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In the following paper, we discuss a possible detection of nonlocality in two-mode light states in the Bell
protocol, where the local observables are constructed using displacement operators, implemented by Mach-
Zehnder interferometers fed by strong coherent states. We report numerical results showing that maximizing the
Braunstein-Caves chained Bell inequalities requires equal phases of displacements. On the other hand, we prove
that nonlocality cannot be detected if the phases of displacements are unknown. Hence, the Bell experiment has
to be equipped with a synchronization mechanism. We discuss such a mechanism and its consequences.
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I. INTRODUCTION

Entangled quantum systems have grown in importance for
technological as well as fundamental scientific applications.
The advantage of quantum nonlocality has been proved in
various fields such as quantum communication [1,2], metrol-
ogy [3,4], and computation [5,6]. Entangled modes of light
typically are useful in photonic quantum metrology schemes
[7], where the purpose is to achieve the quantum limit of
measurement [8]. These states of light are multiphotonic, i.e.,
combinations of superpositions of Fock states. Thus, the ex-
perimental verification of entanglement in such states requires
many measurements with complex experimental setups. For
example, recent works [9,10] show that experimental verifica-
tion of entanglement in certain important classes of two-mode
entangled states require multiple single-photon detectors or
photon-counting electron-multiplying charge-coupled-device
(EMCCD) cameras. In this approach, the density matrix is
reconstructed in the process of full-state tomography which
requires restriction to an effective Fock space of dimension n
and the number of observables to be measured grows fast with
n.

As an alternative to performing such intricate experimental
schemes, one can perform a Bell–Clauser-Horne-Shimony-
Holt (CHSH) [11,12] experiment as proposed in [13] for
entanglement detection in two-mode light states. This work
describes using Mach-Zehnder interferometers (MZIs) fed
with a strong coherent state at one input port and having a
photodetector at one output port. The photodetector can mea-
sure zero or nonzero intensities of the incoming pulse. This
experimental unit (MZI + coherent state + photodetector)
is possessed by each of two parties. The above is relatively
simpler compared to the existing schemes for verification of
entanglement in two modes of light.

A CHSH inequality is defined for two parties with two
measurement settings (n = 2) per party. The Braunstein-
Caves chained Bell (BCCB) inequalities [14] generalize the
CHSH inequality to n measurement settings per party. An
expression for the quantum bound of BCCB inequalities for

an arbitrary number of measurement settings (n) per party has
been reported in [15]. It is shown there that the difference
between quantum and classical bound grows with n for n > 2.

In the following paper we check whether the CHSH
inequality in the mentioned experimental scheme can be im-
proved by using the BCCB inequality when the parties again
use observables implemented by MZI + coherent state +
photodetector.

In this paper, we intend to check if such a generalization
can be extended to the proposed setup in [13]. We observe that
the Mach-Zehnder interferometric setup involved in entan-
glement detection requires phase synchronization of the two
inputs to the interferometer. We report that without a constant
phase difference between the two inputs, the measurement
observables get restricted to the classical regime. Thus, en-
tanglement detection is only possible when there is a known
and fixed phase difference between the two inputs of the MZI.
We also discuss the two-mode light states for which this setup
is best for the experimental detection of entanglement.

Furthermore, the entanglement detection in the scheme
should be also analyzed under restriction to experimentally
accessible classes of entangled two-mode light states. We
check whether the proposed experimental scheme detects en-
tanglement for certain important states of light useful for
quantum metrology, namely, entangled coherent states (ECSs)
[16] and two-mode squeezed vacuum (TMSV) states [17].

The paper is organized as follows: Section II describes
the formulation of the BCCB inequality for n measurement
settings per party for our proposed experimental setting. In
Sec. III, we report our numerical results of maximal violation
obtained by the n-MZI settings and comment on the phase
synchronization issues. We also give a brief description of the
states that correspond to this maximal violation. In Sec. IV, we
consider entanglement detection for two important classes of
light: entangled coherent states and two-mode squeezed vac-
uum states, and discuss the values of parameters maximizing
the violation obtained by n-MZI settings. We summarize our
observations in Sec. V.
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FIG. 1. Schematic of experimental arrangement for entanglement detection. The proposed setting with a source producing a two-mode
entangled state of light and two laboratories (X and Y) involved in a Bell-type experiment. The source produces two modes of light which
are entangled, and mirrors MS

k (k = X or Y) are used to redirect the beams to each of two experimental setups or parties. Each party uses a
Mach-Zehnder interferometer (MZI), comprising 50:50 beam splitters BS j

i and mirrors Mi
k (i = X or Y, j = 1 or 2). Each MZI is fed with a

coherent state |α〉〈α|i at one input and is terminated by a photodetector PDi (i = X or Y) which measures zero or nonzero intensities. The two
paths in the MZI have a relative phase difference φi (i = X or Y).

