
PHYSICAL REVIEW A 108, 032407 (2023)

High-fidelity low-loss state detection of alkali-metal atoms in optical tweezer traps

Matthew N. H. Chow ,1,2,3,* Bethany J. Little ,1 and Yuan-Yu Jau 1,2,3

1Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
2Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, USA

3Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131, USA

(Received 28 September 2022; revised 12 April 2023; accepted 14 July 2023; published 7 September 2023)

We demonstrate the discrimination of ground-state hyperfine manifolds of a cesium atom in an optical tweezer
using a simple probe beam with 99.91+0.02

−0.02% detection fidelity and 0.9(2)% detection-driven loss of bright-state
atoms. Our detection infidelity of 0.09+0.02

−0.02% is an order of magnitude better than previously published low-loss
readout results for alkali-metal atoms in optical tweezers. We achieve these results by identifying and mitigating
an extra depumping mechanism due to stimulated Raman transitions induced by trap light in the presence of
probe light. In this work, complex optical systems and stringent vacuum pressures are not required, enabling
straightforward adoption of our techniques on contemporary experiments.
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I. INTRODUCTION

Neutral atoms in arrays of optical dipole traps (ODTs)
provide a promising platform for quantum computing [1–3],
quantum simulation [4,5], quantum chemistry [6], and optical
clocks [7]. Atoms can be individually controlled inside tightly
focused beams, known as optical tweezers, and have been
used to generate defect-free arrays of tens to hundreds of
atoms in one-, two- and three-dimensional geometries [8–11].
Alkali-metal atoms are frequently utilized because of the
simplicity of their electronic structure and well-established
methods of laser cooling [12].

The performance of alkali-metal atoms in tweezer plat-
forms has, to date, been limited in part by state readout
fidelity. Detection schemes are typically based on either state-
dependent fluorescence collection or loss, where the state of
the atom is mapped to trap occupation. Although relatively
high detection fidelity has been achieved with loss-based
schemes [3], these methods impose a vacuum-dependent up-
per bound on readout fidelity, slow the repetition rate, and
complicate algorithms requiring mid-circuit measurement. On
the other hand, fluorescence detection allows, in principle,
for high-fidelity state measurement without losing the atom.
Previous results for alkali atoms with low-loss fluorescence
detection have shown no better than 1.2% infidelity with-
out enhancement from an optical cavity [13–19]. Alternately,
high-fidelity, low-loss detection of alkali atoms has been
demonstrated in an optical lattice using a state-dependent
potential method [20], but adaptation of this method to optical
tweezers is not straightforward.

In this work, we report state discrimination between
ground-state hyperfine manifolds of Cs atoms with
0.09+0.02

−0.02% infidelity while suffering only 0.9(2)%
detection-driven losses of the bright state atoms. We achieve
this detection fidelity by mitigating a previously unreported
depumping channel stemming from simultaneous probe
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and trap illumination. Our low-loss rate is achieved with
assistance from an adaptive detection scheme to manage
detection heating. We do not impose any stringent vacuum
or optical system requirements to achieve this result,
enabling straightforward integration of our techniques on
contemporary alkali-metal atom tweezer platforms.

This work is an important step towards scalable, high-
performance alkali-tweezer machines. While the measure-
ment error on noisy intermediate-scale quantum (NISQ)
computers is often overlooked as it does not typically scale
with algorithm length, it is important to consider the (gen-
erally exponential) scaling of the measurement error with
system size. In addition, by demonstrating simultaneous high-
fidelity and low loss, we improve the outlook for quantum
sensing applications where the sensitivity is tied to atom re-
tention capability via repetition rate.

II. EXPERIMENT

Our experiment sequence begins by monitoring collected
fluorescence with a field programmable gate-array (FPGA)
control system and triggering the pulse program when we de-
tect that a Cs atom has been loaded from the magneto-optical
trap into a tweezer trap. As shown in Fig. 1, the tweezer
is formed by focusing up to 10 mW of linearly polarized
laser light through a 0.45 numerical aperture (NA) microscope
objective (OptoSigma PAL-20-NIR-LC00) to a spot with a
1.6 µm 1/e2 waist radius. The trap is small enough that a light-
assisted collisional-blockade mechanism ensures loading no
more than one atom at a time [21]. The trap wavelength of
λtrap = 937 nm is chosen to be red-detuned from both the D1

and D2 line transitions and to have approximately the same
ac Stark shift on both states (6S1/2 and 6P3/2) of the cooling
transition (i.e., “magic”). After loading an atom, we cool it
with polarization-gradient cooling to ≈10 µK. We then apply
a bias magnetic field of 4 G along the x direction, and we
prepare the atom in either the |F = 4〉 (“bright”) or |F = 3〉
(“dark”) hyperfine ground manifold via optical pumping with
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FIG. 1. We use a simple probe beam and fluorescence collec-
tion optical system to measure high-fidelity state detection. Both
the probe beam (blue shaded line) propagation direction and trap
light (red shaded line) polarization (�etrap) are oriented along the
bias magnetic-field direction (�B). The probe is right-hand circularly
polarized to drive only σ+ transitions. The probe is retroreflected with
a gold mirror (M) to minimize polarization distortions. Fluorescence
(blue rays) is collected outside of the vacuum chamber (V ) with a
0.45-NA microscope objective, separated from the trap light with a
dichroic mirror (DM), and focused onto a single-photon counting
module (SPCM).

either a D2 line F = 3 to F ′ = 4 repump beam or D1 line
F = 4 to F ′ = 4 depump beam, respectively. Finally, the state
of the atom is read out using a near-resonant probe laser,
and we check for atom retention in the trap with the cooling
beams.

When preparing the bright state, a circularly polarized
beam tuned near the F = 4 to F ′ = 5 D2 line transition (the
same beam that is later used as the probe) is turned on during
the final 10 µs of pumping with the repump to prepare the
atom in the F = 4, mF = 4 “stretched” state. We choose to
use the stretched state as the bright qubit level to suppress
off-resonant scatter from the probe beam during detection.
The detection protocol works with other Zeeman states (or
mixtures of Zeeman states) within the F = 4 manifold as
well, but suffers a small (order 10−4 for our settings) penalty
of increased bright-state depumping probability during the
first few scattering events of detection, as the suppression
of off-resonant scattering gained from angular momen-
tum conservation only takes effect once the atom reaches
the Zeeman-specific closed cycling transition subspace
(see Appendix B) [15]. No Zeeman level control is applied
when preparing the atom in the F = 3 hyperfine manifold.

