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The Fourier expansion of the loss function in variational quantum algorithms (VQAs) contains a wealth of
information yet is generally hard to access. We focus on the class of variational circuits where constant gates
are Clifford gates and parametrized gates are generated by Pauli operators, which covers most practical cases
while allowing much control due to the properties of stabilizer circuits. We give a classical algorithm that, for
an N-qubit circuit and a single Pauli observable, computes coefficients of all trigonometric monomials up to a
degree m in time bounded by O(N2m ). Using the general structure and implementation of the algorithm, we
reveal several aspects of Fourier expansions in Clifford plus Pauli VQAs such as (i) reformulating the problem
of computing the Fourier series as an instance of the multivariate Boolean quadratic system, (ii) showing that
the approximation given by a truncated Fourier expansion can be quantified by the L2-norm and evaluated
dynamically, (iii) the tendency of Fourier series to be rather sparse and Fourier coefficients to cluster together,
and (iv) the possibility to compute the full Fourier series for circuits of nontrivial sizes, featuring tens to
hundreds of qubits and parametric gates.
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I. INTRODUCTION AND RESULTS

Variational quantum algorithms (VQAs) [1] are the leading
candidates to make the most out of current NISQ devices
[2,3]. While the scope of potential VQA applications is ex-
tremely broad, there are also many theoretical and practical
limitations. Variational quantum algorithms are hybrid al-
gorithms, using classical optimization to train parametrized
quantum circuits, and in this sense they are similar to the clas-
sical machine learning models. The loss function of a VQA is
defined as an average of some observable in the state, prepared
by the parametrized quantum circuit. The structure of the
VQA loss landscape is of central importance, because the
efficiency of the classical optimization largely determines the
quality of solutions obtained by the VQA. Accessible shapes
of the loss function also determine the expressive power of the
quantum machine learning models [4].

Typically, VQAs are trained by gradient-based methods
and their local properties are of the most interest. At the same
time, the structure of parametrized quantum circuits makes
Fourier series representation a natural and rich language for
the description of VQA loss functions. We now briefly sur-
vey some of the relevant results. Under the assumption that
generators of parametric gates have commensurable eigenval-
ues, the Fourier series is in fact truncated to a trigonometric
polynomial. As shown in Ref. [5], accessible frequencies in
this expansion are determined by the spectrum of the gen-
erators, while the coefficients depend on the structure of the
circuit and the observable. In Refs. [5,6] this observation
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was used to highlight the importance of data encoding in
quantum machine learning models. Recently, there has been
an interest in quantitatively studying the expressive power
of machine learning models based on the properties of their
Fourier expansion [7,8]. In Refs. [9,10] the Fourier represen-
tation was used to dequantize a class of quantum machine
learning models. Reference [11] investigates the case when
the Fourier series is rather sparse, so the loss landscape can
be efficiently recovered with limited experimental data. An
interesting proposal made in Ref. [12] shows that noise in
VQAs can be detected by observing inaccessible frequencies
and mitigated by filtering them out. We also note that the
fundamental result on the NP-hardness of training general
VQAs [13] relies on their loss functions being trigonometric
polynomials.

While the Fourier representation can be a very convenient
tool to characterize variational loss functions, it has its lim-
itations. When generators of the parametric gates square to
identity, which is the most common case, the Fourier series
for a VQA with M parameters is a multivariate trigonometric
polynomial containing up to 3M terms. Exponential growth
of accessible terms makes the Fourier series an impractical
description, unless the actual distribution of coefficients is
very sparse (e.g., the number of nonzero terms only grows
polynomially with M). Computing the Fourier coefficients is
also a challenge. For example, evaluating the lowest-order
constant Fourier term amounts to finding the loss function
averaged over all parameter configurations, and there seems
to be no efficient recipe for that in general.

In this paper we restrict our attention to a special class of
parametrized quantum circuits, which we refer to as Clifford
plus Pauli circuits. Parametric gates in Clifford plus Pauli
circuits are exponentials of Pauli strings, while constant gates
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are Clifford gates. This is in fact a very large class of circuits
that includes the majority of most studied VQAs, such as the
quantum approximate optimization algorithm (QAOA) [14],
the hardware-efficient ansatz (HEA), [15], and the unitary
coupled-cluster ansatz [16]. Special properties of stabilizer
circuits [17,18] provide an essential technical advantage to
study the Fourier expansion of Clifford plus Pauli circuits in
quantitative details.

The interplay between properties of stabilizer circuits and
VQAs have been explored previously, mainly in the context of
quantum chemistry [19–21]. In particular, initialization meth-
ods based on perturbative expansion around Clifford points
[22] or on the discrete search through the space of Clifford
circuits [23,24] have been developed and ansatz structures
[25,26] and partitioning schemes [27] based on the properties
of Clifford gates have been proposed. In this work, however,
we focus on a different scope of questions.