II. THE BRAUNSTEIN-CAVES CHAINED
BELL (BCCB) INEQUALITY

In general, for n dichotomic observables (of output val-
ues ±1) per party, the following inequality holds under the
assumption of the existence of underlying probability space
(local hidden variable model):∣∣∣∣∣E

(
n∑

i=1

Xi ⊗ Yi +
n−1∑
i=1

Xi+1 ⊗ Yi − X1 ⊗ Yn

)∣∣∣∣∣ � 2n − 2, (1)

where {X1, . . . , Xn} and {Y1, . . . ,Yn} are dichotomic ob-
servables employed by laboratories X and Y, respectively,
corresponding to their n independent measurement settings.
The above inequality is known as the Braunstein-Caves
chained Bell inequality and the maximum of the left-hand side
(LHS) over all quantum states is 2n cos( π

2n ) [15]. The bound is
saturated for the maximally entangled state (|00〉 + |11〉)/

√
2

and observables:

Xi = cos(αi )σx + sin(αi )σy =
[

0 e−iαi

eiαi 0

]
, (2)

Yi = cos(βi )σx + sin(βi )σy =
[

0 e−iβi

eiβi 0

]
, (3)

where αk = kπ/n, βk = −kπ/n.
For n = 2 the BCCB inequality becomes the famous

CHSH inequality.
Let us assume that each party performs intensity-based

measurements on its mode using a photodetector at the output
of a MZI, where its first input is fed by the possessed mode
and the second by a strong coherent state of light (Fig. 1).
Such an interferometer setting implements a displacement
operator D̂(α) on the input mode and, together with the pho-
todetector, a projective measurement: {|α〉〈α|, I − |α〉〈α|}.
Prescribing output values ±1, we obtain a Hermitian observ-
able:

A(α) = I − 2|α〉〈α|. (4)

The n measurement settings on each side correspond to n
displacements.

Let the measurement settings or displacements imple-
mented by MZIs in laboratories X and Y be {β1, . . . , βn} and
{γ1, . . . , γn}, respectively. The corresponding observables are
{A(β1), . . . , A(βn)} and {A(γ1), . . . , A(γn)}.

Therefore, the observables in [Eq. (1)] are

Xi = A(βi ) = I − 2|βi〉〈βi|,
Yi = A(γi ) = I − 2|γi〉〈γi|. (5)

Thus, we can write the LHS of the BCCB inequality (S) for
n-MZI settings from Eq. (1) as

S =
n∑

i=1

A(βi ) ⊗ A(γi) +
n−1∑
i=1

A(βi+1) ⊗ A(γi )

− A(β1) ⊗ A(γn) (6)

and let

D(n) = E(S) − 2n + 2 (7)

denote the violation of the BCCB inequality, i.e., the dif-
ference between the expected value of S and the classical
bound. In [13], it has been proven that, for n = 2, the maximal
violation of the CHSH inequality can be achieved by an appro-
priate choice of displacements in both (MZI + photodetector)
settings possessed by laboratory X and laboratory Y. Now, to
detect entanglement by a larger (n > 2) number of settings,
the classical bound (2n − 2) must be violated, i.e., (2n − 2) <

E(S)max � 2n cos (π/2n). Furthermore, we check the MZI
settings in both laboratories maximizing the violation and how
close to the maximal violation 2n cos (π/2n) − (2n − 2) it
can be.

III. RESULTS

In this section, we will optimize the violation D(n) by
analyzing the BCCB inequality with observables originating
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FIG. 2. Complex-plane representation of {βi} and {γi}. Numerically generated plots for the optimized {βi} and {γi} (i = 1 to n, n ∈ [3, 5])
for which the corresponding maximal violation of the BCCB inequality [Eq. (1)] is achieved. A collinear trend is observed in the complex-plane
representation of these {βi} and {γi} and thus each may be written as approximate arithmetic sequences.

from MZI setups and for various families of experimentally
accessible states. We have obtained the results numerically
and Appendixes A and B 1 describe the details of our codes.

A. Maximal eigenvalues of BCCB matrix

As discussed earlier, the BCCB inequality is maximally
violated in a pure state represented by an eigenvector of S
[Eq. (6)] related to its maximal eigenvalue. The maximum
possible violation is equal to 2n cos ( π

2n ) − (2n − 2), and in
particular for n = 2, we have obtained 2

√
2 − 2, the maximal

violation for the standard CHSH inequality. First, we perform
optimization for n = 3, . . . , 8 with respect to the parameters
{βi}, {γi}, for i ∈ {1, . . . , n}. We minimize the probability of
getting stuck in a local maximum by repeating the procedure
multiple times, with a number of randomly chosen starting
points. At this stage, for n > 10 the method typically gets
stuck in a local minimum and shows no violation.

The optimal sequences of {βi} and {γi} are shown in Fig. 2.
We observe that the sequences {βi} and {γi} each behave
collinearly on the complex plane. The common phase of βi

can be made zero by applying a local unitary transformation.
Similarly, the first displacement (measurement setting) can
be made zero by applying a displacement operator, which is
a local unitary transformation as well. The same applies to
collinear complex numbers γi. Hence both sequences are real
and start from zero. In this way, we reduced the number of
optimization parameters from 4n to 2n − 2.

Moreover, in each sequence, we observe almost equal
spacing between displacements except for the first and the
last one being significantly bigger (see Fig. 2). We confirm
this observation in the optimization over a reduced num-
ber of parameters, obtaining almost perfect matching with

a two-parameter optimization, where β2 − β1 = γn − γn−1 =
�′, βi+1 − βi = � for i > 1, and βi+1 − βi = � for i < n.

The difference between the results from the above opti-
mization schemes starts to be visible for n ≈ 8. Hence, the
two-parameter assumption is only a good approximation of
the optimal pattern of displacements. Using it, we have im-
proved our general optimization scheme: First, we perform a
quick two-parameter optimization, repeating it a large number
of times to avoid local minima. Then, we use the first-stage
result as a starting point for a single (2n − 2)-parameter opti-
mization, reaching the global optimum.