During detection, we use a near-resonant probe beam that
is tuned to the F = 4 to F ′ = 5 D2 line transition so that
the F = 4, bright ground-state scatters probe photons in a
closed cycling transition, while the F = 3 state is dark to
the probe and ideally scatters no light. The intensity of the
probe is 0.40(1) Isat, where Isat is the saturation intensity on
the |F = 4, mF = 4〉 → |F ′ = 5, m′

F = 5〉 transition. Detun-
ing of the probe is 2π×0.26(3) MHz red of the same line,
which is chosen empirically to maximize survival probability
while still maintaining a high scattering rate. State-dependent
fluorescence is then collected and imaged onto a single photon
counting module (SPCM, Excelitas SPCM-AQRH-16), which
is monitored in real time by our FPGA control system. The
atom is assigned a label, bright or dark, based on a discrim-
ination threshold level of collected photon counts. The probe
beam is right-hand circularly polarized and a bias magnetic

field of 4 G is set along its propagation direction such that we
drive primarily σ+ transitions.

To mitigate atom loss induced by photon recoil during
detection [22,23], we retroreflect the probe beam [24] to
balance the scattering force. We also implement an adaptive
detection scheme where we apply our probe laser in a series
of 5-µs pulses until either the threshold number of photons is
collected or we reach our maximum probe duration of 250 µs
[14,25–29]. Since extra photons beyond threshold provide no
additional information in a thresholding detection scheme,
this effectively eliminates extraneous heating at no cost to
the state discrimination fidelity. See Appendix C for more
details.

In an ideal scenario, we would be able to determine the
state of the atom with arbitrary accuracy by collecting scat-
tered photons until the bright and dark count distributions are
sufficiently separated. However, recoil heating of the bright
state during detection limits the maximum possible probe
time before atom loss, and depumping from trap and probe
light can lead to state information loss during detection. We
study three depumping mechanisms, illustrated in Fig. 2: (a)
off-resonant scatter of trap light, (b) probe polarization com-
ponents that allow for off-resonant scatter via F ′ �= 5, and
(c) trap-induced two-photon coupling of excited-state hyper-
fine manifolds via stimulated Raman transitions. The first
mechanism is the main fundamental constraint, and can be
mitigated by improving the ratio of photon collection to trap
off-resonant scattering rates. The second mechanism is im-
posed by probe misalignment and polarization impurity, and
can be improved with further technical capability. The third is
an almost entirely geometrical problem and can be essentially
eliminated by an appropriate choice of trap polarization, bias
fields, probe polarization, and probe propagation direction.
To our knowledge, this third information loss channel has
not been previously reported for this type of detection, and
mitigation of this depumping pathway is critical to achieving
the state discrimination fidelity observed in our work.

III. ANALYSIS OF INFORMATION LOSS
DURING DETECTION

To guide our choice of detection parameters, we use a
statistical model of photon collection governed by the rates
of three processes: The count collection rate from a bright
atom, the dark collection rate (background), and the rate of
state-information loss from the prepared state of the atom (the
depump rate). We use a short detection time compared to the
depump rate and thus consider at most a single state change
event during detection [30]. The resulting photon collection
distribution is found by marginalizing over state change event
times, t :

P(n) = e−td RdepP (n, Rptd )

+
∫ td

0
P (n, Rpt + Rnp(td − t ))Rdepe−tRdep dt . (1)

Here, P(n) is the probability of detecting n photons,
P (n, Rt ) = e−Rt (Rt )n/n! is the probability of n events in a
Poisson distribution of mean Rt , td is the total detection time,
Rp is the photon collection rate from an atom in the prepared
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FIG. 2. Three mechanisms contribute to state information loss during detection. (a) The fundamental limitation of effective T1 relaxation in
an optical dipole trap is imposed by the off-resonant scattering rate from the light used to generate the trapping potential (solid blue line). For
trapping parameters used in this paper [U0/h = 8.9(2) MHz], T1 is measured to be 0.49(3) s. (b) Probe (solid red lines) polarization impurities
and misalignment to the magnetic field axis allow for weak, off-resonant coupling to F ′ �= 5 excited-state hyperfine manifolds, which then
have dipole-allowed decay channels (dashed lines) to the F = 3 ground-state manifold. (c) σ± trap light (solid blue lines) allows for detuned,
two-photon coupling from F ′ = 5 to F ′ �= 5 excited-state hyperfine manifolds. This depumping mechanism can be effectively eliminated by
using π -polarized trap light, for which there is no allowed two-photon transition to any m′

F �= 5 excited state from the |6P3/2, F ′ = 5, m′
F = 5〉

level. Only one two-photon pathway using the ground state as an intermediate level with σ±-polarized trap light is depicted here as an example;
other intermediate states (primarily 6D and 7S states) also contribute to the total effective Raman Rabi rate (see Appendix D). Levels not drawn
to scale.

state, Rnp is the collection rate from the atom after a state
changing event (i.e., collection rate from the nonprepared
state), and Rdep is the depumping rate out of the prepared state.
The first term represents the contribution from cases where no
depumping occurs, and the second term is the convolution of
counts from before and after a state change event.

Thresholding at m detected counts to assign state labels,
we define the bright label probability as a function of F , the
prepared state: Pbright (F ) = ∑∞

n=m P(n|F ). The bright-state
readout error is the probability of failing to assign a bright
label to an atom prepared in the bright state: εbright = 1 −
Pbright (F = 4), and similarly the dark state readout error is the
probability of assigning a bright label to an atom prepared
in the dark state: εdark = Pbright (F = 3). For all infidelities
quoted in this work, we use I = 1

2 (εbright + εdark ), and all
fidelities are F = 1 − I. For the range of collection and
depumping rates near our experiment parameters, we numeri-
cally find m = 3 to be the optimal discrimination threshold.

The background photon collection rate is 5.2(3)×102 s−1

and the bright atom collection rate is 5.44(3)×104 s−1, such
that, for m = 3, optimal error rates of εbright = 0.005% and
εdark = 0.04% would be achieved in an ideal, depump-free,
case at 0.26 ms of probe time. However, observed error rates
are significantly higher (especially for the bright state), in-
dicating that state information loss during detection is the
dominant source of detection infidelity. As a figure of merit,
we consider the rate of information loss, Rdep, compared to
the rate of information gain, Rbright: R = Rdep/Rbright. R is
the depump probability per collection event from the bright
state. As a rough approximation for estimating fidelity, one
can consider the probability of collecting m photons from
the bright state prior to depump, (1 − R)m ≈ 1 − mR for
mR 	 1.

A. Single-photon depumping from off-resonant scattering

We begin our analysis of state information loss during
detection by considering single-photon off-resonant scattering
from the trapping laser, illustrated in Fig. 2(a). Using a nu-

meric density matrix model including all magnetic levels of
the ground and first excited states (6P1/2 & 6P3/2), we find
that the depumping rate from the trap light is Rdep,trap ≈
2.5×10−7U0/h, where U0 is the trap depth and h is Planck’s
constant [31]. For a trap depth of U0/h = 8.9(2) MHz, this
yields an effective T1 = 1/Rdep,trap of 0.45 s and a normalized
depump rate of Rtrap = 4.1×10−5. To experimentally verify,
we measure exponential decay times for the bright [dark] state
and find 0.41(3) s [0.58(3) s] [32].

