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Solving optimization problems on near term quantum devices requires developing error mitigation techniques
to cope with hardware decoherence and dephasing processes. We propose a mitigation technique based on parity
encoding. This method uses a redundant encoding of logical variables to solve optimization problems on fully
programmable planar quantum chips. We discuss how this redundancy can be exploited to mitigate errors in
quantum optimization algorithms. In the specific context of the quantum approximate optimization algorithm,
we show that errors can be significantly mitigated by appropriately modifying the objective cost function.
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I. INTRODUCTION

In recent years, immense effort has been made to leverage
quantum computers to solve industry-relevant optimization
problems [1–5]. The main obstacles to observing a quan-
tum advantage are the limitations of the current noisy
intermediate-scale quantum (NISQ) devices, which offer only
a few hundred qubits and are prone to errors and noise
[6,7]. Until technology advances, specific algorithms have
been designed to utilize the maximum out of the imperfect
hardware [8]. The proposed algorithms generally follow a
hybrid quantum-classical approach, simultaneously exploiting
quantum and classical computational power. The most promi-
nent hybrid algorithms in current research are the variational
quantum algorithms (VQAs), where parametrized quantum
circuits are combined with a classical optimizer [9,10]. VQAs
are suitable for various applications like chemistry [11,12]
or machine learning [13,14]. In particular, the quantum ap-
proximate optimization algorithm (QAOA) is a promising
VQA that aims at finding approximate solutions to com-
binatorial optimization problems [2,15]. Hybrid algorithms
have the advantage of providing shallow circuit depths, which
makes them less vulnerable to noise. Gates are potential er-
ror sources, however, in an ideal circuit, more circuit layers
would improve the quality of the solution. In practice, there is
a break-even point, where adding a layer negatively affects
the algorithms’ performance. The first experimental setups
showed how severely limited the circuit depth, and therefore
the algorithm’s performance, is in current devices [5,16,17].
Hence, it is essential to lessen the effect of noise to exploit the
capabilities of VQAs fully. Various quantum error mitigation
(QEM) techniques have been developed to tackle this issue.
In general, QEM aims to reduce the impact of noise via
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classical postprocessing and multiple circuit runs, requiring
no qubit overhead [18,19]. These resource sparing techniques
are suitable for NISQ devices, in contrast to quantum error
correction (QEC) codes, which instead require significant
qubit overheads [20,21]. Some examples of QEM schemes are
extrapolation and quasiprobability methods [22–24], quan-
tum subspace expansion [25,26], individual error reduction
[27], symmetry verification [28–31], and combinations like
error extrapolation with symmetry verification [30,32] and
quasiprobability method [32].

In this work we propose an error mitigation technique for
QAOA that is based on the Lechner-Hauke-Zoller (LHZ) or
parity architecture [33]. Instead of using the energy as cost
function of the variational algorithm, our method introduces
logical qubits and the decoded logical energy is used. This
logical energy is the result of the evaluation of spanning trees
in the parity variables, where each physical qubit contributes
to multiple logical qubits. It is this redundancy that introduces
the error mitigation features of the method.

The parity architecture was initially designed to tackle
the issue of limited connectivity in quantum annealing hard-
ware. However, when combined with digital hardware, the
parity architecture provides the benefit of full paralleliza-
tion of quantum gates [34] and universal quantum computing
[35]. In addition, Ref. [36] shows that the parity architecture
can be viewed as a classical low-density parity check code,
and adding classical postprocessing procedures like belief
propagation make it more robust against noise. Furthermore,
Ref. [37] establishes a stabilizer-based formalism for the par-
ity architecture.

The transformation from logical to physical qubits in-
troduces redundant information which can be exploited in
classical postprocessing to correct errors. Our method uses
this redundancy not just in postprocessing but also dur-
ing computation. Consequently, the noise-reducing benefit is
propagated throughout the algorithm and not just instilled in
the end. This is done by redesigning the information that
is handed from the quantum circuit to the classical opti-
mizer, represented by the cost function. With this adaption,
the computation is performed on the physical quantum hard-
ware, while the classical optimizer always stays in the logical
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subspace. Our results demonstrate that this modification
introduces quantitative error mitigation for QAOA in the pres-
ence of noise. The next sections are organized as follows: In
Sec. II we outline the theoretical background for this paper,
which includes a description of QAOA, parity QAOA, and a
detailed explanation of our method: decoded parity QAOA. In
Sec. III we discuss the numerical simulations’ results where
we compare the discussed QAOA approaches. Finally, we
discuss the open questions and the prospects of this topic.

II. METHODS

A. Quantum approximate optimization algorithm
with rerouting

The quantum approximate optimization algorithm
(QAOA) [15] aims to find approximate solutions to combin-
atorial optimization problems, cast in the form of energy
minimization of a general N-spin problem Hamiltonian:

Hp =
∑

i

Jiσ
z
i +

∑

i< j

Ji jσ
z
i σ z

j

+
∑

i< j<k

Ji jkσ
z
i σ z

j σ
z
k + · · · , (1)

where σ
{x,y,z}
j denote the Pauli spin operators and

{Ji, Ji j, Ji jk, . . . } are long-range, multispin interactions.
The simplest p-level QAOA [15,38] starts from an initial

state |�0〉 = |+〉⊗N and alternates a phase separation gate
Up(γ ) = e−iγ Ĥp and a mixing gate Ux(β ) = ∏N

j=1 e−iβσ x
j for

p rounds in a quantum circuit. Running the circuit on suitable
quantum hardware generates the variational state

|�(β, γ )〉 = Ux(βp)Up(γp) · · ·Ux(β1)Up(γ1)|�0〉, (2)

which depends on the 2p parameters γ = {γ1, . . . , γp} and
β = {β1, . . . , βp}. Then, by repeated measurements of the
state in the computational basis, we can estimate the QAOA
objective function