After the first stage of the optimization the last n − 1
displacements βi and the first n − 1 displacements γi form
arithmetic sequences. In the second stage of the optimization,
this linear dependence obtains a sinelike component. Figure 3
shows the comparison of the results of the optimization after
the first and second stages for n = 19.

Figure 4 shows the optimization results. The blue triangles
are the first-stage (two-parameter optimization) results. The
black dots are the results of the second stage. These values can
be surprisingly well fitted by an exponential function: D(n) =
C − A exp(−Bn). As the maximal violation for MZI settings
is known for n = 2 [13] and equals 2

√
2 − 2, we have two

unknown parameters, C and B:

D(n) = 2
√

2 − 2 + A(exp(−2B) − exp(−Bn)). (8)

In a nonlinear regression, we obtain the values A = −2.246,
B = 0.7492, and the correlation matrix entries S2

A = 0.0041,
S2

B = 0.00024, Cov(A, B) = −0.0010. The final form of the
fitted exponent is

D(n) = 1.3377 − 2.246 exp(−.7492n)). (9)
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FIG. 3. Comparison of the results of the first and second stages of
optimization of the real displacements for n = 19. The laboratory X
displacements ({βi}) and the laboratory Y displacements ({γi}) after
the first stage of optimization (marked by the blue upper and red
lower stars, respectively) are arithmetic sequences except for values
β1 and γn. Black upper and green lower dots mark the values of {βi}
and {γi}, respectively, after the second stage of optimization

Figure 5 compares D(n) = E(S) − 2n + 2 for the the-
oretical violation bound (red points) and the numerical
optimization results for n ∈ [2, . . . , 19) (blue triangles). For
n > 2, we observe a significant difference between maxi-
mal violation [D(n)] and the violation achievable by n MZI
settings.

For n = 2, any two dichotomic observables I − 2|α1〉〈α1|,
I − 2|α2〉〈α2| generated by MZI settings can be represented as
I ⊗ σ1 and I ⊗ σ2 on span{α1, α2} ⊕ span{α1, α2}⊥, where σi

have eigenvalues ±1 (and, hence, are combinations of Pauli
matrices). Choosing appropriate α1 − α2, one can obtain a
commutation relation between σ1 and σ2 producing the maxi-
mal violation.

FIG. 4. Results of numerical optimization of maximal violation
achievable by n MZI settings. The triangles represent the results of
two-parameter optimization from multiple starting points. Starting
from such obtained sets of displacements we proceed with a general,
(2n − 2)-parameter optimization and find the global optima, whose
values are represented by the dots.

FIG. 5. Comparison of the general bound and that achieved by
n MZI settings. Comparison of numerically generated plots for the
maximum violation obtained by the BCCB inequality given in [15]
(in red dots) and that for n MZI settings (in blue triangles).

On the other hand, for n > 2, the observables generated
by n different MZI settings α1, . . . , αn are necessarily linearly
independent (due to linear independence of coherent state
vectors), contrary to sets of Pauli matrices [Eqs. (2) and (3)],
which span two-dimensional operator subspaces. This ex-
plains why it is impossible to realize the violation-maximizing
observable algebra for MZI settings. Also, it explains the gap
between the maximal violation and the violation achievable
by MZI settings for n > 2.

The maximal violation is related to sequences of displace-
ments that are collinear on the complex plane. On the contrary,
let us assume that we have no knowledge about the phase. The
projector |α〉〈α| has to be now averaged:

P̃α = 1

2π

∫ 2π

0
|eiφα〉〈eiφα|dφ

= exp(−|α|2)
∞∑

k=0

|α|2
n!

|k〉〈k|. (10)

The averaging decoheres the projector—kills off-diagonal (in
the Fock basis) entries of its matrix. The projector becomes
a positive operator and the projective measurement becomes
a positive operator-valued measure (POVM), having both ef-
fects diagonal in the Fock basis. As all the n POVMs commute
now, the protocol is classical (all the measurements can see
only the diagonal of the density matrix, not coherences) and
thus, nonlocality cannot be detected.

We conclude that a phase-synchronization mechanism is
necessary to detect a nonlocality between modes in a two-
mode state of light using Mach-Zehnder interferometers. Each
local laser feeding the MZI with a strong coherent light has to
be in phase with the incoming mode, and hence with the laser
triggering the source. We have then both local lasers in phase
with the triggering laser of the source, hence they have the
same frequency ν. To obtain the interference in MZIs, both
modes of light must have the same frequency ν.

In Fig. 6, we present a scheme to implement the phase
synchronization mentioned earlier. For each laboratory, we
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FIG. 6. Schematic of the modified experimental setup. The experimental setup is similar to that in Fig. 1. To make the phases equal for
the input lights at both the MZI setups of parties X and Y, we assume that two local lasers (LX and LY ) are almost identical and the phase for
both laser lights can be tuned using electro-optic modulators EX and EY . Furthermore, to match the frequencies of the source to that of the
local laser, we assume that the source laser (LS) is nearly identical to the two local lasers and is sent via an “entanglement generator” (E.G.) to
generate the two-mode entangled light. Both the beams (if having down-converted frequencies such that they do not match that of LS) can be
up-converted to the original frequency of LS using up-converting crystal. We do not discuss the generation of two-mode entangled light as that
is beyond the scope of our paper. However, the generation of an ECS (a type of two-mode entangled light) can be found here [9].

