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Ordering and classifying multipartite quantum states by their entanglement content remains an open problem.
One class of highly entangled states, useful in quantum information protocols, the absolutely maximally
entangled (AME) ones, are especially hard to compare as all their subsystems are maximally random. While
it is well known that there is no AME state of four qubits, many analytical examples and numerically generated
ensembles of four-qutrit AME states are known. However, we prove the surprising result that there is truly only
one AME state of four qutrits up to local unitary equivalence. In contrast, for larger local dimensions, the number
of local unitary classes of AME states is shown to be infinite. Of special interest is the case of local dimension
6, where it was established recently that a four-party AME state does exist, providing a quantum solution to
the classically impossible Euler problem of 36 officers. Based on this, an infinity of quantum solutions are
constructed, and we prove that these are not equivalent. The methods developed can be usefully generalized to
multipartite states of any number of particles.
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I. INTRODUCTION

Quantum entanglement between two distant parties, with
its counterintuitive nonclassical features, has been exper-
imentally verified [1–4] via violations of Bell–Clauser-
Horne-Shimony-Holt (CHSH) inequalities [5]. Multipartite
entanglement, which is at the heart of quantum informa-
tion, computation, and many-body physics, is still poorly
understood. Studying the entanglement content in them via
interconvertibility and classifying them are of fundamental
importance. A putative maximally entangled class called ab-
solutely maximally entangled (AME) states are such that there
is maximum entanglement between any subset of particles and
the rest [6]. They have been related to error-correcting codes
[7], both classical and quantum, combinatorial designs such
as orthogonal Latin squares (OLSs) [8–10], quantum parallel
teleportation and secret sharing [6], and holography [11]. It is
therefore of considerable interest to find structure among such
highly entangled multipartite states; in particular, can some
AME states have more nonlocal resources than others?

Given N particles with d levels each (the local di-
mension is d), there is no guarantee that an AME state,
denoted AME(N, d ), exists. For example, AME(4, 2) does
not exist; four qubits cannot be absolutely maximally en-
tangled [12]. It is known that AME(N, 2) exists only for
N = 2, 3, 5, and 6 [7,13,14]. A table of known AME(N, d )
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constructions is maintained [15], and a recent update is
presumably AME(4, 6) [16]. This state long defied con-
struction and provided a quantum solution to the classically
impossible problem of “36 officers of Euler.” This state
was dubbed the “golden AME” state due to the unexpected
appearance of the golden ratio in it. Recent works have ap-
peared elucidating the nature of the solution and its geometric
implications [17,18].

Given that any type of entanglement cannot on average
increase under local operations and classical communication
(LOCC), two states |ψ1〉 and |ψ2〉 are said to be LOCC equiv-
alent if they can be converted into each other under such
operations [19,20]. A finer, but easily defined, equivalence is
local unitary (LU) equivalence:

|ψ1〉 LU∼ |ψ2〉 (1)

if and only if there exists local unitary operators ui, such
that |ψ2〉 = (u1 ⊗ · · · ⊗ uN )|ψ1〉. A coarser classification is
provided by stochastic LOCC (SLOCC), wherein conversion
occurs with a nonzero probability of success [21,22]. Mathe-
matically, this replaces the unitary ui in the LU equivalence by
invertible matrices. For pure AME states such as the ones this
work addresses, SLOCC (and hence also LOCC) equivalence
is identical to LU equivalence [23].

However, LU equivalence among AME states is a long-
standing problem that is notoriously hard to resolve [23–25]
as all the subsystem states are maximally mixed. There
have been several examples of AME(4, 3) in the literature,
from those based on graph states and combinatorial struc-
tures [8,9,26–28] to numerically generated ensembles [29,30].
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Despite this, we prove the surprising conjecture [31] that there
is exactly one LU-equivalence class of AME(4, 3) states. We
show that they are all equivalent to each other and hence
equivalent to one with minimal support or rank such as

|�P9〉 = (|1111〉 + |1222〉 + |1333〉 + |2123〉 + |2231〉
+ |2312〉 + |3132〉 + |3213〉 + |3321〉)/3. (2)

The minimal support or rank here refers to the minimum
natural number r such that the corresponding state can be
represented as a superposition of r orthonormal product states
[32]. For an AME(N, d ) state with N, d � 2, the minimal
support is found to be d�N/2� [33].

We provide a set of invariants such that when they co-
incide for two states their LU equivalence is implied. For
d > 3, but d �= 6, orthogonal Latin squares (OLSs) can be
used to construct AME(4, d ) states [8,9]. We show that a
continuous parametrization based on multiplication of suit-
able components by phases gives invariants that can take an
uncountable infinity of values and hence lead to an infinity
of LU-equivalence classes. For the special case of d = 6,
there are no OLS constructions [34], but we use the recently
constructed “golden state” [16] as a basis for a similar con-
struction which leads to an infinity of LU-equivalence classes
in this case as well. The methods developed can be general-
ized to a larger number of particles and provide a different
outlook into highly entangled multipartite states.

A unitary matrix U of order d2 can be used to define a
four-party state

|�U 〉 = 1

d

∑
iα jβ

U iα
jβ |iα jβ〉, (3)

where U iα
jβ := 〈iα|U | jβ〉. The state |�U 〉 is a vectorization

of the matrix U [35,36]. If the unitary U is 2-unitary (de-
fined in the next section), then the corresponding state is an
AME(4, d). A unitary operator U is LU equivalent to U ′ if
there exist single-qudit gates ui and vi such that

U ′ = (u1 ⊗ u2)U (v1 ⊗ v2). (4)

The corresponding four-party states are also LU equivalent
as |�U ′ 〉 = (u1 ⊗ u2 ⊗ vT

1 ⊗ vT
2 ) |�U 〉, where T is the usual

transpose. Therefore the equivalence among AME(4, d) states
can be studied via equivalence of 2-unitary operators. In this
paper, we construct and use LU invariants that are based
on unitary operators rather than directly the coefficients of
states. Based on four permutations of n copies, these are easily
computed and are in principle complete, in the sense that if all
of them are equal, then the operators or corresponding states
are LU equivalent [37].

