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Noiseless linear amplification and loss-tolerant quantum relay using coherent-state superpositions
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Noiseless linear amplification (NLA) is useful for a wide variety of quantum protocols. Here we propose a
fully scalable amplifier which, for asymptotically large sizes, can perform perfect fidelity NLA on any quantum
state. Given finite resources, however, it is designed to perform perfect fidelity NLA on coherent states and their
arbitrary superpositions. Our scheme is a generalization of the multiphoton quantum scissor teleamplifier, which
we implement using a coherent-state superposition resource state. Furthermore, we prove our NLA is also a
loss-tolerant relay for multiary phase-shift keyed coherent states. Finally, we demonstrate that our NLA is also
useful for continuous-variable entanglement distillation, even with realistic experimental imperfections.
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I. INTRODUCTION

Coherent states, which can be approximated by laser light,
already exhibit favorable quantum properties such as mini-
mum uncertainty. It follows naturally that the ability to control
an arbitrary superposition of coherent states would be pow-
erful for a wide range of quantum protocols, such as for
quantum computing [1–5], quantum metrology [6–10], and
quantum communication [11–14].

One type of control which is essential for many quantum
protocols is amplification, which increases the average num-
ber of photons. This could be done in a variety of different
ways [15–22], however, an amplifier is more useful for quan-
tum protocols if it satisfies two properties. First, the amplifier
is linear, where it preserves phase relations and thus arbitrary
superposition of the input state. Second, the amplifier is noise-
less, where it does not add any additional noise in comparison
to the input state. This is especially important for a superposi-
tion of coherent states, which are known to be susceptible to
losing their quantum interference fringes [23,24]. Therefore,
noiseless linear amplification (NLA) produces the best quality
amplified states, with the downside that in general this process
must be probabilistic due to the no-cloning theorem [25].

A particular well-studied subset of coherent-state super-
positions is the cat state, which is an equal superposition
of coherent states, and whose name is in reference to
Schrödinger’s cat thought experiment [26]. There are numer-
ous known methods for generating high-quality cat states
[27–31]. These cat states can then be used as a resource for
NLA of an arbitrary superposition of coherent states, based
on the procedure given in Ref. [32]. This process works by
teleporting the input state onto a resource state, hence it is
also known as teleamplification. This is an example of per-
fect fidelity NLA of a continuous-variable (CV) superposition
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state, using finite resources. More precisely, suppose we have
a resource cat state with N components, where N is the num-
ber of coherent states in the superposition. We can use this
teleamplifier to perform NLA on any arbitrary superposition
state containing up to N components. If applied to an input
alphabet containing only coherent states, the teleamplifier still
operates well in the presence of large losses, i.e., for use as an
untrusted quantum repeater or relay; this could be useful for
quantum key distribution (QKD) via N-ary phase-shift keyed
(N-PSK) coherent states [33,34]. However, the results given in
Ref. [32] only prove and provide the optical networks required
to perform NLA on states with N = 2 or 4 components.

In this work, we propose a fully scalable teleamplifier pro-
tocol, which can perform perfect fidelity NLA for any integer
N � 2, thereby filling in this missing knowledge gap. As an
immediate corollary, since any quantum state can be repre-
sented in the asymptotic limit of N → ∞ components [35],
our protocol can in principle perform NLA on any arbitrary
quantum state. Indeed, our proposed device can actually im-
plement the so-called exact immaculate amplification process,
first hypothesized in Ref. [36]. The structure of our proposed
device is inspired by the multiphoton quantum scissor teleam-
plifier. The single-photon quantum scissor [37] can perform
perfect fidelity NLA on quantum states containing up to a
single photon [38]. There were attempts to generalize it to
multiphotons, but the output states were distorted [38,39].
It was only recently that better methods were found, which
allowed perfect fidelity NLA on states containing up to any
chosen number of photons [40–43]. We will show that our
proposed scheme can be thought of as a type of generalization
to the multiphoton quantum scissor in Ref. [41], in that it can
perform teleamplification without photon truncation.

We begin in Sec. II, where we prove that our protocol
of size N can in principle perform perfect fidelity NLA of
an arbitrary state with N components. We also show our
protocol still works with high fidelity in situations where it
is misaligned with the input. In Sec. III, we show how our
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device can also act as a loss-tolerant relay, given we send only
coherent states. In Sec. IV, we explore another application
for continuous-variable entanglement distillation, which we
show is useful even with realistic experimental imperfections.
Finally, we conclude in Sec. V.

II. N-COMPONENTS CAT TELEAMPLIFIER

Any quantum state can be represented as a superposition
of Fock (photon-number) states |ψ〉 = ∑∞

n=0 cn|n〉, because
these Fock states form a complete basis. Similarly, it is known
that any quantum state can be represented as a continuous
superposition of coherent states on a circle in phase space
because these coherent states also form a complete basis [35].
In this regard, consider

|ψN,α〉 ≡
N∑

a=1

ca

∣∣ωa
Nα

〉
, ωN ≡ e−i2π/N , (1)

which is an arbitrarily weighted ca superposition of N
coherent-state components |ωa

Nα〉. These coherent states have
the same magnitude |α|, however, the ath coherent state is
rotated by an angle of −2πa/N . This is shown schematically
for N = 3 by the three smaller red circles in Fig. 1(a), which
lie equally spaced on the perimeter of a larger red circle of
radius |α|. These states generalize the well-known cat state,
therefore, we will name this representation the cat basis.

The NLA operation ga†a|ψN,α〉 ∝ |ψN,gα〉, with gain g ∈
[0,∞), is shown by dashed yellow lines in Fig. 1(a). This
transforms the red circle of radius |α| into the blue circle of
radius |gα|, while preserving all other properties. Our pro-
posed protocol, with a scalable size parameter N , is given
schematically in Fig. 1(b) in yellow. In this section, we will
prove that this protocol can perform perfect fidelity NLA
given the input state can be written as Eq. (1). Hence, as an
immediate corollary, our proposed protocol can in principle
perform perfect fidelity NLA on any arbitrary input in the
asymptotic limit of large N [35]. Note we will show in a later
section that even input states which cannot be fully written
as Eq. (1) can still experience good quality NLA using our
protocol with finite-N sizes.

Our protocol is powered by a resource of light called an
N-components cat state

|φN,β〉 ≡ 1√
N

N∑
b=1

ωb
N

∣∣ωb
Nβ

〉
, (2)

where N is the normalization constant. Cat states have been
well studied, so there are many techniques to create these
states [44–47]; the N ∈ {3, 4} sizes were first made experi-
mentally a decade ago [48,49]. Due to this resource and the
basis in which our scheme works, we will call our device the
N-components cat teleamplifier (N-CT).