The probe beam may also cause state information loss due
to off-resonant scatter, as illustrated in Fig. 2(b). Although we
attempt to drive only σ+ transitions with the probe beam, po-
larization impurity or misalignment of the probe propagation
direction to the magnetic field allows for off-resonant scatter
via F ′ �= 5 levels. Following the calculation in Ref. [15], we
find the depump rate by summing over all dipole-allowed tran-
sition scattering rates, weighted by the branching ratio (bα) of
each excited state (|α〉) to the F = 3 ground-state manifold.

The sum depends on probe polarization purity, alignment
to the magnetic field, and intensity. Our measured degree of
probe polarization is 99.4% out of the fiber launch [33], and
the probe reflects off of a single unprotected gold mirror be-
fore entering the vacuum chamber. We align the magnetic field
by scanning shim fields and maximizing the bright label prob-
ability for atoms prepared in F = 4 after a conservatively long
detection time, such that we expect an alignment tolerance of
a few degrees and resulting σ−- and π -polarization intensity
fractions of �2%. This corresponds to an expected probe
off-resonant scatter rate of �2.3 s−1 or Rprobe � 5.1×10−5,
comparable to the depump probability due to the trap off
resonant scatter. See Appendix A for the full calculation.

However, for an arbitrary trap polarization orientation rel-
ative to the quantization axis, the above single-photon mech-
anisms alone are insufficient to explain observed depumping
rates. A trap-light driven, detuned, two-photon effect, illus-
trated in Fig. 2(c), provides another pathway for atoms to
escape the cycling transition subspace. While the ground-
state hyperfine splitting of ≈9.2 GHz is sufficiently large to
prevent significant Raman transitions between ground-state
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manifolds, the excited-state hyperfine splitting is only of order
100 MHz. For some choices of experiment geometry, this
leads to appreciable population leakage of exited state atoms
to F ′ �= 5 by detuned Raman transitions through the ground
state and higher-lying excited states, as calculated in the fol-
lowing section.

B. Two-photon depumping induced by trap light

For illustration of the two-photon depumping mechanism,
we consider the scenario where the bias magnetic field is or-
thogonal to the polarization direction of the linearly polarized
trap beam. For this case, σ+ and σ− polarization components
with equal electric field amplitude E+ = E− = E/

√
2 are gen-

erated by the trap light. When the optical detuning is much
larger than the two-photon detuning (� � δ), the effective
two-photon transition Rabi frequency 	eff,F ′ for final state
|6P3/2, F ′〉 caused by the σ+ and σ− transitions can be found
by summing the effective two-photon Rabi frequency through
each intermediate level (	eff,F ′,i) [34]

	eff,F ′ =
∑

i

	eff,F ′,i =
∑

i

	+,i	−,i

2�i
, (2)

where �i is the trap laser detuning from intermediate level,
|i〉, 	+,i (	−,i) is the optical Rabi rate for each arm |i〉 to
|F ′ = 5, m′

F = 5〉 (|F ′, m′
F = 3〉) of the two-photon Raman

transition, and the sum is carried out over all intermediate
states. If 	eff,F ′ is strong enough, the population transfer
between |F ′ = 5, m′

F = 5〉 and |F ′ = 4 or 3, m′
F = 3〉 caused

by the Raman transition can be nonnegligible even when
these hyperfine sublevels are separated by hundreds of MHz
(i.e., largely RF detuned). For state detection, the probing
time scale is usually much longer than the decoherence rate
γc of the superposition state of the excited-state sublevels.
Solving the optical Bloch equation [31] we find the late-time
(t � 1/γc), mutual population transfer rate to be

�R,F ′ = 	2
eff,F ′

2
(
δ2

F ′,5 + γ 2
c

)γc. (3)

When the probe is present, the population (ρ5′,5′ ) in the source
sublevel (|F ′ = 5, m′

F = 5〉) is nonzero, and we find the target
sublevel (|F ′, m′

F 〉) quasisteady population to be

ρF ′,m′
F

= �R,F ′

�R,F ′ + �s
ρ5′,5′ , (4)

where �s is the excited-state decay rate due to spontaneous
emission. In our case, γc = �s. Thus, for δ � γc, we find

ρF ′,m′
F

≈ 	2
eff,F ′

2δ2
F ′,5 + 	2

eff,F ′
ρ5′,5′ . (5)

To calculate the Raman Rabi rate 	eff,F ′ from a mea-
sured quantity, we find that 	eff,F ′,i can be derived from the
trap depth, U0, of the far-detuned optical dipole trap (see
Appendix D for derivation)

	eff,F ′,i = aF ′,i
2U0

h̄�i

∣∣∣∣∣
�D1�D2

�D1 + (
fD1/ fD2

)
�D2

∣∣∣∣∣, (6)

where aF ′,i is a prefactor derived from angular momentum
coupling coefficients dependent on the intermediate and final

states, h̄ is the reduced Planck constant, �D1(D2 ), and fD1(D2 )

are the detuning and oscillator strength for the D1(D2) line
transition. As a concrete example, when considering the tran-
sition to the F ′ = 4 excited state using the ground state as an

intermediate level [as depicted in Fig. 2(c)], aF ′,i = −
√

21
320 .

This yields an effective Raman Rabi rate of

	eff,4′,i|i=6S1/2 ≈ 2π ×
(

−0.255
U0

h

)
(7)

for 937-nm trap light. By taking the (signed) sum of the
effective Raman Rabi rates through all nearby intermediate
levels (S orbitals with principle quantum numbers 6 to 9 and D
orbitals with principle quantum numbers 5 to 7, see Tables III
to V in Appendix D) we arrive at

	eff,4′ ≈ 2π ×
(

−0.278
U0

h

)
. (8)

Using our trap depth of U0/h = 8.9 MHz and δ4,5/2π =
251 MHz two-photon detuning [35], we find the population
ρ4′,3′ according to Eq. (5) to be ρ4′,3′ ≈ ρ5′,5′×9.7×10−5. The
branching ratio of the F ′ = 4 manifold to the F = 3 ground
state is b4′ = 5/12 [15], so the overall probability of depump-
ing per resonant scattering event for this transition is

pdepump,4′,3′ = b4′
ρ4′,3′

ρ5′,5′
≈ 4.1×10−5. (9)

A similar calculation can be carried out for the two photon
transition to |F ′ = 3, m′

F = 3〉 :

	eff,3′ ≈ 2π ×
(

0.359
U0

h

)
; (10)

ρ̄3′,3′

ρ̄5′,5′
≈ 5.0×10−5 (for U0/h = 8.9 MHz); (11)

pdepump,3′,3′ = b3′
ρ̄3′,3′

ρ̄5′,5′
≈ 3.7×10−5. (12)

Combining these two depump probabilities, we have a
7.8×10−5 chance of depump for each resonant scattering
event with this configuration, or RRaman ≈ 8.1×10−3 after
accounting for our collection efficiency (CE) of 0.96(1)%,
which is a measured value that includes transmission of our
optical system and the quantum efficiency of the detector.