C(β, γ ) = 〈�(β, γ )|Hp|�(β, γ )〉 (3)

for any parameter choice (β, γ ). This objective function co-
incides with the expectation value of the original classical
spin-glass energy on the measured N-bit strings. We use a
classical computer to implement a feedback loop optimiza-
tion algorithm to find the optimal parameters (β∗, γ∗) that
minimize C(β, γ ). Finally, we run the quantum circuit with
parameters (β∗, γ∗) and generate bit strings providing approx-
imate solutions of the classical optimization problem. Due to
the nature of the variational ansatz, the quality of the approxi-
mate solution generated by ideal noiseless circuits increases
monotonically with the depth p. In particular, as discussed
in Refs. [15,39], the adiabatic theorem [40] ensures that for
p → ∞ the algorithm converges to an exact solution of the
classical problem.

Although the mixing gate Ux(β ) is straightforward to im-
plement with single-qubit operations, hardware with local
connectivity graphs require an additional compilation step
[41,42] to decompose the phase gate Up(γ ) into a sequence
of available local gates. In most QAOA implementations,
this compilation step relies on a rerouting strategy [5,43–48],
which performs additional layers of SWAP gates such that the
interacting spins correspond to an edge in the hardware graph

at least once, enabling Up(γ )′s implementation. However, the
rerouting introduces a SWAP-gate overhead that should be min-
imized [43] to reduce the effect of decoherence and dephasing
processes on the compiled quantum circuit.

B. Parity quantum approximate optimization algorithm

In this section we describe parity QAOA [33,37,49–51],
which uses an alternative compilation strategy, suitable for
state-of-the-art quantum devices with planar chips [52–55].
To simplify the presentation, we follow Ref. [33] and specif-
ically consider quadratic unconstrained binary optimization
(QUBO) [56] problem Hamiltonians:

Hp =
N∑

i=1

∑

j<i

Ji jσ
z
i σ z

j . (4)

However, we refer to Refs. [37,49] for methods to tackle
the more general problem Hamiltonian of Eq. (1) with parity
QAOA.

Parity QAOA relies on the parity (or LHZ) transforma-
tion [33,49] to first encode the optimization problem into
the local fields of a two-dimensional (2D) local problem
Hamiltonian. In particular, for all-to-all connected QUBO
problems, the parity mapping replaces the original N “logi-
cal” qubits σ z

i with K = N (N − 1)/2 physical parity qubits
σ̃ z

ν each representing the relative configuration of two logical
qubits σ z

i σ z
j → σ̃ z

i+(N−1) j [see Fig. 1(a)]. In terms of the new
physical qubits, the problem Hamiltonian of Eq. (4) takes the
simple local field form

Hp → H̃p =
K∑

ν=1

J̃ν σ̃
z
ν , (5)

with J̃i+(N−1) j = Ji j . However, the parity transformation also
enlarges the configuration space by introducing spurious
(or invalid) physical states which do not represent any
logical state. As suggested in Ref. [33], we can address
this issue by arranging the qubits on a planar grid and
considering a set of L = (N − 1)(N − 2)/2 independent lo-
cal four-body (and three-body) plaquette constraints terms
H ,l = σ̃ z

(l,1)σ̃
z
(l,2)σ̃

z
(l,3)σ̃

z
(l,4) (and H ,l = σ̃ z

(l,1)σ̃
z
(l,2)σ̃

z
(l,3)). This

construction effectively recasts the problem of minimizing the
nonlocal N-spin Hamiltonian Hp into the problem of mini-
mizing the K-spin local Hamiltonian H̃p, with the constraints
〈ψ |H ,l |ψ〉 = 1 for l = 1, . . . , L. Figure 1(b) illustrates the
resulting parity architecture for a system of K = 15 parity
qubits (or N = 6 logical qubits). It depicts an example of a
valid physical configuration that fulfills all constraints (on the
left), and the corresponding configuration of the logical qubits
(on the right).

The simplest p-level parity QAOA approximates the so-
lution of the constraint K-spin optimization problem by
implementing the following variational state [34]:

|�̃(β, γ,�)〉 = Ũx(βp)Ũc(�p)Ũz(γp)

· · · Ũx(β1)Ũc(�1)Ũz(γ1)|�̃0〉, (6)

where |�̃0〉 = |+〉⊗K is the initial state, Ũx(γ ) = e−iγ H̃p and
Ũc(�) = ∏L

l=1 e−i�H
,l are the phase separation gates, and
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FIG. 1. Three decoding examples, based on the conversion ta-
ble depicted in panel (a), for given physical configurations. Panel
(b) shows a constraint fulfilling physical state (left) while the one in
panel (c) violates some constraints (red crosses). The physical qubits
used for decoding are marked with colored lines, labeled t1, t2, and
t3. Those three decoding possibilities return three identical logical
configurations (right) for the constraint fulfilling configuration in
panel (b) and three different logical states for the constraint violating
configuration in panel (c). The physical qubits used are marked as
interactions in the logical graph. They are spanning trees in the
logical graph, covering all logical qubits without forming a cycle.