Our core technical contribution is an efficient classical al-
gorithm computing all Fourier coefficients in the loss function
up to level m, with time complexity bounded by O(N2m),
where N is the number of qubits. Note that, in general, the
complexity of the Fourier series is not limited directly by the
number of qubits N but rather by the total number of paramet-
ric gates M. For Clifford plus Pauli VQAs this observation
thus admits a concrete realization.

The algorithm has both theoretical and practical utility. On
the theoretical side, we show that typical Fourier series are
much sparser than anticipated in the general case. For Clifford
plus Pauli circuits with a single Pauli observable, the number
of coefficients is upper bounded by 2M , and for the worst-
case behavior expected in practice we find ( 3

2 )M . We also show
that truncating the Fourier polynomial below the maximum
degree gives an approximation that can be quantified by the
L2-norm of the loss function and evaluated dynamically as the
algorithm proceeds. The number of terms contributing non-
negligibly to the functional norm is typically an exponential
fraction of all terms yet still growing exponentially itself.

On the practical side, we perform several case studies to
probe the structure of Fourier expansions in more detail. In all
examples we find that Fourier terms tend to cluster around
some mean level, which is exactly M

2 for nonlocal random
circuits but much smaller for the local circuits with a special
structure, such as the QAOA or HEA, making their Fourier
expansion much sparser and easier to compute.

Our algorithm is based on a simple recursive expansion
of the loss function. A similar approach was described in
the context of the qubit coupled-cluster method [25] and in
the context of the QAOA in Ref. [28]. However, there are
some important distinctions with the previous work. First,
we identify Clifford plus Pauli circuits as the class to which
the method is universally applicable and treat the problem in
general terms, as well as establish its direct relation to the
Fourier series expansion. More importantly, we demonstrate
how to significantly reduce the algorithm cost by pruning
some branches of the recursive expansion early, based on
filtering by expectation values. While this does not change the
large-M asymptotic, for practical cases the difference is essen-
tial. For example, for random Clifford plus Pauli circuits on
N = 50 qubits, it allows increasing the depth of circuits that
can be handled from M = 30 to M = 80 without changing

the computational budget. Finally, we formulate the problem
of computing all nonzero coefficients in the Fourier expansion
as an instance of the multivariate Boolean quadratic problem,
which allows us to argue that our algorithm is likely not far
from optimal yet points towards potential improvements.

II. PARAMETRIZED QUANTUM CIRCUITS

In this section we establish some notation, describe basic
properties of variational circuits and their loss functions, and
discuss how the Fourier expansion arises in this context.

A. Trigonometric expansion of the unitary matrix

.We will assume that a unitary matrix U (φ) of a
parametrized quantum circuit takes the following form:

U (φ) = CMPM (φM ) · · ·C2P2(φ2)C1P1(φ1)C0. (1)

Here Cm are constant gates, Pm(φ) = e−ı(φ/2)Gm are single-
parameter rotations, and φ = (φ1, . . . , φM ) is a vector of
parameters. We assume that Hermitian generators of the
parametrized gates square to identity G2

m = 1 (in particular,
Gm are unitary), so

Pm(φ) = 1 cos
φ

2
− ıGm sin

φ

2
. (2)

Applying this relation to each parametric gate in the circuit,
we obtain the following formal trigonometric expansion con-
taining 2M terms:

U (φ) =
∑

I∈{0,1}M

UItI

(
φ

2

)
. (3)

Here I = (I1, . . . , IM ) with Im ∈ {0, 1} is a multi-index and
tI (φ) is a multivariate trigonometric monomial of order M,

tI (φ) =
M∏

m=1

tIm (φm), (4)

where each term in the product is defined by

ti(φ) = cos1−i φ sini φ =
{

cos φ, i = 0
sin φ, i = 1.

(5)

We note that coefficient matrices UI correspond to the circuit’s
unitary matrix, evaluated at specific values

UI = U (φ = π I ) = αCMGIM
M · · ·C1GI1

MC0, (6)

where α is a phase factor α = (−ı)
∑

m Im .

B. Fourier expansion of the loss function

The loss function F (φ) of a variational algorithm is defined
by the average of some Hermitian operator H , often referred
to as the Hamiltonian, in the state prepared by the circuit

F (φ) = 〈0|U †(φ)HU (φ)|0〉. (7)

Here and in the following |0〉 = |0〉⊗N is the all-zero state of
N qubits. Substituting the expansion (3) into the loss function
gives

F (φ) =
∑

IJ

tI

(
φ

2

)
tJ

(
φ

2

)
〈0|U †

I HUJ |0〉. (8)
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In contrast to the expansion of the unitary matrix (3), which
is homogeneous, expansion of the loss function contains
trigonometric monomials of various degrees (see Appendix A
for details). Let us organize the Fourier expansion of the loss
function by level

F (φ) =
M∑

m=0

Fm(φ). (9)

Each function Fm(φ) is a homogenous trigonometric polyno-
mial of order m. There are

(M
m

)
possible parameter subsets

at level m, each giving rise to 2m trigonometric monomials.
Hence, the total number of independent coefficients in the
Fourier expansion is

M∑
m=0

2m

(
M

m

)
= 3M . (10)

C. Fourier terms from averages

Computing the Fourier series for generic loss functions
appears to be a formidable task. Indeed, we note that the
constant term F0 in the Fourier expansion can be thought of
as the loss function, averaged over all parameters

F0 = 〈F (φ)〉φ := 1

(2π )M

∫ 2π

0

M∏
m=1

dφmF (φ). (11)

This relation holds because all higher levels Fm>0(φ) in the
Fourier series trivially vanish when averaged. Higher-level
terms can be obtained similarly (see Appendix A).