For the calculation illustrated here, we only consider the
case of σ+- σ− Raman transitions. For other configurations of
the trap-light polarization and the bias magnetic field, π - σ−
and/or π - σ+ Raman transitions can also exist. Mathematical
treatments can be found through a similar procedure.

To verify this newly identified mechanism, we exper-
imentally study the bright-state count histogram for two
geometries. We orient the quantization axis, jointly defined
by the magnetic field and the probe propagation direction,
either parallel or orthogonal to the trap polarization generating
either π or σ± polarization components of the trapping beam.
With the σ -polarized trap light, we expect to see depumping
from the two-photon pathway as calculated. However, for
the π -polarized trap configuration, there is no dipole-allowed
two-photon coupling from |F ′ = 5, m′

F = 5〉 to any m′
F �= 5

level caused by the trap light due to the selection rule �mF = 0
for π polarization. Therefore, we expect this mechanism to be
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FIG. 3. Bright-state detection count histograms for different ex-
periment geometries demonstrate the effect of two-photon depump-
ing from the trap light. In the main figure, we take the difference
of detection count histograms for a fixed probe duration, P(n),
and the depump-free case of a Poisson distribution with the same
mean P (n). Full histograms are shown in the inset. The distri-
bution collected using the σ -polarized configuration (orange bars)
is significantly non-Poissonian and has a substantially larger zero
counts bin than that of the π -polarized configuration (teal bars).
This indicates a higher depump rate in the σ -polarized configuration
that we attribute to Raman transitions from the trap light. When
the trap has σ± components, two-photon coupling between excited
manifold hyperfine states allows for leakage out of the cycling tran-
sition subspace, while in the π -polarized trap configuration, the lack
of dipole-allowed coupling to m′

F �= 5 states prevents two-photon
leakage during bright-state detection. There are 10 000 shots in each
data histogram; uncertainty markers are Wilson score intervals.

absent (barring trap polarization misalignment and polariza-
tion distortion effects from focusing).

As shown in Fig. 3, we run an illustrative experiment com-
paring these two configurations and find that the histogram
of collected light from a bright atom in a π -polarized trap is
significantly closer to the ideal depump-free Poisson distribu-
tion than that of an atom in a σ -polarized trap [36]. A fit to
Eq. (1) yields depumping probabilities per scattering event of
50(5)×10−6 and 7(4)×10−6 for the σ and π configurations,
respectively. Uncertainties here are fitting uncertainties. Since
the other probe and trap parameters are held fixed, we infer the
difference in the depump rates between the two configurations
to be caused by off-resonant Raman transitions. These data
were taken prior to a significant optimization of the probe
beam optics, and we attribute the remaining depump rate in
the π configuration mostly to probe imperfections.

IV. RESULTS AND DISCUSSION

We measure our detection fidelity in a π -polarized trap by
preparing the atom in each state 100 000 times and record-
ing the number of times that the measured state matches the
prepared state. In Fig. 4, we show data that were collected in
1000 batches of 100 shots, alternating between bright- and

FIG. 4. The normalized histogram of collected photons from the
bright and dark state demonstrates 0.09+0.02

−0.02% detection infidelity.
Single atoms are prepared in either the dark (blue) or bright (red)
state and read out by illuminating the atom with the D2 line probe for
up to 250 µs and collecting scattered photons. When three or more
photons are collected, the atom is labeled bright; when fewer than
three photons are collected, the atom is labeled dark. Atoms prepared
in the bright state are erroneously labeled dark in 0.11+0.03

−0.02% of
experiments, and atoms prepared in the dark state are erroneously
labeled bright in 0.06+0.02

−0.01% of experiments. Data presented in this
histogram were collected in 1000 batches of 100 shots, alternating
between dark and bright state preparation, for a total of 100 000 shots
for each state.

dark-state preparation for each batch. A total of 107 trials
where the atom was prepared in the bright state were read
out as dark, and 64 trials where the atom was prepared in the
dark state were read out as bright. Stated as percentages, this
is a bright error of εbright = 0.11+0.03

−0.02% and a dark error of
εdark = 0.06+0.02

−0.01%, yielding an infidelity of 0.09+0.02
−0.02% or a

fidelity of 99.91+0.02
−0.02%. Uncertainties given here are Wilson

score intervals. The fidelity reported here is a conservative
lower bound on the detection fidelity, as our measurement
does not correct for state preparation errors. We expect our
state preparation error to be small compared to the readout
error based on our measured pumping time constants and
optical pumping duration. We then infer the detection-driven
loss probability by subtracting the ratio of the probability of
passing the presence check when preparing in the bright and
dark state from unity: P̃loss = 1 − Psurvive,4/Psurvive,3, where
P̃loss is the probability of losing a bright state atom due to
detection and Psurvive,F is the total atom retention probability
when preparing in state F . We find P̃loss = 0.9(2)%.

To compare to the predicted depumping rate, we calculate
the total depump probability per collection event from the
bright state error and find R = 1 − 3

√
1 − εbright = 3.7×10−4.

This value is within an order of magnitude of the sum of
estimated contributions from off-resonant scatter from probe
and trap light. The source of any remaining discrepancy in
the observed depump rate is a subject of ongoing study. Pos-
sible sources of contribution to observed error rates include
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imperfect state preparation, overestimation of probe align-
ment or purity, failed presence checks resulting in poor quality
postselection, and residual σ -polarized components of the trap
light due to misalignment of the trap polarization direction
to the magnetic field or polarization distortion effects due to
focusing of the trap beam.

This depump rate is sufficiently low to permit high-fidelity
detection even in the case of low collection efficiency opti-
cal systems. When we fiber-coupled our atomic fluorescence,
we still achieved 99.84+0.02

−0.03% fidelity and 2.6(2)% detection-
driven loss of the bright state, even though the collection
efficiency was only 0.37%. In such a system with low depump
rates and low collection efficiency, detection heating losses
play a more dominant role. We found that, to some degree,
we could trade atom survival probability for detection fidelity
and reach a detection fidelity of 99.89+0.02

−0.02% with 14.1(3)%
loss of the bright-state atoms due to detection.

To test the applicability of our result to atom-array imag-
ing, for which adaptive detection would be challenging using
a typical camera due to slow data transfer and processing, we
also measure the detection fidelity and detection-driven loss
of the bright state without using adaptive detection. We reduce
the probe intensity and use a probe time of 350 µs to achieve a
bright error of εbright = 0.22+0.03

−0.03% and a dark error of εdark =
0.13+0.02

−0.02% for a combined readout infidelity of 0.18+0.02
−0.02%.

We observe 1.8(3)% detection-driven loss of the bright state
atoms. See Fig. 5 for the full histogram [37].

