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Stochastic optimization algorithms for quantum applications
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Hybrid classical quantum optimization methods have become an important tool for efficiently solving
problems in the current generation of noisy intermediate-scale quantum computers. These methods use an
optimization algorithm executed in a classical computer, fed with values of the objective function obtained
in a quantum processor. A proper choice of optimization algorithm is essential to achieve good performance.
Here, we review the use of first-order, second-order, and quantum natural gradient stochastic optimization
methods, which are defined in the field of real numbers, and propose stochastic algorithms defined in the field
of complex numbers. The performance of all methods is evaluated by means of their application to variational
quantum eigensolver, quantum control of quantum states, and quantum state estimation. In general, complex
number optimization algorithms perform best, with first-order complex algorithms consistently achieving the
best performance, closely followed by complex quantum natural algorithms, which do not require expensive
hyperparameter calibration. In particular, the scalar formulation of the complex quantum natural algorithm allows
to achieve good performance with low classical computational cost.
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I. INTRODUCTION

The current generation of quantum hardware has been de-
scribed as noisy intermediate-scale quantum (NISQ) devices
[1], characterized by noisy entangling gates, short coher-
ence times, and large sampling errors. A promising approach
to achieve quantum advantage in NISQ devices are hybrid
quantum-classical optimization algorithms [2-5]. These eval-
uate an objective function through a parametrized quantum
circuit in a quantum computer and feed the values of the ob-
jective function to a classical optimization algorithm running
on a classical computer. Thus, hybrid optimization algorithms
are used whenever the objective function can be evaluated
more efficiently on a quantum computer than on a classical
one. This is the case for applications to quantum chemistry
[6-8], quantum control [9-11], quantum simulation [12,13],
entanglement detection [14-16], state estimation [17-21],
quantum machine learning [22-26], error correction [27],
graph theory [28-30], differential equations [31-33], and fi-
nances [34].

The performance of hybrid quantum-classical algorithms is
affected by the optimization landscape associated with the ob-
jective function and the choice of the optimization algorithm.
For instance, it has been recently shown [35,36] that a very
general class of objective functions exhibits a barren plateau,
that is, a region in the optimization landscape where the ob-
jective function gradient vanishes and its standard deviation

*jorgegidi @udec.cl

2469-9926/2023/108(3)/032409(21)

032409-1

decreases exponentially with the number of qubits. In particu-
lar, this affects applications in which random quantum circuits
are used, such as, for instance, quantum machine learning
[23]. Also recently, several studies [37-40] have been carried
out to establish general guidelines to choose the optimization
algorithm with the best performance, according to a prede-
fined metric, for a certain class of problems. These consider
methods such as stochastic gradient descent [41], adaptive
gradient algorithms [42], root-mean-square propagation [43],
Adam and variations [44—46], the Nelder-Mead method [47],
the Powell method [48], and the Newton conjugate gradient
[49], among many others [50-56].

In the growing list of optimization methods used in hybrid
optimization, stochastic optimization algorithms [57-61] play
an important role. State initialization, quantum gates, and
measurements are noisy processes leading to noisy evaluation
of the objective function. This intrinsically stochastic behav-
ior of the objective function negates mathematical guarantees
on the convergence of commonly used classical optimization
methods [39]. However, certain stochastic optimization meth-
ods have convergence proofs that admit the presence of noise.
In this scenario, a method that achieves good performance
in various applications of hybrid optimization is the simulta-
neous perturbation stochastic approximation (SPSA) method
[62]. The main advantages of SPSA are its robustness to noise,
ubiquitous in quantum mechanics, and that it can approximate
the gradient of an objective function with only two mea-
surements. In particular, this approximation does not require
knowing the operational form of the objective function. SPSA
has been successfully implemented in several experimental
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platforms and is one of the standards methods for training
variational quantum eigensolvers (VQEs) [63-67], quantum
neural networks (QNNs) [68-70], and quantum tomography
[17,18,71].

Given the success of stochastic optimization algorithms
within quantum computing, efforts have been made to im-
prove their performance in solving certain tasks. One proposal
is second-order SPSA (2SPSA), which improves the conver-
gence rate of SPSA by preconditioning the gradient with the
inverse of a simultaneous perturbation estimate of the Hessian
of the objective function [72,73]. This method is inspired
by the deterministic Newton-Raphson algorithm and requires
four evaluations of the objective function per iteration to es-
timate both gradient and Hessian. It has been shown that this
method achieves a nearly optimal asymptotic error for well-
conditioned problems. However, for a poorly conditioned
Hessian, the error is several orders of magnitude larger [74].
Another proposal focused on quantum computing is quan-
tum natural gradient optimization [75]. The SPSA algorithm
explores the parameter space within a flat geometry, which
can lead to an unfavorable update of parameters. In contrast,
quantum natural gradient optimization uses information about
the geometry of the parametric quantum state to update the pa-
rameters appropriately. The Fubini-Study metric tensor repre-
sents this information. Natural gradient optimization provides
several advantages over vanilla (or standard) methods, that is,
methods in their unmodified form. This is because the natural
gradient is invariant under reparametrization [76] and approx-
imately invariant under overparametrization [77]. The version
of SPSA based on the quantum natural gradient (QN-SPSA)
uses a simultaneous perturbation estimate of the Fubini-Study
metric tensor [78]. This estimation requires four fidelity eval-
uations per iteration and the two function evaluations required
to estimate the gradient. The fidelity evaluation can be per-
formed efficiently using the swap test [79], among other
alternatives [80]. This method is appropriate in contexts where
the evaluation of the objective function is too expensive, for
example, in estimating the fundamental energy of molecules
[65,66,81,82]. However, similarly to 2SPSA, ill-conditioned
metrics can reduce the performance of QN-SPSA [83-85].

Optimization methods can also be extended to work in
the field of complex numbers by means of Wirtinger calcu-
lus [86]. Some examples are the complex Newton-Raphson
algorithm [87] and the complex quantum natural gradient
[88]. These methods optimize the objective function without
resorting to the real and imaginary parts of complex variables.
It has been argued in the literature that optimization methods
formulated within the complex numbers could achieve better
performance, which has been observed in a small set of ex-
amples [89-91]. This seems to be a more natural approach
to optimization in quantum mechanics, where most functions
have complex arguments. For example, continuous-variable
quantum computing employs displacement and squeezing
operators, which depend on complex parameters [92,93].
Recently, the complex simultaneous perturbation stochastic
approximation (CSPSA) method [19] has been introduced.
This is a generalization of SPSA that optimizes within the
field of complex numbers. It has been shown that CSPSA
can deliver better results in the estimation of pure states
[19] and is robust against noise [21]. It has been applied

to entanglement estimation [16], quantum state discrimina-
tion [26], and violation of the Clauser-Horne-Shimony-Holt
inequality [94].

Here, we present a comparative analysis of several stochas-
tic optimization methods applied to real-valued functions of
complex variables. We first review the basic principles of
the SPSA algorithm. Subsequently, we review the 2SPSA
and QN-SPSA algorithms using SPSA as a guideline. We
also reviewed the CSPSA algorithm and developed two opti-
mization algorithms based on the CSPSA algorithm: 2CSPSA
and QN-CSPSA. These are the complex field formulations
of their real counterparts 2SPSA and QN-SPSA, respectively.
We study the performance of the introduced methods by com-
paring their convergence rate as a function of the number
of iterations with respect to SPSA, 2SPSA, and QN-SPSA.
This comparison is carried out in three contemporary appli-
cations: variational quantum eigensolver, quantum control,
and quantum state estimation. We use a variational quantum
eigensolver to obtain the ground-state energy of the Heisen-
berg Hamiltonian for a ten-qubit ring configuration, which
is a ubiquitous and relatively simple model that describes
the interactions within a chain of spins [63]. We imple-
ment the gradient ascent pulse engineering (GRAPE) method
[95], which is used to engineer quantum gates and states.
This method approximates a control pulse by a sequence of
constant-intensity pulses. The control parameters of this pulse
are optimized to find the best implementation of a given gate
or state, even in the presence of noise [9]. In particular, we
apply GRAPE to the generation of five-qubit pure states. Fi-
nally, in quantum state estimation, we implement self-guided
quantum tomography (SGQT) [17], which is based on the
minimization of the infidelity between an unknown state and
a known parametrized state, to characterize six-qubit pure
states. Since the studied optimization methods are stochastic,
we use numerical simulations and sampling to estimate the
mean, variance (or standard deviation), median, and interquar-
tile range of the relevant figures of merits. Measurements are
simulated using a finite sample of various sizes.

Our comparative analysis shows that the first-order CSPSA
algorithm consistently performs best in all three applications.
In the case of the variational quantum eigensolver, the per-
formance of CSPSA is achieved at the expense of calibrating
gain coefficients. Without the calibration, CSPSA performed
poorly. To avoid the calibration, a good alternative is to use
quantum natural algorithms, which achieve a performance
close to the calibrated CSPSA at the expense of increasing
the number of measurements and the classical computational
cost. The latter can be avoided with the scalar version of
quantum natural algorithms. On the other hand, for quantum
state estimation and quantum control, the CSPSA algorithm
performs the best without hyperparameter calibration.