Our device also requires standard linear optical compo-
nents. We need a beam splitter B2(τ ) with transmissivity
τ ∈ [0, 1], which scatters photons between two modes in a
linear fashion as a†

1 → √
τa†

1 − √
1 − τa†

2. Note a†
m is the

creation operator which acts on the mth mode or port. We also
need a balanced N splitter SN , which similarly has a linear
action as (a†

1, . . . , a†
N )T → SN (a†

1, . . . , a†
N )T , with a scattering

FIG. 1. Any arbitrary quantum state can be described by a con-
tinuous superposition of coherent states which lie on a phase-space
circle since they form a complete basis [35]. (a) We consider states
made from finite-N coherent-state components (here N = 3), in a
superposition with arbitrary ca coefficients |ψN,α〉 ≡ ∑N

a=1 ca|ωa
Nα〉,

with phase-shift angles ωN ≡ e−i2π/N . An amplification (or deam-
plification) process changes the circle radius from |α| to |gα| with
g ∈ [0,∞) gain. (b) Our N-CT proposal performs noiseless linear
amplification for any N ∈ N�2, with in principle perfect fidelity.
Here Bob starts with an N-component cat state resource with am-
plitude β = α

√
1 + g2, which is split on an unbalanced beam splitter

B2(τ ) with transmissivity τ = g2/(1 + g2). Alice then mixes part of
Bob’s resource with the input state |ψN,α〉 on a balanced N splitter SN .
If Alice finds single photons on all N output ports except for the first
port 〈0| ⊗N

m=2 〈1|, then this heralds that Bob has an amplified version
of the input state |ψN,gα〉. (c) Phase-space plots for N = 4 coherent
states given by blue blobs, with red striped interference fringes due
to their superposition with coefficients c = [1, 1.5, 2, 2.5].

matrix (SN ) j,k ≡ ω
( j−1)(k−1)
N /

√
N . Stated simply, a balanced N

splitter is just an N-modes generalization of a balanced beam
splitter SN=2 = B2(τ = 1

2 ), with a particular phase configu-
ration defined by the quantum Fourier transformation. Note
that these linear transformations can be applied to coherent
states by recalling the displacement operator definition |α〉 ≡
eαa†−α∗a|0〉.

We will now explain how our teleamplifier works in an
ideal scenario. Bob uses the beam splitter B2(τ ) to prepare
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the following state:

B2(τ )|0〉|φN,β〉 = 1√
N

N∑
b=1

ωb
N

∣∣ − ωb
Nβ

√
1 − τ 〉∣∣ωb

Nβ
√

τ
〉

= 1√
N

N∑
b=1

ωb
N

∣∣ − ωb
Nα〉∣∣ωb

N gα
〉
. (3)

Bob purposefully chooses a particular amplification gain g ∈
[0,∞) by tuning the beam-splitter transmissivity to τ =
g2/(1 + g2), and preparing the cat resource state with an am-
plitude of β = α/

√
1 − τ = α

√
1 + g2.

Bob then sends | − ωb
Nα〉 towards Alice, who mixes this

state on the N splitter SN with |ψN,α〉 resulting in

N∑
a,b=1

caω
b
N√

N
(
SN

∣∣ωa
Nα

〉∣∣ − ωb
Nα

〉 ⊗N
m=3 |0〉)∣∣ωb

N gα
〉

=
N∑

a,b=1

caω
b
N√

N
⊗N

m=1

∣∣(ωa
N − ωb+m−1

N

)
α/

√
N〉∣∣ωb

N gα
〉
.

(4)

Alice will then perform single-photon measurements on the
m ∈ {1, . . . , N} output ports of the N splitter. Notice that the
m0 = a − b + 1 output port is guaranteed to have no light
since |(ωa

N − ω
b+m0−1
N )α/

√
N〉 = |0〉. Put simply, the b = a

terms must measure no photons in the first mode m0 = 1,
while the b �= a terms must measure no photons in a different
mode m0 �= 1. Alice exploits this fact by selecting on the
measurement outcome 〈0| ⊗N

m=2 〈1|, in which only the b = a
terms have nonzero overlap, as follows:

〈0| ⊗N
m=2 〈1| ⊗N

m=1 |(ωa
N − ωb+m−1

N

)
α/

√
N〉

= δb,aω
a(N−1)
N

e−|α|2αN−1

N (N−3)/2
, (5)

where the magnitude is proven in Appendix A.
The unnormalized output state after Alice measures

〈0| ⊗N
m=2 〈1| will then be

|ψN,gα〉 = e−|α|2αN−1

N (N−3)/2
√
N

N∑
a=1

ca

∣∣ωa
N gα

〉
. (6)

Therefore, we have proven that our N-CT performs the
required NLA operator ga†a with perfect fidelity, on a su-
perposition of coherent states. In Fig. 1(c), we have plotted
an example for N = 4 of the input, resource, and output
superposition states in phase space. We have set the input
state coefficients c ≡ [c1, . . . , cN ] such that each compo-
nent clearly has a different weighting; in our example, we
normalize the state based on c = [1, 1.5, 2, 2.5] as relative
weightings. We can see that our technique uses an equally
weighted cat resource, to teleport the properties of the input
state to the output state with a chosen amplification gain g.

This operation occurs with a success probability given by

P = 〈ψN,gα|ψN,gα〉. (7)

This success probability can be improved by a factor of N , if
Alice can select on any measurement of the form ⊗m0−1

m=1 〈1| ⊗
〈0| ⊗N

m=m0+1 〈1|, where m0 ∈ {1, . . . , N} is the mode that

FIG. 2. (a) Our proposed N-CT protocol is a generalization of the
N-FT, or more commonly known as the (N − 1)-photons quantum
scissor [41]. The only difference is that an |N − 1〉 bunched photon
state is used as the resource, instead of a |φN,β〉 cat state; in fact, in
the small amplitude β → 0 limit, these two resource states are the
same. (b) These two teleamplifiers can NLA N components in their
particular basis with perfect fidelity. For asymptotically large N these
are complete bases, therefore, in principle perfect fidelity NLA can
be done for any quantum state.

measured vacuum. Due to the symmetry of the balanced N
splitter, these measurements produce the same output states,
but rotated by an angle of 2π (m0 − 1)/N . Therefore, this
can be physically corrected via a feed-forward mechanism
which applies a ω

(m0−1)a†a
N phase shift. Alternatively, this can

be virtually corrected if Bob is just going to measure the
output state, by applying the required rotation on the results
via software. A detailed analysis about these N acceptable
measurements which can be shown to produce the same out-
put states is given in Appendix B.