The average in Eq. (11) can be expressed in a succinct form
using orthogonality of trigonometric monomials tI (4),

〈tI (φ)tJ (φ)〉φ = 2−MδIJ . (12)

Hence, averaging (8) yields

F0 = 1

2M

∑
I∈{0,1}M

〈0|U †
I HUI |0〉. (13)

Evaluating this expression explicitly seems to be out of
reach for generic circuits. In terms of a classical simulation,
computing any single expectation value in Eq. (13) is difficult
on its own for a sufficiently large number of qubits. Even when
the averages can be computed efficiently, either classically or
provided access to a quantum computer, Eq. (13) still requires
summing 2M terms, infeasible for any significant number of
parameters M. As we show in the next section, for Clifford
plus Pauli quantum circuits evaluating F0 and in fact any
particular monomial in the Fourier expansion is classically
efficient.

III. CLIFFORD PLUS PAULI VARIATIONAL CIRCUITS

A. Definition and properties

Let us first establish some notation relevant for stabilizer
circuits. A single-qubit Pauli operator is simply an X , Y , or Z
Pauli matrix or an identity, possibly with a phase ±1 or ±ı. An
n-qubit Pauli operator is a tensor product of n arbitrary single-
qubit Pauli operators. Any two Pauli operators P1 and P2 either
commute or anticommute: P1P2 = ±P2P1. Clifford gates C are

operators that transform every Pauli gate P into some Pauli
gate P′: C†PC = P′. The group of Clifford gates can be gen-
erated by the Hadamard gate H, S = √

Z , and controlled-NOT

gate. Circuits consisting only of the Clifford gates applied
to the stabilizer states (of which |0〉 is an example) can be
efficiently simulated classically due to the Gottesman-Knill
theorem [18].

We define Clifford plus Pauli variational circuits as a subset
of variational circuits (1), where generators of parametric
gates are Pauli operators and all constant gates are Clifford
gates. For clarity of exposition, we also assume that the
Hamiltonian H is a Pauli operator. The case that is most rel-
evant in practice, when the Hamiltonian is a polynomial-size
sum of Pauli operators, can be handled by linearity. We stress
that both the Pauli generators and the Hamiltonian are allowed
to have arbitrary weight, i.e., be supported on any number of
qubits. Note that Pauli rotations with generic angles are not
Clifford gates, and hence Clifford plus Pauli circuits cannot
be simulated efficiently using the stabilizer formalism.

Clifford plus Pauli circuits admit a simple canonical form
where all Clifford gates are eliminated. First, one uses com-
mutation properties of Clifford and Pauli operators to drag all
the Clifford gates to the very end of the circuit. Generators
of Pauli rotations will generally change during the process.
The Clifford gate C accumulated at the end of the circuit is
absorbed into the Hamiltonian H → C†HC, which remains a
Pauli operator. Hence, without loss of generality, we assume
that Clifford plus Pauli variational circuit takes the Pauli form

U (φ) = PM (φM )PM−1(φM−1) · · · P1(φ1), (14)

where P(φ) = e−ı(φ/2)P for some Pauli string P. We will use
notation (P1 · · · PM |H ) for a Clifford plus Pauli circuit in Pauli
form. Note that this form is not unique, as Pauli rotations with
commuting generators can be swapped.

B. Computing averages

Now let us revisit the computation of the average loss
function (13). Equation (13) now takes the form

F0 = 1

2M

∑
I∈{0,1}M

〈0|PI1
1 · · · PIM

M HPIM
M · · · PI1

1 |0〉. (15)

We claim that this sum vanishes unless H commutes with
every Pi. Indeed, suppose there is some Pm such that PmH =
−HPm. Then it is straightforward to see that any two terms
in the sum that only differ in the value of Im give opposite
contributions. Hence, for the circuit (P1 · · · PM |H ) we find

F0 =
{〈0|H |0〉 for [H, Pi] = 0 ∀ i

0 otherwise. (16)

Therefore, computing the average loss function for Clifford
plus Pauli circuits is a trivial task for any number of qubits
and any number of parameters. In fact, as we show in the
following, this applies to every individual term in the Fourier
series. The difficulty of computing the full Fourier expansion
then stems solely from the fact that the total number of non-
vanishing coefficients can be exponentially large. In the next
section we present an efficient classical algorithm to compute
the Fourier expansion level by level.
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Note that in the current section and in Sec. II C we focused
on the constant term F0 for the sake of simplicity, with the
goal of comparing the structure of Clifford plus Pauli and
generic circuits. In what follows we will present an algorithm
that computes all the coefficients in the Fourier expansion for
Clifford plus Pauli circuits and is not limited to the constant
term F0.