While second-order algorithms do not provide an advan-
tage, the quantum natural algorithms are competitive against
first-order algorithms. As the number of qubits increases, we
expect quantum natural algorithms to become more relevant.
In this scenario, however, the cost of quantum natural algo-
rithms increases. This can be partially mitigated using their
scalar versions, which render the classical computational cost
of quantum natural algorithms feasible even for a very large
number of qubits.
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In general, complex-based optimization methods tend to
outperform real-based optimization methods, although the
difference in performance may be slight.

This article is organized as follows: In Sec. II, we re-
view the stochastic optimization methods SPSA, 2SPSA,
QN-SPSA, and CSPSA and formulate the methods 2CSPSA
and QN-CSPSA. Also, we review and introduce modifications
that may improve the performance of the methods. In Sec. 111,
we apply the previously developed optimization methods to
variational quantum eigensolver, quantum control, and quan-
tum state estimation. In Sec. IV, we summarize our main
results and conclusions.

II. STOCHASTIC OPTIMIZATION ALGORITHMS

Let us consider the problem of optimizing a real function
f of p complex variables, f: C? — R, that is, finding an
argument z* € C? such that f(z*) is a local minimum of
the function f. This problem can be solved by mapping the
complex variables to the field of the real numbers through
the relation z = x + iy, in which case f becomes f(#) with
0=(x,y e R?P. Then, one can use real-variable optimiza-
tion algorithms to find 6* = (x*,y*)” such that f(8*) is a
minimum of f, and retrieve the solution for the original
complex-variable problem as z* = x* + iy*. Itis possible, nev-
ertheless, to solve the optimization problem using Wirtinger
calculus [86,96], which does not resort to mapping complex
variables to real ones.

While both approaches are equivalent, the process of solv-
ing one or the other is not. It has been conjectured that a
complex-variable reformulation of real-variable optimization
algorithms may lead to increased performance [8§9-91], which
has been observed when working on pure-state quantum to-
mography [19]. Furthermore, for applications in quantum
theory, which are natively stated in terms of complex vari-
ables, the transformation to real variables adds an extra step
in the optimization process. For this reason, here we review
some real-variable optimization methods relevant to quantum
applications and present their complex-variable analogs.

A particularly suitable class of methods for optimizing
multivariate functions in the presence of noisy measurements
are the stochastic approximation methods [57—61]. This fam-
ily of methods originates from the Robbins-Monro algorithm
[97] designed to find a root 6 of a function M (x) given by the
expectation of a random variable Y (x). Here M is unknown,
just like the probability function of Y, and the Robbins-Monro
algorithm gives an estimate of 6 by making successive ob-
servations on Y. From the Robbins-Monro algorithm, it is
possible to consider M as a regression function [98] and pro-
pose a scheme to estimate the maximum of M. Therefore, the
use of stochastic approximations arises to deliver an algorithm
that converges to an optimal value of a function f using the
Kiefer-Wolfowitz procedure when M = V f.

A widely used family of stochastic approximation (SA)
methods is based on the iterative rule

Orr1 = 0 — arg,(6;), 9]

where the descent step series ay = a/(k+A)° is fixed
by the externally selected gain parameters a, A, and s. The
quantity g, is a stochastic approximation of the gradient of the

objective function at 6;, which depends on the gain coefficient
by = b/k', where b and ¢ are externally fixed gain parameters.

In the following sections, we review the SPSA algorithm
and its extension to the second-order and quantum natu-
ral gradient algorithms, 2SPSA and QN-SPSA, respectively.
Subsequently, we review the CSPSA algorithm for complex
variables and develop two extensions to it: the second-order
algorithm 2CSPSA and the quantum natural gradient algo-
rithm QN-CSPSA. This work is conducted, in a similar way to
the SPSA algorithm, by considering an iterative rule as Eq. (1)
for the case of complex variables. Last, we present typical
modifications to improve the performance of the optimization
algorithms, namely, blocking and resampling, and introduce
two further variations: an alternative Hessian postprocessing
procedure and a scalar approximation to second-order and
quantum natural algorithms that reduce their classical com-
putational cost.

A. Real-variable methods
1. SPSA

The simultaneous perturbation stochastic approximation
(SPSA) is a multivariate optimization method for real func-
tions of real variables. While the SPSA denomination came
later, the method was first presented by Spall [62] and
corresponded to an improvement over the finite difference
stochastic approximation (FDSA) from Kiefer and Wolfowitz
[98]. Both the FDSA and SPSA algorithms optimize the func-
tion f(#) with § € R” by following the recursive stochastic
approximation rule [Eq. (1)]. However, the main feature of
SPSA is that, instead of estimating each of the p components
of the gradient as a stochastic finite difference approximation,
it defines the estimator g, as

£+ beA) — O —beAy 5
2by '

8(0) = . @)

1/Ak,p

where A, is a random perturbation vector with p components
typically chosen from the set {1} with uniform probabil-
ity, and the finite difference approximation step by = b/k' is
controlled by the externally selected gain parameters b and
t. It is worth noting that while g,(6;) does not necessarily
have the direction of the gradient at each iteration, it is an
asymptotically unbiased estimator of the gradient, meaning
that it converges at the statistical limit to the same solution as
following the gradient. Furthermore, Eq. (2) makes the SPSA
algorithm especially suitable for high-dimensional problems
since it always requires two function evaluations per iteration,
regardless of the number p of variables, in contrast to the
FDSA algorithm that requires 2p function evaluations per
iteration.

An iteration of the SPSA algorithm is given by Eqgs. (1) and
(2) and requires a total of two objective function evaluations.

2. 2SPSA

Since the iterative rule used in the SPSA algorithm is
derived from a first-order gradient descent approximation,
the rate of convergence of the algorithm could be accelerated
using a second-order iterative rule coming from the
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Newton-Raphson method, given by

(A 0\
Ori1 = 0 — n[H(0r)] <£(0k)) , (3)
where n € R is the learning rate and H is the Hessian of
f. A stochastic approximation based on Eq. (3) is proposed
by Spall [72], deriving the so-called adaptive or second-order
SPSA (2SPSA) algorithm. The iterative rule now yields

—
Orr1 =0 —arH, g.(6r), 4

where @, = 1/(k + A)’ no longer depends on a. The gradient
estimator g, is defined by Eq. (2), as in the first-order case,
and 7 is a modified version of the simultaneous perturbation
stochastic approximation of the Hessian matrix. In particular,
we compute ﬂk by [72]

T
H//c _ Hi + [Hi] ’ (Sa)
2
H, = k H |+ ! H, (5b)
F k17 k1R
He = JH? + e, (5¢)

where, in execution order, Eq. (5a) ensures that the Hessian
approximation is symmetric as the analytical Hessian, then
Eq. (5b) stabilizes the estimator by introducing inertia from
previous iterations, starting from an identity at the zeroth
iteration, 7—[6’ =1, and finally, Eq. (5¢) with 0 <e K 1
guarantees positive definiteness.

A one-sided simultaneous perturbation stochastic approxi-
mation to the Hessian matrix is taken as

~ T
. 1/ Ak
8.0+ b Ay) —g,.(0)

by,

Hi(0) = , (6)

1/Ak.p

which allows reusing the function evaluations from the cen-
tered gradient estimator. By inserting the definition of the
gradient approximation [Eq. (2)], then Eq. (6) can be rewritten
by components as

8 fi(6)

Hilii = ———7—, 7
[ k] j 2bkbkAk7,‘Ak’j ( )

where
82£1(0) = f(0 + by Ay + b Ay) — f(0 + brAy)
— f(0 — b Ay + b Ay) + (0 — DAY, (8)

b, = E/k’ is a gain series similar in nature to by, and Ay isa
random vector formed by p components uniformly generated
from the set {41} analogous to A;.

Thereby, an iteration of this method is given by Egs. (8),
(M), (5), (2), and (4) and requires a total of four objective
function evaluations.