The structure of our N-CT device is similar to the (N −
1)-photons quantum scissor protocol in Ref. [41], shown
schematically in Fig. 2. This protocol is an N-components
Fock teleamplifier (N-FT) [41], in that it can perform NLA
with perfect fidelity on any quantum state which can be writ-
ten in the form

∑N−1
n=0 cn|n〉. The only difference is that the

N-FT is powered by a Fock state |N − 1〉 as a resource of
light. In fact, Ref. [50] and Appendix C shows that for low
β amplitudes the cat state resource used in N-CT becomes
the Fock state resource used in N-FT, where limβ→0 |φN,β〉 =
|N − 1〉. In this way, one may consider our N-CT as a type of
generalization of the N-FT in Ref. [41]. This resource gener-
alization allows our N-CT device the ability to amplify states
without any Fock state truncation, a useful property to have if
we want to preserve high-photon correlations. If we assume
a fixed amount of resource light β, the success probability
of our N-CT scales with respect to gain as P ∝ |α|2(N−1) ∝
(1 + g2)−(N−1). This is the same as the N-FT [41] and asymp-
totically equivalent to the theoretical maximum scaling [36],
therefore, we pay no significant success probability price for
this generalization. In fact, if we can modify the amount of
resource light β, our N-CT can still have significant success
probability in the limit of large gain g (a feat which is not
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FIG. 3. Suppose we use our N-CT to amplify an arbitrary
coherent-state input |γ 〉 as in (a), and consider the fidelity against the
related perfectly amplified state |gγ 〉. We can see in (b) that it does
not have to be exactly at the ideal place to be amplified with high
fidelity. If we increase the protocol’s size parameter N as in (c), then
it becomes more phase insensitive. This also happens if we reduce
the protocol’s expected amplitude parameter α as in (d), but at the
cost of being less able to amplify larger states. Finally, if we demand
more amplification gain g as in (e), we require more knowledge about
the input state to perform this with high fidelity.

possible for the N-FT), which we will show later in the next
section.

Let us consider what would happen if the input state |γ 〉 is
not exactly one of the chosen few coherent states (or any su-
perposition of them), as shown in Fig. 3(a). In Appendix D we
prove that the output is still just an N-components coherent-
state superposition |ψ ′

N,gα〉, whose coefficients depend on the
input parameter γ . We also derive an analytical expression for
fidelity Fγ ∝ |〈gγ |ψ ′

N,gα〉|2, which is a comparison with the

output state from a perfect NLA |gγ 〉 ∝ ga†a|γ 〉. This fidelity
Fγ is plotted in Figs. 3(b) to 3(e), which show that our device
can still amplify with high fidelity even if the input state is
misaligned. All quantities plotted in this paper are dimension-
less, where we chose the convention h̄ = 1

2 natural units such
that a displacement of α corresponds to the same magnitude
in phase space. Our protocol has the physical parameter set
{N, β, τ }, but for ease of understanding we can change this
into a more pedagogical parameter set {N, α, g}. We can in-
terpret |α| as the protocol’s expected input magnitude which
is the large red circle in Fig. 3(a), while |gα| is the protocol’s
expected output magnitude which is the large blue circle. The
actual input magnitude |γ | amplifies well if it is near what is
expected |α|, as shown in Figs. 3(b) and 3(d). Interestingly,
if we increase the gain g this decreases the size of acceptable

FIG. 4. (a) Alice may choose to send only one coherent state
|ωa′

N α〉, out of the N possible phase angles a′ ∈ {1, . . . , N}. This
can be done despite limited transmissivity η ∈ [0, 1] of the chan-
nel connecting Alice and Bob (i.e., loss tolerance). Bob needs to
take into account of this loss by using a larger cat resource state
β = α

√
1/η + g2 and setting the beam-splitter B2(τ ) transmissivity

to τ = ηg2/(1 + ηg2). As demonstrated in (b) and (c), our N-CT
can have good success probability even with asymptotically large
gain g → ∞; an input state with αmax = √

(N − 1)/2 amplitude
maximizes the success probability. As shown in (c), (d), and (e), loss
has minimal effect on probability if we are considering amplification
g > 1; this holds true even with asymptotically large loss η → 0.

values, as shown when comparing Figs. 3(b) and 3(e). This
makes sense, as any misalignment between the input and
protocol will become more apparent at higher gain. In general,
if we increase how crowded the coherent states are on the
phase-space circle, we increase the phase-space insensitivity
of our protocol.

III. LOSS-TOLERANT RELAY OF COHERENT STATES

Suppose that Alice and Bob are now connected by a lossy
fiber channel, with a transmissivity of η ∈ [0, 1], as shown in
Fig. 4. Loss can be described as another beam splitter B2(η)
attached to an extra environment mode. This results in the
following shared state:

B2(η)B2(τ )|0〉|φN,β〉|0〉= 1√
N

N∑
b=1

ωb
N

∣∣ − ωb
Nα

〉∣∣ωb
N gα

〉∣∣ωb
Nε

〉
,

(8)

where |ωb
Nε〉 describes the light lost to the environment. In

contrast to the lossless scenario in Eq. (3), Bob must take
the amount of loss into account to achieve a particular gain
g = √

τ/
√

(1 − τ )η, which means setting his beam-splitter
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transmissivity to τ = ηg2/(1 + ηg2). The amplitude of the cat
state resource must also be larger to compensate for the loss
β = α/

√
(1 − τ )η = α

√
1 + ηg2/

√
η. Note that the environ-

ment mode has an amplitude of ε = β
√

(1 − τ )(1 − η) =
α
√

1 − η/
√

η, however, it is more important to notice that this
error state is correlated in phase ωb

N .
Now, consider Alice mixing | − ωb

Nα〉 with her state |ψN,α〉
on the balanced N splitter SN , and performing N single-photon
measurements ⊗m0−1

m=1 〈1| ⊗ 〈0| ⊗N
m=m0+1 〈1|. Notice that since

Eq. (8) is similar to Eq. (3) but with an extra error mode, the
output state is similar to Eq. (6) as follows:

e−|α|2αN−1

N (N−3)/2
√
N

N∑
a=1

ca

∣∣ωa
N gα

〉∣∣ωa
Nε

〉
. (9)

This output state is unfortunately entangled with the environ-
ment mode. Therefore, if Alice chooses to send any entangled
state of the form in Eq. (1), the output Bob receives will have
decoherence type errors (in which cat states are particularly
vulnerable). Since detector inefficiencies can be modeled as
loss, Eq. (9) also suggests our amplifier can be susceptible
to experimental imperfections, depending on the input state.
This is explored in Appendix E, where we show amplified
superposition states will have suppressed interference fringes
due to inefficient detectors. One exception is for the low-
amplitude case since our N-CT protocol reduces down to the
N-FT quantum scissor protocol, which is already known to be
tolerant against experimental imperfections [40,41].