assume that the local lasers are identical, thus having almost
equal frequencies. Furthermore, tuning of the frequencies can
be done by using an electro-optic modulator to maintain a
constant relative phase between the lasers of both parties over
time (EY ; see Fig. 6). Since in the practical scenario, each laser
will have a frequency spread, the electro-optic modulators can
be used to adjust and fix the phase of one laser with respect to
the other. Furthermore, to have both modes of the two-mode
entangled state of light being in phase with the respective
local lasers, the laser pumping the source of the two-mode
entangled state has to be synchronized with both local lasers.
A similar synchronization scheme is described in [9]. We
realize the source synchronization using another electro-optic
modulator (EX ). An alternative for using the electro-optic
modulators is to use one laser beam and divide it to feed MZIs
in both laboratories and the source of the entangled state. This
will not guarantee equal phases, but phase differences are
constant in time, which is enough to satisfy the requirement
of collinearity.

B. States for maximal violation

In Sec. III A, we have maximized the highest eigenvalue
of S [Eq. (6)]—the LHS of BCCB inequality (1) for n =
2, . . . , 39—obtaining its maximal expected value, resulting in
maximal violation of the BCCB inequality.

In this section, we discuss the structure of the pure,
two-mode light states represented by the corresponding eigen-
vector of S.

To verify our results, we check for the case n = 2. The
numerical model yields the eigenvector corresponding to the
maximal violation, whose analytical expression is

|ψ2〉 = 1√
2 − √

2

⎡⎢⎢⎣
−1
1√

2 − 1
−1

⎤⎥⎥⎦. (11)

|ψ2〉, unitarily equivalent to the maximally entangled state, is
exactly what has been found analytically in [13]. Therefore,
we proceed to comment on the states for n > 2 settings.

The entries of vectors |ψn〉 are real (see Remark 3 in
Appendix A). In Figs. 7(a)–7(d) we plot the values of en-
tries of |ψn〉 in the nonorthogonal {βi ⊗ γ j} basis for n =
3, 6, 9, 12 after reshaping (n2 × 1) column vectors to (n × n)
matrices.

Next we calculate the Schmidt coefficients [18,19] of vec-
tors �n in the orthonormal (computational) basis, performing
the singular value decomposition of the corresponding (n × n)
matrices [see Figs. 7(e)–7(h)]. We observe that even for high
n the Schmidt rank of |ψn〉 is 4 and the first two Schmidt
coefficients dominate.

The BCCB inequality is maximally violated if each party’s
observables are combinations of Pauli matrices (2) and (3),
and then the maximal violation is realized for the singlet state.
We have already commented that for n > 2 it is impossible
to reconstruct such observables by displacement operators.
Although, in the optimization procedure, the observable S
[LHS of Eq. (6)] tries to resemble to the optimal one as much
as possible; hence its eigenvector resembles the singlet state
vector.

IV. OPTIMAL VIOLATION FOR EXPERIMENTALLY
ACHIEVABLE STATES

In the previous sections, we have discussed the maximum
violation of the BCCB inequality achievable by n MZI set-
tings and calculated the state vectors for which such violation
can be achieved. We have found that for n = 2 the state vector
for which the maximal violation is obtained can be written as
[13]

|�〉 = 1√
2 − √

2
{[|β1〉 − |β2〉] ⊗ [|γ1〉 − |γ2〉]

− (2 −
√

2)|β1〉 ⊗ |γ1〉}, (12)
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FIG. 7. Eigenvectors for maximum violation and their Schmidt coefficients. The eigenvectors corresponding to the maximal violation.
Vectors are represented in the (nonorthogonal) basis {βi ⊗ γ j} and their (n2 × 1) arrays of coefficients are reshaped to n × n matrices and
plotted for (a) n = 3, (b) n = 6, (c) n = 9, and (d) n = 12. The color bar at the right indicates the scalar values associated with the entries
of the matrices plotted. [(e)–(h)] Bar graphs showing the magnitude of the Schmidt coefficients (λ j , j = 1, . . . , n) for the corresponding
eigenvectors plotted above.

where 〈β1|β2〉 = 〈γ1|γ2〉 = 1/
√

2. Similarly, for n > 2, the
maximal violation will be realized for a state vector from
span{β1, . . . , βn} ⊗ span{γ1, . . . , γn}.

However, experimental realization of such states and their
applications have not been reported yet. Therefore, in this
section, we will discuss how BCCB inequality (1) is useful
to detect entanglement in certain classes of experimentally
viable states: the entangled coherent state (ECS) [9] and the
two-mode squeezed vacuum (TMSV) state [20], known for
their importance for applications in quantum metrology. We
describe the numerics for this section in Appendixes B 2 and
B 3. Note that, in this section, we do not constrain the mea-
surement settings {β1, . . . , βn} and {γ1, . . . , γn} to be real, but
simply perform a fresh optimization of the maximal violation
of the BCCB inequality using n MZI settings, without any
initial assumptions.

A. Entangled coherent states

In this section, we maximize the violation of the BCCB
inequality using n-MZI settings, over a class of entangled
coherent states, |�ECS〉, which are of the form

|�ECS〉 = Nα (a|α〉 ⊗ |0〉 + |0〉 ⊗ |α〉), (13)

where Nα = 1/
√

1 + |a|2 + 2e−|α|2 Re(a)) is the normaliza-
tion factor [9]. Note that α can be made real by a
local unitary transformation. We maximize the expression
〈�ECS(α, a)|S(�β, �γ )|�ECS(α, a)〉 with respect to the real pa-
rameter α and complex parameters a, β1, . . . , βn, γ1, . . . , γn.