3. ON-SPSA

The gradient descent method reaches a local minimum by
moving, at each iteration, along the direction of the steepest
descent of the objective function in the Euclidian parameter

space, —(df/90)7, limiting the magnitude of the update step,
A#@. The steepest-descent rule can be obtained by choosing the
increment as

A6 i <8f>T A0+ ! | AG)2 9)
= arg min —_— y - 5
A%E]Rzl’ a0 2n g

where n € Rt is the learning rate, (f,60') =070 is the
inner product for two vectors @ and @', respectively, and
| - l2 = +/{-, ) is the I? norm. Differentiating the argument
at the right-hand side of Eq. (9) with respect to A# and setting
it to 0 provides the well-known gradient descent step

3 T
A = —n<a—£> . (10)

This result is based on the /> geometry, where a shift in any
direction in the parameter space is equally weighted. How-
ever, the objective function may not be equally sensitive to
changes in different parameters and, therefore, a more ade-
quate notion of distance would measure the step length A by
weighting the changes on each parameter. This is addressed by
a method called natural gradient descent [99], which endows
the parameter space with a suitable metric G that induces the
norm || - ||g = +/(-, G -). Then, the increment is stated as

o\ Lo
A8 =arg min{(( =) A6} + a0 (D)
AOcR2P 80 27]
which leads to the natural gradient descent rule

BTN

O+1 = 0 — 1[G (01)] (%(01&) . (12)

The quantum natural method, which takes G as the Fubini-
Study metric tensor, is particularly useful for improving
convergence rates for optimization problems in quantum ap-
plications [75]. The Fubini-Study metric tensor is proportional
to the quantum Fisher information matrix, so its calculation
can be very expensive when many variables are involved.
This problem was addressed by Gacon et al. [78] by taking
advantage of the similarity between Eqgs. (3) and (12), along
with the possibility of writing the Fubini-Study metric tensor

as
1| a for@. 0\
g(a)__i[zm( 20 )}

where F (@', 0) is the fidelity between two quantum states
parametrized with the variables 6" and 6, respectively. In
particular, the Fubini-Study metric tensor was approximated
according to Eq. (13) using the stochastic approximation of
the Hessian employed by the 2SPSA algorithm. In this man-
ner, they proposed the quantum natural SPSA (QN-SPSA)
algorithm, which avoids the curse of dimensionality.

In order to reuse the equations already presented for the
2SPSA method, we will abuse notation and denote H the
Hessian estimate of the Fubini-Study metric, yielding

, (13)
0'=8

8> Fi(6x)

H ii = — T~ ~
(el Abiby Axi A,

(14)
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where

8% F(0) = F (8,0 + by Ay + b Ay)
—F(0,0+ b Ay)
—F(0,0 — by Ay + beAy)
+F(0,0 — b Ay, 15)

and A and A are two vectors of p components randomly
sampled from the set {+1}.

Following the same logic as in the 2SPSA algorithm, the
simultaneous perturbation stochastic approximation of the
Hessian in Eq. (14) must be conditioned by the procedure on
the system of Egs. (5). Let us note that while we are using
the 2SPSA discretization scheme and update rule, this is a
first-order method, as the conditioner H; comes not from a
second-order expansion on the target function but only from a
different metric in the parameter space.

Requiring only two measurements of the objective func-
tion makes this algorithm especially suitable for problems
where the metric tensor can be efficiently approximated. That
is when evaluating the fidelity F' between two known pure
quantum states requires marginal resources compared to the
potentially expensive target function f.

An iteration of the QN-SPSA method is given by Egs. (15),
(14), (5), (2), and (4) and requires a total of two objective
function evaluations and four fidelity evaluations.

B. Complex-variable methods

Now we formulate the problem of optimizing real-valued
functions of complex variables. In the case of quantum
mechanics, most of the functions that interest us depend
on complex variables and their complex conjugates. Conse-
quently, these functions do not satisfy the Cauchy-Riemann
conditions and lack a Taylor-series expansion. This can be
solved by resorting to the real and imaginary parts of the
complex variables. Wirtinger calculus [86], however, allows
us to define a derivative, the Wirtinger derivative, that exists
even for nonholomorphic functions. We consider a function
f:meC? — R with u = (z,z*)", which can be expressed
in a power series for a complex increment Ay = (Az, Az*)T,

a 1 .
Pt 80 = f)+ 3o Aw+ S AR HAR +-+- (16

BENEIAY
=)

is the complex Hessian of the function f [87], the symbol
(1) denotes the conjugate transpose, and differentiation with
respect to p is defined by

b (2, 35), s
o dz oz*

where

where the complex variables z and z* are considered to be
independent. Let us note that the inner product between any
column two vectors . = (z z*)T and u' = (z z*)T, with

z,7 € CP, is a real number,
/
win =@ z)(zz,*> = 2Refz'7}. (19)

1. CSPSA

Performing a first-order approximation on |Ap| from
Eq. (16), that is,

a
fn+ Ap) — f(p) = %AIL, (20)

we obtain that the largest decrease of the function f is
achieved by a perturbation A g in the direction of —(d f/du)".
This provides the complex equivalent to the gradient descent
update rule, which is given by the expression

N
M1 = Mg — ﬂ(%) , 2D

where n € R* is the learning rate. The above equation yields
a stochastic approximation [19] used to introduce the CSPSA
algorithm given by the iterative rule

Zir1 = Zk — g (Zr), (22)
where a;y = a/(k + A)°. The gradient estimator is now given
by

1/A}
f@+biAy) — f(z — b Ay)

2by

8 (@) = . (23)

/AL,

where by = b/k' and Ay is a random vector with p compo-
nents uniformly generated from the set {41, £i}, with i the
imaginary unit. To keep the notation simple, we have omitted
the dependency of g, on z*. Consequently, we write g, (z, z*)
as g, (z) and similarly for other functions.

An iteration of the CSPSA method is given by Eqgs. (23)
and (22) and requires a total of two objective function evalua-
tions.

2. 2CSPSA

To obtain a second-order iterative rule, we add up to
second-order terms on | A p| from expansion (16) and consider
the problem of finding the perturbation Ax that minimizes
f(u + Ap). This is done by taking 9 f(u + Ap)/dAp =0,
which reduces to the equation

3 [ar\’ A IAN
[a(a) }A" () .

This can be rewritten in terms of z and z* as

sz HZZ* AZ [af/az];

where the elements of the block matrix are

_a(ary

n-2(2). @6)
EENEIAN

sz* - 8_z<_8z*> ) (27)
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M. =H!., and (28)

Hooe = HE,. (29)
The system of Eqgs. (25) has the solution
- -1
Az =(H — Ho HZLH )

i T
x {HZ*ZH;;<3—£) - (%) } (30)

which is the update step corresponding to a Newton algorithm
[87]. While this solution requires a large number of opera-
tions, it is customary to use a block-diagonal approximation,
H.» ~ 0, yielding a pseudo-Newton method [100] with

T
Az = =) (%) , G1)

which also has the advantage of being operationally indepen-
dent of z* in practice.

Analogous to the 2SPSA method, in the stochastic ap-
proximation, we take the descent direction given by Eq. (31).
Thereby, we define the 2CSPSA algorithm by means of the
update rule

Zis1 = 2 — @[ He @)1 g @), (32)

where g, = 1/(k + A)’, g,(z) is given by Eq. (23), and H, is
a modified version of the simultaneous perturbation stochastic
approximation for the partial complex Hessian #_, at the kth
iteration. Similar to the system of Egs. (5) for the real-variable
case, Hy is computed through the sequence

Hi + [Hel
o, = L[k]’ (33a)
2
H = k M+ ! H) (33b)
Em k417 TR
H = JH? + e, (33¢)

where, in execution order, Eq. (33a) makes the Hessian ap-
proximation Hermitian as the exact Hessian, then Eq. (33b)
stabilizes the estimator by introducing inertia from previous
iterations, starting from an identity at the zeroth iteration, that
is, Hy = I, and finally Eq. (33c) with 0 < & < 1 ensures pos-
itive definiteness. Note that the regularization equation (33c)
is still valid in the complex-variable case since its input, H/,
has real eigenvalues due to the previous Hermitization in
Eq. (33a).

In this case, the components of the simultaneous perturba-
tion stochastic approximation of the partial complex Hessian
‘H,, are given by

8% fi(@)

IH ij -
[Hi(2)];; TANNEY

(34)

where
8 fe@) = f@+ beAg + brAy) — fz+ biAy)
— f@— beAy + b Ay) + f(z — brAy),  (35)

and A and A are two random vectors, each composed by p
elements uniformly generated from the set {£1, £i}.

The 2CSPSA method requires the inversion and regular-
ization of a p x p Hermitian complex matrix. In contrast, the
analog 2SPSA optimization of an equivalent problem would
require the inversion and regularization of a 2p x 2p symmet-
ric real matrix.

An iteration of this method is given by Eqs. (35), (34), (33),
(23), and (32) and requires a total of four objective function
evaluations.

3. ON-CSPSA

The natural gradient method was adapted [88] for a com-
plex parameter space by posing the usual natural gradient
update rule [Eq. (12)] with the relevant metric G and using
an invertible linear transformation W to move back and forth
between the real and complex parametrizations such that

w(*) = x+iy\ . (z (36)
y)  \x—iy) " \z*)

where x,y € RP. However, continuously moving between
parametrizations is undesirable, and therefore here we present
a natively complex implementation of the natural gradient
method for quantum applications, which proceeds analo-
gously to the QN-SPSA method.