The fact that there is only one LU class of AME(4, 3) states
implies that there is only one 2-unitary matrix of order 9 de-
noted P9, up to multiplication by local unitaries on either side,
and no genuinely orthogonal quantum Latin square [10,38] in
d = 3. It should also be noted that while generic states of four
parties (even for qubits) have an infinity of LU-equivalence
classes, the case of AME states forms an exceptional set.

II. PRELIMINARIES AND DEFINITIONS

In this section, we recall necessary background on clas-
sical and quantum orthogonal Latin squares, and 2-unitary
operators.

A. Orthogonal Latin squares

A Latin square (LS) of order d is a d × d array filled by
numbers [d] = {1, 2, . . . , d}, each appearing exactly once in
each row and column. Two Latin squares K and L of order
d , with entries Ki j and Li j in the ith row and jth column,
are called orthogonal Latin squares if the d2 pairs (Ki j, Li j ),
i, j ∈ [d], occur exactly once.

As mentioned earlier, a pair of orthogonal Latin squares
of order d can be used to construct an AME(4, d ) state. If
the orthogonal Latin squares are K and L with order d , the
corresponding AME(4, d ) state can be constructed as follows:

|ψ(K,L)〉 = 1

d

∑
i, j

|i j〉 |Ki jLi j〉 . (5)

Such a construction exists for all d , except d = 2 and d = 6,
where there are no OLSs.

The notion of a Latin square can be generalized by
replacing discrete symbols with vectors or pure quantum
states [39]. A quantum Latin square of size d is a d × d
arrangement of d-dimensional vectors such that each row
and column forms an orthonormal basis. The mapping of
discrete symbols in a classical Latin square to computa-
tional basis vectors ({i �→ |i〉 , j �→ | j〉 : 〈i| j〉 = δi j, i, j =
1, 2, . . . , d}) results in a quantum Latin square of size d .
For d = 2 and 3 all quantum Latin squares are equivalent
to classical ones for some appropriate choice of bases [40].
However, for d � 4 there exist quantum Latin squares that are
not equivalent to classical Latin squares [40].

Analogous to orthogonality of classical Latin squares there
is a notion of orthogonality of quantum Latin squares [10,38].
Two quantum Latin squares Q1 and Q2 are said to be orthog-
onal if together they form an orthonormal basis in Hd2 . To
be precise, if |ψi j〉 and |φi j〉 denote single-qudit states in the
ith row and jth column of orthogonal quantum Latin squares
Q1 and Q2, then the set {|ψi j〉 ⊗ |φi j〉 ; i, j = 1, 2, . . . , d} is
an orthonormal basis. Thus orthogonal quantum Latin squares
provide a special product basis in Hd ⊗ Hd in which both
single-qudit bases form a quantum Latin square.

A more general notion of orthogonal quantum Latin
squares allows for an entangled basis in Hd ⊗ Hd . In this
case a d × d array of bipartite pure states |�i j〉 ∈ HA

d ⊗ HB
d

form an orthogonal quantum Latin square, if they satisfy the
following conditions [16,30]:

〈�i j |�kl〉 = δi jδkl ,

TrA

(
d∑

k=1

|�ik〉 〈� jk|
)

= δi jId = TrB

(
d∑

k=1

|�ik〉 〈� jk|
)

,

TrA

(
d∑

k=1

|�ki〉 〈�k j |
)

= δi jId = TrB

(
d∑

k=1

|�ki〉 〈�k j |
)

.

Here, TrA and TrB denote the partial trace operations onto
subsystems B and A, respectively. It is easily seen that in the

032412-2



ABSOLUTELY MAXIMALLY ENTANGLED STATE … PHYSICAL REVIEW A 108, 032412 (2023)

case of an unentangled basis these conditions are equivalent
to the first definition.

The above definitions are equivalent to the bipartite uni-
tary operator U = ∑d

i, j=1 |i〉 | j〉 〈�i j | remaining unitary under
particular matrix rearrangements as explained below. Such
unitary operators are called 2-unitary [9] and form the main
focus of this work.

B. 2-unitary operators

A unitary operator U on Cd ⊗ Cd ∈ U (d2) can be ex-
panded in a product basis as

U =
∑
iα jβ

〈iα|U | jβ〉 |iα〉 〈 jβ| . (6)

We recall the following matrix rearrangement operations fa-
miliar from state separability criteria [41,42].

(i) Realignment, R, is as follows:

〈i j|U R |αβ〉 = 〈iα|U | jβ〉 . (7)

(ii) Partial (or blockwise) transpose, �, is as follows:

〈iβ|U � | jα〉 = 〈iα|U | jβ〉 . (8)

Here, U R and U � denote the matrices obtained after
realignment and partial transpose operations, respectively.
These operations allow us to define the following classes of
unitary operators.

Definition 1: Dual unitary. A matrix U is dual unitary if U
and U R are unitary.

Definition 2: T-dual unitary. A matrix U is called T-dual
unitary if U and U � are unitary.

Definition 3: 2-unitary. A matrix U is 2-unitary if it is dual
unitary and T-dual unitary.

Quantum circuit models constructed from dual unitaries
have been widely studied recently as models of nonintegrable
many-body quantum systems [43–45], and the circuits con-
structed from 2-unitaries have been shown to possess extreme
ergodic properties [28]. A generalization of 2-unitary matri-
ces to multiunitary matrices allows the construction of AME
states with a higher number of parties [9].

The 2-unitary matrix corresponding to the state in Eq. (5)
constructed from OLSs gives a 2-unitary permutation defined
as follows:

P =
∑
i, j

|i j〉 〈Ki jLi j | . (9)

2-unitary permutations can be constructed from OLSs in all
local dimensions d > 2, except d = 6. It is also noted that if
we multiply a 2-unitary permutation with a diagonal unitary
matrix, it remains 2-unitary. In fact, permutations that are
dual or T-dual unitary remain dual or T-dual unitary under the
multiplication of all nonvanishing (unit) elements by phases:
We refer to this as enphasing. Thus all 2-unitary permutations
remain 2-unitary under enphasing.