IV. CLASSICAL ALGORITHM

A. Expansion of the dressed Hamiltonian

We introduce the following notation for an operator conju-
gated by the circuit’s unitary matrix:

O[φ] = U †(φ)OU (φ). (17)

Following the quantum chemistry literature, we call H (φ) the
dressed Hamiltonian. The loss function is the average of the
dressed Hamiltonian in the all-zero state

F (φ) = 〈0|H[φ]|0〉. (18)

Next we make the following simple observation: For an arbi-
trary Pauli string O it holds that

P(φ)†OP(φ) =
{
O, [P,O] = 0
O cos φ + ıPO sin φ, {P,O} = 0,

(19)

i.e., when the conjugating Pauli rotation P(φ) commutes with
O, it cancels out, while for an anticommuting Pauli rotation
the result can be written as a sum of two Pauli operators. This
gives a recurrence procedure to expand the dressed Hamilto-
nian. Indeed, it follows from (19) that for an arbitrary Pauli
string O,

O[φ(m)] =
{
O[φ(m−1)], [O, Pm] = 0

O[φ(m−1)] cos φm + ı(PmO)[φ(m−1)] sin φm, {O, Pm} = 0.
(20)

Here φ(m) is the subset of the first m � M parameters φ(m) :=
(φ1, . . . , φm) and O[φ(m)] is defined as in (17) with the conju-
gating unitary matrix U (φ(m) ) := Pm(φm) · · · P1(φ1).

Repeatedly applying (20) to H[φ] ≡ H[φ(M )] represents
the dressed Hamiltonian as a sum of Pauli strings multi-
plied by trigonometric monomials, i.e., it gives the Fourier
expansion of the dressed Hamiltonian with operator co-
efficients. The recurrent expansion can be conveniently
visualized as a binary tree (see Fig. 1 for an example).
The tree is constructed as follows. The nodes, which we
refer to as the computational nodes, correspond to vari-
ational circuits, specified by a list of Pauli generators

FIG. 1. Sample binary graph representing recursive expansion of
a dressed Hamiltonian. The tree consists of nodes (P1 · · · Pm|O), each
representing a variational circuit with generator Pi and observable O.
The nodes are constructed and organized by levels, corresponding to
the order of Fourier modes. The root node is the original circuit. Each
node where the last generator Pm anticommutes with the observable
O is split in two at the subsequent level. The last generators commut-
ing with the corresponding observables are simply removed, without
branching or increasing the level. Eliminating all Pauli generators
in this recursive way leaves the nodes each containing a single
operator coefficient in the Fourier expansion of the dressed Hamil-
tonian. In the example presented {P3, H} = {P2, H} = {P1, P3H} =
{P1, P2H} = [P2, P3H ] = [P1, H ] = 0.

and an observable (P1 · · · Pm|O). If the observable O an-
ticommutes with the last Pauli generator Pm, the node
branches into two (P1 · · · Pm|O) → cos φm(P1 · · · Pm−1|O) +
ı sin φm(P1 · · · Pm−1|PmO). For brevity, we omit coefficients
in the diagram. Branching increases the Fourier level by
one. If the last Pauli generator instead commutes with O, it
is simply removed (P1 · · · Pm|O) → (P1 · · · Pm−1|O) and the
Fourier level remains unchanged. We depict this by horizontal
arrows in the diagram. When there are no Pauli generators
left, the node contains the final observable encoding a single
operator coefficient in the Fourier expansion of the dressed
Hamiltonian.

The graphical representation makes several distinctive fea-
tures of Fourier series for Clifford plus Pauli circuits manifest.
Let n(m) be the number of resulting Fourier modes at level m.
Introduce

δ(m) = 2−mn(m), �(m) =
m∑

k=0

δ(k). (21)

For any Clifford plus Pauli circuit and any Pauli Hamiltonian
it holds that

�(M ) =
M∑

m=0

2−mn(m) = 1, (22)

i.e., the weighted sum of populations at all Fourier levels is an
invariant. The statement can be proved by induction. The base
case M = 0 is trivial. Next consider a computational tree with
M + 1 > 0 levels. Since the root has two children nodes, each
giving rise to their own subtree, we can write

�(M + 1) = 1

2

M∑
m=0

2−mn1(m + 1) + 1

2

M∑
m=0

2−mn2(m + 1).

(23)

Here n1(m) and n2(m) are the numbers of resulting Fourier
modes at the level m within the two subtrees. Each subtree has
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at most M levels, so
∑M

m=0 2−mni(m + 1) = 1, completing the
proof.