The complex gradient descent rule [Eq. (21)] can be ob-
tained as a solution to the optimization problem

Ny 1 2
Ap =arg miny{ | — ) ,Ap)+ —lAplzg, BT
ApeC? om 2n

where n € R™ is the learning rate, (i, u') = '’ is the inner
product for two complex vectors w and p’, respectively, and
| - l2 = +/{-, -) is the > norm. As in the real case, to require
the parameter update to remain small in the space endowed
with metric G, the /> norm is replaced in Eq. (37) by || - |lg =
/{+, G -). This leads to the optimization problem

. af\’ 1 2
Ap =argmini (| = | ,Apn )+ —llAnlgi.  (38)
ApeC2» o 2n

which has the solution

9 T
Ap = —ng-! (%) , (39)

where G is an Hermitian matrix.

In the case that the optimization space is the set of pure
quantum states, the metric G can be chosen proportional to
the quantum Fisher complex information matrix [101], that is,

_ 18 (Fw.w\
2| o E
where F(u’, ) is the fidelity between two states parametrized
with variables p’ and u, respectively.

Considering, as in the 2CSPSA case, a block-diagonal ap-
proximation of G, the first row of Eq. (39) yields

9 T

Az = —ng,1<—f> , 41
© \ 0z

where G, is the top left block of G.

) (40)

w=pn
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Given the Hessian form of G,, and considering the simi-
larity of Eqgs. (41) and (31), we can borrow the discretization
scheme from 2CSPSA to approximate G,,. Denoting H; as the
simultaneous perturbation stochastic approximation of G,, at
iteration k allows us to reuse the equations already presented
for 2CSPSA, giving

8% Fi(zx)

H i - =,
[Pl Abibi AL Ay

(42)

with
8*Fi(z) = F (2.2 + by Ay + biAy)
— F(z,2+ by Ay)
— F(z,z2— by Ay + b Ay)
+ F (2,2 — by Ay), 43)

and conditioning as in the system of Egs. (33). As before, A
and A are two random vectors, each composed by p elements
uniformly generated from the set {£1, =£i}.

An iteration of this method, which we call quantum nat-
ural CSPSA (QN-CSPSA), is given by Eqgs. (43), (42), (33),
(23), and (32) and requires a total of two objective function
evaluations and four fidelity evaluations.

C. Method improvements

In the previous sections, optimization methods were pre-
sented in their vanilla form. It is possible, however, to
introduce further modifications that can improve their con-
vergence properties. In particular, we will address two typical
modifications, blocking and resampling, and two extra vari-
ations we propose: an alternative Hessian postprocessing
procedure and a scalar approximation for the preconditioned
methods.

1. Blocking

This technique consists of blocking the progression of the
method if the updated parameters z;; fail to fulfill a given
criterion. Conventionally, the updated variable is required to
improve the value of the objective function with respect to the
previous iteration plus some fixed non-negative tolerance,

f@ry1) < fz) + 4. (44)

The tolerance § is usually set as twice the approximate
standard deviation of the noise in the objective function
evaluation, which can be estimated by collecting several eval-
uations at the initial value of the parameters [72].

Regardless of whether the step is accepted, the Hessian
estimate 7, from Egs. (5b) and (33b) must be updated at
every iteration.

2. Resampling

This technique is also known as gradient or Hessian
averaging. It consists in computing the random estimators for
the gradient and Hessian Ng times per iteration to perform
the corresponding variable update using the average of
these estimators. This practice is recommended in noisy
environments [72].

Note that the authors of QN-SPSA [78] implement resam-
pling only for the Hessian estimator with the premise that
evaluating the metric is cheaper than evaluating the objective
function, which could lead to a better convergence rate with
little increment on the experimental resources. However, here
we stick to the convention stated in Ref. [72], which is also
implemented on QISKIT [102].

3. Postprocessing

Several postprocessing procedures have been proposed to
improve the stability of the 2SPSA algorithm [60]. We con-
sider two alternatives: the original proposal given by Egs. (5),
and the procedure given by

;

H) = w (45a)
P = HE+ el (45b)

2 2 1 /"

Hie = K 17‘[/#1 + k—i—_llHk' (45¢)

4. Scalar preconditioning approximation

Preconditioned methods, such as 2SPSA, 2CSPSA, QN-
SPSA, and QN-CSPSA, adaptively adjust the descent di-
rection and magnitude by adding a preconditioner to the
stochastic approximation. However, these methods can exhibit
numerical instabilities due to the inversion of a possibly ill-
conditioned Hessian estimation. Postprocessing procedures
can partially mitigate these issues, but these methods still lack
consistency in numerical simulations compared to first-order
methods. Most likely, these problems are caused by an inade-
quate adjustment of the descent direction. We consider these
problems most likely induced by an inadequate adjustment of
the descent direction.

It has been suggested [74] to replace the Hessian estimation
with a scalar function of its eigenvalues. Thereby, the de-
scent direction is chosen according to the first-order gradient
estimator while retaining the descent magnitude adaptivity
from the preconditioner. Following these considerations, we
propose a scalar approximation to the Hessian estimates (7),
(14), (34), and (42). Specifically, we omit the stochastic per-
turbations Ay and A; presented in the Hessian estimates to
only adjust the descent magnitude and preserve the first-order
descent direction. Namely, we approximate the Hessian esti-
mate of the second-order methods by

= S5
2biby

(46)

and the Hessian estimates for quantum natural optimizers by

2
T @7)
4bby,

From this procedure, we consider a new set of second-order
and quantum natural methods where the computational com-
plexity is reduced. Namely, the number of classical operations
on each iteration is reduced from 0(p3) to O(p), where p is
the number of variables.
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III. APPLICATIONS

We study the performance of the above optimization meth-
ods by comparing the rate of convergence of the objective
function towards the minimum as a function of the number
of iterations. We consider three important applications: vari-
ational quantum eigensolver, quantum control, and quantum
state estimation. We use the variational quantum eigensolver
to obtain the ground-state energy of the Heisenberg Hamil-
tonian, which is a ubiquitous and relatively simple model
that describes the interactions within a chain of spins. For
quantum control, we implement the GRAPE method [95],
which approximates a control pulse by a sequence of constant-
intensity pulses. The control parameters of this pulse are
optimized to find the best implementation of a given state,
even in the presence of noise [9]. Finally, for quantum state
estimation, we implement SGQT [17], based on minimiz-
ing the infidelity between an unknown state and a known
parametrized state.

The studied optimization methods are stochastic. We use
ensembles of numerical simulations to estimate the mean,
standard deviation, median, and interquartile range of the ob-
jective function. Measurements are simulated by sampling a
multinomial distribution with various numbers of trials. In the
figures below, only the upper half of the standard deviation is
shown.

We test the optimization methods considering different
configurations and look for the ones that offer the best
performance. The configurations we tested are all possible
combinations of the following alternatives: with or with-
out blocking, resampling with Ng = 1, 2,5, the two basic
postprocessing procedures, Eqgs. (33) or (45), and standard,
asymptotic or static set of gain coefficients. The standard set
isgivenbya=3,b=0.1,A=0, s =0.602, and r = 0.101,
the asymptotic setby a =3, b=0.1,A=0,s=1,and ¢t =
1/6, and the static set by a =0.01, b=0.01,A=0,s=0
andtr = 0.

For clarity, we consider simulations with two groups of
methods: (i) vanilla methods and (ii) improved methods, that
is, the vanilla methods implemented with the improvements
proposed in Sec. I C. The reason behind this separation lies in
the drastic increase in resources required to perform blocking
and resampling, and it could be useful to be able to discrim-
inate when it is really worth swapping resources for better
results.

Tables I to VI provide the value of the statistical indicators;
median, interquartile range (IQR), mean, and standard devia-
tion (STD), obtained through numerical simulations for the
best configuration of each optimization method on each ap-
plication. These values were used to determine the algorithm
with the best performance after 700, 1000, and 5000 iterations
for the variational quantum eigensolver, quantum control of
quantum states, and self-guided quantum tomography, respec-
tively. We indicate the gain coefficients and equations used
for postprocessing for each vanilla method. In the case of
improved methods, we also indicate the amount of resampling
and the use of blocking.

We have created a freely available library [103] that con-
tains the codes in the JULIA programming language [104] that
implements all of the optimization methods.

A. Variational quantum eigensolver

The search for the ground state and its energy Ey of a
Hamiltonian is a problem of great interest in areas such as
computational chemistry and condensed matter physics. This
is because much of the phenomenology and properties of
quantum systems can be studied from the ground state and
its energy. However, finding this eigenstate in large systems is
not a trivial task. It is often infeasible due to the exponential
growth of the dimension of the Hilbert space with respect to
the number of subsystems. For large systems, the Rayleigh-
Ritz method [105,106] is a useful tool since it is limited to
searching a parametrized subset of the original Hilbert space
to reduce the computational cost of optimization. A further
reduction in computational cost is achieved using the VQE
method [107]. This consists of performing the Rayleigh-Ritz
method with the help of a classical and a quantum computer,
which makes it a promising tool for the current generation of
quantum technologies.