Ũx(β ) = ∏K
ν=1 e−iβσ̃ x

j is the mixing gate of the QAOA quan-
tum circuit. Then, the optimal values of the 3p parameters
γ = (γ1, . . . , γp), β = (β1, . . . , βp), and � = (�1, . . . , �p)
are found using repeated measurements of the state in the
computational basis to estimate and optimize the objective
function

C̃(β, γ,�) = 〈�̃(β, γ,�)|H̃p

+ c
∑

l

(1 − H ,l )|�̃(β, γ,�)〉, (7)

where the penalty strength c is a positive constant introduced
to penalize invalid states and should be larger than Hp’s lowest
energy gap [57]. The objective function in Eq. (7) coincides
with the weighted sum of the energy expectation values and
the number of violated constraints of the measured K-bit
strings. As in most QAOA implementations, the adiabatic
theorem ensures that for p → ∞, the parity QAOA variational
state in Eq. (6) can represent the exact solution of the con-
strained K-spin optimization problem [33,34].

The main advantage of parity mapping lies within the
structure of the required gates. On the one hand, the gates
Ũx(β ) and Ũp(γ ) involve only single-qubit operations. On
the other hand, the multiqubit phase gate Ũc(�) can be con-
veniently implemented on nearest-neighbor planar chips by
a constant-depth sequence of parallel controlled-NOT (CNOT)
gates and single-qubit rotations [34], see also Appendix A,

or via optimized fast four-qubit gate operations [51]. The
numerical benchmarks in Ref. [58] confirmed that these parity
QAOA implementations require significantly fewer multi-
qubit gates than QAOA with rerouting when running large
problem instances on planar chips. The use of less error-prone
gates favors parity QAOA when running the two algorithms
on NISQ hardware. However, the lower number of qubits
N < K instead favors the rerouting strategy for QAOA. Al-
though the trade-off between the number of qubits and the
number of multiqubit gates still needs to be systematically
analyzed, parity QAOA is a general alternative to the rerouting
strategy for QAOA [50,59]. In the next section, we introduce
a new decoded parity QAOA. The protocol is based on the
evaluation of the energy of the decoded logical qubits instead
of the actual energy of the physical qubits.

C. Decoded parity quantum approximate optimization
algorithm

In this section, we describe a decoding strategy to mitigate
the errors arising in parity QAOA.

Although parity QAOA’s target state fulfills all parity con-
straints, running the algorithm on noisy quantum devices or
with small p generates errors associated with constraint vio-
lations in the readouts. We can partially correct the leakage
errors by implementing various decoding strategies, which
recover logical states but do not guarantee the recovery of the
target state. More specifically, a decoding strategy is a rule that
assigns values to the N logical qubits q = (q1, . . . , qN ) given
a readout of the K physical qubits q̃ = (q̃1, . . . , q̃K ). Here,
following Refs. [33,60], we consider a simple strategy based
on spanning trees (subgraphs where all pairs of nodes are
connected by exactly one path) defined on the logical qubits.
We use subsets of physical qubits, describing spanning trees ti
on the original logical qubits, to fully determine a configura-
tion of the logical qubits q(t ) (up to a global spin flip). Then,
if q̃ satisfies all L parity constraints, all the NN−2 spanning
trees return the same encoded logical qubit configuration [see
Fig. 1(b)]. On the other hand, when q̃ does not satisfy all
parity constraints, different spanning trees t, t ′ may result in
a different logical configuration q(t ) 	= q(t ′ ) [see Fig. 1(c)]. If
the leakage error is sufficiently small, a majority vote over
different spanning tree decoding strategies can correct the
leakage errors that occurred during computation [33]. Ref-
erence [60] used this method to mitigate errors in adiabatic
quantum optimization by adding a single decoding step at the
end of the adiabatic protocol. We employ similar a decoding
strategy to enhance parity QAOA’s performance.

Let ρ̃(β, γ,�) = |�̃(β, γ,�)〉〈�̃(β, γ,�)| be the density
matrix representing the circuit’s output state [61] and let
Pq(t ) = |q(t )〉〈q(t )| be the projector on the decoded logical state
|q(t )〉. For each spanning tree t , we define the linear decoding
map

Dt [ρ̃(β, γ,�)] =
∑

q̃∈{0,1}K
〈q̃|ρ̃(β, γ,�)|q̃〉Pq(t )

(8)
=

∑

q̃∈{0,1}K
|〈q̃|�̃(β, γ,�)〉|2Pq(t ) ,
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where each possible measurement outcome q̃, which ap-
pears with probability |〈q̃|�̃(β, γ,�)〉|2, is translated to the
corresponding logical configuration q(t ). Then, to apply the
spanning tree decoding strategy to parity QAOA, we con-
sider a set of M spanning trees T = {t1, t2, . . . , tM} and
we implement the same parity QAOA variational state of
Eq. (6). However to find the optimal variational parameters
(β∗, γ∗,�∗), we instead minimize the expectation value of the
decoded states’ average energy:

C (T )(β, γ,�) = 1

M

M∑

m=1

Tr(HP Dtm [ρ̃(β, γ,�)]), (9)

which we estimate by repeatedly measuring the parity QAOA
circuit and decoding the outcome. Finally, to generate ap-
proximate solutions, we prepare the optimal variational state
|�̃(β∗, γ∗,�∗)〉, we measure and decode the qubits q̃ →
{q(t1 ), q(t2 ), . . . , q(tM )}, and we return the best decoded logical
state

q(T ) = arg min
t∈T

〈q(t )|Hp|q(t )〉. (10)

Meaning that the decoded state q(t ) that returns the lowest en-
ergy 〈q(t )|Hp|q(t )〉 for all t ∈ T contributes to the approximate
solution. The output distribution is described by the density
matrix DT [ρ̃(β∗, γ∗,�∗)]. The objective function (9) and the
decoding map DT [Eq. (10)] play an important role in decoded
parity QAOA. However, their definition is not unique [62,63].
In Appendix D, we study the effect of choosing a different
decoding map DT .