The relation (22) implies certain constraints on the distribu-
tion of Fourier terms. For example, the maximum number of
Fourier terms

∑
m n(m) is upper bounded by 2M (when the last

level is fully populated) [cf. the bound for generic circuits 3M

(10)]. Importantly, the presence of any single Fourier term at
level m < M reduces the maximum possible number of terms
at other levels. For instance, if n(0) = 1, i.e., F0 �= 0, all other
Fourier terms vanish.

Let us discuss the complexity of the algorithm. For a single
Pauli observable, it amounts to constructing the computational
tree in Fig. 1, which has no more than

∑M
m=0 2m = O(2M )

nodes. For N-qubit circuits, generating each node only in-
volves multiplying several Pauli strings of length N , and
hence has complexity O(N ). Therefore, the time complexity
of the algorithm can be bounded by O(N2M ). Finally, when
the problem Hamiltonian is a linear combination of D Pauli
strings, the algorithm processes each of them independently,
giving rise to complexity O(DN2M ). This is the worst-case
scaling; we will give more detailed estimates for specific
problems in the following.

B. Accounting for expectation values

So far, we have discussed the expansion of the dressed
Hamiltonian. In turn, the loss function is given by its ex-
pectation value in the all-zero state (18). A likely scenario is
that the majority of the final Pauli observables have vanishing
expectations, and hence do not contribute to the loss function.
This observation allows significantly increasing the efficiency
of the computation by pruning unfit branches in advance.

Let Fn
2 be a vector space of binary strings of length n.

For k = (k1, . . . , kn) ∈ Fn
2 define Z(k) = ⊗n

i=1 Zki [X (k) is
defined similarly]. For any n-qubit Pauli operator P, one can
define two vectors PZ , PX ∈ Fn

2 such that

P = α Z(PZ )X (PX ), (24)

where α is a phase factor. One can think of PZ and PX as coor-
dinates of P in the basis of Pauli Z and X strings, respectively.
With the notation in place, we can explain how expectation
values can be taken into account during the expansion of the
dressed Hamiltonian.

A Pauli string P has a nonzero expectation value
〈0 | P | 0〉 �= 0 if and only if PX = (0, . . . , 0). First assume,
for simplicity, that X -vectors of the first N Pauli generators
(P1)X , . . . , (PN )X are linearly independent and constitute a
basis in FN

2 . This implies that for every O there is a unique
vector k ∈ FN

2 such that

OX = k1(P1)X + · · · + kN (PN )X . (25)

Therefore, among all 2N possible observables of the form
Pt1

1 · · · PtN
N O, which can be produced during recursive expan-

sion of (P1 · · · PN |O), only a single one with ti = ki can yield a
nonzero expectation value (all other terms will have a nonzero
X component). Thus, instead of generating the full recursive
expansion of (P1 · · · PN |O), which can contain up to 2N nodes,
we can first find k from (25) and then check if this operator
actually appears in the dressed Hamiltonian, i.e., is compatible

with the branching rules. This yields an exponential saving for
large N .

Now let us lift the restriction of the first N Pauli generators
forming the basis. The necessary condition for (P1 · · · Pm|O)
to have a nonzero expectation is that OX is contained in the
span of (P1)X , . . . , (Pm)X . Therefore, for each newly gen-
erated computational node, we can test if this condition is
satisfied. If it is not, all final observables stemming from the
expansion of this node have zero expectation values and the
node can be disregarded.

As discussed in Appendix B, there is some room for further
optimization based on the freedom to permute commuting
Pauli generators. Also, at this point we would like to spell out
explicitly an elementary observation about the Fourier series
of Clifford plus Pauli circuits. For a single Pauli observable,
all nonzero coefficients are given by averages of Pauli strings
and hence equal to ±1.

C. Truncated Fourier series as an approximation

Having many terms at low Fourier levels appears to be
convenient, because this partially reduces a proliferation of
coefficients at subsequent levels. This is further reinforced by
the observation that each individual term at a lower level con-
tributes exponentially more to the loss function than a term at
a higher level. Intuitively, this is because the average absolute
value of a trigonometric monomial of order m is (π/2)−m

and decays exponentially with degree m (see Appendix A 3).
At the same time, there can be exponentially more terms at
higher levels. We can quantify this trade-off by evaluating the
L2-norm of the loss function (the choice of L2-norm is simply
a matter of convenience, as it is naturally related to the Fourier
coefficients). From orthogonality of trigonometric monomials
(12) it follows that

‖F‖2 := 〈|F (φ)|2〉φ =
M∑

m=0

2−ml (m), (26)

where l (m) is the number of nonzero Fourier terms in the
expansion of the loss function at level m, which is upper
bounded by the number of nonzero terms in the expansion of
the dressed Hamiltonian l (m) � n(m). Note that n(m) − l (m)
is the number of operators in the dressed Hamiltonian at
level m with zero expectation value (i.e., with nontrivial X
coordinate). Using (22), we can then bound the L2-norm of
the loss function:

‖F‖2 � 1. (27)

Similarly, we can bound the approximation error of a trun-
cated the Fourier expansion. Let F (m)(φ) denote the Fourier
series truncated to the first m levels. Then

‖F (m) − F‖2 �
M∑

k=m+1

2−kl (k) � 1 − �(m). (28)

If �(m) is close to 1, i.e., sufficiently many terms are con-
centrated up to level m, the truncated Fourier series F (m)(φ)
gives a good approximation to the full loss function. Note that
our recursive expansion generates F (m)(φ) level by level, so
the quality of the approximation can be gauged dynamically
and the computation stopped when the necessary accuracy
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is reached. The derivation of the relations (26) and (28) is
explicated in Appendix A 3.