Remark 1. Observe that, performing displacement opera-
tions in both subsystems D(η) ⊗ D(ε), one can obtain a more
general state Nα (|α + η〉 ⊗ |ε〉 + |η〉 ⊗ |α + ε〉). Local uni-
tary operations D̂(ε) and D̂(η) can be performed by using a

Mach-Zehnder interferometer fed by a strong coherent state
[13,21]. We will not consider these more general states, as
they are related to Eq. (13) by a local unitary operation and
have the same amount of entanglement.

According to Remark 1, as the canonical form (13) of the
state is fixed, we cannot reduce the number of parameters
in the sequences of displacements by use of local unitary
operations. However, we observe no change in the optimal
violations when we restrict ourselves to real displacements
and real parameter a. Hence we can reduce the number of
parameters in the optimization to 2n + 2.

A typical sequence of displacements for n = 7 is shown in
Fig. 8.

We observe that the displacements satisfy (approximately)
the following relations: β1 = · · · = βn−2, βn−1 = βn, γ1 =
γn−1, γ2 = · · · = γn−2. This observation let us reduce the
number of optimization parameters to seven. We repeat such

FIG. 8. Variation of displacements for n = 7 for ECS. Real dis-
placements optimizing the violation for ECSs for n = 7. Upper blue
stars and lower orange dots represent {βi} and {γi}, respectively.
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FIG. 9. Optimal parameters of ECS. Parameters of entangled
coherent state (13) maximizing the violation of the BCCB inequality
with MZI settings. Upper blue stars and lower orange dots represent
αn and an, respectively.

reduced optimization 300 times to avoid being stuck in a local
optimum. We use the result as a starting point for the second
step: the full parameter optimization. Proceeding in this way
we reproduce the values of general optimization for small
values of n and improve the results for larger n; hence the
simplified optimization produces effectively an approxima-
tion located in the attraction basin of the global optimum.

The parameters of ECSs for which the maximal violation
is realized are presented in Fig. 9. Observe that, between
the values 6 and 7, we observe the change of the function
behavior—possibly two local optima exchange their role of
the global optimum. In the numerical optimization, one can
observe a frequent occurrence of being stuck in a local min-
imum for the value of 6. The maximal violation for ECSs
is shown in Fig. 10. The violation attains its maximal value
0.262887 for n = 3 and decreases to zero for higher n. The
calculation details are described in Appendix B 2.

B. Two-mode squeezed vacuum states

Another interesting class of experimentally accessible
states are two-mode squeezed vacuum states [20]. Such states
can be achieved when the squeezing operator [S(ξ )] acts on a
two-mode vacuum (|0, 0〉):

|�TMSV〉 = S(ξ )|0〉 ⊗ |0〉 = exp ξ ∗âb̂ − ξ â†b̂†|0〉 ⊗ |0〉,
(14)

FIG. 10. Violation vs n for ECS. Maximal violation [D(n)] of the
BCCB inequality with n MZI settings in an entangled coherent state.

FIG. 11. Squeezing parameter vs n settings. The value of the
squeezing parameter rn as a function of n, for which the maximal
violation is obtained for n MZI settings.

where â and b̂ are photon annihilation operators in modes
1 and 2, respectively, and ξ = reiθ is a squeezing parameter
[22]. Equation (14) can be expanded as

|�TMSV(ξ )〉 = 1

cosh r

∞∑
k=0

(−eiθ tanh r)k|k〉 ⊗ |k〉, (15)

where the phase θ is irrelevant, because it can be made zero
by a local unitary exp(−iN̂θ/2) ⊗ exp(−iN̂θ/2), and hence
we will assume ξ = r ∈ R+ since now.

Figure 11 shows the values of the squeezing parameter r for
which the maximal violation is obtained. Moreover, Fig. 12
shows the dependence of maximal violation on r for different
values of n (for each value of r an independent optimization
is performed).

The dependence of maximal violation on n is shown
in Fig. 13. We observe an exponential saturation of the
value of maximal violation with the increasing n. We fit the

FIG. 12. Violation vs squeezing parameter for different n set-
tings. Plot for violation D(n) vs r (squeezing parameter defining the
TMSV state) varying from 0 to 3, for n ∈ [2, 7] being the number of
MZI settings.
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FIG. 13. Violation vs n for TMSV state. Values of maximal vio-
lation obtainable for n MZI setups and a TMSV state (stars). The red
continuous line is an exponential saturation fitted to the data (more
details in text).

function a + c exp(−bx) to the data. The fitted parameters
are a = 0.71, b = 1.33, and c = −6.79 and the corresponding
covariance matrix is

C =
⎡⎣ 7.97 × 10−8 9.02 × 10−6 −7.41 × 10−7

9.02 × 10−6 1.28 × 10−2 −9.06 × 10−4

−7.41 × 10−7 −9.06 × 10−4 6.52 × 10−5

⎤⎦.

(16)

Restriction to real displacements in the optimization does
not affect the values of maximal violation. The real displace-
ments for n = 19 shown in Fig. 14 present a typical pattern of
displacements optimizing violation for TMSV states.

