspaces. The volume of a macrostate is de-
fined as a dimension of the corresponding subspace. This,
however, breaks down when considering multiple, noncom-
mutative projective coarse grainings. This is because the
overlap of two subspaces does not necessarily form a sub-
space. From an operator perspective, this is connected to the
fact that a product of two noncommuting projectors is not a
projector. However, the product of two noncommuting pro-
jector measurements represents a Kraus rank-1 generalized
measurement, which is a form of POVM. Thus, the vector
of projective coarse grainings can be represented by a sin-
gle POVM, with vector-labeled elements. Also, a vector of
POVMs can be represented by a single POVM (see the last
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line of Table I). Thus, the composition of projective mea-
surements is not a closed operation (it pushes the definition
of coarse graining outside what is defined as a projective
coarse-graining), while the composition of POVMs is a closed
operation.

While for projective measurements, coarse graining can
be represented by a set of operators, for a general POVM,
this is no longer possible, and one has to define it as a set
of superoperators to include every possible case. When gen-
eralizing observational entropy to POVMs, it is clear how
to generalize the probabilities of outcomes p;. It is a priori
not clear how to generalize the corresponding volumes and
why one should choose V; = tr[.A;(D)]. This is because this
quantity is no longer related to any subspace, and therefore
V; does not represent a number of microstates contained in
that subspace. There can be several other unwanted defini-
tions of the volume: for example, defined by the rank of the
corresponding POVM (that would not add up to the total
dimension of the system), or the product of local volumes in
the case of multiple coarse grainings (which would not lead to
the desired properties of observational entropy). However, our
choice leads to the theorems to hold, and since it is connected
to the multiple coarse-graining POVM element instead of the
product of single coarse-graning elements, one can intuitively
understand why this is a reasonable choice.

(2) Finer coarse-graining generalization. For a projective
coarse graining, there are several definitions of a vector of
finer coarse graining possible [22]. These definitions, while
being equivalent for projective coarse grainings, are, however,
not equivalent when generalized to the POVMs. The particular
choice for the Definition 3 of a finer vector of coarse grainings
is justified by showing that Theorem 3 holds for this defini-
tion. See Appendix C that discusses the equivalence of the
definitions for projective coarse grainings.

(3) Superiority of Theorem 3. In the case of projective
coarse grainings, Theorem 2 and Theorem 3 are equivalent
statements because one can be derived from the other when
properly rephrased. However, in the case of POVMs, Theorem
3 is more general, because Theorem 2 can be derived from it,
but not the other way around.

APPENDIX E: PROOF OF THE ALGORITHM
FOR THE QUANTUM STATE INFERENCE

Just like in Definition 3 and elsewhere, we assume that
the set of coarse grainings C = (Cy,...,C,) = {4;}, where
the quantum operations A; = Y, Kim(®)K; with Ki, =
Kim, - Kiym,i = (i1, ..., i), andm = (my, ..., m,). More-
over, a POVM element is defined as [1; = Zm 125"1%,,,,

According to Definition 3, C <= C, = {P,()P,} if and
only if we can build each eigenprojector of the density matrix
using POVM elements from the vector of coarse graining C,
i.e., if for each eigenvalue p there exists an index set / () such

that
Po=) Ti= ) KK (E1)
iel® iel®.m
For the following proofs needed for the algorithm, we need to
identify how to group the POVM elements together so that we
can build those projectors, i.e., we need an algorithm of how

to generate these sets 1) that can be used to build up ﬁp’s.
This will be achieved by the following three lemmas:

Lemma 3. Let C <> C, where C = {P;(e)P;}, and C =
{A;}. If two POVM elements have nonzero overlap, they must
correspond to the same projector ISj. In mathematical terms, if
I1;Y1; # 0, then both i, € IV for some j.

_Proof. For contradiction, let us assume thati € 1) andi’ €
IV, where j # j. Then from the orthogonality of projectors
we have

PiP:P; = 0,
Py Y KiKiPi=0 (E2)
7el0.m
Applying an arbitrary vector |¢) from both sides we get
> KBl I = 0. (E3)
ielh,
This holds for any |y), therefore
RoPi=0 (Vi eV &Y. (E4)

Multiplying this equation by kj from the right, expressing ﬁ,-
in terms of the Krauss operators, and applying |¢) from both
sides we get

> KK 192 = 0. (ES)

ielD.m
Since this holds for any [1/), we get
RinK], =0(Vi € IV, ¥i' e 17V, &VY).  (E6)

Multiplying this equation by I?lln from the left and by K;» from
the right and summing over and " we get

I;11; =0, (E7)

which is in contradiction with our assumption that IT;IT; # 0.
Therefore, both i and i’ must belong into the same /). [ |

Lemma 1. Next we go on to prove Lemma 1, which says
P’s generated by steps 1-3 form a complete set of orthogonal
projectors, and that each P projects into an eigenspace of the
state of the system.