III. LU EQUIVALENCE OF AME(4, 3) STATES

The smallest local dimension in which four-party AME
states exist is d = 3. It has been shown that AME states of

minimal support or rank 9 are all LU equivalent [23]. We now
show the following.

Theorem 1. There is only one LU-equivalent class of
AME(4, 3) states or, equivalently, one LU-equivalent class of
2-unitary gates of size 9.

Proof. A universal entangler on Cd ⊗ Cd entangles every
product state, and it is known that they do not exist in d = 2
and d = 3 [46]. The fact that there are no two-qutrit universal
entanglers implies that for any two-qutrit gate U ∈ U(9) there
exists a product state in C3 ⊗ C3 such that

U (|α1〉 ⊗ |β1〉) = |α2〉 ⊗ |β2〉 . (10)

Writing |α1〉 ⊗ |β1〉 = (v1 ⊗ v2) |11〉 and |α2〉 ⊗ |β2〉 =
(u†

1 ⊗ u†
2) |11〉, where ui and vi are single-qutrit unitary gates,

it is easy to see that

U1 = (u1 ⊗ u2)U (v1 ⊗ v2) (11)

such that

U1(|1〉 ⊗ |1〉) = |1〉 ⊗ |1〉 . (12)

Denoting nonzero entries of U1 by ∗, the matrix form of U1

becomes

U1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

If U is a 2-unitary operator, the LU transformation in
Eq. (11) will lead to U1 given in the matrix form in Eq. (16).
The steps given below explain the reduction in the number of
nonzero entries upon imposing dual unitary and T-dual unitary
constraints.

(1) If U R
1 is unitary, then the nine 3 × 3 blocks in U1

are orthonormal to each other. This implies that all nonzero
entries in the first block containing 1 vanish and in all the
remaining blocks the element in the first row and the first col-
umn vanishes. Therefore the dual-unitary constraint implies
that U1 is of the form

U1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

This provides the most general form of the nonlocal part of
two-qutrit dual-unitary gates.
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(2) If U �
1 is unitary, U1 takes the form

U1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

Note that the four columns 2, 3, 4, and 7 have only four
potentially nonvanishing elements. Thus these form a four-
dimensional orthonormal basis themselves and imply that the
elements in the corresponding rows of columns 5, 6, 8, and 9
vanish. Therefore Eq. (15) further simplifies to

U1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

The LU transformation in Eq. (11) reduces the maximum
number of nonzero entries of the 2-unitary from 81 to 33.

From U1, we perform a series of local unitary transforma-

tions, involving only 2 × 2 unitaries such that U1
LU∼ P9, reduc-

ing the total number of nonzero entries to only 9. Here P9 is the
2-unitary permutation that takes (11,12,13,21,22,23,31,32,33)
to (11,23,32,33,12,21,22,31,13) and results in the AME(4, 3)
state |�P9〉 in Eq. (2). The details of the LU transformations
can be found in the Appendix.

Thus every 2-unitary matrix U in C3 ⊗ C3 can be expressed
in the form U = (u′

1 ⊗ u′
2) P9 (v′

1 ⊗ v′
2). The four 3 × 3 uni-

taries, u′
1,2 and v′

1,2 define a 33-dimensional manifold of
2-unitaries. Hence it is proven that there is only one LU class
of 2-unitary gates of size 9 or, equivalently, there is only one
AME(4, 3) state up to multiplication by local unitaries. �

Corollary 1. For any 2-unitary two-qutrit gate U ∈ U(9),
there exist orthonormal product bases {|αiβ j〉 : i, j = 1, 2, 3}
and {|α′

iβ
′
j〉 : i, j = 1, 2, 3} in C3 ⊗ C3 such that

U |αiβ j〉 = |α′
iβ

′
j〉 , i, j = 1, 2, 3. (17)

To see this, let the action of the 2-unitary permuta-
tion P9 on the computational basis be given by P9 |i j〉 =
|ki j li j〉, where i, j, ki j, li j ∈ {1, 2, 3}. The set of product states
{|ki j li j〉 : i, j = 1, 2, 3} also form a product basis in C3 ⊗ C3.
Any 2-unitary two-qutrit gate can be expressed as U = (u†

1 ⊗
u†

2) P9 (v†
1 ⊗ v

†
2 ), where u1,2 and v1,2 are 3 × 3 unitaries. This

allows us to define the product states |αiβ j〉 = (v1 ⊗ v2) |i j〉
and |α′

iβ
′
i 〉 = (u†

1 ⊗ u†
2) |ki j li j〉, which satisfy the condition in

Eq. (17). If these local unitary operators u1,2 and v1,2 are
used in the LU transformation in Eq. (11), the reduction to
P9 occurs in one step.

Illustration of the proof of Theorem 1

We illustrate the proof of Theorem 1 for generic two-qutrit
(d2 = 9) 2-unitary matrices. Such generic 2-unitary operators
have all d4 = 34 elements nonzero and can be obtained from
the algorithms presented in Ref. [29]. The absolute values of
the entries of one such realization of a generic 2-unitary of
size 9, denoted simply as U below, are shown in Fig. 1(a).
We use an algorithm similar to the one described in Ref. [47]
that, given a bipartite unitary U , finds a pair of maximally
entangled states |	1〉 and |	2〉 such that U |	1〉 = |	2〉. We
use the modified algorithm to find a product state that remains
a product state under the action of U . The existence of such a
product state is guaranteed due to the nonexistence of a two-
qutrit universal entangler gate [46].

Using the product state obtained from the algorithm for the
2-unitary U , we illustrate the proof of Theorem 1 step by step
for U showing that it is LU equivalent to the P9 (2-unitary
permutation) as follows.