Our device is also tolerant to loss effects in the case where
Alice instead chooses to send just one coherent state |ωa′

N gα〉
(i.e. ca = δa,a′ ). This is because the output state given in
Eq. (9) will be

∣∣ωa′
N gα

〉∣∣ωa′
N ε

〉
, (10)

which is separable from the environment (note this is also
the case if Alice sends a mixture of coherent states). In other
words, Alice can send information to Bob in a loss-tolerant
manner, by encoding information via the phase shift of coher-
ent states a′ ∈ {1, . . . , N}. Note that with N = 2, only binary
information can be sent. Our fully scalable N-CT protocol
means this can now be done with any number of phases N ,
which means N-ary information can now be sent in a loss-
tolerant manner.

This protocol is not only loss tolerant in terms of output
state fidelity, but also success probability. If we substitute in
ca = δa,a′ into the unnormalized output state in Eq. (9), we can
get the following success probability:

Pc = e−2|α|2 |α|2(N−1)

N (N−3)N , (11)

N =
N∑

j,k=1

ω
k− j
N e(ωk− j

N −1)|α|2(1/η+g2 ). (12)

We have plotted NPc as contour graphs in Fig. 4 for par-
ticular values of {N, α, g, η}, which shows that even large
gain and/or large loss can still have good success proba-
bility. This holds true even asymptotically with g → ∞ and
η → 0 because physically the resource light is increased β =

α
√

1/η + g2 to achieve the necessary gain and compensate
for any loss (hence N → N in these limits). In contrast, the
N-FT uses a fixed resource state which means its success
probability will always scale as (1 + g2)−(N−1) [41]. Hence,
our proposed resource generalization via the N-CT results
in a significant success probability advantage. Note that the
maximum success probability in these asymptotic limits is
2eN2

N−1 ( N−1
2eN )N , which occurs with αmax = √

(N − 1)/2 ampli-
tude inputs. More detailed analysis on the success probability
can be found in Appendix F.

Recall that this protocol increases the coherent-state mag-
nitude without changing the uncertainty profile, therefore, this
has applications towards discriminating between various over-
lapping nonorthogonal states [51,52]. Our teleamplifier could
also be useful for QKD purposes via multiarrayed phase-shift
keyed (N-PSK) coherent states. For example, the B92 proto-
col [53] could be done using 2-PSK coherent states [54,55],
while the BB84 protocol [56] could be done using 4-PSK
coherent states [32,57]. One may consider the in-between
3-PSK coherent-states case, which is secure for CV QKD
[58]. Finally, it is known for arbitrary N-PSK coherent states,
with CV QKD and reverse reconciliation, that increasing N
improves the secret key rate [59]. However, whether these
security proofs and rate details hold with a postselected am-
plifier is unknown, hence, we will leave QKD applications as
an open question for future research.

Lastly, note that coherent states put through a pure loss
channel cause a decrease in amplitude without any change
in noise profile or phase angle. Hence,it is possible to put
another loss channel between the input and the SN component
in Fig. 4, without changing the output (aside from a reduction
in amplitude). This means if we want to transfer these coher-
ent states over a particular length of optical fiber, then it is a
good idea to put SN in the middle of the fiber, as this would
mean the loss before and after SN is balanced. This setup
is extremely useful for quantum relay purposes. In fact, the
N = 1 CT can overcome the repeaterless bound [60], which
sets the benchmark for quantum repeaters, without requiring
quantum memories [61,62].

IV. CONTINUOUS-VARIABLE ENTANGLEMENT
DISTILLATION

Quantum entanglement is a useful resource for many
protocols. However, maintaining this entanglement from envi-
ronmental loss and other imperfections is a major challenge.
To make this more concrete, consider a scenario where Al-
ice has a two-mode squeezed vacuum (TMSV) state |χ〉 =√

1 − χ2
∑∞

k=0 χ k|k〉|k〉, where χ ∈ [0, 1) is the squeezing
parameter. A particular measure of continuous-variable en-
tanglement is the Gaussian entanglement of formation E
[63–65], which can be calculated numerically using the quan-
tum state’s covariance matrix [66,67]. If Alice’s TMSV state
is moderately squeezed by χ = 0.25, then initially the amount
of entanglement between the two modes of this state is
E (χ = 0.25, η = 1) ≈ 0.36. However, suppose Alice sends
one mode of the TMSV state through a channel to Bob, but
unfortunately this channel only has a transmissivity of η =
0.05 (meaning that any light put through it will experience

032411-5



GUANZON, WINNEL, LUND, AND RALPH PHYSICAL REVIEW A 108, 032411 (2023)

FIG. 5. Suppose Alice wants to share a high-quality entangled
state with Bob, however, they are connected by an imperfect channel
which causes 95% loss (i.e., η = 0.05 transmissivity). If Alice sends
one arm of a moderately squeezed TMSV state |χ = 0.25〉 to Bob,
the resultant entanglement E will be limited as shown by the solid
gray N = 0 line in (b). Note this entanglement is the Gaussian
entanglement of formation E . Even if Alice starts with an maximally
squeezed TMSV state |χ → 1〉, the loss will still greatly limit the
amount of entanglement, as shown by the dotted black line; this is
called the deterministic bound. Our proposed N-CT in (a) can be
used for probabilistic entanglement distillation. This recovers entan-
glement above the deterministic bound, depending on the size of our
protocol N as shown in (b). This holds even if we consider realistic
experimental imperfections on the detectors and cat resource, as
shown by the dashed lines. However, this additional entanglement
comes at a cost in that the N-CT is probabilistic, with a success
probability shown in (c).

95% loss). This resultant lossy TMSV state ρAB now only has
E (χ = 0.25, η = 0.05) ≈ 0.03 entanglement, as indicated by
the N = 0 labeled solid gray line in Fig. 5(b). Even if Alice
starts off with an maximally squeezed state χ → 1 which
approaches infinite entanglement, this loss limits the entan-
glement to only E (χ → 1, η = 0.05) ≈ 0.30, as indicated by
the horizontal dotted black line. This quantity is called the
deterministic bound, as it is the best you can do without a
probabilistic entanglement recovery process.

Our N-CT device can be used to probabilistically distill
entanglement through a lossy channel, as shown schemat-
ically in Fig. 5(a). We have positioned the N splitter SN

in the middle of the channel as this greatly improves the
success probability scaling to O(

√
η). We choose a particu-

lar gain g and set Bob’s beam-splitter transmissivity to τ =
g2/(1 + g2). Note that this lossy TMSV input state cannot be
fully written in the finite-N-components cat basis form given
in Eq. (1). Therefore, we simply optimize the cat resource

amplitude β for each gain g to maximize the amount of
entanglement E .

The resultant entanglement distillation for χ = 0.25, using
N = 2 and 3 sizes is given by the solid red and yellow lines,
respectively, in Fig. 5(b). If we include experimental imper-
fections, modeled by 30% extra loss on the cat state resource
and 70% efficiency single-photon detectors [68–71], we get
the dashed lines. Even accounting for realistic experimental
imperfections, we can see that increasing the size N increases
the entanglement. The reason for the bell-shaped curves could
be understood by considering how the transmissivity τ of the
beam splitter B2(τ ) changes with gain g. Small gain g → 0
means limited transmissivity τ → 0, which results in limited
amount of light exiting on Bob’s side. On the other hand, large
gain g → ∞ means almost complete transmissivity τ → 1,
which results in not much of the resource light being entan-
gled with Alice’s input. From this physical intuition, there
should be an optimal gain g in which the amount of entan-
glement E is maximized.