III. RESULTS AND SIMULATIONS

In the following sections, we present numerical bench-
marks of the decoded parity QAOA (Sec. II C) and compare it
with the rerouting method (Sec. II A).

We benchmark QAOA on random QUBO problem in-
stances, described by the Hamiltonian in Eq. (4) with uni-
formly distributed couplings Ji j ∈ {±0.1,±0.2, . . . ,±1.0}.
In particular, we consider problems with N = 3, 4, 5, 6, 7 log-
ical qubits for the rerouting method, which correspond to K =
3, 6, 10, 15, 21 physical qubits for the parity architecture.

To evaluate the algorithm’s performance, we first find the
target ground state q(gs) configuration by brute force. Then, for
QAOA, we generate 100 random start parameters β and γ for
the rerouting strategy and β, γ , and � for the parity strategy,
followed by parameter updates using the Metropolis method.
The run with the lowest energy C(β∗, γ∗) or C̃(β∗, γ∗,�∗) is
used for later calculations. We use the qiskit library [64] to
simulate the quantum circuits and estimate the probability of
outputting the ground state

Pgs = 〈q(gs)|ρout|q(gs)〉, (11)

where the density matrix ρout describes the algo-
rithm’s output distribution. Specifically, we have
ρout = |�(β∗, γ∗)〉〈�(β∗, γ∗)| for QAOA with rerouting
and ρout = DT [ρ̃(β∗, γ∗,�∗)] for the decoded parity QAOA.

Since the parity strategy requires more qubits than rerout-
ing, we cannot use Pgs to directly compare the algorithms. To
enable a fairer comparison, we run the algorithms on multiple

(a)

(b)

FIG. 2. Success probability PS for parity QAOA in dependence
of the total number of spanning trees M used for decoding for (a)
N = 6, p = 1, 2 and (b) different system sizes N with p = 1. The
(dashed) lines and markers represent the median, the shaded area the
25th and 75th percentile of 100 random instances.

copies in parallel and take the best outcome. Assuming the
same fixed budget of K physical qubits for both algorithms,
the resulting success probability is

PS = 1 − (1 − Pgs)r, (12)

where the number of copies is r = 1 for parity strategy or
r = K/N = (N − 1)/2 for the rerouting strategy. For further
details on the numerical simulations, we refer to Appendix B.

A. Noiseless simulations

First, we investigate how the performance of parity QAOA
depends on the number M of spanning trees used. Then we fix
the number M of spanning trees and simulate different system
sizes N . We compare the latter results to the rerouting strategy.

1. Decoded parity quantum approximate optimization algorithm

We randomly create a set of spanning trees
T = {t1, t2, . . . , tM}, for different M. More details can be
found in Appendix B. Figure 2(a) shows the dependence
of the success probability PS on the number M of trees
for N = 6 and p = 1, 2. The results show the median of
100 different problem instances which use the same trees
T for decoding. The shaded area ranges from the 25th to
the 75th percentile. Increasing the number M of decoding
trees improves PS . In addition, the error bars decrease with
increasing M. For example, a single tree, M = 1, reaches a
median PS of about 0.5 for p = 1, but the error bars range
from 0 to 0.7. This means that half of the simulated instances
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FIG. 3. Success probability PS in dependence of the system size
N , m = N , and p = 1, 2. The dashed lines represent the median, the
shaded area the 25th and 75th percentile of 100 random instances.

return a PS within this range. The outcome is unpredictable,
highly depending on which tree was used for decoding.
It is, therefore, advantageous to use more trees, but the
improvement will saturate with increasing M. Further details
about this are provided in Appendix F and Fig. 7.

Results for different system sizes N with p = 1, are shown
in Fig. 2(b). Here, one can observe a similar behavior as
in Fig. 2(a), noting that with increasing system size N the
problem becomes harder to solve.

2. Logical lines

In the previous section we studied the performance of
parity QAOA using different amounts M of random spanning
trees. Now we fix the decoding to a special set of span-
ning trees in the parity architecture: the logical lines [35,37],
denoted by T (l ) = {t (l )

1 , t (l )
2 , . . . , t (l )

N }. Logical line i, corre-
sponding to tree t (l )

i , includes all parity qubits containing the
logical qubit i, e.g., t (l )

0 covers the parity qubits (0x) for x =
1, . . . , N . An example is t2 in Fig. 1. A (all-to-all connected
QUBO) problem with N logical qubits has N logical lines,
hence N = M.

Figure 3 shows the success probability PS in dependence
of the number N of logical qubits for the different QAOA
approaches. The success probability PS for QAOA with the
rerouting strategy seems to decrease slower with increasing
N . This is due to the fact that the number of repetitions r
(to have the same number of qubits) increases with N , in
fact r = (N − 1)/2. PS for parity QAOA drops faster and it
seems that the two curves will coincide for higher N . Here, we
recall that M = N , but the total number of possible spanning
trees scales exponentially with N . To keep an advantage it is
necessary to increase M more than linearly with N for parity
QAOA. How PS for different sizes N scale with M is shown in
Fig. 2(b).