Proof. Lemma 3 and Definition 3 guarantee that the pro-
cedure in step 3 will correctly generate the elements of the
index set /"), This is because from Lemma 3 we know that
all POVM elements that have nonzero overlap must corre-
spond to the same projector ﬁp. Let us denote the set of
all operators P generated through the algorithm as A = {P}.
This set must be complete (3", P = I), because Y 5, P =
> I; = Dim 1%,;”16,,,, = . Combining Lemma 3 and Defini-
tion 3 we know that for each p there must exist a subset of A,
let us denote it B®, such that

B, = Z p. (E8)

Pepr

Further, we know that every operator P € A must be orthogo-
nal to every other operator P € A. This is because the iterative
process of step 3 is stopped exactly when for all unused 7/,
[1;P = 0, so P must be orthogonal to all P’s that will come
after it, and by the same logic, P must also be orthogonal to
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all the P’s that came before it. Also, from the construction it
is clear that B”’s are disjoint sets (B” N B = for p # p')
whose union equals the set A (A = | , B?). If we manage to

prove that each P is a projector, then from Eq. (E8) it is clear
that it must project into an eigenspace of the density matrix,
simply because 13,) already does by definition.

Therefore, all we have to do now is to prove that each P
generated by step 3 is a projector. For a contradiction, let us
assume that there is some P that is not a projector. This P
belongs into some set B. To make the notation clearer, let us

label elements of B” as 131, e, Isk SO we can write
P,=P+ - +A, (E9)

and we assume that operator P; is the one that is not a projec-
tor. P, is a projector, therefore

B= B2 = (B4t B
=P 4... + P2, (E10)

where we have used that all P’s are orthogonal to each other.
Multiplying this equation by P, and using the orthogonality
again we obtain

Pl =P. (E11)
However, P, is a Hermitian operator by construction, so there
is a spectral decomposition of Py =), Au W) (Wnl, An # 0,
where |y,,) are orthogonal. Combining the spectral decompo-
sition with the above equation, we have

szm (il —ZA [¥a)

Due to orthogonality of |1/,), it must be that 22 = A3 for every
n, in other words, A, = 1 for every n. Thus,

Pr=" [ (Wl,

therefore P, is a projector, which is a contradiction. Thus, P
generated by step 3 is always a projector, and as we estab-
lished before, it must project into an eigenspace of the density
matrix. This concludes the proof. ]

Lemma 2. Finally, we prove Lemma 2 which says that p
generated by step 4 is an eigenvalue of the state of the system
corresponding to projector P.

Proof. From Lemma 1 we know that each P projects into
an eigenspace of the system. Let us denote the (currently
unknown) eigenvalue corresponding to this eigenspace as ,00
P is orthogonal to every other P by construction P = Y,

(E12)

(E13)

tel

J

X |mN)<mN| b |(p)(fk,u,,,,o---ﬂq/.r,,}\Ll )(Qﬂx—mmém—mm,

UUNZ®6) = Y Oy ---
mgy mU ..... my, mN
This leads to
AS(2Z) = (x|gUAN(Z @ 6)x)p
= K*ZK™", (F7)

The probability of obtaining measurement outcome i is equal
to

pi = t[Ai(p)] = t[[1;p] = tr|:ﬁi Z ,Olspi|- (E14)
P
Summing over all i € I we obtain

Zp, = tr|:PZpP :| [Zpéppoﬁ:| = ,ootr[f’].

iel P
(E15)

I is a nonempty set by construction, therefore tr[ ] is nonzero.
Thus, we can divide by it and obtain

Zie[ Pi
[P’
which concludes the proof. ]

po = (E16)

APPENDIX F: EXPLICIT FORM OF REPEATED
MEASUREMENTS AND REPEATED CONTACTS
SUPEROPERATORS

1. Repeated measurements

It can be easily realized that the repeated measurements
superoperator (44) can be rewritten as

A™(Z) = R™ZR™, (F1)
where
K™ = UK,y - UK, (F2)

In terms of the bare elements, this gives

(Ie;m)mNmo = Z Umo...WIN g%mmN (x)a (F3)

where the contribution due to the free evolution is given by
= (Uf)mNmN,l ce ((jf)mlmy (F4)