The goal is to find the eigenstate |1) associated with the
lowest eigenvalue Ey of a Hamiltonian. This ground state can
be characterized as the solution to the optimization problem

Ey = min WIHW) . (48)
v (YY)
The Rayleigh-Ritz method provides an estimate of Ej by
parametrizing the trial states as | (#)) and optimizing over the
vector @ of parameters. The underlying idea is that the subset
defined by the parametrization must have a smaller dimension
than the total Hilbert space to reduce the computational cost.

The VQE method considers the generic Hermitian
Hamiltonian operator H =Y ., h;o; and the trial states
parametrization

|¥/(6)) = Ry(On) - - - R1(61)]0), (49)

where R;(6;) are quantum gates parametrized by 0; and applied
one after the other to the initial state |0). This parametrization
corresponds to a variational quantum circuit. The average
energy (V¥ (0)|H|vy (0)) can then be computed by individually
measuring each term (y(6)|o;|¥(@)) on a quantum computer
and adding the results weighted with their respective coeffi-
cients h;. Thereafter, the values of (y(0)|H |y (0)) are used by
a suitable optimization method running on a classic computer.

In general, the VQE method uses SPSA as the optimization
algorithm due to its robustness against noise, which suggests
that the optimization methods presented here can also be used.
In order to evaluate the performance of these various methods,
we use as a testing ground the problem of finding the ground-
state energy of the Heisenberg Hamiltonian, which models the
magnetic interaction of a ferromagnetic lattice. This is given
by the expression

Hy=jY Y okof+h) of. (50)
( m

m,n) k=x,y,z

where j and & are dimensionless coupling constants between
neighboring sites and with an external magnetic field, respec-
tively, 0%, o, 0 are the single-qubit Pauli operators acting
on the mth lattice site, and (m, n) indicates that the sum is per-
formed on the nearest neighbors in the lattice. To parametrize
the trial states we use the complex parametric single-qubit
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FIG. 1. Entangling gate Ugnr.

A UenT - =

gate
W(Z) — efi(za++z*07)’ (51)

where z is a complex parameter and o = o* £ io”. This gate
can be implemented experimentally by a sequence of three
real parameter gates.

The parametrization used for the trial states is given by

N
(@) = [ [ W () Usnr x -
q=1

N N
X 1—[ qu (Z;)UENT H qu (Zg) |0), (52)
g=1

g=1

where qu corresponds to applying W on the gth qubit, [
indicates the layer of the circuit, and Ugnr is the three-qubit
entangling gate depicted in Fig. 1, and similarly for zé.

To evaluate the performance of the different algorithms we
consider the Heisenberg Hamiltonian (50) with 2 = 0.3 and
j =1 for a ring of ten qubits with periodic boundary condi-
tions g;119 = g;. The trial states are parametrized by Eq. (52)
with d = 1 entangling layers, as depicted by the circuit in
Fig. 2. Each algorithm is simulated considering 10? randomly
selected initial states according to a Haar distribution, which
allows estimating statistical indicators such as mean, median,
standard deviation, and interquartile range. The measurements
required by each optimization method are simulated with an
ensemble size of 2 x 10*. The standard gain coefficients used
in first-order algorithms are b = 0.1, and a follows a calibra-
tion based on Ref. [63].

Figure 3 displays the best performance of the vanilla
algorithms as a function of the number of iterations. All
methods delivered the best results using postprocessing equa-
tions (45). This figure shows that the best performers are the
real and complex first-order and the quantum natural com-
plex algorithms, which exhibit an almost indistinguishable
behavior in mean, median, standard deviation, and interquar-
tile range. These algorithms converge to a minimum at
approximately 2 x 107 iterations, after which they become
approximately constant. The second-order algorithms exhibit
a slower convergence, reaching a similar value only after
7 x 107 iterations.

W(z1) W(z7)
W(z3) H Usnt W (23)
W(z3) W(z9)

FIG. 2. Parametric circuit used to implement the VQE for the
Heisenberg Hamiltonian of three qubits. Ugnr is an entangling gate
depicted in Fig. 1.

Figure 4 displays the best performance of the improved
methods. In this case, the best performers are the first-order
methods, the scalar version of second-order methods, and
the scalar version of quantum natural methods. These ex-
hibit an almost indistinguishable convergence in mean and
median as well as similar dispersion. In particular, a mini-
mum is achieved at approximately 107 iterations, after which
the energy becomes nearly constant. 2CSPSA and 2SPSA
scalar methods use postprocessing of Egs. (33) and (45),
respectively, and standard gains. QN-CSPSA and QN-SPSA
scalar methods use postprocessing of Eqgs. (33) and (45),
respectively, and asymptotic gains. All best performers use
resampling with Ny = 5.

From Figs. 3 and 4 we conclude that the best perfor-
mance in the variational quantum eigensolver is achieved
using SPSA, CSPSA, QN-CSPSA, and QN-CSPSA scalar
methods, which does not significantly differ in their vanilla
or improved versions. Blocking and resampling lead to a clear
improvement of the second-order methods, delivering results
similar to the best performers.

First-order algorithms provide the best performance
for this particular problem. Nonetheless, it is crucial to
note that this level of performance was attained through
a resource-intensive search for gain coefficients. In the
absence of such a search, the first-order algorithms performed
poorly. To bypass the calibration of the gain coefficients,
quantum natural algorithms can be applied while achieving
a performance close to the calibrated CSPSA. In particular,
the scalar quantum natural CSPSA algorithm also reduces the
classical computational cost.

B. Quantum control

Quantum control theory lays a firm theoretical foundation
for developing a series of systematic methods that allow the
manipulation and control of quantum systems. In particular,
the search for an optimized time evolution that allows guiding
the system from an initial state to a desired final state is of
great interest. Quantum control theory has already achieved
significant successes in physical chemistry [108], atomic and
molecular physics [109], and quantum optics [110], and has
also contributed to understanding fundamental aspects of
quantum mechanics [111]. In recent years, the development
of the general principles of quantum control theory has been
recognized as an essential requirement for the current and
future applications of quantum technologies.

A particular problem in quantum control is the precise
engineering of quantum states, that is, whether a quantum
system can be driven into a given state. This problem has prac-
tical importance since it is closely related to the universality
of quantum computing and the possibility of achieving trans-
formations at the atomic or molecular scale. An important re-
search problem is that of finite-dimensional quantum systems,
for which the controllability criteria can be expressed in terms
of parameters included in the Hamiltonian of the system.

The quantum state control problem [112] consists in identi-
fying an appropriate set of time-dependent control parameters
u(t) in such a way that its controlled change in time guides
the evolution of the system from an initial state |1/) to a pre-
determined objective state [/¢). The control parameters enter
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FIG. 3. The mean (top row) and median (bottom row) of the energy (in arbitrary units) as a function of the number of iterations obtained
through the VQE for the Heisenberg Hamiltonian in a ten-qubit ring configuration using vanilla optimization algorithms. The shaded areas
represent the variance (top row) and the interquartile range (bottom row). The dashed line indicates the exact minimum. The statistics are
obtained from a sample of 10 randomly generated states to estimate the minimum energy. The measurements in each circuit were estimated
with 2 x 10* shots. The values of the gain coefficients and postprocessing class can be found in Table I.

in the Hamiltonian as coefficients in a linear combination of
operators, that is,

1
H(t) = Ho + 5 Xk:(uk(t)ck +u (1)), (33)

where the set {Cy} is a base of operators and we allow the
possibility of complex control parameters. In order to obtain
this set of parameters, it is necessary to solve the time-
dependent Schrodinger equation. Unfortunately, solutions of
the Schrodinger equation for a time-dependent Hamiltonian
cannot generally be obtained analytically. However, it is pos-
sible in certain cases to use techniques developed in the area
of adiabatic control [113-116].

To overcome this problem, we use the GRAPE method

objective function. This method allows us to compute the evo-
lution of a time-dependent Hamiltonian through a sequence
H,, of time-independent Hamiltonians. The total evolution
time 7T is divided into a number M of time intervals At,, =
tmyl —tm (m=0,...,M — 1), which are normally of equal
length so that in each interval the control parameters u; (¢) are
approximately constant. In each time interval, the evolution is
given by

—iAt,H,
Um =e s

(54)

where H,, = H(¢t),) with ¢} € [t,, t;u41]. A classical optimiza-
tion algorithm is used to obtain the values of the control
parameters that lead to the optimum of the objective function.
The evolution of the system at time 7 is thus approximated by
the sequence

[95], originally introduced in nuclear magnetic resonance M—1

spectroscopy and proposed to design a pulse sequence that UGRAPE = 1_[ U, (55)
drives the evolution toward the optimum of a predefined 0

TABLE I. Best configuration and statistical indicators for each vanilla method applied to the variational quantum eigensolver.