B. Noisy simulation

In this section we investigate the performance with noisy
gates, i.e., we introduce a depolarizing error on all circuit

FIG. 4. Success probability PS for different 2-qubit gate error
rates for p = 2, N = 6. The 1-qubit gate error rate is fixed to 0.001.
Parity QAOA is decoded by M = N = 6 spanning trees and uses 104
CNOT gates, the circuit for QAOA with rerouting includes 94 CNOT

gates. The horizontal dashed lines represent the results for an ideal
circuit. The Median of 20 random instances is shown, the shaded area
is the 25th and 75th percentile.

gates. The 1-qubit gate error rate will be fixed to 0.001, while
the 2-qubit error will range from 0.001 to 0.1.

With noise applied to the 2-qubit gates it is important to
determine how many CNOT gates are needed in each circuit.
The outlined description in the corresponding Secs. II A and
II B is extended in Appendix A. There, it is shown that, for
a problem with N = 6 qubits, the rerouting layout has the
advantage of fewer CNOT gates in the circuit (94 vs 104 for
p = 2).

Parity QAOA is decoded by the set of trees
T (l ) = {t (l )

1 , t (l )
2 , . . . , t (l )

N }, referred to as logical lines, as
in Sec. III A 2. The obtained simulated and calculated results
are shown in Fig. 4. As seen in the previous results, parity
QAOA achieves a higher success probability PS than QAOA
with rerouting and is able to keep this advantage for all error
rates (<0.1), despite having the disadvantage of a higher
CNOT gate count. With an error rate of 0.03 the parity QAOA
performs as well as the rerouting with no noise, executed 2.5
times.

IV. CONCLUSIONS

In this work we have shown how to apply a decoding
scheme into the parity QAOA optimization routine, which
exploits the redundant information introduced by the parity
transformation. This approach leads to a better success prob-
ability PS compared with the standard rerouting method even
when the number of used qubits is considered the same for
both methods. For the studied problems, the QAOA with
rerouting has the advantage of requiring fewer CNOT gates, but
simulations with noise on small system sizes show that parity
QAOA can keep the advantage even with high error rates
(<0.1). The work in Ref. [58] indicates that this advantage
will disappear for bigger systems and higher-order interaction
terms, making the parity architecture more favorable. In addi-
tion, Ref. [65] shows how to reduce the gate count in parity
QAOA further by replacing some CNOT gates by native ZZ

gates. However, ongoing work will improve compiler quality
for the rerouting circuit, hence, future work should investigate
gate and constraint optimization in the parity architecture,
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especially for complete graphs. Nevertheless, it is an open
question how present the advantage in PS of the introduced
method will be for bigger systems sizes and how many span-
ning trees are the optimal choice. The results in this work
suggest that the number of trees used for decoding has to be
bigger than the number of logical qubits for N > 6. There
exist an exponential number of spanning trees for a com-
plete graph, meaning that there would be enough resources.
However, the classical overhead should be kept in mind.
A detailed discussion about the additional resources is in
Appendix C. Although we only presented the decoding
scheme for complete graphs, the extension to more general
graphs with higher-order interactions is straightforward [49].
Those problems may have less qubit overhead, but then fewer
spanning trees exist for decoding. Future work should inves-
tigate this trade-off. In addition, it might be advantageous to
adapt the objective function if one increases the system size.
In this work, we used the mean energy of all used spanning
trees, but a different formulation could be more beneficial
considering bigger problem instances.

A Python code implementation of the algorithms presented
in this work and a tutorial on how to use it is available online
[66].
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APPENDIX A: QUANTUM APPROXIMATE
OPTIMIZATION ALGORITHM ON PLANAR CHIPS

In this section we describe in more detail the embedding
of the different QAOA strategies on digital quantum devices.
This is important when we introduce noise and the number of
error-prone 2-qubit gates (CNOT) matter.

Here, we consider the two approaches outlined in Secs. II A
and II B: QAOA with rerouting and parity QAOA. The parity
QAOA scheme described in Sec. II C introduces a modifica-
tion for the optimizer and read-out and, therefore, uses the
same embedding as the original version. For both methods
we consider a planar chip with nearest-neighbor connectivity
to be in line with modern state-of-the-art quantum devices
[52–55].

The problem Hamiltonian for the rerouting strategy,
Eq. (4), is described by two-body interactions. The corre-
sponding phase separation unitary operator

Up(γ ) = e−iγ Ĥp =
N∏

i=1

∏

j<i

e−iγ Ji jσ
z
i σ z

j , (A1)

implements each interaction with two CNOT gates and a single
Rz(α) rotation, as shown in Fig. 5(a). The rotation angle α

(a) (b)

|i Rz(α)

|j

|i

|j

FIG. 5. Interactions between (neighboring) qubits i and j is real-
ized with two CNOT gates and a single qubit z-Rotation, as shown in
panel (a). A SWAP gate, shown in panel (b), is implemented via three
CNOT gates.

is determined by the product of the variational parameter γ

and the interaction Ji j : Rz
j (α) = e−iασ z

j with α = γ Ji j . To be
able to realize all qubit interactions non-neighboring qubits
need to be made local at least once via SWAP gates. A SWAP

gate is shown in Fig. 5(b). It consists of three CNOT gates,
which makes them resource intensive. As the problem graphs
we study in this paper are fully connected, every qubit needs
to interact with every other qubit. To minimize the usage of
SWAP gates we optimize the circuit with the t|ket〉 transpiler
by Cambridge Quantum Computing (CQC) [43].