Let |�X 〉 and |�Y 〉 be the product states found using the
modified algorithm such that U |�X 〉 = |�Y 〉. Define matri-
ces X and Y with elements Xi j = 〈i j|�X 〉 and Yi j = 〈i j|�Y 〉,
respectively, where i, j = 1, 2, . . . , d . Let the singular value
decompositions of the matrices X and Y be given by

X = a1D1b1, Y = a2D2b2, (18)

where a1, a2, b1, and b2 are d × d unitary matrices and D1

and D2 are diagonal matrices with only one nonzero entry
that is equal to 1. Rewriting the above equations in the vector
form gives |�X 〉 = (a1 ⊗ bT

1 ) |11〉 and |�Y 〉 = (a2 ⊗ bT
2 ) |11〉.

The unitary matrices obtained from these relations can be
used to implement the LU transformation given in Eq. (11) by
setting u1 = a1, u2 = bT

1 , v1 = a†
2, and v2 = b∗

2. The transfor-
mation results in a 2-unitary matrix whose nonzero entries are
shown in Fig. 1(b). Note that the number of nonzero entries is
reduced from 81 to 33. The nonexistence of a two-qutrit uni-
versal entangler together with 2-unitarity conditions implies
that any 2-unitary of size 9 is of the form shown in Fig. 1(b).
The matrices U R

1 and U �
1 also have exactly the same structure

for the nonzero entries.
We apply a sequence of local unitary transformations de-

fined in Eqs. (A7)–(A11) to further simplify the 2-unitary
matrix. The result of these local transformations is shown in
Figs. 1(c)–1(e).

IV. COMPUTABLE AND COMPLETE SET
OF LU INVARIANTS

In this section, we provide a complete set of LU invariants
that, in principle, allow us to determine if two given operators
are LU equivalent. A family of LU invariants for a general
matrix A ∈ Cd ⊗ Cd may be constructed as follows. Take
any natural number n and permutations σ, τ, ρ, λ ∈ Sn: the
symmetric group on {1, . . . , n}. From these data, compute the
following number:

A(σ, τ, ρ, λ) = Ai1 j1
k1l1

· · · Ain jn
knln

(A†)kρ(1)lλ(1)

iσ (1) jτ (1)
· · · (A†)kρ(n)lλ(n)

iσ (n) jτ (n)
,

(19)

where the sum over repeated indices is assumed. It is straight-
forward to check that this is an invariant of LU equivalence.
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)e()d()c()b()a(

FIG. 1. (a) The absolute values of the entries of a generic 2-unitary of size 9 obtained from the MT R algorithm presented in Ref. [29] are
shown. All d4 = 81 entries are nonzero, and the rows and columns are entangled. The numbers 1–9 on the left indicate the row number, and
similarly, the numbers on the top indicate the column number. (b) The absolute values of entries of the LU-equivalent 2-unitary matrix to U ,
U1 = (u1 ⊗ u2)U (v1 ⊗ v2). The only nonzero entry in the first 3 × 3 block is equal to 1, and the number of nonzero entries in the 2-unitary
matrix is 81 − 48 = 33. (c) and (d) The absolute values of entries of the 2-unitary matrix are shown after performing local transformation
defined in Eqs. (A7) and (A9), respectively. (e) The local transformation defined in Eq. (A12) results in 2-unitary enphased permutation in
which there is only one nonzero entry (of modulus 1) in any row and column.

The content of Propositions 8 and 20 of Ref. [37] is that the
collection of all these numbers is a complete LU invariant. In
other words, A and B, not necessarily unitary, are LU equiva-
lent, if and only if A(σ, τ, ρ, λ) = B(σ, τ, ρ, λ) for every n
and choice of σ, τ, ρ, λ ∈ Sn. In this paper, this is used to
show that matrices A and B are not LU equivalent by dis-
playing σ, τ, ρ, λ ∈ Sn for some n such that A(σ, τ, ρ, λ) �=
B(σ, τ, ρ, λ).

In general, for the LU-invariant A(σ, τ, ρ, λ) to be non-
trivial and not obtainable from a smaller value of n, the four
permutations of length n must form a 4 × n Latin rectangle;
i.e., there are n different symbols in all four rows and four
different symbols in all n columns. For n < 4, there are rep-
etitions of symbols, and the resulting invariant reduces to a
function of either trivial invariant TrAA† or known invariants
based on matrix rearrangements such as realignment and par-
tial transpose.

Our main interest is to distinguish 2-unitary operators that
are not LU equivalent. The problem of LU equivalence for
2-unitaries is especially hard because all known LU invari-
ants based on matrix rearrangements such as realignment
and partial transpose are constants [48,49]. For distinguishing
2-unitaries that are not LU equivalent, we need to choose
the four permutations in Eq. (19) in such a way that the
resulting invariant does not reduce to a function of known
invariants involving realignment and partial transpose matrix
rearrangements. A possible choice of such permutations for
n = 4 is

σ = (1 2 3 4), τ = (2 1 4 3),

ρ = (3 4 1 2), λ = (4 3 2 1).
(20)

Note that the above four permutations arranged in a 4 × 4
arrangement form a Latin square of size 4. The resulting LU
invariant is equal to

Ai1 j1
k1l1

Ai2 j2
k2l2

Ai3 j3
k3l3

Ai4 j4
k4l4

(A†)k3l4
i1 j2

(A†)k4l3
i2 j1

(A†)k1l2
i3 j4

(A†)k2l1
i4 j3

(21)

and is useful in distinguishing 2-unitaries that are not LU
equivalent as discussed below.

V. LU-EQUIVALENCE CLASSES
OF AME(4, d ) STATES IN d � 4

In this section, using the LU invariants introduced above,
we study the LU equivalence classes of AME states in d � 4.

Theorem 2. The number of LU-equivalence classes of
2-unitary gates of size d2 (equivalently, the number of LU-
equivalence classes of AME states of four qudits) for d � 4 is
infinite.

Proof. Consider first the case of d � 4 and d �= 6. We
observed that 2-unitary permutations remain 2-unitary under
enphasing—multiplication of all nonvanishing (unit) elements
by phases. However, such 2-unitaries are not necessarily LU
equivalent.