C. Comparison

In this section, we compare and discuss the results of
optimization for ECS and TMSV state families and compare
them with the results of optimization without state restriction
and with the general violation bound for BCCB inequality.
The comparison is presented in Fig. 15.

FIG. 14. Variation of displacements for n = 19 for TMSV states.
Values of displacements (real) in the MZI setups for n = 19 optimiz-
ing violation for TMSV states. βi and γi are displacements in MZI of
laboratories X and Y, respectively. Lower blue stars and upper orange
dots represent {βi} and {γi}, respectively.

FIG. 15. Violations achieved by various protocols. Comparison
of numerically generated plots for the maximum violations obtained
by the BCCB inequality proposed in [15] (red dots), BCCB inequal-
ity described for n MZI settings (blue triangles), MZI + ECS (black
lower stars) and MZI+TMSV state (yellow upper stars). The plots
have been generated for n ∈ [2, 20).

We observe that the violation of generalized inequality (1)
can be observed for both ECSs and TMSV states as input
states when each of the two laboratories uses an MZI +
photodetector arrangement, and that the maximally obtainable
violations are much better for TMSV states than for ECSs.
The violation quickly becomes negligible (for n � 10) for the
ECS. For the TMSV state, higher violations are obtainable and
the maximal violation saturates to ≈0.7. It is still significantly
less than the violation achievable by the MZI setup when no
restriction on states is given, which in turn is less than a theo-
retical bound, achievable when no restrictions of observables
are assumed, provided by [15].

V. CONCLUSION

In summary, we have considered the BCCB inequality for
detecting entanglement between two modes of light, when
both parties use n Mach-Zehnder interferometric measure-
ment settings realizing dichotomic observables. We have
numerically optimized the maximal violation obtained for this
system and compared it with the theoretical bound, as in [15].
We observed that the violation achievable by n MZI settings
does not saturate the theoretical bound given by [15], for
n > 2. We provided justification for this fact: The bound is
saturated for the singlet state of the qubit and for the involved
observables being combinations of σx and σz. On the other
hand, different settings of MZI result in linearly independent
observables; hence using MZI we can only approximate the
optimal algebra of observables.

The violation obtainable by MZI setups on both parties
quickly saturates to the constant value of 1.3377.

Next, we have restricted ourselves to two significant, ex-
perimentally accessible families of states: entangled coherent
states and two-mode squeezed vacuum states. We were able
to violate the BCCB inequality for both families using MZI +
photodetector setups in each laboratory. For ECSs, the max-
imal violation can be achieved for TMSV states; we see that
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the violation grows and reaches a constant value of approxi-
mately 0.7 for n � 4. Thus, our experimental settings detect
the entanglement in TMSV states better than that in ECSs.

In each optimization task, the maximal violations are ob-
tained for real displacements. To guarantee a constant phase
between a mode entering the MZI and the coherent laser field
in the second input, one has to equip the experimental setup
with a phase-synchronization mechanism. We have proven
that no violation can be obtained if phases are not synchro-
nized.

In the Appendixes, we refer to codes written in the PYTHON

programming language and using the numerical packages
NUMPY, SCIPY, and MATPLOTLIB. The codes are accessible in
a GitHub repository [23].
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APPENDIX A: FINITE REPRESENTATION
OF ALGEBRA OF OBSERVABLES

One-party observables A(βi ) = I − 2|βi〉〈βi| act nontriv-
ially on the finite-dimensional subspace span{β1, . . . , βn} of
the one-party Hilbert space. Although the pairwise different
coherent state vectors {β1, . . . , βn} are linearly independent
and establish a proper basis of the finite representation, we
need to write down the observables A(βi ) in an orthonormal
basis, because the spectrum of a matrix is invariant on uni-
tary transformations. In this Appendix, we focus on obtaining
appropriate bases to represent A(βi ) and A(γi).

An obvious way would be to obtain an orthonormal basis
of span{|βi〉} via the Gram-Schmidt orthonormalization [24].
For the n = 2 case, we easily perform it to get

|e1〉 = |β1〉,

|e2〉 = |β2〉 − |β1〉〈β1|β2〉√
1 − exp(−|β1 − β2|2)

(A1)

(see [13] for details). However, it is easy to check that for
n � 2, this direct method becomes cumbersome. Thus, we
now proceed with the following algorithm to obtain an or-
thonormal basis from {|β1〉, . . . , |βn〉}.

We first arrange {|βi〉} into a ∞ × n matrix B =
[|β1〉||β2〉| · · · ||βn〉] such that the ith column of B is |βi〉
written in the standard (Fock) basis. Next, we construct an
n × n Gram matrix (G) of B, i.e., G = B†B. We know that the
elements of G are

Gi j = 〈βi|β j〉 = e−(|βi−β j |2+βiβ
∗
j −β jβ

∗
i )/2. (A2)

Now, we have the Cholesky decomposition of G =
LL†, where L is a lower triangular n × n matrix with real
and positive diagonal entries. It can be easily seen that
(BL−1†)†(BL−1†) = In. Thus, the columns of the ∞ × n ma-
trix BL−1† are an orthonormal basis of span{|β1〉, . . . , |βn〉}.

Let us call the vectors corresponding to these columns by
|e1〉, . . . , |en〉. Then one has

BL−1† = [|e1〉||e2〉| · · · ||en〉] and

B = [|β1〉||β2〉| · · · ||βn〉] = [|e1〉||e2〉| · · · ||en〉]L†.