In the main text, Sec. III B, we investigate a problem with
N = 6 qubits, results shown in Fig. 4. For a circuit of this size
the t |ket〉 transpiler returns 94 CNOT gates for p = 2, arranged
on a 2 × 3 qubit lattice. (Note that the compiler did not return
the most optimal circuit.)

In the parity architecture we transformed the qubit interac-
tions Ji j to local fields J̃ν , see Eq. (5) in the main text. The
local field unitary, Ũz(γ ) = ∏K

ν=1 e−iγ J̃ν σ̃
z
ν consists of single

qubit rotations, where the rotation angle is determined by γ

and J̃ν . However, the constraint unitary,

Ũc(�) =
L∏

l=1

e−i�H
,l =

L∏

l=1

e−i�σ̃ z
(l,1)σ̃

z
(l,2)σ̃

z
(l,3)[σ̃ z

(l,4)], (A2)

needs to be realized via CNOT gates. The unitary contains 3
or 4σ z terms, depending whether it is a three- or four-body
constraint. Four-body (three-body) constraints consist of a
consecutive sequence of three (two) CNOT gates, a Rz(�) rota-
tion and three (two) CNOT gates back on the same qubits. That
are in total six (four) CNOT gates per four-body (three-body)
constraint. This sequence is visualized in Fig. 6.

The problem studied in the main text, Sec. III B, results
shown in Fig. 4, has K = 15 qubits in the parity repre-
sentation. In total it has six four-body and four three-body

|1〉 Rz(Ω)

|2〉

|3〉

|4〉

FIG. 6. Circuit to implement a four-body constraint. It consists of
six CNOT gates and a single qubit Rz rotation. In case of a three-body
constraint the last line, qubit four, is not required.

032408-6



ERROR MITIGATION FOR QUANTUM APPROXIMATE … PHYSICAL REVIEW A 108, 032408 (2023)

constraints. This sums up to 52 CNOT gates for each layer,
resulting in 104 CNOT gates for p = 2.

In this example QAOA, with rerouting has the advantage
of requiring fewer CNOT gates (94 vs 104 CNOT gates). How-
ever, Ref. [58] gives a more detailed comparison about the
two mention models and used CNOT gates for different op-
timization problems. There, the result suggest a significant
advantage of the parity encoding for bigger system sizes and
higher-order interaction terms. In this work we study small
system sizes and two-qubit interactions only. The described
implementation of constraints in parity QAOA can be fur-
ther enhanced, as shown in the recent work of Ref. [65].
This improvement was not considered in this work or in
Ref. [58].

APPENDIX B: SIMULATION DETAILS

The QAOA simulation details are the following: To opti-
mize the QAOA variational parameters β and γ and β, γ , and
� for rerouting QAOA and parity QAOA, respectively, we ini-
tialize 100 random start parameters (as proposed in Ref. [67])
followed by parameter updates. Updates are accepted with
the Metropolis criterion at a constant temperature. In general,
there will be 10.000 measurements for each step. We simulate
100 problem instances for the noiseless and 20 instances for
the noisy simulations, whereas the best run [lowest energy
C(β∗, γ∗) or C̃(β∗, γ∗,�∗)] out of the 100 random initializa-
tion is taken for latter statistics. For the simulations with noise
the number of measurements during the optimization is set to
1000 and readjusted to 10 000 for executing the circuit with
the best found parameters β∗ and γ∗ or β∗, γ∗, and �∗. With
the choice Ji j ∈ {±0.1,±0.2, . . . ,±1.0} the search space of
parameter γ is restricted to [0, 10π ). The search space of the
other parameters is limited to [0, π ).

The set of random spanning trees T = {t1, t2, . . . , tM} for
decoded parity QAOA are generated the following way: One
starts with a random edge, containing two nodes. One of
these nodes is randomly chosen to continue the tree. The next
new edge is chosen randomly from the set of possible edges,
excluding cycles. This procedure is repeated until all nodes
are included.

APPENDIX C: DECODED PARITY QUANTUM
APPROXIMATE OPTIMIZATION ALGORITHM

This chapter gives a more detailed description of the decod-
ing strategy for parity QAOA (Sec. II C). The adapted QAOA
procedure is shown at the top of Fig. 7. The unitaries are
applied on an initial state |�̃0〉 = |+〉K as described in Eq. (6).
This is followed by a measure and decoding scheme, which
returns a logical, and not a physical energy to the optimizer.
The optimizer then feeds the adapted parameters back into the
circuit.

To obtain a logical energy of a physical configuration it
is necessary to decode the physical configuration q̃ into a
logical one q. As mentioned in Sec. II B in the main text,
configurations in the parity architecture which violate the con-
straints, have no corresponding logical configuration. Such an
unphysical state is shown as the measured configuration in the

Uz(γ1)Uc(Ω1)Ux(β1)...Uz(γp)Uc(Ωp)Ux(βp)
Measure

and

decode

Optimi-

zation

(β1, ...βp, γ1, ....γp, Ω1, ....Ωp)

=

=

0

1

↑ ↑
↑ ↓

1
0 0

0 1
0
0

↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑

1 0
0

0
0

0

0

0 0

0 01

? ? ? ?