What we actually see is that given one permutation gate,
there are infinitely many LU-equivalence classes of enphased
permutation gates of the same size, the method of proof ne-
cessitating the restriction d �= 6—since permutation 2-unitary
gates (which are in bijection with orthogonal Latin squares)
are known to exist for all d � 4 except for d = 6.

Fix a permutation P of size d2. For every i, j ∈ [d] =
{1, 2, . . . , d}, there exist unique k, l ∈ [d] such that Pi j

kl = 1.
Let S ⊆ [d]×4 be the set of all (i, j, k, l ) as i, j vary over
[d] and k, l are the unique elements with Pi j

kl = 1. For t =
1, 2, 3, 4, let πt : S → [d] be the t th component function, so
that, for instance, π3((i, j, k, l )) = k. Note that |S| = d2 and
that for each k ∈ [d], there are exactly d elements s ∈ S with
π3(s) = k, and similarly for each l ∈ [d], there are exactly d
elements s ∈ S with π4(s) = l .

We will be interested in multisubsets of S, consisting of sets
that have elements of S that could be repeated. Such multisub-
sets construct the invariant in Eq. (19) and define functions
X (s) from S to {0, 1, 2, 3, . . .} counting the number of times
s occurs in X . Any such multisubset X also determines four
functions from [d] to {0, 1, 2, 3, . . .}. These are IX , JX , KX ,
and LX , where

IX (p) =
∑

s∈S,π1(s)=p

X (s),

with analogous definitions for JX , KX , and LX . These count
how many times p occurs as a first, second, third, or fourth
component of elements of X.
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We claim that there are two distinct multisubsets X and
Y of S for which all these functions are identical. To see
this, note that a multisubset X of S corresponds naturally
to a function F : [d] × [d] → {0, 1, 2, 3, . . .}. For a given
such function, we could define X : S → {0, 1, 2, 3, . . .} by
X ((i, j, k, l )) = F (i, j) and conversely, given X , we may
define F (i, j) = X ((i, j, k, l )), where k, l are the unique el-
ements with Pi j

kl = 1.
Say that X corresponds to F and Y corresponds to G. The

condition that IX = IY is given by
∑

j F (i, j) = ∑
j G(i, j),

for each i ∈ [d]. Similarly, the condition that JX = JY is given
by

∑
i F (i, j) = ∑

i G(i, j), for each j ∈ [d]. The condition
that KX = KY is not as easily expressed since it depends on
the permutation P, but it is clear that it is given by a sum
of d F (i, j)′s on the left-hand side and the corresponding
G(i, j)′s on the right-hand side where the (i, j) vary over those
for which the corresponding k′s are equal, for each k ∈ [d]. A
similar statement holds for when LX = LY .

To summarize, two multisubsets X and Y corresponding
to functions F and G have the same I , J , K , and L func-
tions exactly (the K and L functions should not be confused
with the Latin square symbols) when 4d homogeneous linear
equations in F (i, j) − G(i, j) are satisfied. However, these
equations are not independent because the sum of all the
F (i, j) coincides with the sum of all G(i, j) once IX = IY ,
and so we need to consider only d − 1 equations for each of
the J , K , and L functions. The actual number of equations is
thus at most 4d − 3. The number of variables is d2, namely,
F (i, j) − G(i, j). For d � 4, d2 > 4d − 3; that is, the number
of variables is greater than the number of equations. Since it
is a system of homogeneous equations with more variables
than equations, these equations have a nontrivial solution.
The coefficients in the system of equations are rational, and
hence a rational solution exists. Furthermore, by clearing all
the denominators by multiplying by some number, we may
assume that this solution is integral and then choose each
F (i, j) and G(i, j) to be non-negative. The homogeneity of
the equations ensures that this remains a solution.

Finally, we have two distinct multisubsets X and Y
of S such that for any p, the number of elements of
X with first component p equals the number of elements
of Y with first component p, and similarly for the other
three components too. Say that these multisubsets have
N elements each. This condition implies that there exist
permutations σ, τ, ρ, λ ∈ SN such that if X is enumerated
(arbitrarily) as {(i1, j1, k1, l1), . . . , (iN , jN , kN , lN )}, then Y =
{(iσ (1), jτ (1), kρ(1), lλ(1) ), . . . , (iσ (N ), jτ (N ), kρ(N ), lλ(N ) )}. Note
that N = ∑

i, j F (i, j) = ∑
i, j G(i, j).

Since X and Y are distinct, there is an s = (i, j, k, l ) ∈ S
for which X (s) �= Y (s). Let Q be the 2-unitary obtained from
a 2-unitary permutation P by setting Qi j

kl = α ∈ S1 with other
entries untouched. The invariant Q(σ, τ, ρ, λ), by definition,
is a sum of terms, each of which is a monomial in α, α. It
suffices to see that one of these terms is a nonzero power of α

for this polynomial to take infinitely many values as α ranges
over S1. However, this is true because the term corresponding
to {(i1, j1, k1, l1), . . . , (iN , jN , kN , lN )} is αX (s)αY (s), which is
a nonzero power of α. �

To illustrate that enphasing of 2-unitary permuta-
tions leads to different LU-equivalence classes in d =
4, consider the permutation denoted P16, and (P16)i j

kl el-
ements are such that (kl ) are ordered as (11, 44, 22,

33, 43, 12, 34, 21, 24, 31, 13, 42, 32, 23, 41, 14) when (i j) is
in the lexicographic ordering (11, 12, . . . , 44). Let P16(θ ) de-
note the 2-unitary obtained from P16 by changing only (P16)11

11
from 1 to eiθ .

The invariant given in Eq. (21) for P16(θ ) evaluates to the
following simple continuous function of θ :

P16(θ ; σ, τ, ρ, λ) = 8(29 + 3 cos θ ). (22)

As θ ranges in (−π, π ], the invariant takes infinitely many
distinct values, and so the corresponding 2-unitaries are not
LU equivalent.