We need to mention two caveats related to the approxima-
tion result stated. First, while closeness in L2-norm guarantees
a good approximation for most parameter configurations, it
does not translate into pointwise convergence for all parame-
ters. Indeed, while the average absolute value of higher-level
monomials (4) is exponentially suppressed, their maximum
values are independent of the order maxφ |tI (φ)| = 1. Note
that since F (φ) is an expectation value of a Pauli string,
|F (φ)| � 1 and hence the contribution of any individual
monomial cannot be neglected for every parameter configu-
ration. A more refined truncation procedure compatible with
pointwise convergence might be possible, but we do not pur-
sue this question here.

Second, the bound (28) may be too weak in practice. By
using the inequality l (m) � n(m) we effectively assume that
all the final observables in the dressed Hamiltonian expansion
above level m have nonzero expectation values. In practice,
we expect that only a small fraction of observables contribute
to the loss function norm, i.e., l (m) 
 n(m). Properly taking
this into account can significantly strengthen the bound but
requires accounting for the structure of a particular circuit at
hand. We illustrate this in a random circuit model discussed in
Sec. V.

D. Is there a more efficient algorithm?

As sketched in Fig. 2(a), our discussion features four differ-
ent scales. The largest scale (I) is set by the number of terms
in the expansion of the dressed Hamiltonian. It depends only
on the structure of the circuit and the Hamiltonian and can
contain up to 2M terms. Note that the total number of nodes in
the computational tree Fig. 1 can only exceed the number of
final observables by a constant factor, so the recursive expan-
sion algorithm is optimal for computing the Fourier series of
the dressed Hamiltonian.

Another scale (III) corresponds to the number of nonzero
terms in the Fourier expansion of the loss function. It quanti-
fies the very complexity of describing the loss function by its
Fourier series and implies a limit to when such a description
can be practical. Also, as discussed in Sec. IV C, the truncated
Fourier series can furnish a good approximation to the full loss
function while containing only a tiny fraction of all nonzero
terms. Hence, we associate a separate scale (IV) with it.

The most relevant scale in practice, however, is set by the
number of computational nodes (II). It quantifies the complex-
ity of the algorithm. Without accounting for the expectation
values, it simply coincides with the number of terms in the
dressed Hamiltonian. In Sec. IV B we explained how to prune
the branches of the dressed Hamiltonian expansion, with the
expected saving being exponential in the number of qubits.
Still, in general, this leaves a large gap between the number
of computational nodes and the number of nonzero terms in
the loss function. Indeed, assume for simplicity that the first N
Pauli generators span an X basis and consider a computational
node (P1, . . . , PN |O). For generic Pi and O this node is expo-
nentially unlikely to make a nonzero contribution to the loss
function. Indeed, there is a unique combination Pk1

1 · · · PkN
N O

that has a nonzero expectation value in the all-zero state, but

FIG. 2. (a) Sketch of the hierarchy of scales in the problem.
(b) Version of the sample computational tree from Fig. 1, highlight-
ing different properties of the nodes. Dashed arrows lead to nodes
(P1 · · · Pm|O) for which OX does not lie in the span of (Pi )X . These
nodes do not contribute to the loss function and are not actually
generated by the algorithm. The number of remaining nodes quan-
tifies the complexity of the algorithm. Note that the structure of the
computational tree does not determine which final observables have
nonzero expectation values. In the diagram, we assume that only H
and P1P2H contribute to the loss function. If we choose to truncate
the Fourier expansion at level 2, only the H node contributes.

this very combination is unlikely to satisfy all the branching
rules and hence actually appears in the recursive expansion.
Hence, most nodes of the type (P1, . . . , PN |O) do not con-
tribute to the loss function and are not necessary to generate
in the first place. Can a more efficient pruning algorithm be
developed?