03

02

01

12

13 23

0 1 2 3

Measured configuaration

Decoding

FIG. 7. QAOA on the parity architecture with decoding. On top,
the circuit applies the unitaries as usual, with Uz(γ ) and Uc(�) as
problem terms and Ux (β ) as the driver term. With the measurement,
physical configurations are decoded into logical ones, such that a
logical energy serves as objective function to the classical optimizer.
An example of a physical configuration (green qubits) is given in
the middle. The configuration violates a constraint (red cross) and,
therefore, has no corresponding logical state (blue qubits). Four
decoding examples are shown in the bottom. In the first example
the four qubits of the four-body constraint are used for decoding.
With the last physical qubit one runs into a contradiction, not all
parities of the logical qubits can be fulfilled. The examples shown
take physical qubits for decoding that relate to a spanning the in the
logical one, marked as black arrows in the logical graph. With this
subset of physical qubits it is possible to construct a valid logical
state.

middle of Fig. 7 (green qubits). This configuration fulfils the
three-body constraints (green check), but not the four-body
constraint (red cross). Therefore, we cannot construct a logical
configuration q with the usual decoding rules: 0 → ↑↑ or ↓↓
(parallel logical qubits), 1 → ↑↓ or ↓↑ (antiparallel logical
qubits). To see this, consider the first decoding example on
the bottom left of Fig. 7: The decoding starts at the top-left
qubit 03. It has the value 1 and therefore the logical qubits
0 and 3 have to be antiparallel. We can set 0 to up and 3
to down. The next two physical qubits, 13 and 12, give the
information that qubit 1 is parallel to qubit 3 and qubit 2
is parallel to 1. We can set the qubits 1 and 2 to down.
The fourth and last physical qubit, 02, has the value 0, this
means qubit 0 and 2 should be parallel, but they are already
antiparallel. There is no valid logical configuration that ful-
fills all parity qubits. Before considering the last physical
qubits (02) all the logical qubits were determined. This is the
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second example in the figure. Here, three of the four previous
qubits are taken for the decoding. The three physical qubits
correspond to the interactions, marked as arrows, in the logical
graph. Those interactions cover all the qubits without making
a cycle (the previous example made a cycle). This is the
definition of a spanning tree in a graph. The last two examples
show different spanning trees and their corresponding de-
coded state. Note that they do not return the same logical state
because the corresponding physical configuration violates a
constraint.

Added resource costs

The error mitigation technique presented in this work has
no measurement overhead but requires additional resources
at the classical optimization level. We describe its additional
computational costs in this section.

To mitigate the errors, after each measurement, we decode
a physical configuration q̃ with M spanning trees to obtain the
M logical configurations, q̃ → {q(t1 ), q(t2 ), . . . , q(tM )}, which
we then use to compute the cost function with Eq. (9). This
procedure introduces a classical overhead proportional to the
number M of spanning trees considered. In particular, consid-
ering all the NN−2 spanning trees of a complete graph with N
nodes would lead to an exponential overhead. We can avoid
introducing exponential overheads by considering a subset of
M = N spanning trees. The results presented in Figs. 2 and
4 of the main text suggest that such a linear overhead scaling
for M = N is sufficient to considerably enhance the quantum
optimization algorithm’s performance. Furthermore, Fig. 2(b)
shows that, for N = 7, taking M > N could further increase
the algorithm’s success probability. However, to identify the
optimal number of spanning trees, one should carefully con-
sider the trade-off between performance and overhead because
further increasing M would also lead to larger computational
overheads.

For complete graphs, the parity embedding also introduces
a quadratic qubit overhead over a direct implementation with
rerouting. To account for this overhead, we simulated running
the rerouted algorithm on K/N copies. However, various real-
world optimization problems instead require implementing
sparse graphs or hypergraphs (with k-body interactions with
k > 2), where the parity embedding is more efficient than
a direct implementation in terms of CNOT gate count [58].
Moreover, the parity embedding enables a straightforward
parallelization of the gates’ execution, leading to shorter vari-
ational circuits [34].

APPENDIX D: COMPARING DIFFERENT STRATEGIES

In this section we use a different measure for the success
probability PS than outlined in Sec. II C.

In the main text, after measuring the optimal variational
state |�̃(β∗, γ∗,�∗)〉 we returned the best decoded state q(T )

defined in Eq. (10) in the main text. The argument is that, for
the measurement in the very end, one can keep the decoded
state with the lowest energy and discard the others. However,
in this section, we want to keep all the decoded states and
consider the probability to measure the ground state within
them. In this case, this is Eq. (10) in the main text. Instead,

FIG. 8. Success probability PS in dependence of the number of
spanning trees M used, N = 6, p = 2. When creating the variational
state |�̃(β∗, γ∗, �∗)〉 with the best found parameters, parity QAOA
keeps the best decoded logical state per physical state while w-parity
QAOA keeps all decoded logical states to determine the success
probability PS . For the rerouting strategy the results for PS are adapted
with Eq. (11) (main text) with r = M.

the output distribution is described by the quantum density
matrix DT [ρ̃(β∗, γ∗,�∗)], where DT is the linear decoding
map DT [ρ̃] = 1

M (Dt1 [ρ̃] + Dt2 [ρ̃] + · · · + DtM [ρ̃]). The defi-
nitions of the ground-state probability (11) and the success
probability Eq. (12) do not change, both in the main text. We
compare parity QAOA as described in the main text with the
here defined “mean parity” QAOA method. In both cases we
set r = 1 in Eq. (12).

In addition, we also look at the rerouting method, setting
the number of repetitions r = M of Eq. (12), compared with
r = N/K in the main text.