While an interpretation of this invariant is not clear, it can
be related to a moment of an operator on two copies, or four
parties A, B, C, and D with U acting on the pairs (A, B) and
(C, D):

L[U ] := (SBD ⊗ IAC )(U † ⊗ U †)(SBD ⊗ IAC )(U ⊗ U ), (23)

where SBD is the SWAP gate between subsystems B and D.
Representing the bipartite operator with a tensor having two
incoming and two outgoing indices, diagrammatic representa-
tion of L[U ] in terms of bipartite unitary operators U and SUS
(where S is the SWAP gate) is given by

(24)

It can be easily checked that L[U ] = L[SUS] and all the
moments, TrLk[U ]; k = 1, 2, 3, . . ., are local unitary invari-
ants. For example, TrL[U ] = Tr(U RU R†)2 is related to the
operator entanglement of U [29,35,36], and the invariant
in Eq. (22) is equal to the second moment TrL2[P16(θ )].
Note that TrL[U ] is equal to d2 for dual unitaries and thus
cannot distinguish dual unitaries in different LU-equivalence
classes.

A. Proof based on orthogonal diagonal Latin squares

In this section, we give a constructive proof for Theorem 2
for the case d � 4 and d �= 6 using special orthogonal Latin
squares. We find explicit examples of multisets with desired
properties discussed above, and construct the corresponding
four permutations σ , τ , ρ, and λ.

Consider a Latin square of order d with elements from the
set [d] = {1, 2, . . . , d}. A transversal of a Latin square is a set
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of d distinct entries such that no two entries share the same
row or column. A diagonal Latin square is one in which both
the main diagonal and the main back (or “anti-”)diagonal are
transversals.

Two Latin squares K and L form a pair of orthogonal
diagonal Latin squares (ODLSs) if both are diagonal Latin
squares and orthogonal. It is known that ODLSs exist for
every order d except 2,3 and 6 [50]. An example of a pair
of orthogonal diagonal Latin squares in d = 4 is given below:

ODLS(4) =
1, 2 3, 3 4, 1 2, 4
4, 4 2, 1 1, 3 3, 2
2, 3 4, 2 3, 4 1, 1
3, 1 1, 4 2, 2 4, 3

. (25)

Given a pair of orthogonal Latin squares K and L, we can
construct a 2-unitary operator P as follows:

P =
d∑

i, j=1

αi, j |i, j〉 〈Ki, j, Li, j | , (26)

where αi, j ∈ S1. For our purpose, we set αi, j = 1, for all i, j
except α1,1 = α �= 1.

We choose both K and L to be diagonal Latin squares such
that they form a pair of orthogonal diagonal Latin squares.
Let S ⊆ [d]×4 be the set of all (i, j, Ki, j, Li, j ), i, j ∈ [d], such
that Pi, j

Ki, j ,Li, j
is nonzero. It is noted that the multisubsets of

S construct the invariant in Eq. (19). Consider the following
subsets of S constructed using the addresses and elements of
main and back diagonals of K and L:

X = {(i, i, Ki,i, Li,i ), i ∈ [d]},
Y = {(i, d + 1 − i, Ki,d+1−i, Li,d+1−i ), ı ∈ [d]}. (27)

An element (i, i, Ki,i, Li,i ) ∈ X is different from any ele-
ment ( j, d + 1 − j, Kj,d+1− j, Lj,d+1− j ) ∈ Y except the case
when d is odd and i = j = (d + 1)/2. Therefore X and
Y are distinct. However, for the multisubset X the func-
tions IX , JX , KX , and LX are identical to the corresponding
functions for the multisubset Y , both being constant func-
tions (equal to 1). For the example in Eq. (25), X =
{(1, 1, 1, 2), (2, 2, 2, 1), (3, 3, 3, 4), (4, 4, 4, 3)} and Y = {(1,

4, 2, 4), (2, 3, 1, 3), (3, 2, 4, 2), (4, 1, 3, 1)}.
The four permutations σ , τ , ρ, and λ can be found by

inspection since all the functions I , J , K , and L evaluate to
1 for the subsets X and Y . Note that the sets {Ki,i, i ∈ [d]}
and {Ki,d+1−i, i ∈ [d]} contain elements in the main diagonal
and the back diagonals of K , respectively. Since K is assumed
to be a diagonal Latin square, these two sets are related by
a permutation. This gives the permutation ρ ∈ Sd . A similar
argument can be given in the case of sets {Li,i, i ∈ [d]} and
{Li,d+1−i, i ∈ [d]}, and the corresponding permutation is λ ∈
Sd . It is also evident that the set [d] and {d + 1 − i, i ∈ [d]}
are related by a permutation

τ =
(

1 2 · · · d
d d − 1 · · · 1

)
. (28)

Therefore, if we enumerate elements in X as
{(i1, j1, k1, l1), . . . , (id , jd , kd , ld )}, then Y = {(i1, jτ (1),

kρ(1), lλ(1) ), . . . , (id , jτ (d ), kρ(d ), lλ(d ) )}. The permutation
ρ is identity in this case. Note that the element
(1, 1, K1,1, L1,1) ∈ X does not belong to Y . Then, the
term corresponding to {(i1, j1, k1, l1), . . . , (id , jd , kd , ld )}
in the LU-invariant P(1, τ, ρ, λ) evaluates to α. Therefore
P(1, τ, ρ, λ) can have infinitely many values as α is a
continuous parameter. Hence this shows that there exist
an infinite number of LU-equivalence classes of 2-unitary
gates for d � 4 except d = 6. In d = 3, as proven earlier,
there is only one LU-equivalence class of AME(4, 3) states.
This is consistent with the fact that there are no ODLSs in
d = 3 [50].

B. The special case of d = 6

Due to the nonexistence of orthogonal Latin squares of
size 6 [34], 2-unitary permutations of size 36 do not exist
[8], and we need to treat this case separately. However, it
was shown recently in Ref. [16] that a 2-unitary matrix of
size 36 denoted as U36, or, equivalently, an AME state of four
six-level systems, AME(4, 6), |�U36〉 exists. This settled pos-
itively a long-standing open problem in quantum information
theory [51].