(A3)

Thus the ith-column elements of L† are the coefficients of
|βi〉 in the orthonormal basis {|ei〉}. Let {| fi〉}n

i=1 denote the
standard basis of Cn. One picks the ith column of a matrix,
multiplying it by | fi〉 from the right. Hence |βi〉 = L†|ei〉 and
we have

A(βi ) = I − 2L†| fi〉〈 fi|L. (A4)

Similarly, for laboratory Y, we can repeat the same
procedure to find the orthonormal basis from {|γi〉}.
Doing so, we obtain |γi〉〈γi| = K†| fi〉〈 fi|K , where H =
K†K is the Cholesky-decomposed Gram matrix (H)
corresponding to |γi〉.

The procedure is implemented in the function genL in the
file util.py. For an array of displacements, given as the
argument, the function first calculates the Gram matrix G of
the corresponding coherent state vectors with entries given by
Eq. (A2) and next it calculates the matrix L of the Cholesky
decomposition of G using numpy.linalg.cholesky.

During the procedure, an exception np.linalg.
LinAlgError(Matrix is not positive definite)
sometimes occurs. This happens because during the
calculations some diagonal elements become negative due to
numerical inaccuracy. If, during the minimization procedure,
two displacements become close to each other such a situation
may arise. For handling this exception, we add a correction
factor (3 times the modulus of the smallest eigenvalue of G)
to the diagonal terms in the matrix. This trick vastly reduces
the exception occurrence frequency, but does not guarantee
success; the exception occurs also if positive eigenvalues are
too small, hence the whole function should be used in an
exception-handling block.

Next the function one_party_local_observables pro-
vided with an array of displacements constructs finite-size
matrices representing observables A(βi ). It uses the previously
described function genL to generate the matrix L and then
construct the matrices of observables from projectors onto
conjugated rows of the matrix L (columns of L†).

Remark 2. In case all {βi} are real, L = L†.
Remark 3. In case all {βi} and {γi} are real, the matrix S

given by Eq. (6) is a real symmetric matrix, and its eigenvec-
tors have real entries.

APPENDIX B: MAXIMAL VIOLATION
OF BCCB INEQUALITY

1. General states

Once we have defined the function
one_party_local_observables, prescribing n × n
matrices to the observables A(βi ), for a given set of
displacements {|β1〉, . . . , |βn〉}, we define a function
LHS_of_BCCB (in the file util.py) returning the n2 × n2

matrix S [Eq. (6)] for arrays of complex displacements {βi}
and {γi} given as its arguments.
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The function max_viol in the file Eig_general.py trans-
lates a real array of size 4n to n-dimensional vectors β, γ of
complex displacements, calculates the corresponding matrix S
using the LHS_of_BCCB function, and returns the negative of
its maximal eigenvalue. The function is passed as an argument
to the function scipy.optimize.minimize, which finds its
minimum using the Powell algorithm. We start from random
sequences of displacements and repeat the procedure a num-
ber of times to minimize the probability of getting stuck in a
local minimum. In this way, we obtain the maximal violation
for the BCCB inequality using n MZI settings.

Now, for n ∈ {3, . . . , 8}, we obtain the sequences {βi} and
{γi} for which the violation is obtained under such a protocol,
and plot them in the complex plane (Fig. 2). The whole code is
under Eig_general.py. The pickled results of optimization
are in the file Eig_general.pi.

Next, we observe the collinearity of the resulting displace-
ments on the complex plane. Hence by a local displacement
operator and phase rotation, the sequences can be made real
and the first displacement can be fixed to zero. Performing op-
timization over the reduced number of parameters we observe
no decrease of maximal violation; hence the optimization
can be performed over 2n − 2 real parameters and remains
stable for higher n. The optimization is realized by the code
Eig_real.py and the results are stored in Eig_real.pi.
The only modification in comparison to the previous code is
how the function max_viol translates the array of 2n − 2 real
numbers to sequences of displacements {βi}, {γi}.

Differences between subsequent displacement in the se-
quences shown in Fig. 2 are almost equal, except the first
and/or last one is significantly bigger. As we have already
discussed, such simplified four-parameter optimization is only
approximate but leads to a point in the attraction basin of
the global (calculated by 2n − 2 parameter optimization)
optimum. We use this observation to perform many times
the fast simplified optimization to avoid being stuck in a

local minimum and then only once the full 2n − 2 pa-
rameter optimization. The first step is implemented in the
file Eig_first_stage.py and the results are serialized in
Eig_first_stage.pi. The serialized data are loaded in the
code Eig_second_stage.py and the results are stored in
Eig_second_stage.pi.

The code Eig_graphs.py produces a figure of plots
of displacements for n = 3, . . . , 8 using the data from
the file Eig_general.pi and the plot of maximal vi-
olations with respect to n using the data from the file
Eig_second_stage.pi. It fits the exponential decay to the
data, plots the fitting, and prints the values of parameters and
the covariance matrix.

Next, we analyze the pure states realizing maximal viola-
tion using the results pickled in Eig_second_stage.pi. To
do this, the code Eigvectors_max_violation.py recovers
the eigenvector corresponding to the maximal eigenvalue of
the matrix S [Eq. (6)] for each n using numpy.linalg.eig.
For each eigenvector, we calculate its decomposition in the
(nonorthogonal) basis {βi ⊗ γi} of coherent-state vectors. A
dictionary, prescribing to each n both decompositions, is
stored in max_viol_states.pi.