In Fig. 8 we can see the results for the success probability
PS for parity, mean parity, and rerouting for N = 6. For M = 1
both parity methods return the same PS . For increasing M the
probability for mean parity drops and converges to a value of
PS ≈ 0.3. Similar PS is achieved by the rerouting method, with
a single copy (green dashed line).

According to the results, the rerouting approach needs to
be repeated at least M = 9 times to reach the same or more PS

than parity QAOA.

APPENDIX E: PARITY QUANTUM APPROXIMATE
OPTIMIZATION ALGORITHM+

There are several adaptations to the simple p-level QAOA
method described in the main text in Sec. II A [38,42,68–
75]. For instance, the quantum alternation operator ansatz [38]
(QAOA+) provides a more expressive variational state by
modifying the definitions of Ux(β ) and Up(γ ). In Ref. [50]
the authors propose an approach for parity QAOA which is
based on QAOA+. Here, one starts with constraint fulfilling
states and the driver Hamiltonian H̃ (mod)

x is adapted such that it
only allows transitions between constraint fulfilling states (in
an ideal circuit). No parity constraints required. This gives the
advantage of increased performance, but with the drawback
of nonparallelizable gates. With a hybrid approach, where
some parity constraints are enforced implicit with the driver
Hamiltonian and the others are applied explicit with parity
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FIG. 9. Noise on parity QAOA+ and QAOA with rerouting,
N = 5, p = 1. The 1-qubit gate error rate is fixed to 0.001.

constraints, one obtains a trade-off between performance and
parallelizability of the gates. Nevertheless, here we want to fo-
cus on the first. We use a driver unitary Ũ (mod)

x (β ) = e−βH̃ (mod )
x

such that the states during the parity QAOA procedure stay
in the constraint fulfilling subspace. As in the main text, we
study QUBO problems with all-to-all connectivity, here with
N = 5. In Sec. III A 2 we defined a set of spanning trees
that correspond to the logical lines in the parity architecture,
namely, T (l ) = {t (l )

1 , t (l )
2 , . . . , t (l )

N } with t (l )
i , including all parity

qubits containing the logical qubit i. Now one can define a
driver term with

Xi =
∏

k∈t (l )
i

σ (k)
x . (E1)

The new driver Hamiltonian is defined as the sum over the
driver terms H̃mod

x = ∑N
i=1 Xi. With this Hamiltonian, parity

QAOA+ and QAOA with rerouting are mathematically equiv-
alent. Here, we consider single copies in both cases, hence
r = 1 in Eq. (12) of the main text. Simulations on an ideal
circuit yield the same output. This can be seen in Fig. 9,
where the results for the success probability PS for N = 5 and
p = 1 are shown. The solid bars on the right represent the
results with no noise. As soon as a depolarizing 2-qubit gate
error is applied, the simulation results between the different
approaches differ. Here, parity + needs more CNOT gates than
the rerouting layout. Nevertheless, applying the decoding to
parity + shows better noise stability.

APPENDIX F: NUMBER OF PARAMETERS
AND SPANNING TREES

Figure 10 (left) shows the success probability in depen-
dence of the circuit layers p. Nevertheless, one needs to keep
in mind that the different QAOA approaches have different
numbers of parameters associated with each depth. The vari-
ational state created by the rerouting method, Eq. (2) of the
main text, depends on 2p parameters β and γ . In contrast,
the parity circuit creates the variational state, Eq. (6), with
3p parameters β, γ , and �. This means that the rerouting
strategy has less parameters to optimize, e.g., one can perform
QAOA with depth p = 3 and one has as many parameters
to optimize as with parity QAOA with depth p = 2. This is

FIG. 10. Success probability PS in dependence of the circuit
depth p (left) and in dependence of the total number of parameters
(right). The rerouting method needs to optimize two parameters per
cycle (β and γ), the parity method 3 (β, γ , and �). The number
of parameter updates is 100, 500, 1100 for p = 1, 2, 3, respectively.
The number of measurements is set to 1000 during optimization and
to 10.000 for the final measurement.

shown in Fig. 10 (right). We can see that the rerouting method
with p = 3 (and 1100 parameter updates) still cannot reach
the same success probability as the parity method with p = 2
(500 parameter updates).

In the main text, Sec. III A 1, we looked at the performance
of parity QAOA in dependence of the number of spanning
trees M used for decoding. Here we want to look at the
100 instances individually and, in addition, compare it to
the rerouting method, which is independent of M. Figure 11
shows the success probabilities of the two different methods
for different M. In Fig. 11(a) we see the results for M = 1. The
results for parity QAOA (Pparity) are distributed over the whole
interval [0,1], meaning that the outcome is unpredictable.
On the other hand, QAOA with rerouting returns stable

(a)

(c)

(b)

(d)

FIG. 11. Success probabilities of the rerouting (Prerouting) and par-
ity strategy (Pparity) for different amount M of random spanning trees,
N = 6, p = 1. One tree for decoding, M = 1 returns unpredictable
success rates for parity QAOA, as shown in panel (a), while QAOA
with rerouting gives a stable performance. With increasing M, M = 6
in panel (b), M = 13 in panel (c), and M = 19 in panel (d), this
problem for parity QAOA will disappear.
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results. This disadvantage for parity QAOA will disappear
with increasing M, meaning that it will be necessary to include

enough spanning trees in the decoding. Figures 11(b)–11(d)
shows the outcome of M = 6, 13, 19, respectively.
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