For the sake of completeness, we show the nonzero matrix
elements of the 2-unitary U36 corresponding to the golden
AME(4, 6) state [16] in Fig. 2. The pair of indices (k, l )
shown in rows label the rows, and the (i, j) shown in columns
label the columns in U36. The nonzero elements of U36 in-
volve the 20th root of unity, ω = exp(2π i/20), and the real
numbers [16]

a = (5 +
√

5)−1/2, b/a = ϕ, c = 1/
√

2, (29)

where ϕ = (1 + √
5)/2 is the golden ratio. ω is the complex

conjugate of ω.
Here, we show that one can obtain an infinite number of 2-

unitaries from U36 by multiplying it with appropriate diagonal
unitaries. Unlike 2-unitary permutations, U36 does not remain
2-unitary under multiplication by diagonal unitaries with ar-
bitrary phases. In order to preserve 2-unitarity, one needs to
multiply particular rows or columns of the given 2-unitary
with specially designed phases depending on its structure.
The simplest example in the case of U36 is the one-parameter
family of 2-unitaries

U36(θ ) = D(θ )U36, (30)

where D(θ ) = Diag[eiθ , 1, 1, eiθ , 1, 1, eiθ , 1, 1, eiθ , 126] and
θ ∈ (−π, π ]. The notation 1K is to indicate a length-K string
of 1s. This yields an infinity of AME(4, 6) states parametrized
by θ under the correspondence in Eq. (3). That this enphasing
retains the 2-unitary property is not evident, but follows from
the observation that [U36(θ )]R = UR

36 D′(θ ) and [U36(θ )]� =
D′′(θ )U�

36, where D′(θ ) = Diag[eiθ , eiθ , 116, eiθ , eiθ , 116], and
D′′(θ ) = Diag[eiθ , eiθ , 1, 1, 1, 1, eiθ , eiθ , 128].

We show that these 2-unitaries are not LU equivalent by
evaluating the invariant U36(θ ; σ, τ, ρ, λ) for permutation of
indices given by Eq. (20). The invariant evaluates to the fol-
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FIG. 2. Nonvanishing matrix elements of the 2-unitary U36. The pair of indices (i, j) indicated in rows label the relevant row, j + 6(i − 1),
and the pair of indices (k, l ) indicated in columns determine the relevant column, l + 6(k − 1). ω denotes the complex conjugate of ω.

lowing function of θ :

U36(θ ; σ, τ, ρ, λ) = C0 + 6 cos θ, (31)

where C0 = 3(202 + √
5 + 2

√
5 − 2

√
5)/4 ≈ 154.267 is a

constant. The θ dependence proves that the invariant can take
infinitely many distinct values and the corresponding U36(θ )
are not LU equivalent. The invariant in Eq. (31) is equal
to trL2[U36(θ )] = C0 + 6 cos θ . The realignment and partial
transpose of 2-unitaries provide other 2-unitaries, and for
U36(θ ), one needs to evaluate the third moment trL3[U ] to
show that these are not LU equivalent.

C. The 25-parameter family of AME(4, 6) states

Apart from the one-parameter family of enphasing dis-
cussed above, we give a more general construction consisting
of 25 real parameters. Let U = U36. This has 112 nonzero
entries. Consider a matrix, say, V , obtained from U by mul-
tiplying each of these nonzero entries by a phase factor. For
definiteness, suppose that each nonzero Ui j is multiplied by
eiθi j . We now try to understand under what conditions on the
θi j the new matrix V is also 2-unitary.

First V must be unitary. Since its rows are still of norm 1,
only the orthogonality of the rows needs to be ensured. Take
any two rows, say, i1 and i2 of V . Suppose that the columns
where both these rows have nonzero entries are j1, j2, . . . (at
most four, from the structure of U ). For the inner product
of these rows to vanish it suffices that θi1 j1 − θi2 j1 = θi1 j2 −
θi2 j2 = θi1 j3 − θi2 j3 = · · · . This is a set of homogeneous linear
equations in the θi j . Similarly, for VR and V� to be unitary we
get other homogeneous linear equations in the θi j .

Writing out all these homogeneous linear equations for the
θi j , we get a system of 246 equations (75 for V , 87 for V� , and
84 for VR) in 112 variables. The rank of the coefficient matrix
can be computed to be 87 using, say, MATHEMATICA, thereby

yielding a 25-dimensional solution space. This is the required
25-dimensional family of 2-unitary enphasings of U .

Apart from solving the difficult problem of establishing
LU-equivalence classes for AME states of four parties or
2-unitary operators in any local dimension, the methods devel-
oped herein can be extended both to unequal local dimensions
and to more parties. This requires as many permutations as
the number of parties to construct the invariants. That the
case of qutrits is special and has only one class needs further
elucidation in terms of the geometry of the set of 2-unitaries in
this case. We hope that these results pave the way for a deeper
understanding of multipartite states and new entanglement
measures.
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APPENDIX: LU TRANSFORMATIONS INVOLVED
IN THE PROOF OF THEOREM 1

There exist no universal entanglers in d = 3. This result
allows us to find a unitary operator U1 that is LU equivalent
to a given two-qutrit operator U such that the entry in the first
column and first row of U1 is equal to 1. The corresponding
LU transformation, given in Eq. (11), is restated here for
completeness:

U1 = (u1 ⊗ u2)U (v1 ⊗ v2), (A1)

where u1,2 and v1,2 are single-qutrit unitary gates.
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Requiring U to be 2-unitary and imposing 2-unitarity con-
straints will lead to the following matrix form of U1:

U1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

From here, we apply appropriate local unitary transformations
to simplify further.