We note that further improvement of the detection fidelity
and atom retention should be achievable by improving the
photon collection efficiency since our measured collection
efficiency of 0.96(1)% is relatively poor compared to other
works [15,16]. We also note that these results ease vacuum
system requirements for high-fidelity detection of alkali atoms
in optical tweezers since detection fidelity is independent of
the background atom loss rate. To achieve comparable fideli-
ties with a pushout method, the average atom loss rate due
to background gas collisions (or indeed any source other than
the pushout beam) must be comparable to the readout error
reported here since a dark atom lost due to background is
indistinguishable from a bright atom lost to the pushout beam
in such schemes. Finally, we note that our result obviates the
need for toggling the trap and probe beams, as we keep the
trap beam on at all times and still achieve high fidelity. Use
of a magic wavelength trap is important for our ability to keep
the trap on, as we avoid dipole force fluctuation (DFF) heating
[22]. Toggling the trap and probe beam could be an alternate
strategy to mitigate both the two-photon depumping mecha-
nism and DFF heating, at the cost of potentially introducing
an extra heating mechanism from repeated kicks.

Ultimately, the fidelity reported here is the result of study
of the relevant atom-photon interaction physics and miti-
gation of a previously unreported depumping mechanism
under simultaneous trap and probe illumination. We find that
the remaining infidelity from off-resonant scattering of trap
and probe light is sufficiently low to enable an order of
magnitude improvement over previously published low-loss
readout of alkali atoms in optical tweezers. In conjunction
with the high atom retention enhanced by adaptive detec-
tion, this result alludes to the promise of near-term detection
suitable for fault tolerant operation and the possibility of

nondisruptive mid-circuit measurement for error detecting or
correcting algorithms. This work represents an important step
towards building scalable, high-performance quantum infor-
mation processors and quantum sensors out of alkali-metal
atoms trapped in optical tweezers.
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APPENDIX A: PROBE OFF-RESONANT
SCATTER RATE

The calculation of the single-photon off-resonant scattering
rate is done following Ref. [15]. Here, the atom is assumed

FIG. 5. The normalized histogram of collected photons from
bright and dark state atoms as measured without adaptive detection
demonstrates 0.18+0.02

−0.02% detection infidelity. Data presented in this
histogram were collected in 1000 batches of 100 shots, alternating
between dark and bright state preparation, for a total of 100 000 shots
for each state.
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to start in the stretched ground state (|F = 4, mF = 4〉) and
we calculate the equilibrium population in each excited state
(|F ′, m′

F 〉) under probe light illumination. The depump rate is
then calculated by summing the scattering rate on each excited
state (Rscat,F′,m′

F
) that is reachable with a dipole-allowed transi-

tion, scaled by their branching ratios to the dark ground-state
manifold (bF ′ ) [15,40]

Rscat,F′,m′
F

= �
	2

F ′,m′
F

�2 + 2	2
F ′,m′

F
+ 4δ2

F ′,m′
F

, (A1)

Rdep,probe =
∑

F ′,m′
F

bF ′Rscat,F′,m′
F
, (A2)

where � is the natural linewidth of the D2 transition,
δF ′,m′

F
is the probe laser detuning from |F ′, m′

F 〉, and
	F ′,m′

F
≡ 	F ′,m′

F ,F,mF |F=4,mF =4 is the optical Rabi rate associ-
ated with the transition from state |F = 4, mF = 4〉 to state
|F ′, m′

F 〉. We find the D2 optical transition Rabi frequency
between a ground-state hyperfine sublevel |F, mF 〉 and a
excited-state hyperfine sublevel |F ′, m′

F 〉 to be [15,31]

	F ′,m′
F ,F,mF =

√
2

3

Eqd

h̄
× (−1)2F ′+F−q+7

√
(2F + 1)(2J + 1)

×
{

J I F
F ′ 1 J ′

}
6 j

CF ′,m′
F

F,mF ,1,q, (A3)

where Eq is the spherical component of the electric field
with polarization q = m′

F − mF , F = 4 (F ′), and J = 1/2
(J ′ = 3/2) are the ground (excited) state hyperfine and total
electron angular momentum quantum numbers, I = 7/2 is
the nuclear spin, CF ′m′

F
FmF 1q is a Clebsch-Gordan coefficient, and

{}6 j is a Wigner-6 j symbol. We use the subscripts {−, z,+}
to denote q = {−1, 0,+1}. The electric dipole moment d is
calculated as

d = e
∫ ∞

0
P∗

n′l ′J ′ (r)rPnlJ (r)dr. (A4)

Here, e is the unit charge and PnlJ (r) is the normalized
radial wave function. For the Cs D2 transition, we have
n = 6, l = 0, J = 1/2 as 6S1/2 and n′ = 6, l ′ = 1, J ′ = 3/2 as
6P3/2 [41].

The Rabi rates for transitions driven by probe polar-
ization components (q ∈ {−1, 0}) may then be written in
terms of a polarization intensity ratio (Ĩq = |Eq|2/|E+|2), a
state-dependent coefficient (ξF ′,m′

F
), and the Rabi rate on the

stretched state transition (	5′,5′ ). This expression is∣∣	F ′,m′
F

∣∣2 = ĨqξF ′,m′
F
|	5′,5′ |2, (A5)

where

ξF ′,m′
F

=

∣∣∣∣CF ′m′
F

FmF 1q

{
J I F
F ′ 1 J ′

}
6 j

∣∣∣∣
2

∣∣∣∣C5 5
4 4 1 1

{ 1
2

7
2 4

5 1 3
2

}
6 j

∣∣∣∣
2

= 36

∣∣∣∣∣CF ′m′
F

FmF 1q

{
J I F
F ′ 1 J ′

}
6 j

∣∣∣∣∣
2

. (A6)

Numerical values of ξF ′,m′
F

are summarized in Table I for
the relevant transitions. We numerically carry out the sum

TABLE I. Summary of relevant parameters for the calculation of
probe-driven off-resonant coupling to the |F = 4, mF = 4〉 ground
state. F ′ and m′

F specify the excited-state sublevel, δF ′/2π is the
detuning of the probe beam from that transition, bF ′ is the branching
ratio to the F = 3 ground-state manifold, and ξF ′,m′

F
is the angular

momentum coupling coefficient normalizing the transition strength
to that of the |F = 4, mF = 4〉 → |F ′ = 5′, m′

F = 5′〉 transition, as
specified in Eq. (A6). The probe is mostly σ+ polarized, pumping
the population into |F = 4, mF = 4〉, so only excited states with
dipole-allowed coupling to |F = 4, mF = 4〉 and nonzero bF ′ are
considered. Detunings are taken from Ref. [35] assuming a resonant
probe and no Zeeman splitting. Branching ratios are calculated from
the transition strengths given in Ref. [40] and confirmed with a for-
mula in Ref. [15]. Values for ξF ′,m′

F
are calculated in MATHEMATICA.

F ′, m′
F Polarization δF ′/2π (MHz) bF ′ ξF ′,m′

F

4, 4 π 251.00(2) 5/12 7/15
4, 3 σ− 251.00(2) 5/12 7/60
3, 3 σ− 452.24(2) 3/4 7/36

in Eq. (A2) using probe detuning of δ5′,5′/2π = −0.26 MHz
from the target transition (the detuning used in Sec. IV) for a
range of polarization intensity ratios and total intensities. The
results from these calculations are shown in Fig. 6.