This extra entanglement comes at the cost of success prob-
ability as shown in Fig. 5(c). However, our generalized N-CT
device can beat the deterministic bound by using higher-N
values, thus demonstrating its usefulness for generating high-
quality entanglement. This also clearly shows that our N-CT
device is useful even if the input state does not fully satisfy
Eq. (1).

V. CONCLUSION

We have proven that our N-CT protocol, given in Fig. 1(b),
can be used to implement the noiseless linear amplification
operator ga†a. This can be done with perfect fidelity, if the in-
put state can be fully written in the N-components cat basis as
Eq. (1). Since this basis is complete given asymptotic number
of components N → ∞, this means the N-CT can in principle
perform perfect fidelity amplification on any quantum state.
These results can be understood as an extension to the gener-
alized quantum scissor N-FT protocol [41], where the output
state has no Fock truncation. We also demonstrated that our
N-CT can still work with high fidelity even if the input does
not align exactly with Eq. (1). Furthermore, we have shown
that if the input is one out of a set of N coherent states, then
amplification can be done in a loss-tolerant manner without
decoherence, and with a significant success probability even
in the large gain and large loss asymptotic limit. Therefore,
our proposal also has uses for many quantum protocols which
employ N-ary phase-shift keyed coherent states. Finally, we
have also shown that our proposed N-CT device for finite N is
able to distill high-quality continuous-variable entanglement
through lossy channels, even assuming realistic experimental
imperfections.

All our simulation code and data are available in
Github [72].
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APPENDIX A: PROOF OF MEASUREMENT AMPLITUDE

The measurement amplitude resolves to

〈0| ⊗N
m=2

〈
1| ⊗N

m=1

∣∣(ωa
N − ωb+m−1

N

)
α/

√
N

〉
= δb,a〈0| ⊗N

m=2

〈
1| ⊗N

m=1 |(1 − ωm−1
N

)
ωa

Nα/
√

N
〉

= δb,ae− ∑N
m=2 |1−ωm−1

N |2|α|2/2N
N∏

m=2

(
1 − ωm−1

N

)
ωa

Nα√
N

= δb,aω
a(N−1)
N

e−|α|2αN−1

N (N−1)/2

N∏
m=2

(
1 − ωm−1

N

)

= δb,aω
a(N−1)
N

e−|α|2αN−1

N (N−3)/2
. (A1)

We will justify all the critical steps of this derivation. The first
equality in Eq. (A1) uses the fact that the state ⊗N

m=1|(ωa
N −

ωb+m−1
N )α/

√
N〉 has vacuum in the wrong mode other than

b = a, as explained in detail in the main text after Eq. (4). The
second equality in Eq. (A1) used the representation of coher-
ent states in the Fock basis |α〉 = e−|α|2/2 ∑∞

n=0 αn/
√

n!|n〉.
The third equality in Eq. (A1) uses the following to sim-

plify the exponent:

N∑
m=2

∣∣1 − ωm−1
N

∣∣2 =
N∑

m=1

∣∣1 − ωm−1
N

∣∣2

=
N∑

m=1

(
1 − ωm−1

N

)(
1 − ω−m+1

N

)

=
N∑

m=1

(
2 − ωm−1

N − ω−m+1
N

)

= 2N, (A2)

where we used the geometric summation equation∑N
m=1 ωm−1

N = (1 − ωN
N )/(1 − ωN ) = 0, and similarly for∑N

m=1 ω−m+1
N .

The final equality in Eq. (A1) uses

N∏
m=2

(
1 − ωm−1

N

) =
N−1∏
m=1

(
1 − ωm

N

) = N, (A3)

which we will derive based on the fact that ωN ≡ e−2iπ/N are
roots of unity. Consider the following polynomial:

p(z) = zN − 1. (A4)

The condition p(z) = 0 is true when z = e−2iπk/N = ωk
N for

k ∈ {0, . . . , N − 1}; in other words, ωk
N are the unique roots

of unity. Therefore, this polynomial can also be written in
factorization form using these roots

p(z) =
N−1∏
k=0

(
z − ωk

N

) = (z − 1)
N−1∏
k=1

(
z − ωk

N

)
. (A5)

Using some basic algebraic manipulation, this same polyno-
mial can also be written as

p(z) = (z + z2 + · · · + zN ) − (1 + z + · · · + zN−1)

= (z − 1)(1 + z + · · · + zN−1). (A6)

Thus, comparing Eqs. (A5) and (A6) we can see that

N−1∏
k=1

(
z − ωk

N

) = 1 + z + · · · + zN−1. (A7)

By substituting in z = 1, the right-hand side of this expression
is equivalent to N since there are N terms. Thus, we have
proven our required relation.

APPENDIX B: ALICE MULTIPLE MEASUREMENTS
PROOF

We will prove here that Alice can select on a set of N
measurements ⊗m0−1

m=1 〈1| ⊗ 〈0| ⊗N
m=m0+1 〈1|, and produce the

same output state |gψN,α〉 but with a correctable phase shift.
Note that m0 refers to the mode or output port of the balanced
N splitter which measured vacuum.

Recall from Eq. (4) that the state Alice and Bob share just
after the balanced N splitter is

N∑
a,b=1

caω
b
N ⊗N

m=1

∣∣(ωa
N − ωb+m−1

N

)
α/

√
N〉∣∣ωb

N gα
〉
. (B1)

Each term ⊗N
m=1|(ωa

N − ωb+m−1
N )α/

√
N〉 is guaranteed to

measure vacuum in one output port m = m0, which is when
ωa

N = ω
b+m0−1
N or m0 = a − b + 1.

Now, let us suppose Alice selects on a measurement where
all output ports clicked with one photon, except for one port
m = m0. This could only have occurred due to the b = a −
m0 + 1 terms because the b �= a − m0 + 1 terms are required
to measure vacuum in mode m �= m0. In other words, all terms
in the sum where b �= a − m0 + 1 have their vacuum state in
the wrong mode to be able to satisfy the one-photon detection
measurements. Thus, this measurement results in

⊗m0−1
m=1 〈1| ⊗ 〈0| ⊗N

m=m0+1 〈1| ⊗N
m=1

∣∣(ωa
N − ωb+m−1

N

)
α/

√
N〉

= δb,a−m0+1e− ∑N
m=1 |1−ω

m−m0
N |2|α|2/(2N )

×
m0−1∏
m=1

(
ωa

N − ω
a+m−m0
N

)
α√

N

N∏
m=m0+1

(
ωa

N − ω
a+m−m0
N

)
α√

N

= δb,a−m0+1ω
a(N−1)
N

e−|α|2αN−1

N (N−1)/2

×
m0−1∏
m=1

(
1 − ω

m−m0
N

) N∏
m=m0+1

(
1 − ω

m−m0
N

)

= δb,a−m0+1ω
a(N−1)
N

e−|α|2αN−1

N (N−3)/2
. (B2)

032411-7



GUANZON, WINNEL, LUND, AND RALPH PHYSICAL REVIEW A 108, 032411 (2023)

FIG. 6. Alice is free to select on N different measurement out-
comes of the form ⊗m0−1

m=1 〈1| ⊗ 〈0| ⊗N
m=m0+1 〈1| for m0 ∈ {1, . . . , N}.