Method Gains Postprocessing Median IQR Mean SD
SPSA Standard - —6.48 1.11 —6.46 0.56
CSPSA Standard - —5.93 1.12 —6.44 0.57
2SPSA Standard Egs. (45) —5.76 1.17 —5.61 0.85
2CSPSA Standard Egs. (45) —4.64 1.96 —4.82 1.19
scalar 2SPSA Standard Egs. (45) —5.84 1.08 —5.84 0.80
scalar 2CSPSA Standard Eqgs. (45) —5.17 1.49 —5.01 1.08
QN-SPSA Asymptotic Egs. (45) —5.86 0.85 —6.13 0.48
QN-CSPSA Standard Egs. (45) -5.92 1.10 —6.33 0.53
scalar QN-SPSA Asymptotic Eqgs. (45) —5.90 1.07 —6.34 0.53
scalar QN-CSPSA Standard Egs. (45) —5.93 1.10 —6.39 0.55
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FIG. 4. The mean (top row) and median (bottom row) of the energy as a function of the number of iterations obtained through the VQE for
the Heisenberg Hamiltonian in a ten-qubit ring configuration using improved optimization algorithms. The shaded areas represent the variance
(top row) and the interquartile range (bottom row). The dashed line indicates the exact minimum. The statistics are obtained from a sample
of 10% randomly generated states to estimate the minimum energy. The measurements in each circuit were estimated with 2 x 10* shots. The
values of the gain coefficients, postprocessing class, and the setting of resampling and blocking can be found in Table II.

and the state of the system at time 7 is

1Y) = Usrapg| Vo). (56)

Once a propagator has been computed for a set of control
parameters, all that remains is to choose an objective function
to compare the target state with the state given by the evolution
for a given set of control parameter values. In our case, we use
the infidelity that is given by

L), 1) =1 = slvrg) P,

which is minimized with an optimization algorithm. The orig-
inal GRAPE proposal uses the descending gradient algorithm.
The dimension of the search space is given by N,M, where N,
is the number of parameters, and therefore can be very large.
To test the optimization methods introduced here, we turn
to the quantum control of a five-qubit system, where we aim
at preparing the target state |/¢) = |0Y®> by controlling the

(57)

evolution generated by the Heisenberg Hamiltonian given by

1
Ha(t) == Y (0 Y00y,
(m,n)

k=x,y,z

(58)

which depends on the three complex coupling constants J,(¢),
Jy(t), and J,(¢). These play the role of control parameters
whose values are driven by the quantum control method to
approach the desired target state.

After applying the GRAPE method for the evolution of the
system, the final state is

M-1

) = [T e ™m0 1yo).

i=1

(59)

where [Y) is an initial five-qubit state and Hy contains the
control parameters.

TABLE II. Best configuration and statistical indicators for each method with improvements applied to variational quantum eigensolver.

Method Gains Postprocessing Resampling Blocking Median IQR Mean SD
SPSA Standard - 5 No —7.00 1.12 —6.58 0.56
CSPSA Standard - 5 No —7.00 1.12 —6.51 0.57
2SPSA Standard Eqgs. (5) 2 Yes —6.94 1.11 —6.51 0.56
2CSPSA Standard Eqgs. (33) 5 Yes —6.98 1.13 —6.52 0.56
scalar 2SPSA Standard Eqgs. (45) 5 Yes —6.97 1.09 —6.55 0.30
scalar 2CSPSA Standard Egs. (33) 5 Yes —6.78 1.15 —6.47 0.58
QN-SPSA Asymptotic Eqgs. (45) 2 Yes —7.00 1.12 —6.50 0.56
QN-CSPSA Asymptotic Eqgs. (33) 5 Yes —6.98 1.11 —6.57 0.54
scalar QN-SPSA Asymptotic Eqgs. (45) 5 Yes —7.00 1.25 —6.50 0.57
scalar QN-CSPSA Asymptotic Egs. (33) 5 Yes —6.88 1.13 —6.51 0.57
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FIG. 5. The mean (top row) and median (bottom row) of the infidelity as a function of the number of iterations obtained through the
GRAPE method applied to the quantum control of a five-qubit pure state and vanilla optimization algorithms. The shaded areas represent the
variance (top row) and the interquartile range (bottom row). The values of the infidelity are obtained by simulating a measurement process
with a sample size of 2'3 and 25 iterations of GRAPE, 10* shots per measurement, and 10? iterations, which are generated through uniformly
distributed initial states |1y). The values of the gain coefficients and postprocessing class can be found in Table III.

Our performance study is based on numerical simulations
where we implement GRAPE with each of the methods re-
viewed or proposed here. For a given optimization method, we
start by choosing an initial state |1/) from a Haar-uniform dis-
tribution on which we apply the GRAPE method with M = 25
and 10 iterations. Therefore, the dimension of the complex
search space is 75, with the real search space being twice as
large. The measurements required by the optimization method
are simulated with an ensemble of size 2'3. This procedure is
repeated 10* times to obtain estimates of relevant statistical
indicators such as mean, median, standard deviation, and in-
terquartile range, as functions of the number of iterations. The
gain parameters used in the numerical simulations are shown
in Tables IIT and I'V.

The results of the numerical simulations of the GRAPE
method with the different optimization algorithms in the five-

qubit case are depicted in Figs. 5 and 6, which show the best
results among the vanilla methods and the improved methods,
respectively. Each figure shows the value of the mean (upper
row) and median (lower row) infidelity as a function of the
number of iterations together with the variance (upper row)
and the interquartile range (lower row) as shaded areas.
Figure 5 shows the comparison between methods without
using blocking and resampling (see Sec. IIC), that is,
the vanilla methods. Second-order methods exhibit the
best mean performance, particularly 2CSPSA and scalar
2CSPSA. These are closely followed by their quantum
natural counterparts. First-order methods initially offer a
better convergence rate but stagnate after a certain number
of iterations. Let us note that this is the only case among all
applications where first-order SPSA and CSPSA achieve their
best performance using the static gain coefficients. In the

TABLE III. Best configuration and statistical indicators for each vanilla method applied to quantum control of quantum states.

Method Gains Postprocessing Median IQR Mean SD

SPSA Static - 1.35 x 1073 1.21 x 1073 1.60 x 1073 1.11 x 1073
CSPSA Static - 6.84 x 107° 6.01 x 107 1.31 x 1073 8.23 x 107°
2SPSA Standard Eqgs. (45) 2.31 x 1073 2.34 x 1073 4.90 x 1073 6.02 x 1074
2CSPSA Standard Egs. (45) 8.79 x 107 8.12 x 107 1.07 x 1073 9.76 x 10~°
scalar 2SPSA Standard Egs. (45) 1.89 x 1073 1.71 x 1073 4.03 x 1073 475 x 107*
scalar 2CSPSA Standard Egs. (45) 9.73 x 107 8.93 x 107 1.18 x 107> 8.32 x 107
QN-SPSA Asymptotic Egs. (45) 1.93 x 1073 1.88 x 1073 2.36 x 1073 1.82 x 1073
QN-CSPSA Asymptotic Egs. (45) 9.44 x 107 8.49 x 107° 1.12 x 1073 7.50 x 1076
scalar QN-SPSA Asymptotic Egs. (45) 3.44 x 1073 3.73 x 1073 5.68 x 1073 1.22 x 107
scalar QN-CSPSA Asymptotic Egs. (45) 1.24 x 1073 1.11 x 1073 1.47 x 1073 1.04 x 1073
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FIG. 6. The mean (top row) and median (bottom row) of the infidelity as a function of the number of iterations obtained through the
GRAPE method applied to the quantum control of a five-qubit pure state and improved optimization algorithms. The shaded areas represent
the variance (top row) and the interquartile range (bottom row). The values of the infidelity are obtained by simulating a measurement process
with a sample size of 2'3 and 25 iterations of GRAPE, 10* shots per measurement, and 10? iterations, which are generated through uniformly
distributed initial states |y). The values of the gain coefficients, postprocessing class, and the setting of resampling and blocking can be found

in Table IV.

median, second-order methods exhibit a higher convergence
rate, closely followed by the quantum natural methods. While
first-order methods require a larger number of iterations, a
similar value of infidelity is reached in all cases. However,
they behave differently in mean and median, in contrast to
the complex second-order and quantum natural methods
exhibiting consistent statistical indicators.

Figure 6 shows the comparison between methods when
we allow the usage of blocking and resampling, that is, the
improved methods. The best performance in the mean and the
median is attained by the first-order methods seconded by the
quantum natural methods, which exhibit a slightly slower rate
of convergence with similar standard deviation and interquar-
tile range. Second-order methods are the worst performers.
These are characterized by a lower precision in mean, large
standard deviation, and a slower rate of convergence, with

the exception of scalar methods. Figure 6 also indicates that
complex methods perform better than their real counterparts.
Generally, the first-order CSPSA method with resampling
and blocking obtains the best result, using Egs. (45) for post-
processing, closely followed by the QN-CSPSA method.

C. Quantum state estimation

Born’s rule endows quantum mechanics with predictive
power. According to this rule, the probability p; of ob-
taining a result k in an experiment described by a positive
operator-valued measure (POVM) {E;} when the quantum
system is described by a quantum state p is given by the
Hilbert-Schmidt inner product p; = Tr(pE}). Therefore, the
comparison between the theoretical predictions and the ex-
perimental results requires an accurate characterization of the

TABLE IV. Best configuration and statistical indicators for each method with improvements applied to quantum control of quantum states.