We measure the probe light to have 99.4% degree of polar-
ization out of the fiber launch (before incidence on the gold
mirror) and use a polarimeter to maximize the σ+-polarized
component. Other possible contributions to polarization im-
perfections come from the 45◦ angle of incidence on an
unprotected gold mirror (Thorlabs PF05-03-M03), and any
potential angular misalignment between the probe propaga-
tion direction and the bias magnetic field (B-field). The gold
mirror has a specified nominal reflectance difference of 1.4%
at 852 nm for S- versus P-polarized light, which leads to a
small σ− component. We find the magnitude of this compo-
nent by taking the mirror to be a partially polarizing reflector,
with the Jones matrix

M =
[√

rs 0
0 −√

rp

]
(A7)

in the s-p basis, where rs (rp) is the reflectance for S-polarized
(P-polarized) light. We then take the input state to be pure σ+-
polarized, calculate the renormalized output state, and project
it onto the σ− basis vector. This yields an intensity fraction of
σ− light relative to total intensity

I−
I

= rs + rp − 2
√

rsrp

2(rs + rp)
. (A8)

For the gold mirror’s expected reflectance, rs = 0.98031837,
rp = 0.96616158, and I−/I ≈ 1.3×10−5.

For small misalignment angle θ between the probe prop-
agation direction and the B-field, there is a sin(θ )/

√
2 ≈

θ/
√

2 π -polarized component and [cos(θ ) − 1]/2 ≈ −θ2/4
σ−-polarized component of the electric field. We conser-
vatively estimate our mechanical angular tolerance to be
�10◦, contributing at most ≈1.5% and ≈0.006% to the π

and σ− intensity ratios, respectively. Thus, π -polarization
components constitute the bulk of the polarization imper-
fections from tilt misalignment. Evaluating Eq. (A2) using
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FIG. 6. Numerical results for the probe off-resonant scattering
rate as a function of probe polarization components (top) and probe
intensity (bottom) show the expected contribution from each tran-
sition to detection error near the range of experiment parameters.
Nominal probe intensity used in the experiment of I+/Isat = 0.40
is used in the calculation of the top plot and is marked by a ver-
tical line in the bottom plot. Isat is the saturation intensity on the
|F = 4, mF = 4〉 → |F ′ = 5′, m′

F = 5′〉 transition. Polarization frac-
tions of Iz = 1.5% and and I− = 0.007% are used in the bottom plot.

Ĩz = 1.5%, Ĩ− = 0.007%, and the intensity used in our main
results in Sec. IV (I+/Isat = 0.40), we predict Rdep/Rbright ≈
4.9×10−7, or Rprobe ≈ 5.1×10−5 after accounting for collec-
tion efficiency.

APPENDIX B: PREPARATION IN NONSTRETCHED
ZEEMAN SUBLEVELS

While the stretched Zeeman-state sublevel is used in this
paper to achieve maximum bright-state detection probability,
other choices of Zeeman-state preparation are sometimes de-
sirable, such as using the mF = 0 “clock” states for magnetic
insensitivity. The detection protocol presented here should
also work well for other Zeeman states within the F = 4
manifold at the cost of a small, transient depumping proba-
bility during bright-state detection. This transient depumping
would occur for even a perfect σ+ detection beam because

TABLE II. Bright-state detection transient depump probability
for a single scattering event (Pdep,mF ) and total depumping proba-
bility before reaching the stretched state (εmF ) when starting in the
Zeeman sublevel mF assuming pure σ+ polarization, low B-field, and
I/Isat = 0.40.

mF −4 −3 −2 −1 0 1 2 3 4

Pdep,mF ×104 4.6 2.0 1.1 0.73 0.48 0.32 0.19 0.09 0
εmF ×104 9.2 5.5 3.9 2.8 2.1 1.4 0.91 0.44 0

the Clebsch-Gordan coefficient between F = 4 and F ′ �= 5
is only zero for mF = 4. The σ+ probe beam quickly pumps
an atom starting in F = 4, mF �= 4 into F = 4, mF = 4; how-
ever, for all scattering events before the atom reaches the
stretched state there is a chance of off-resonant scatter given
by

Pdep,mF =
⎛
⎝∑

F ′ �=5

bF ′Rscat,F ′,m′
F

⎞
⎠/Rscat,5′,m′

F
. (B1)

Here bF ′ is the branching ratio to F = 3 and is listed in Table I,
and Rscat is defined as it is in Eq. (A1), with the exception
that the lower level can now be any mF sublevel of the F =
4 ground-state manifold. We calculate Pdep for all Zeeman
sublevels assuming perfect σ+ polarization, 0 G B-field ap-
proximation, and the saturation parameter I+/Isat = 0.40 and
record the results in Table II. The main difference between
this calculation and that of the previous section is that now the
full power of the probe beam can contribute to off-resonant
scattering. Thus, the result depends much more on the overall
probe intensity than the polarization purity (for small devi-
ations from σ+). We calculate the total depump probability
before reaching the stretched state for an atom initialized in
mF by exploring the full outcome tree of each state-changing
scattering event accounting for Zeeman-specific decay prob-
abilities. It is also worth noting that if one considers both
probe polarization impurity and transient depumping effects,
there is a small increase to the depumping rates calculated in
the previous section due to finite steady-state population in
|F = 4, mF �= 4〉 Zeeman sublevels from polarization impu-
rity that is then subject to transient depumping.

APPENDIX C: ADAPTIVE DETECTION
FOR LOSS MITIGATION

In the main text, we emphasize techniques to mitigate var-
ious depumping mechanisms and achieve high-fidelity state
detection. Here, we describe in more detail a technique to
address a similarly important matter: atom retention in the
trap after detection. We show that adaptive detection can
reduce extraneous recoil heating, allowing for improved sur-
vival probability of bright state atoms.

Photon recoil from the near resonant probe beam causes a
bright atom to undergo a random walk in momentum space,
eventually allowing the atom to gain sufficient energy to over-
come the trap depth [U0/kb = 0.43(1) mK] and escape. Other
heating mechanisms, such as dipole-force fluctuation heating
[22] and ODT intensity fluctuation heating [42] are neglected
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FIG. 7. We measure the wait time distribution for the bright and
dark states using adaptive detection. 5-µs probe pulses are applied
until the threshold level of counts are recorded or the maximum
possible detection time of 250 µs is reached. The time distribution
for the bright state (red bars) closely matches an Erlang distribution
(black line), which is the expected distribution for the depump-free
case. The discrepancy between the chance that bright atoms reach the
maximum detection time (0.11+0.03

−0.02%) and the Erlang distribution at
max time reveals the probability that bright atoms become dark be-
fore the threshold level of photons is collected. The time distribution
for atoms prepared in the dark state (blue bars) is nearly unity at
the maximum time bin. The combined effect of background counts
on the detector and dark atoms becoming bright allows for small,
but nonzero, probability of reaching threshold counts and stopping
detection early when preparing in the dark state. These data were
produced by recording the number of pulses applied when collecting
data in Fig. 3.