Note that m = m0 is the output port or mode of the N splitter SN that
measured the vacuum outcome. Due to the symmetry of SN , these
measurements all produce the same output states but phase space
rotated by 2π (m0 − 1)/N , which can be corrected as explained in
text.

The second equality uses
∑N

m=1 |1 − ω
m−m0
N |2 = 2N for the

exponent, which can be proven like Eq. (A2). The last equality
uses

m0−1∏
m=1

(
1 − ω

m−m0
N

) N∏
m=m0+1

(
1 − ω

m−m0
N

)

=
−1∏

m=−m0+1

(
1 − ωm

N

) N−m0∏
m=1

(
1 − ωm

N

)

=
N−1∏

m=N−m0+1

(
1 − ωm

N

) N−m0∏
m=1

(
1 − ωm

N

)

=
N−1∏
m=1

(
1 − ωm

N

)

= N, (B3)

using ωN
N = 1 and Eq. (A3).

Applying the result in Eq. (B2) to (B1) produces the fol-
lowing output state:

ω
−m0+1
N

e−|α|2αN−1

N (N−3)/2
√
N

N∑
a=1

ca

∣∣ωa−m0+1
N gα

〉

= ω
(−m0+1)(1+a†a)
N |gψN,α〉. (B4)

Therefore, we have shown irrespective of m0, Bob can always
recover the same output state by applying a phase-shift cor-
rection of

C1(m0) = ω
(m0−1)a†a
N , (B5)

which we show schematically in Fig. 6. Note this correction
does not need to be implemented physically if Bob is sim-
ply measuring the output state, rather the required rotation
correction can be implemented in software directly on Bob’s
measurement results. These measurements also have the same
probability of success P = 〈gψN,α|gψN,α〉, irrespective of m0.
Therefore, if all N measurements can be accepted, then we
can improve the success probability by a factor of N to NP .

APPENDIX C: CAT RESOURCE STATE IN FOCK BASIS

We can represent the cat state resource in the Fock basis as

|φN,β〉 ≡ 1√
N

N∑
b=1

ωb
N

∣∣ωb
Nβ

〉

= e−|β|2/2

√
N

N∑
b=1

∞∑
n=0

ω
b(n+1)
N

βn

√
n!

|n〉, (C1)

where we used the coherent-state representation |α〉 =
e−|α|2/2 ∑∞

n=0 αn/
√

n!|n〉. Note that most of these terms re-
solve to zero since

N∑
b=1

ω
b(n+1)
N = δn+1,kN N, k ∈ N. (C2)

This is because when ω
b(n+1)
N �= 1 [i.e., (n + 1) �= kN], then

the expression is the sum of all roots of unity which resolves
to zero, or algebraically ωn+1

N (1 − ω
N (n+1)
N )/(1 − ωn+1

N ) = 0.
This means that our resource state can be simplified as

|φN,β〉 = Ne−|β|2/2

√
N

∞∑
k=1

βkN−1

√
(kN − 1)!

|kN − 1〉. (C3)

Notice that for very small amplitudes β � 1, the term with
the largest coefficient will overwhelmingly be the k = 1 term.
From this, it is clear that for asymptotically small amplitudes
this cat state reduces down to limβ→0 |φN,β〉 = |N − 1〉. Note
that this result was already known, as detailed in Ref. [50].

APPENDIX D: ARBITRARY COHERENT-STATE INPUT

Here we consider our proposed amplifier given the input
is just any arbitrary coherent state (i.e., it is not in one of the
fixed places in phase space) as

|γ 〉, γ = q + ip = reiθ , (D1)

assuming ideal conditions.
Recall from Eq. (3) that Bob prepares

B2(τ )|0〉|φN,β〉 = 1√
N

N∑
b=1

ωb
N

∣∣ − ωb
Nα

〉∣∣ωb
N gα

〉
. (D2)

Note here α is now the expected input amplitude that we set
by choosing the cat resource amplitude β. Bob then sends
| − ωb

Nα〉 towards Alice, who mixes this state on the N splitter
SN with |γ 〉 resulting in

N∑
b=1

ωb
N√
N

(SN |γ 〉∣∣ − ωb
Nα

〉 ⊗N
m=3 |0〉)

∣∣ωb
N gα

〉

=
N∑

b=1

ωb
N√
N

⊗N
m=1

∣∣(γ − ωb+m−1
N α

)
/
√

N〉∣∣ωb
N gα

〉
. (D3)
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Alice will herald on the single-photon measurements
〈0| ⊗N

m=2 〈1|, which requires the amplitude

〈0| ⊗N
m=2 〈1| ⊗N

m=1

∣∣(γ − ωb+m−1
N α

)
/
√

N〉

= e− ∑N
m=1 |γ−ωb+m−1

N α|2/(2N )
N∏

m=2

γ − ωb+m−1
N α√
N

= e−(|γ |2+|α|2 )/2

N (N−1)/2

N∏
m=2

(
γ − ωb+m−1

N α
)

= e−(|γ |2+|α|2 )/2

N (N−1)/2
db. (D4)

We simplified the exponent as

N∑
m=1

∣∣γ − ωb+m−1
N α

∣∣2

=
N∑

m=1

(|γ |2 + |α|2 − ωb+m−1
N γ ∗α − ω−b−m+1

N γα∗)

= N (|γ |2 + |α|2), (D5)

where we used
∑N

m=1 ωm−1
N = (1 − ωN

N )/(1 − ωN ) = 0. We
also simplified the product as follows:

db =
N∏

m=2

(
γ − ωb+m−1

N α
)

=
N−1∏
m=1

(
γ − ωb+m

N α
)

= ω
b(N−1)
N αN−1

N−1∏
m=1

(
γ

ωb
Nα

− ωm
N

)

= ω
b(N−1)
N αN−1

N∑
m=1

(
γ

ωb
Nα

)m−1

= ω
b(N−1)
N αN−1 1 − γ N/

(
ωb

Nα
)N

1 − γ /
(
ωb

Nα
)

=
(
ωb

Nα
)N − γ N

ωb
Nα − γ

, (D6)

where we used Eq. (A7) in the fourth equality, and as-
sumed that γ �= ωb

Nα to resolve the geometric sum in the
fifth equality. If γ = ωb

Nα, then db = ω
b(N−1)
N αN−1N which

when substituted in Eq. (D4) we get an expression which is
consistent with our previous Eq. (A1) result.