In the following step, we label relevant nonzero entries and
represent U1 as

U1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 0 p11 p12 0 q11 q12

0 0 0 0 p21 p22 0 q21 q22

0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A3)

Consider the matrices

P =
(

p11 p12

p21 p22

)
, Q =

(
q11 q12

q21 q22

)
. (A4)

The constraint that U1 be 2-unitary gives the following condi-
tions:

PP† + QQ† = I2 (Unitarity),

P†P + Q†Q = I2 (T-dual unitarity),

tr(P†P) = 1

tr(Q†Q) = 1

tr(P†Q) = 0

⎫⎪⎪⎬
⎪⎪⎭ (Dual unitarity).

(A5)

Consider the singular value decomposition P = V1D1W
†

1 ,
where V1 and W1 are unitary matrices and D1 =
Diag{σ1, σ2}. The orthonormality condition tr(P†P) = 1
implies σ 2

1 + σ 2
2 = 1. From the first two relations in

Eq. (A5), we get

QQ† = V1D′2
1 V †

1 ,

Q†Q = W1D′2
1 W †

1 ,
(A6)

where D′
1 = Diag{σ2, σ1}. Therefore Q can be written as Q =

V1D2W
†

1 where D2 is a diagonal matrix denoted by D2 =
Diag{σ ′

1, σ
′
2} and can in general be complex. Therefore a local

unitary transformation on U1 is given by

U2 =
(

I3 ⊗
(

1 0
0 V †

1

))
U1

(
I3 ⊗

(
1 0
0 W1

))

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 0 σ1 0 0 σ ′

1 0
0 0 0 0 0 σ2 0 0 σ ′

2
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ 0 0
0 ∗ ∗ ∗ 0 0 ∗ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 0 σ1 0 0 σ ′

1 0
0 0 0 0 0 σ2 0 0 σ ′

2
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 ∗ ∗ 0 0 ∗ 0 0
0 ∗ 0 ∗ 0 0 ∗ 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 ∗ ∗ 0 0 ∗ 0 0
0 ∗ 0 ∗ 0 0 ∗ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A7)

The final form above has two more elements set to 0 as the
3 × 3 blocks have to be orthonormal.

It follows from the last two conditions in Eq. (A5) that the
matrix given by

σ =
(

σ1 σ ′
1

σ2 σ ′
2

)
(A8)

is unitary. A local unitary transformation of the form

U3 = U2

((
1 0
0 σ †

)
⊗ I3

)
(A9)

followed by considering the unitarity of U �
3 results in

U3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 c11 0 c12 0
0 0 ∗ 0 0 0 ∗ 0 0
0 ∗ 0 ∗ 0 0 0 0 0
0 0 0 0 0 c21 0 c22 0
0 0 ∗ 0 0 0 ∗ 0 0
0 ∗ 0 ∗ 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A10)
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At this stage, we notice that all the columns of U3 are unentan-
gled. Therefore we need to apply local transformations on the
left to reduce further. Note that the four potentially nonzero
entries labeled ci j in U3 form a 2 × 2 unitary matrix. Using
this unitary matrix

C =
(

c11 c12

c21 c22

)
, (A11)

we apply the following local unitary transformation:

U4 =
((

1 0
0 C†

)
⊗ I3

)
U3. (A12)

The constraint of U4 being 2-unitary gives

U4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 α2 0 0
0 α1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 α3 0 0 0 0 0 0
0 0 0 α4 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A13)

where α1, α2, α3, and α4 are of modulus 1.

In the final step, we perform the following local unitary
transformation:

P9 = (	1 ⊗ 	2)U4(	3 ⊗ 	4)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(A14)

where

	1 = Diag
{
1, (α∗

1α
∗
2 )

1
3 , (α∗

3α
∗
4 )

1
3
}
,

	2 = Diag
{
1, (α∗

2α
∗
3 )

1
3 , (α∗

1α
∗
4 )

1
3
}
,

	3 = Diag
{
1, (α1α3α

∗
4 )

1
3 , (α1α3α

∗
2 )

1
3
}
,

	4 = Diag
{
1, (α2α4α

∗
1 )

1
3 , (α2α4α

∗
3 )

1
3
}

(A15)

are diagonal unitaries. Here, we choose the principal value of
the cube root z1/3 with argument arg(z) ∈ [0, 2π ). Concerning
this last step, it has already been shown that any enphasing of
P9 is LU equivalent to it [23].

Therefore we have shown that any 2-unitary two-qutrit
operator is LU equivalent to P9. Hence there exists only
one LU-equivalence class of 2-unitary gates in d = 3, or
equivalently, there is only one AME(4, 3) state up to LU
equivalence.
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Entanglement and quantum combinatorial designs, Phys. Rev.
A 97, 062326 (2018).

[11] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, Holo-
graphic quantum error-correcting codes: Toy models for the
bulk/boundary correspondence, J. High Energy Phys. 06 (2015)
149.

[12] A. Higuchi and A. Sudbery, How entangled can two couples
get? Phys. Lett. A 273, 213 (2000).

[13] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Mixed-state entanglement and quantum error correc-
tion, Phys. Rev. A 54, 3824 (1996).

[14] F. Huber, O. Gühne, and J. Siewert, Absolutely Maximally
Entangled States of Seven Qubits Do Not Exist, Phys. Rev. Lett.
118, 200502 (2017).

032412-10

https://doi.org/10.1103/PhysRevLett.28.938
https://doi.org/10.1103/PhysRevLett.49.1804
https://doi.org/10.1103/PhysRevLett.115.250401
https://doi.org/10.1038/nature15759
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevA.86.052335
https://doi.org/10.1103/PhysRevA.69.052330
https://doi.org/10.1103/PhysRevA.72.012314
https://doi.org/10.1103/PhysRevA.92.032316
https://doi.org/10.1103/PhysRevA.97.062326
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1016/S0375-9601(00)00480-1
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevLett.118.200502


ABSOLUTELY MAXIMALLY ENTANGLED STATE … PHYSICAL REVIEW A 108, 032412 (2023)

[15] F. Huber and N. Wyderka, Table of AME states, http://www.tp.
nt.uni-siegen.de/+fhuber/ame.html, accessed November 2022.

[16] S. A. Rather, A. Burchardt, W. Bruzda, G. Rajchel-Mieldzioć,
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