here due to their small contributions on this experiment, as
observed by the small ac Stark shift on the probe transition
[43] and long (seconds scale), trap power independent, atom
storage time, respectively. In a standard detection scheme,
the mean number of counts collected from the bright state
must be significantly higher than the threshold level to collect
above-threshold counts from the bright state with high proba-
bility. This poses a problem when the recoil heating becomes
comparable to the trap depth. For example, to achieve �99.9%
bright label probability from a Poisson count distribution by
thresholding at three or more counts, the mean would need
to be �11.2 counts. Dividing by our collection efficiency of
CE = 0.96(1)% gives a requirement of Nscat ≈ 1170 photons
scattered on average. If we approximate the expected heating
from photon recoil with the free atom case, a single resonant
scattering event adds �E/kb = 2Trec ≈ 2 ∗ 0.2 µK per recoil
event [22,23,35], such that the mean energy gain after single
pulse detection would be 0.47 mK. This energy gain is greater
than the trap depth, implying a significant loss probability due
to detection.

However, if state labeling is determined entirely with
thresholding, any extra light collected beyond the threshold
level provides no additional information. Therefore, we can
avoid much of the unnecessary recoil heating if we turn off

FIG. 8. Average trap intensity experienced by the atom decreases
due to thermal wave-packet spread as the temperature of the atom
increases. We approximate Ū/U0 for a range of temperatures up to
the trap depth by calculating the overlap of a Gaussian potential with
a thermal harmonic oscillator wave packet [44]. We use a trap depth
of U0/kb = 0.43(1) mK, a waist of w0 = 1.6 µm, and numerically
integrate over ±4w0 and ±4zR in the radial and axial dimensions,
respectively. When the atom temperature is significant compared to
the trap depth, this reduction in effective intensity experienced by the
atom should be accounted for when calculating both the two-photon
depumping and single-photon off-resonant scattering mechanisms
discussed in the text.

the detection light as soon as we reached the threshold level.
In the ideal case of stopping the instant the threshold photon is
received, the mean number of photons collected for a depump-
free bright atom would simply be the threshold level, and thus
the average temperature gain would be roughly a factor of
3/11.2 times lower than the constant probe time case, keeping
the average energy gain below the trap depth.

We refer to this protocol as “adaptive detection,” and note
that similar protocols were used on neutral atoms in Ref. [14]
and on trapped ions in Refs. [25–29]. We implement such a
scheme by applying a series of short (5 µs) pulses until either
the threshold number (three counts) are detected or we reach
a total integrated probe duration of td = 250 µs. This maps
the bright-state count distribution in Eq. (1) onto a nearly
Erlang wait time (t) distribution with shape parameter equal
to the detection threshold (m = 3): f (t ) ≈ R3

brightt
2e−Rbrightt/2!

shown in Fig. 7.

APPENDIX D: DERIVATION OF THE RAMAN RABI RATE
FROM THE TRAP DEPTH

To calculate the Raman Rabi rate 	eff,F ′ from a measured
quantity, we find that 	eff,F ′ can be derived from the trap
depth, U0, of the far-detuned optical dipole trap, where

U0 = h̄	2
D2

4

(
1

�D2

+ fD1/ fD2

�D1

)
. (D1)

Here, 	D2 is the nominal optical Rabi frequency of the linearly
polarized trap light, and fD1 and fD2 are the oscillator strengths
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TABLE III. Calculation parameters for each single-photon Rabi rate involved in two-photon depumping calculation. Dipole moments for
each transition (d) are shown relative to that of the 6S1/2 to 6P3/2 transition (d0) for comparison to the example calculation in the text. Values
for d calculated with the Alkali Rydberg Calculator [45].