By using the derived amplitude in Eq. (D4), we can see
that applying these single-photon measurements to Eq. (D3)
produces the unnormalized output state

|ψ ′
N,gα〉 = e−(|γ |2+|α|2 )/2

N (N−1)/2
√
N

N∑
b=1

ωb
N db

∣∣ωb
N gα

〉
. (D7)

We may then calculate the success probability of this protocol
as

Pγ = 〈ψ ′
N,gα|ψ ′

N,gα〉

= e−|γ |2−|α|2

N (N−1)N

N∑
a,b=1

ωb−a
N dbd∗

a

〈
ωa

N gα
∣∣ωb

N gα
〉

= e−|γ |2−|α|2−|gα|2

N (N−1)N

N∑
a,b=1

ωb−a
N dbd∗

a eωb−a
N |gα|2 . (D8)

We can then calculate the fidelity of this protocol as

Fγ = 1

Pγ

|〈gγ |ψ ′
N,gα〉|2

= 1

Pγ

∣∣∣∣∣
e−(|γ |2+|α|2 )/2

N (N−1)/2
√
N

N∑
b=1

ωb
N db〈gγ |ωb

N gα〉
∣∣∣∣∣
2

= 1

Pγ

e−|γ |2−|α|2−|gγ |2−|gα|2

N (N−1)N

∣∣∣∣∣
N∑

b=1

ωb
N dbeωb

N g2γ ∗α

∣∣∣∣∣
2

=
e−|gγ |2

∣∣∣∑N
b=1 ωb

N dbeωb
N g2γ ∗α

∣∣∣2

∑N
a,b=1 ωb−a

N dbd∗
a eωb−a

N |gα|2 . (D9)

We plot these formulas in Figs. 3 and 7 for fidelity, and
in Fig. 8 for success probability. This is done for various
parameter settings of our protocol, including the amount of
coherent-state components N , the expected amplitude α, and
the amplitude gain g.

Note that, in general, fidelity is not always a good figure of
merit since two states that share a high fidelity could still
have significantly different physical properties [73–76]. In our
case we are comparing two pure states, such that fidelity is
the overlap between the states squared. Furthermore, we have
points in Figs. 3 and 7 where the fidelity is unity Fγ = 1. In
this regard, these graphs just give a qualitative indication for
what input coherent states are most appropriate for a given
amplifier parameter set, and how changing these parameters
can affect the outcome. Due to the limitations of fidelity,
another figure of merit should be used depending on the appli-
cation under consideration for the amplifier; as an example, in
Sec. IV we used entanglement of formation as a measure for
entanglement distillation.

APPENDIX E: EXPERIMENTAL IMPERFECTION
ANALYSIS

The effect of experimental imperfections is an important
consideration for any suggested experimental device. In a
quantum optical device such as our teleamplifier, one major
consideration will be detector inefficiencies and loss. Note
that a 70% efficient detector can be modeling by a beam
splitter with 70% transmissivity (in other words, a 30% loss
channel) in front of an idealized 100% efficient detector. The
effect of this imperfection for our proposed teleamplifier is
demonstrated by the Wigner functions in Fig. 9. In the upper
row, we consider amplifying a small-amplitude cat state given
in Fig. 9(a) using the 2-CT device. We can see by contrasting
the inefficient detector case in Fig. 9(b) with the ideal in
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FIG. 7. Here we use fidelity Fγ as a measure for how well our device can amplify a completely arbitrary coherent state |γ 〉 to |gγ 〉. The left
graphs, (a)–(c), are the fidelity for amplifying a coherent state with r = |γ | amplitude, averaged equally over all phase angles θ = arg(γ ) ∈
[−π, π ]. The right graphs, (d)–(f), are the fidelity for amplifying a coherent state with θ phase angle, with a fixed amplitude of r = |α|. The
solid orange lines were calculated using the chosen default parameter setting of {N = 3, α = 0.5, g = 2}, which can be compared to the dashed
lines where one parameter of this set is changed. We can see in (a) and (d) that as the number of components N increases, the fidelity increases
because more phase angles can be amplified well (i.e., it becomes more linear due to overlapping components). From (b) and (e), we can see as
the expected amplitude α becomes smaller, the protocol becomes more linear. Finally, (c) and (f) show that as we demand more amplification
gain g, we require more specific knowledge about the input state γ to amplify with good fidelity.

Fig. 9(c) that the effect of this experimental imperfection is
the suppression of the fringes. This is not surprising consider-
ing the well-known vulnerability of cat states to decoherence
effects via loss. However, clearly this effect is not relevant if
we consider just amplifying a single coherent state such as
in Fig. 9(d). In this case, the 2-CT device will produce an
output state using imperfect detectors in Fig. 9(e), which is
essentially the same as using ideal detectors in Fig. 9(f).

Another potential source of experimental imperfection is
misalignment between the input state and the resource state
for a given N-CT. This was explored in Appendix D for the

case of a single coherent-state input, which showed some good
fidelity even with some misalignment. Here we consider the
effect of misalignment for coherent-state superposition inputs,
as shown in Fig. 10. The expected input state is an unbalanced
cat state given in Fig. 10(a), in which a perfectly aligned
device produces the amplified state in Fig. 10(b). Now, from
Figs. 10(c)–10(f) we apply an increasingly larger rotation
to the input state (i.e., phase misalignment) before amplify-
ing using the same device. Similarly, from Figs. 10(g)–10(i)
we scale the amplitude of the input state (i.e., amplitude
misalignment) before amplifying using the same device. We

FIG. 8. This is the same setting as Fig. 7, except we are considering the success probability Pγ for amplifying |γ 〉. Based on the right
graphs, (d)–(f), it is clear that the input phase θ does not affect how likely we will get correct detection events. We can see that the parameter
N has the largest effect on the success probability, while α and g have limited impact.

032411-10



NOISELESS LINEAR AMPLIFICATION AND … PHYSICAL REVIEW A 108, 032411 (2023)

FIG. 9. This demonstrates the effect of detector imperfections
for a 2-CT device using the Wigner distribution. Here (a) is the
input cat state with amplitude α = 1 and unbalanced components
c = [1.0, 2.0]. This input cat state is amplified by g = 2 gain using
a 2-CT device, which produces (b) using 70% efficient detectors or
(c) using ideal detectors. The bottom row is similar except using an
input coherent state with α = 1 amplitude in (d), which produces the
output state in (e) using 70% efficient detectors or in (f) using ideal
detectors.

can see that despite the misalignment a pure coherent-state
superposition is still produced (i.e., interference fringes ap-
pear unaffected), however, the weighting of the components
change.