Method Gains Postprocessing  Resampling  Blocking Median IQR Mean SD

SPSA Asymptotic - 5 No 202x107% 1.75x107% 235x107% 1.49 x 107
CSPSA Asymptotic - 5 No 9.24 x 1077 8.16x 1077  1.07 x 107® 6.95 x 1077
2SPSA Standard Egs. (45) 2 No 2.64x 107 264 x107° 3.19x 107 224 x 107
2CSPSA Standard Egs. (45) 2 No 9.15x 107% 845x107% 136x 1073 557 x 1073
scalar 2SPSA Standard Egs. (45) 5 No 143 x 107> 128 x 107> 1.58x 107> 9.12x 10°°
scalar 2CSPSA Standard Egs. (45) 5 No 884 x107° 768x10° 985x10° 584x10°
QN-SPSA Asymptotic Egs. (45) 5 Yes 346 x 107 2.61 x 107 3.85x107% 222x10°°
QN-CSPSA Asymptotic Egs. (45) 5 No 1.69 x 107 143 x 10 1.92x10°% 1.15x107°
scalar QN-SPSA  Asymptotic Egs. (45) 5 Yes 592x107% 501 x10° 6.85x 10 4.44x107°
scalar QN-CSPSA  Asymptotic Egs. (45) 5 Yes 2.80 x 107 224 x10® 3.20x 107® 1.95x 10~¢
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FIG. 7. The mean (top row) and median (bottom row) of the infidelity as a function of the number of iterations obtained by using SGQT to
estimate six-qubit states and vanilla optimization algorithms. Shaded areas represent variance (top row) and interquartile range (bottom row).
Statistical indicators are calculated from a sample of 10?> Haar-uniform distributed pairs of unknown and initial guess states. Measurements of
the infidelity are simulated with a binomial distribution with N = 2 x 10* shots. The values of the gain coefficients and postprocessing class

can be found in Table V.

quantum state o and of the experiment through the POVM
{Ex}. This leads to the problem of estimating quantum states
and processes. To do this, several quantum state estimation
methods have been designed, most of them based on the
postprocessing of experimental data acquired through the
measurement of a fixed informationally complete POVM.
Adaptive measurements have also been used to design quan-
tum state estimation methods. Today, methods for estimating
quantum states are an important tool for both quantum com-
munications and quantum computing and have been used
for the characterization of single-photon and continuous
variable states [117-121], cavity fields [122], atomic en-
sembles [123—125], trapped ions [126,127], optical detectors
[128-130], and for quantum key distribution [131].

Recently, the estimation of finite-dimensional pure un-
known states has been formulated as an optimization problem
[17]. According to this, the unknown state is characterized

as the minimizer of infidelity I(|v/), |¢)) =1 — [(¥|@)|%,
that is,

) = arg ( min 11y, 19))). (60)
This suggests using optimization algorithms to minimize fi-
delity and estimate the unknown state |¢), which has been
called self-guided quantum tomography (SGQT). Gradient-
based optimization is ruled out since it is not known how to
measure the infidelity gradient with respect to the parameters
entering the |¢) state. However, infidelity can be measured by
projecting the unknown state onto any basis containing the
state |¢). In this scenario, the optimization methods presented
in the previous section can be used to experimentally imple-
ment the infidelity minimization according to SGQT. Initially,
SGQT was based on the SPSA algorithm. Subsequently,
CSPSA was introduced in SGQT, obtaining an improvement

TABLE V. Best configuration and statistical indicators for each vanilla method applied to self-guided quantum tomography.

Method Gains Postprocessing Median IQR Mean SD

SPSA Asymptotic - 476 x 1074 6.48 x 1073 479 x 1074 5.50 x 1073
CSPSA Asymptotic - 1.01 x 107* 2.00 x 107 1.03 x 107* 1.40 x 1073
2SPSA Standard Egs. (45) 6.17 x 1074 3.52 x 1073 3.55 x 1073 475 x 107*
2CSPSA Standard Egs. (45) 1.43 x 1074 8.15 x 107 8.15 x 107 1.02 x 1074
scalar 2SPSA Standard Egs. (45) 522 x 1074 3.26 x 1073 3.29 x 1073 3.70 x 1074
scalar 2CSPSA Standard Egs. (45) 1.38 x 1074 7.60 x 1074 7.58 x 1074 9.87 x 107
QN-SPSA Standard Eqgs. (45) 6.68 x 1073 4.04 x 1073 6.72 x 1073 8.42 x 107*
QN-CSPSA Standard Egs. (45) 1.52 x 1073 9.43 x 107* 1.53 x 1073 1.93 x 107
scalar QN-SPSA Standard Egs. (45) 6.58 x 1073 4.00 x 1073 6.55 x 1073 8.29 x 107
scalar QN-CSPSA Standard Egs. (45) 1.49 x 1073 9.69 x 107 1.51 x 1073 1.94 x 1074
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FIG. 8. The mean (top row) and median (bottom row) of the infidelity as a function of the number of iterations obtained by using SGQT to
estimate six-qubit states and improved optimization algorithms. Shaded areas represent variance (top row) and interquartile range (bottom row).
Statistical indicators are calculated from a sample of 10?> Haar-uniform distributed pairs of unknown and initial guess states. Measurements of
the infidelity are simulated with a binomial distribution with N = 2 x 10* shots. The values of the gain coefficients, postprocessing class, and

the setting of resampling and blocking can be found in Table VI.

in the rate of convergence and a lower dispersion in the sam-
ple of estimates. More recently, CSPSA was combined with
maximum likelihood estimation to achieve precision close
to the Gill-Massar lower limit, which is the best achievable
estimation accuracy for pure states. Estimating pure states
through SPSA and CSPSA has already been experimentally
demonstrated [18].

We use pure-state estimation through SGQT to test the
performance of the optimization methods proposed in the
previous sections. After selecting a particular optimization
method, we generate an unknown six-qubit pure state and
an initial guess state from a Haar-uniform distribution. The
optimization method is iterated 5 x 103 times and the fidelity
values are obtained by simulating a measurement with bi-
nomial distribution on an ensemble size N = 2 x 10*. This
procedure is repeated 10% times to generate estimates of rel-
evant statistic indicators. The gain parameters used in the

numerical simulations of each method are shown in the Ap-
pendix.

The results of the numerical simulations of SGQT with
the different optimization algorithms are depicted in Figs. 7
and 8 that show the best results among the vanilla and im-
proved methods, respectively. Each figure shows the value
of the mean (upper row) and median (lower row) infi-
delity as a function of the number of iterations together
with the variance (upper row) and the interquartile range
(lower row) as shaded areas. In every figure, the first col-
umn contains the results of SPSA and CSPSA. The second
column contains the results obtained by the second-order al-
gorithms, that is, 2SPSA, 2CSPSA, scalar 2SPSA, and scalar
2CSPSA. The third column contains the results obtained
by the algorithms based on the quantum natural method,
that is, QN-SPSA, QN-CSPSA, scalar QN-SPSA, and scalar
QN-CSPSA.

TABLE VI. Best configuration and statistical indicators for each method with improvements applied to self-guided quantum tomography.

Method Gains Postprocessing Resampling  Blocking Median IQR Mean SD

SPSA Asymptotic - 1 No 476 x 107* 648 x 107> 479 x 107*  5.50 x 1073
CSPSA Asymptotic - 1 No 1.01 x 107*  2.00 x 10~ 1.03 x 107* 1.40 x 1073
2SPSA Standard Eqgs. (45) 5 No 6.45x 107* 1.0l x 107* 639 x 107* 7.26 x 107
2CSPSA Standard Egs. (45) 5 No 1.52x 107* 3.12x107° 1.54x107* 1.90 x 1073
scalar 2SPSA Standard Egs. (45) 5 No 127 x 1073 221 x107* 127x 103 1.67x10™*
scalar 2CSPSA Standard Egs. (45) 5 No 3.05x 107*  5.05x 107 3.06 x 107* 4.04 x 107
QN-SPSA Standard Egs. (45) 5 No 1.17x 1073 2.06 x 107* 1.19x 1073 1.45x 10~
QN-CSPSA Standard Egs. (45) 5 No 274 x 107* 453 x 1070 276 x 107* 3.33 x 1073
scalar QN-SPSA Standard Egs. (45) 5 No 257 x 1073 468 x107* 255x 1073 345x107*
scalar QN-CSPSA  Standard Egs. (45) 5 No 6.06 x 107*  1.15x 107* 6.09 x 107* 7.60 x 1073
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In Figs. 7 and 8 mean and median values for each algorithm
are very close. Furthermore, the variance and interquartile
range are very narrow, which shows the absence of outliers in
the generated samples. Typically, all optimization algorithms
are characterized by a sharp decrease in infidelity followed by
an approximately linear asymptotic regime.