NL J F mF N ′L′ J ′ F ′ m′
F Eq. (A3) Prefactor |d|/|d0| (−1)2F ′+F−q+7

[
J I F

F ′ 1 J ′

]
6 j

CF ′,m′
F

F,mF ,1,q

6S 1/2 4 4 6P 3/2 5 5
√

2/3 1.000 1 1/6 1
7S 1/2 4 4 6P 3/2 5 5

√
2/3 1.023 1 1/6 1

8S 1/2 4 4 6P 3/2 5 5
√

2/3 0.235 1 1/6 1

9S 1/2 4 4 6P 3/2 5 5
√

2/3 0.124 1 1/6 1

6D 3/2 4 4 6P 3/2 5 5
√

1/15 0.738 1
√

7/30 1

6D 3/2 5 4 6P 3/2 5 5
√

1/15 0.738 −1 −3
√

22/110 −√
6/6

6D 5/2 4 4 6P 3/2 5 5
√

2/5 0.721 1
√

77/330 1

6D 5/2 5 4 6P 3/2 5 5
√

2/5 0.721 −1 −√
462/330 −√

6/6

5D 3/2 4 4 6P 3/2 5 5
√

1/15 1.126 1
√

7/30 1
5D 3/2 5 4 6P 3/2 5 5

√
1/15 1.126 −1 −3

√
22/110 −√

6/6

5D 5/2 4 4 6P 3/2 5 5
√

2/5 1.142 1
√

77/330 1

5D 5/2 5 4 6P 3/2 5 5
√

2/5 1.142 −1 −√
462/330 −√

6/6

7D 3/2 4 4 6P 3/2 5 5
√

1/15 0.345 1
√

7/30 1
7D 3/2 5 4 6P 3/2 5 5

√
1/15 0.345 −1 −3

√
22/110 −√

6/6

7D 5/2 4 4 6P 3/2 5 5
√

2/5 0.340 1
√

77/330 1

7D 5/2 5 4 6P 3/2 5 5
√

2/5 0.340 −1 −√
462/330 −√

6/6

6S 1/2 4 4 6P 3/2 4 3
√

2/3 1.000 1 −√
21/36

√
5/5

7S 1/2 4 4 6P 3/2 4 3
√

2/3 1.023 1 −√
21/36

√
5/5

8S 1/2 4 4 6P 3/2 4 3
√

2/3 0.235 1 −√
21/36

√
5/5

9S 1/2 4 4 6P 3/2 4 3
√

2/3 0.124 1 −√
21/36

√
5/5

6D 3/2 4 4 6P 3/2 4 3
√

1/15 0.738 1 2
√

3/45
√

5/5

6D 3/2 5 4 6P 3/2 4 3
√

1/15 0.738 −1
√

7/30 6
√

55/55

6D 5/2 4 4 6P 3/2 4 3
√

2/5 0.721 1
√

33/60
√

5/5

6D 5/2 5 4 6P 3/2 4 3
√

2/5 0.721 −1 −√
3/15 6

√
55/55

5D 3/2 4 4 6P 3/2 4 3
√

1/15 1.126 1 2
√

3/45
√

5/5

5D 3/2 5 4 6P 3/2 4 3
√

1/15 1.126 −1
√

7/30 6
√

55/55

5D 5/2 4 4 6P 3/2 4 3
√

2/5 1.142 1
√

33/60
√

5/5

5D 5/2 5 4 6P 3/2 4 3
√

2/5 1.142 −1 −√
3/15 6

√
55/55

7D 3/2 4 4 6P 3/2 4 3
√

1/15 0.345 1 2
√

3/45
√

5/5

7D 3/2 5 4 6P 3/2 4 3
√

1/15 0.345 −1
√

7/30 6
√

55/55

7D 5/2 4 4 6P 3/2 4 3
√

2/5 0.340 1
√

33/60
√

5/5
7D 5/2 5 4 6P 3/2 4 3

√
2/5 0.340 −1 −√

3/15 6
√

55/55

6S 1/2 4 4 6P 3/2 3 3
√

2/3 1.000 1 1/12
√

7/3
7S 1/2 4 4 6P 3/2 3 3

√
2/3 1.023 1 1/12

√
7/3

8S 1/2 4 4 6P 3/2 3 3
√

2/3 0.235 1 1/12
√

7/3

9S 1/2 4 4 6P 3/2 3 3
√

2/3 0.124 1 1/12
√

7/3

6D 3/2 4 4 6P 3/2 3 3
√

1/15 0.738 1 −√
7/21

√
7/3

6D 5/2 4 4 6P 3/2 3 3
√

2/5 0.721 1
√

77/84
√

7/3

5D 3/2 4 4 6P 3/2 3 3
√

1/15 1.126 1 −√
7/21

√
7/3

5D 5/2 4 4 6P 3/2 3 3
√

2/5 1.142 1
√

77/84
√

7/3

7D 3/2 4 4 6P 3/2 3 3
√

1/15 0.345 1 −√
7/21

√
7/3

7D 5/2 4 4 6P 3/2 3 3
√

2/5 0.340 1
√

77/84
√

7/3
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TABLE IV. Effective Raman Rabi rates relative to V-type transi-
tion through the ground state for target level |6P3/2, F ′ = 4, m′

F = 3〉.

Intermediate state 	eff,4′,i/	eff,4′,6S1/2

|6S, J = 1/2, F = 4, mF = 4〉 1.000
|7S, J = 1/2, F = 4, mF = 4〉 −0.287
|8S, J = 1/2, F = 4, mF = 4〉 0.031
|9S, J = 1/2, F = 4, mF = 4〉 0.004
|6D, J = 3/2, F = 4, mF = 4〉 −0.197
|6D, J = 3/2, F = 5, mF = 4〉 −0.296
|6D, J = 5/2, F = 4, mF = 4〉 −0.518
|6D, J = 5/2, F = 5, mF = 4〉 1.381
|5D, J = 3/2, F = 4, mF = 4〉 0.012
|5D, J = 3/2, F = 5, mF = 4〉 0.018
|5D, J = 5/2, F = 4, mF = 4〉 0.038
|5D, J = 5/2, F = 5, mF = 4〉 −0.102
|7D, J = 3/2, F = 4, mF = 4〉 −0.002
|7D, J = 3/2, F = 5, mF = 4〉 −0.003
|7D, J = 5/2, F = 4, mF = 4〉 −0.007
|7D, J = 5/2, F = 5, mF = 4〉 0.019
Sum over states 1.09

for the D1 and D2 transitions. Typically, fD1/ fD2 ≈ 1/2. The
optical detunings �D1 and �D2 are defined by the center of
gravity of the ground state and excited states (i.e., ignoring
the hyperfine structure).

To relate 	D2 to the electric field amplitude, we perform a
more detailed calculation according to Ref. [31] and find

	D2 =
√

2

9

Ed

h̄
, (D2)

where E is the electric-field amplitude of the linearly polarized
trap light, and d is given by Eq. (A4). In our illustrative case
under study, we have E+ = E− = E/

√
2. Using the ground

state as an example intermediate state, we substitute into
Eq. (A3) to find the single-photon Rabi rates for each arm of
the transition, 	±,i = 	F ′,m′

F ,F,mF :

	F ′,m′
F ,F,mF = 	D2 ×

√
3

2
(−1)2F ′+F−q+7

√
(2J + 1)(2F + 1)

×
{

J I F
F ′ 1 J ′

}
6 j

CF ′,m′
F

F,mF ,1,q. (D3)

Definitions in Eq. (D3) are the same as in Eq. (A3). Now,
we can express 	eff,F ′,i in terms of 	D2 by substituting into
Eq. (2) to find

	eff,4′,i
∣∣
|i=6S1/2〉 ≈ aF ′,i

	2
D2

2�i

∣∣∣∣∣
|i=6S1/2〉

, (D4)

TABLE V. Effective Raman Rabi rates relative to V-type transi-
tion through ground state for target level |6P3/2, F ′ = 3, m′

F = 3〉.

Intermediate state 	eff,3′,i/	eff,3′,6S1/2

|6S, J = 1/2, F = 4, mF = 4〉 1.000
|7S, J = 1/2, F = 4, mF = 4〉 −0.287
|8S, J = 1/2, F = 4, mF = 4〉 0.031
|9S, J = 1/2, F = 4, mF = 4〉 0.004
|6D, J = 3/2, F = 4, mF = 4〉 −0.493
|6D, J = 5/2, F = 4, mF = 4〉 0.863
|5D, J = 3/2, F = 4, mF = 4〉 0.029
|5D, J = 5/2, F = 4, mF = 4〉 −0.064
|7D, J = 3/2, F = 4, mF = 4〉 −0.005
|7D, J = 5/2, F = 4, mF = 4〉 0.012
Sum over states 1.09

where aF ′,i is the product of all coefficients in Eq. (D3) for
both arms of the Raman transition and �i ≈ �i − δF ′,5 since
the optical detuning is much larger than the two-photon de-
tuning (|�i| � |δF ′,5|). Then, we may rearrange Eq. (D1) to
read

	2
D2

= 4U0

h̄

∣∣∣∣ �D1�D2

�D1 + ( fD1/ fD2 )�D2

∣∣∣∣, (D5)

such that we can express the effective Raman Rabi rate di-
rectly in terms of the trap depth

	eff,F ′,i = aF ′,i
2U0

h̄�i

∣∣∣∣ �D1�D2

�D1 + ( fD1/ fD2 )�D2

∣∣∣∣. (D6)

As a concrete example, we now provide numbers for the
transition to final state |6P3/2, F ′ = 4, m′

F = 3〉 through inter-
mediate state |i〉 = |6S1/2, F = 4, mF = 4〉, a V-type Raman
transition through the ground state. Evaluation of Eq. (D3)

for each arm of this transition yields 	+,i =
√

3
2

√
1
2	D2 and

	−,i = −
√

3
2

√
7

120	D2 . Therefore,

a4′,6S1/2 = −
√

21

320
, (D7)

and

	eff,4′,6S1/2 ≈ 2π ×
(

−0.255
U0

h

)
. (D8)

Calculation for other intermediate states are done in the same
fashion, and results are given in Tables III to V.
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