The code Plots_Eigvecs_SchmidtCoeffs.py loads for
each n ∈ {3, 6, 9, 12} two decompositions of the correspond-
ing eigenvector from max_viol_states.pi and reshapes
them to n × n matrices. The entries of the coherent-state vec-
tor decomposition are plotted in the top row of the figure.
The bottom row of the figure presents the plots of Schmidt
coefficients of eigenvectors calculated using singular value
decomposition (numpy.linalg.svd) on the n × n matrix of
coefficients in the orthonormal basis.

2. Entangled coherent states

The expectation value of the observable S [Eq. (6)] with
respect to the particular state vector |�ECS〉 is

E(S)ECS = 〈�ECS|S|�ECS〉 = 〈�ECS|
(

n∑
i=1

A(βi ) ⊗ A(γi ) +
n−1∑
i=1

A(βi+1) ⊗ A(γi ) − A(β1) ⊗ A(γn)

)
|�ECS〉

=
n∑

i=1

fi,i +
n−1∑
i=1

fi+1,i − fi,n, (B1)

where

fi, j = 〈�ECS|A(βi ) ⊗ A(γ j )|�ECS〉
= N2

α [|a1|2b(α, α, βi )b(0, 0, γ j )

+ 2Re(a∗
1b(α, 0, βi )b(0, α, γ j )

+ b(0, 0, βi )b(α, α, γ j ))], (B2)

and b(x, y, z) = 〈x|y〉 − 2〈x|z〉〈z|y〉, 〈x|y〉 = e−|x−y|2/2+iIm(x∗y),
where we have used the fact that A(β ) = D̂(β )A(0)D̂†(β ) and
the properties of displacement operators [22].

We perform a numerical optimization of E(S)ECS for each
n = 2, . . . , 19 in the code ECS.py to find the maximal viola-
tion in this class of states.

The factory function bccb prescribes a function cal-
culating E(S)ECS of an array x, for two arguments:
a parametrizing function param and n, the number of
MZI settings. The parametrizing function defines how to
decode from an array x subsequent objects: a, super-
position parameter; alpha,b,c,d, displacements in the
state; and beta, gamma, sequences of displacements re-
alized by MZIs. We use local unitaries to fix b,c,d to
zero.

Next we define the subsequent functions: param1, param2,
param3, and param4 define different parametrization func-
tions, ordered by to increasing number of parameters. Each
such function has a prescribed attribute size storing the di-
mension of the parameter space.
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In the main function max_violation we minimize a func-
tion produced by the factory function bccb. The starting point
is a random array of the size defined in the size attribute
of the chosen function param. We repeat the minimization
m times, to avoid being stuck in a local minimum, and then
we use the result as a starting point of the full-parameter
parametrization (we observed first that it is enough to consider
only real values of parameters).

It is enough to perform on the first stage a five-parameter
optimization, defined in the function param1. It is not well
defined. For n = 2 then we choose the full parametrization
param3 (in this dimension they coincide). For n = 6 the pro-
cedure does not lead to the optimal value (the result of the

simplified optimization is not in the attraction basin of the
global optimum) and we need to perform a more detailed
parametrization param2.

The results are pickled to the file max_viol_ecs.pi. The
data are then used by the code ECS_graphs.py to produce
graphs of optimal values of state parameters, optimal values
of displacements, and optimized violations.

3. Two-mode squeezed vacuum states

We aim to maximize the violation of BCCB inequality (1)
for such states with our MZI arrangement. As done previously
for ECSs in Eq. (B1), we calculate the expectation value of the
observable S [Eq. (6)] for |�TMSV(r)〉:

E(S)TMSV = 〈�TMSV(r)|S|�TMSV(r)〉

= 〈�TMSV(r)|
(

n∑
i=1

A(βi ) ⊗ A(γi ) +
n−1∑
i=1

A(βi+1) ⊗ A(γi ) − A(β1) ⊗ A(γn)

)
|�TMSV(r)〉. (B3)

Introducing g(r, βi, γ j ) = 〈�TMSV(r)|A(βi ) ⊗ A(γ j )|�TMSV(r)〉,

g(r, βi, γ j ) = 1 − 2
e−|βi|2/ cosh2 r + e−|γ j |2/ cosh2 r − 2 exp −|βi|2 − |γ j |2 − 2Re(βiγ j ) tanh r

cosh2 r
. (B4)

We obtain the following:

E(S)TMSV =
n∑

i=1

g(r, βi, γi ) +
n−1∑
i=0

g(r, βi+1, γi ) − g(r, β1, γn). (B5)

The numerical optimization is performed in the code TMSV.py and the results are stored in the file max_viol_tmsv.pi. In
the code TMSV_r.py, we perform the optimization described as follows. For n = 2, . . . , n, we optimize the violation for fixed
values of the squeezing parameter r. The results are stored in the file tmsv_r.pi.

The code TMSV_graphs.py loads the data from max_viol_tmsv.pi and plots graphs of violation vs r for n = 2, . . . , 8.
Next, using the data from max_viol_tmsv.pi, it produces graphs of maximal violation and the optimal value of parameter
r vs n.

Finally, the code Plots_all.py produces a plot comparing violations using data from max_viol_eig.pi,
max_viol_ecs.pi, and max_viol_tmsv.pi.
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