Figure 7 shows the comparison between every method
without using the blocking and resampling improvements in
Egs. (45), as these methods largely increase the number of
resources. The first-order methods offer the best performance,
getting about an order-of-magnitude improvement over the
other methods. In contrast, the second-order methods perform
slightly better than their QN counterpart. The scalar approx-
imation shows no improvements for the second-order and
quantum natural methods. The complex methods show better
convergence than their real counterparts by about an order of
magnitude.

Figure 8 shows the comparison between methods when
we allow the use of blocking and resampling. For first-order
algorithms, gradient blocking and resampling show no
improvement, while second-order and QN methods improve
when the Hessian approximation is averaged five times
per iteration. This improvement decreases the performance
difference between the first-order and the other methods.
Second-order methods still perform slightly better than QN
methods. We also note that the improvement obtained by
resampling is smaller for the scalar approximation.

In our simulations, blocking does not improve our results
when considering the Hessian postprocessing equations (45).
On the other hand, when considering postprocessing equa-
tions (5), the blocking shows great improvement which
matches our median results, but with worse mean performance
and with wider data variability.

From Figs. 7 and 8 we conclude that the first-order methods
show better mean and median performance in the estimation
of pure six-qubit states via SGQT, even without considering
gradient resampling. In this scenario, second-order methods
are not expected to work properly since the fidelity Hessian
vanishes for pure states. This issue could lower both precision
and convergence speed. However, the Hessian postprocessing
allows us to mitigate this problem by perturbing the Hessian
matrix with a weighted identity matrix. In this way, the best
result achieved by the second-order methods uses postpro-
cessing equations (45). Quantum-natural-based methods show
similar behavior, albeit with slightly slower convergence.

First-order methods perform the best even without con-
sidering gradient resampling. In contrast, second-order and
quantum natural methods need resampling improvement to
stay competitive but require a much higher number of
resources.

IV. CONCLUSIONS

In this article, we have exhaustively compared different
stochastic optimization methods applied to real-valued func-
tions of complex variables. We started by reviewing the theory
of the SPSA algorithm and two of its variants: 2SPSA and
QN-SPSA. These three methods use a simultaneous perturba-
tion stochastic approximation of the gradient of the objective
function to optimize it. SPSA is a first-order algorithm, while

2SPSA is a second-order algorithm. QN-SPSA is a first-order
algorithm that preconditions considering a metric natural for
the problem at hand. We also reviewed the CSPSA algo-
rithm, which optimizes real functions of complex variables
without resorting to the real and imaginary parts of com-
plex variables. This is a more natural approach in quantum
mechanics, where most functions have complex arguments.
Using CSPSA as starting point, we proposed two optimization
methods, 2CSPSA and QN-CSPSA, which are the complex
field formulations of their real counterparts.

All the optimization methods presented here share the
property that the number of evaluations (or measurements) of
the objective function does not depend on the dimension of the
optimization problem. This is an important advantage when
the number of parameters on which the objective function de-
pends is large. The number of objective function evaluations is
constant at each iteration but different for each method. SPSA
and CSPSA use two evaluations of the objective function
per iteration. 2SPSA and 2CSPSA use four evaluations of
the objective function since they are second-order methods.
Finally, QN-SPSA and QN-CSPSA use two evaluations of the
objective function plus the calculation of an approximation of
a metric. If the metric is the Fubini-Study metric tensor, then
the approximation is calculated by evaluating the fidelity with
respect to four different pure states.

To assess the performance of the optimization methods, we
have compared them in three important applications in quan-
tum computing: a variational quantum eigensolver applied to
the Heisenberg Hamiltonian of a ten-qubit ring, quantum con-
trol applied to a five-qubit pure quantum state, and quantum
state estimation to reconstruct a six-qubit pure quantum state.
These three applications have different objective functions
that need to be measured in a quantum device and iteratively
optimized to obtain a solution. In particular, we have com-
pared the convergence rate as a function of the number of
iterations. To do this, we have considered vanilla and im-
proved algorithm versions.

Our simulations show several interesting results. The best
performance is systematically achieved by the first-order
CSPSA algorithm. In the case of the variational quantum
eigensolver, improved first-order CSPSA and SPSA algo-
rithms provide the best performance, exhibiting identical
mean and median and similar standard deviation and in-
terquartile range. In quantum control, improved CSPSA
achieves better convergence in mean and median than all
other algorithms, exhibiting a narrow standard deviation and
interquartile range. This is also the case for state estimation,
although in this case, the vanilla version of the CSPSA algo-
rithm is almost indistinguishable from its improved version.

The second-best overall performance has mixed results. In
the variational quantum eigensolver, the improved second-
order and improved quantum natural algorithms lead to an
almost indistinguishable performance, while in quantum con-
trol the improved quantum natural algorithms, particularly
improved QN-CSPSA, are clearly second best. In this case,
scalar second-order algorithms perform, in mean and median,
similarly to quantum natural algorithms. In contrast, their
nonscalar counterparts show much lower mean performance,
indicating the presence of a large number of outliers. In
the case of quantum state estimation, improved second-order
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algorithms provide better performance than their quantum nat-
ural counterparts. In particular, second-order CSPSA achieves
the second-best performance.

Generally, vanilla second-order algorithms lead to lower
performance than vanilla quantum natural algorithms. This
is mitigated by blocking and resampling in the improved
versions of second-order algorithms, which offer performance
close to that of improved quantum natural algorithms.
Furthermore, complex algorithms perform better than their
real counterparts, although the difference may be statistically
insignificant in certain cases.

While optimizing a function, it may be possible that no
information about the Hessian matrix is available a priori,
either because of its high complexity or because it cannot be
easily obtained analytically or numerically. For such cases,
it would be desirable that second-order methods, which are
based on the Hessian matrix approximation, would still be
useful in the event that the Hessian matrix exhibits singu-
larities. This is the case of quantum state estimation, where
the Hessian vanishes identically. Nevertheless, second-order
methods display a performance similar to first-order methods.
Hessian postprocessing equations (45) ensure that the precon-
ditioning matrix is proportional to the identity for a vanishing
Hessian matrix. This leads to second-order methods working
like first-order methods, albeit possibly with suboptimal gain
coefficients.

The stochastic optimization methods studied here are de-
fined through a set of gain parameters whose values specify
the gain coefficients. These in turn control the step size
and magnitude of the approximation of the gradient. In this
way, the gain parameters are hyperparameters that allow con-
trolling the algorithms’ convergence rate. In principle, it is
conceivable to find gain parameters that lead to the best con-
vergence rate. This is, however, an expensive optimization
problem whose solution might even depend on the optimizer
of the objective function. Therefore, it is usual to resort to gain
parameters that have proven to be good enough in practice. We
have resorted to the standard gain parameters, which lead to a
fast convergence in the regime of a small number of iterations,
and to the asymptotic gain parameters, which lead to a fast
convergence in the regime of a large number of iterations. Let
us note that a change in the gain parameters affects not only
the mean and median convergence but also the variance and
interquartile range. We have also performed our simulations
considering static gain coefficients, which only led to a signif-
icant improvement in the case of vanilla first-order methods
applied to quantum control.

From numerical simulations with fewer qubits, we ob-
served that the performance difference between quantum
natural and first-order algorithms tends to narrow as the num-
ber of qubits increases. For the simulations reported here, the
performance difference among these algorithms is small. This
may indicate that quantum natural methods may outperform

first-order methods for a larger number of qubits. However,
this advantage of quantum natural methods is obtained by
increasing the number of measurements and the classical
computational cost. In this scene, the scalar quantum natural
methods proposed here might be a good alternative since,
according to our results, they offer comparable performance
at a reduced classical cost.

According to the applications considered here, vanilla
first-order algorithms are efficient and reliable options
for the most general case. If higher accuracy is needed,
improved first-order algorithms are the straight choice.
First-order methods may require careful calibration of the gain
parameters, in which case the quantum natural algorithms are
a suitable alternative. In addition, quantum natural algorithms
show promising results for many qubits, while second-order
algorithms do not exhibit a comparative advantage.

In our study of first- and second-order algorithms, we have
considered a single source of noise, namely, the statistical
character of quantum measurements. It is possible to consider
other error sources, such as those affecting NISQ processors.
However, first-order algorithms, real or complex, have con-
vergence proofs that allow for certain types of errors affecting
the evaluation of the target function. Thereby, it is expected
that these algorithms will converge even in the presence of
moderate noise, albeit with an increased number of iterations.
The scenario in the case of the preconditioned algorithms is
less clear due to the inversion of the approximated Hessian
matrix. Therefore, a natural extension of this work would be
to consider realistic noise sources and their impact on the con-
vergence rate. Also, we have considered the performance as a
function of the number of iterations. It is possible, however,
to consider other valuable resources such as the number of
measurements, evaluations, and circuits. These should also
be considered in further studies of the real performance of
optimization algorithms.
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