The misaligned two-component situation is simple enough
that we can directly calculate the output state. Suppose we
want to amplify the following two-component coherent-state
superposition

|ψ2,αδ〉 = c1| − αδ〉 + c2|αδ〉. (E1)

Here we have an extra factor δ ∈ C, which represents magni-
tude or phase misalignment relative to the resource cat state.
The value δ = 1 is the perfect alignment case. We use the
following resource two-component cat state

|φ2,β〉 = 1√
N

(|β〉 − | − β〉), β = α
√

1 + g2. (E2)

This resource state is put through the gain controlling beam
splitter as

B2[τ = g2/(1 + g2)]|0〉|φ2,β〉

= 1√
N

(| − β
√

1 − τ 〉|β√
τ 〉 − |β√

1 − τ 〉| − β
√

τ 〉)

= 1√
N

(| − α〉|gα〉 − |α〉| − gα〉). (E3)

One arm of this state is then mixed with input state on a
balanced beam splitter SN=2 = B2(τ = 1

2 ) as follows:

B2(τ = 1/2)|ψ2,αδ〉B2(g)|0〉|φ2,β〉

= 1√
N

(c1|(−αδ − α)/
√

2〉|(−αδ + α)/
√

2〉|gα〉

− c1|(−αδ + α)/
√

2〉|(−αδ − α)/
√

2〉| − gα〉

FIG. 10. This demonstrates the effect of misalignment between
the input state and 2-CT device using the Wigner distribution. Here
(a) is the expected input cat state with amplitude α = 1 and unbal-
anced components c = [1.0, 2.0]. This input cat state is amplified by
g = 2 gain using a 2-CT device. The input state is phase misaligned
by (b) 0 radians, (c) π/4 radians, (d) π/2 radians, (e) 3π/4 radians,
or (f) π radians. The input state is amplitude misaligned by a factor
of (g) 0.1, (h) 0.5, or (i) 1.5.

+ c2|(αδ − α)/
√

2〉|(αδ + α)/
√

2〉|gα〉
− c2|(αδ + α)/

√
2〉|(αδ − α)/

√
2〉| − gα〉). (E4)

Finally, we postselection on 〈0|〈1| to produce the following
output state:

〈0|〈1|B2(τ = 1/2)|ψ2,αδ〉B2(g)|0〉|φ2,β〉

= e− |α|2+|αδ|2
2√
N

(
c1

−αδ + α√
2

|gα〉 − c1
−αδ − α√

2

× |−gα〉+c2
αδ + α√

2
|gα〉 − c2

αδ − α√
2

| − gα〉
)

∝ [c1(1 + δ) + c2(1 − δ)]| − gα〉
+ [c1(1 − δ) + c2(1 + δ)]|gα〉. (E5)

This expression shows us that the resultant output state will
always be a pure coherent-state superposition (i.e., fringes will
be maintained), irrespective of the misalignment. However,
this misalignment factor δ does have an effect on the output
state component weightings.

Let us first consider δ = eiφ , where φ is the input state’s
phase misalignment from the resource cat state. We can
see that with no phase misalignment φ = 0 ⇒ δ = 1, then
our expression is the expected output state c1| − gα〉 +
c2|gα〉, which is consistent with the numerical simulation
in Fig. 10(b). If there is π -phase misalignment φ = π ⇒
δ = −1, this expression reduces down to c2| − gα〉 + c1|gα〉,
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which is consistent with Fig. 10(f). If there is π/2 misalign-
ment φ = π/2 ⇒ δ = i this expression becomes proportional
to (ic1 + c2)| − gαδ〉 + (c1 + ic2)|gαδ〉 using the identity
(1 + i)/(1 − i) = i; these two components have the same
magnitude given c1 and c2 are real, which agrees with
Fig. 10(d). Finally, consider the effect of decreasing δ →
0, the output state will tend towards the balanced cat state
| − gα〉 + |gα〉, which is consistent with our numerical sim-
ulations in Figs. 10(g)–10(i).

APPENDIX F: SUCCESS PROBABILITY ANALYSIS

If we assume an arbitrary input state which can be written
in the N-components cat basis as in Eq. (1), the unnormalized
output state from our N-CT device is given by Eq. (6) as

|ψN,gα〉 = e−|α|2αN−1

N (N−3)/2
√
N

N∑
a=1

ca

∣∣ωa
N gα

〉
. (F1)

Hence, one can calculate the success probability as

P = 〈ψN,gα|ψN,gα〉

= e−2|α|2 |α|2(N−1)

N (N−3)N

N∑
j=1

N∑
k=1

c∗
j cke(ωk− j

N −1)|α|2g2
. (F2)

Since two coherent states are not orthogonal 〈β|α〉 =
e−(|β|2+|α|2−2β∗α)/2, the normalization factor from the cat re-
source state |φN,β〉 can be calculated as

N =
N∑

j,k=1

ω
k− j
N 〈ω j

Nβ|ωk
Nβ〉

=
N∑

j,k=1

ω
k− j
N e(ωk− j

N −1)|β|2

=
N∑

j,k=1

ω
k− j
N e(ωk− j

N −1)|α|2(1/η+g2 ). (F3)

Thus, for an N-components input with known coefficients ca

and amplitude α, we can determine the probability for a given
gain g and channel transmissivity η.

Now, to gain an idea of how this probability scales, let us
consider the coherent-state input case ca = δa,a′ . The success
probability in this case is simply

Pc = e−2|α|2 |α|2(N−1)

N (N−3)N . (F4)

We have plotted this equation in Fig. 4. Notice that g2 and 1/η

act similarly through the factor N . If we increase g or decrease
η, then this requires increasing the resource β = α

√
1/η + g2.

In the large-amplitude limit β → ∞ the cat resource |φN,β〉
is the sum of N orthogonal states, hence, the normalization
factor simply becomes N → N . In other words,

Plim,c = lim
g→∞Pc = lim

η→0
Pc = e−2|α|2 |α|2(N−1)

N (N−2)
. (F5)

By taking the derivative, we can calculate that the input size

αmax = argmaxαPlim,c =
√

(N − 1)/2 (F6)

maximizes this success probability as

Pmax,lim,c = maxPlim,c = (2e)−(N−1)(N − 1)N−1

N (N−2)

= 2eN2

N − 1

(
N − 1

2eN

)N

. (F7)

Note we may include an additional N factor due to Alice’s
multiple measurements as explained in Appendix B. Hence,
we have shown our N-CT device can teleamplify states with
significant success probability in the large gain and/or large
loss asymptotic limit. For example, for NPmax,lim,c(N = 2) ≈
0.37, NPmax,lim,c(N = 3) ≈ 0.14, and NPmax,lim,c(N = 5) ≈
0.01.
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