Let us formalize the question. For Pauli strings Pi and Pj ,
set 〈Pi, Pj〉 = 1 if they anticommute and 〈Pi, Pj〉 = 0 other-
wise. Note that for any three Pauli strings Pi, Pj , and Pk

it holds that 〈Pi, PjPk〉 = 〈Pi, Pj〉 + 〈Pi, Pk〉 (here and in the
following mod2 is implied). All possible final observables in
the expansion of the dressed Hamiltonian are of the form

O(k) = Pk1
1 · · · PkM

M H, (29)

with some k ∈ FM
2 . In order for O(k) to actually appear in the

set of final observables, k has to be consistent with the branch-
ing rules. If ki = 1, the Pauli string Pi must anticommute with
Pki+1

i+1 · · · PkM
M H , while ki = 0 implies no constraints. These

conditions can be expressed as M equations (i = 1, . . . , M)

ki = ki〈Pi, H〉 +
M∑

j=i+1

kik j〈Pi, Pj〉. (30)
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Indeed, for ki = 0 the relation is trivially satisfied, while for
ki = 1 it is equivalent to the statement that Pi anticommutes
the preceding observable 〈Pi,

∏M
j=i+1 P

kj

j H〉 = 1.
In addition to satisfying the branching rules, we need to

impose that O(k) has a nonzero expectation value

HX +
M∑

i=1

ki(Pi )X = 0. (31)

This relation contains N constraints for an N-qubit problem.
Together, branching constraints (30) and X constraints

(31) present an instance of a Boolean multivariate quadratic
problem (Boolean MQ), which is known to be NP-hard.
State-of-the-art algorithms [29,30] have worst-case time com-
plexities around 20.69M to find a solution or prove one does not
exist. Due to the recurrent structure of Eq. (30), our Boolean
MQ instances are significantly simpler than the general case.
As shown in the next section, for random circuits, which are
expected to capture the worst-case behavior in practice, time
complexity around 20.59M−N is sufficient to find all solutions.
Thus, while generic algorithms for the Boolean MQ prob-
lem are unlikely to be useful directly, there is a possibility
that more efficient pruning techniques can be adopted in our
scheme, narrowing the gap between the number of computa-
tional nodes and nonzero coefficients in the loss function.

V. CASE STUDIES

So far, we have discussed general properties of the Fourier
expansion for Clifford plus Pauli circuits. In this section we
consider several specific examples that showcase how the ex-
pansions are structured in practice. We will both make analytic
estimates and put the classical algorithm to work in numeric
simulations.

A. Random circuits

We first study the case where all the Pauli generators, as
well as the Hamiltonian, are random Pauli operators with the
support on all of the qubits. In this setup, it is simple to give
probabilistic estimates for the expected distribution of Fourier
terms in the loss function.

In fact, the assumption that the Pauli generators are random
is not necessary as long as the observable is random. There-
fore, we expect this behavior to capture well the asymptotic
limit of most sufficiently deep circuits. Indeed, even if the
original Hamiltonian is local, as we go down the computa-
tional tree (see Fig. 1), the observables at the intermediate
computational nodes become ever more scrambled and even-
tually behave as random Pauli operators. The argument is
not rigorous, of course, and circuits that do not conform to
this pattern can be constructed. Nevertheless, the behavior
of random circuits should give a useful reference point for
generic circuits.

1. Distribution of terms in the dressed Hamiltonian

We will first look at the coarse-grained characteristics of
the dressed Hamiltonian expansion, such as the number of
nonzero terms at level m, denoted by nM (m), and the total
number of terms nM = ∑

m nM (m) (here we add a subscript

M to emphasize the dependence on the total number of
parametrized gates). When all Pm and H are random, the
probability of branching at each computational node is 1

2 .
Therefore, on average, each iteration of the algorithm in-
creases the total number of nodes nM by a factor of 1

2 × 1 +
1
2 × 2 = 3

2 , leading to

nM = (
3
2

)M
. (32)

The same reasoning applies to the number of nonzero compu-
tational nodes at each level nM (m), which hence satisfies the
recurrence relation nM+1(m) = 1

2 nM (m) + nM (m − 1). Solv-
ing it yields

nM (m) = 2m−M

(
M

m

)
. (33)

One can check that
∑M

m=0 nM (m) = nM .

2. Distribution of terms in the loss function

So far we have discussed the distribution of Fourier terms
in the dressed Hamiltonian and now we turn to the loss func-
tion. Since every final observable of the dressed Hamiltonian
is again a random Pauli operator, it has 2−N probability of hav-
ing a nonzero expectation value. Therefore, the distribution of
Fourier terms by level lM (m) is simply

lM (m) = 2−N nM (m). (34)

The expected number of all nonzero terms in the loss function
is

lM = 2−N
(

3
2

)M ≈ 20.59M−N . (35)

Now we recall that each term at level m contributes exactly
2−m to the L2-norm. From the distribution of Fourier coeffi-
cients by level, we can derive the distribution of the norm by
the level νM (m) = 2−mlM (m), explicitly given by

νM (m) = 2−N−M

(
M

m

)
. (36)

Note that
∑M

m=0 νM (m) = 2−N . In Fig. 3(a) we plot the results
of numerical simulations for random circuits, which convinc-
ingly confirm our estimates. Details of numerical simulations
are specified in Appendix C 1, where the distributions (34) and
(36) are also shown for several different values of M.