The Gaussian state of the pointer modifies as

~
Umg...mN

(x_KM'm ..m, )2
R e I
where x=(x1,...,xy,0) and ooy =
(Mmav M Mmel ’ O)

2. Repeated contacts

To obtain an explicit form of the repeated contacts super-
operator (46), we first compute

(Uf)n11mozmom6 (Uf):ﬁn;vmj\,il . (Uf ):1/1;716

|. (F6)

N-1

[
where

Ie;C = Z (Uf )mNmN P (0f)m|mo

.....

x,/g%m,no...m,w ) (ol (F8)
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which represents the elements of the operator A (Z) in the
eigenbasis of the measurement operator. We can write this in
a form similar to Eq. (F3)

(Ie;c)m,vmo = Z Umo...mN grrflo---mN (X), (F9)

my,..., my—1
where
1C 1
Sy (X) = Qr)i
N—1 2
X—K) . e
xexp[—( i’z—;’ tm) ] (F10)

Comparing Egs. (F3) and (F9) we see that the only difference
between the repeated measurements and repeated contacts is
the function /gm  (x)and \/gic  (x), respectively.

mgy...my

APPENDIX G: NUMERICAL DETAILS

On a computer we cannot create an exactly continuous
function; hence in all figures, we choose the coarse-grained
positional step to be dx = 0.1. Since computing observational
entropy is a numerical integration problem, using the Trape-
zoidal rule [100] we expect the error to scale as dx?, which
would give precision around O(10~2). However, in practice,
we saw that observational entropy is very insensitive to the
coarse-graining size in x, and the error is much smaller. No-
tably, the difference in results between dx = 1 and dx = 0.1
was only 1073 or less in every example we considered, and
the difference in outcome for dx = 0.1 and dx = 0.01 was
of order O(107%) for cases N = 2. We also chose a cutoff
in the positional axis at four standard deviations €2 from the
farthest peak of Gaussians that make p’s and V’s [for instance,
see Figs. 4(b) and 4(c), which show the cutoff scale]. We
performed a series of sanity checks, for example, summing
computed probabilities p and volumes V and making sure they
add up to 1 and 2 = dim H, respectively, and ensuring that
the generated coarse graining sums to unity as per Eq. (6).

Computing the observational entropy for the von Neumann
measurement schemes is a computationally demanding task.
This is due to the dimensionality of the problem growing
exponentially with N and the sheer number of points for
which we need to compute p and V, especially in the repeated
measurement case.

In repeated contacts, we can estimate the computational
complexity as the product of three critical factors: (1) the num-
ber of discretized points on the position axis (computed via the
distance between the farthest Gaussian peaks 4 42 buffer on
both sides), i.e., [k N (max — MUmin) + 82]/dx, (2) complexity
of computing a single element of the sum [Eq. (F8)], for a
given x, has a leading order N for having to multiply N ele-
ments of (U ' mim;_,» and (3) summing all (dim Hg Y elements
of the sum (F8). Thus, the leading order of the computational
complexity [k N (tmax — Mmin) + SQIN?(dim Hg)V /dx scales
with the number of contacts N as O(N>(dim Hs)"). With
our parameters (fbmax = 2, Umin = 0, Q =1, dim Hg = 2),
we obtain N32V as the leading order. This translates into the
ability to compute for up to N = 22 on a single processor with
current parameters.

In repeated measurements, we can estimate the compu-
tational complexity as the product of three critical factors:
(1) the number of discretized points x = (x1, ..., xy) on the
position axes (computed via the distance between the farthest
Gaussian peaks + 4 buffer on both sides, to the power

of the number of different axes), i.e., ((k(tmax — Mmin) +
89)/dx)N, (2) complexity of computing a single element
of the sum [Eq. (F3)], for a given x, has a leading order
N? for having to multiply N elements (Uf)mim,fw and (3)
summing all (dim Hs)" elements of the sum (F3). Thus, the
leading order of the computational complexity (k(max —
Mmin)/dx + 8Q)VN?(dim Hg)" scales with the number of

contacts N as O(N?(dim Hg(k (bmax — Mmin) + SQ)/dx)N).
With our parameters (Umax = 2, Umin = 0, 2 = 1, dim Hg =
2), we obtain N2200" as the leading order. This translates into
the ability to compute for up to N = 5 on a single processor
with current parameters. The task is also highly parallelizable;
however, any advantage gained by parallelization diminishes
quickly with N due to the prohibitive scaling.
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