3. Accuracy of a truncated expansion

We can now address the question of how many terms need
to be included in the loss function to give a good L2 approx-
imation. Since the binomial distribution (36) is symmetric
around m = M

2 , including Fourier terms up to level M
2 will

on average account for 50% of the norm. The total number
of nodes at the included levels can be estimated as lM ( M

2 ) ∼
2M/2−N . While in the large-M limit this is an exponentially
small fraction of all terms (35), the number of relevant terms
itself is still an exponential in M.

4. Complexity of the algorithm and simulation limits

An exponential increase in the number of relevant terms
with M clearly limits the depth of the circuits we can address.
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FIG. 3. (a) Level distribution of the number of terms l (m) and
norm ν(m) (both normalized) in Fourier expansion of the dressed
Hamiltonian for random circuits. Scatter plots are mean values com-
puted from the simulations; filled areas quantify standard deviations.
Solid curves are theoretical predictions. (b) Complexity of the algo-
rithm for random Pauli circuits as a function of the number of qubits
N with depth M = N/log 3

2 . Details of numerical experiments are
discussed in Appendix C 1.

Importantly, the property that most final observables have zero
expectation values in turn limits the number of qubits N we
can meaningfully simulate. While in principle the number
of qubits is only limited by the simulation cost of Clifford
circuits, to yield a nonzero loss function the number of Pauli
rotation gates M needs to increase with N .

Requiring the number of nonzero terms in the loss function
(35) to stay of O(1) as we increase N requires scaling the
depth of the circuit as M ∼ N/log2

3
2 . Due to the subroutine

filtering by the expectation value, the algorithm only branches
during processing of the first M − N gates, leading to a num-
ber of computational nodes around approximately ( 3

2 )M−N �
20.59(M−N ). Therefore, the number of computational nodes
generated per nonzero term in the loss function grows with
the number of qubit roughly as

20.41N ≈ 10N/8. (37)

As reported in Fig. 3(b), this scaling is confirmed numerically.
With a computational budget to process 106 nodes, which

takes minutes with a basic implementation run on a laptop, the

Fourier expansion of the loss function for a 50-qubit random
circuit with 85 Pauli rotation gates can be computed exactly.
With resources to process 1012 nodes, which should be fea-
sible with an efficient implementation on a computational
cluster, 100-qubit circuits with about 170 Pauli gates can be
handled.

B. QAOA

Variational circuits appearing in practice are far from the
random Pauli model described above. Instead, they typically
involve only local gates and observables. If two local Pauli
strings are supported on different subsets of qubits they neces-
sarily commute, and hence the probability of two generic local
operators anticommuting is much smaller than 1

2 . Although
we expect the random Pauli model to describe well the large
depth asymptotic, circuits of shorter depth may behave quite
differently. Indeed, until the observables at computational
nodes become sufficiently scrambled, the branching proba-
bility is much smaller than 1

2 and the complexity growth is
much slower. This allows us to compute Fourier expansions
for circuits with much higher depths than anticipated for the
random model.

As a case study, we consider instances of the QAOA for
the max-cut problem on regular graphs [14], which is the
most studied approach to combinatorial optimization. Two
key characteristics of a particular QAOA circuit are the degree
of a graph d and the number of layers p (see Appendix C 2 for
details).

Due to locality, shallow instances of the QAOA allow for
efficient classical computation of the loss function indepen-
dently of the number of qubits. With every observable one as-
sociates a reverse light cone, containing all qubits that are con-
nected to the observable by the entangling gates. For graphs
of bounded degree, the size of the reverse light cone stays
constant in the large-N limit and classical computation of
the loss function never involves simulating quantum circuits
larger than that size. For a QAOA on a graph of degree d with
p layers, the size of the reverse light cone is bounded by [14]

Nc = 2
(d − 1)p+1 − 1

d − 2
. (38)

Note that Nc scales exponentially with the level p, so the
large-p regime is the most difficult to simulate.

Large p also implies a large number of parametric gates,
which is the key limiting factor for our algorithm. At the
same time, while the locality of gates is not necessary in our
approach, it certainly helps. Moreover, the benefits of locality
are incorporated automatically. Indeed, the Pauli generators
supported outside the reverse light cone of the Hamiltonian
commute with all observables at the computational nodes and
are trivially eliminated. Using a basic Monte Carlo sampling,
we estimate the expected complexity of our algorithm to com-
pute the full Fourier expansion of the loss function for several
values of d and p. Results are reported in Table I; details of
numerical simulations are specified in Appendix C 2. Though
estimates are very crude, they provide useful anchors for ex-
pected complexities.

We stress here that the special structure of QAOA circuits
and observables makes it possible to handle much larger num-
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TABLE I. Estimated number of computational nodes to exactly
compute Fourier expansion for QAOA circuits of varying degree and
level. Statistics are collected over different graphs and observables
(see Appendix C 2 for details).

�������Degree
Level

1 2 3 4

2 100.7±0.08 101.5±0.9 103.4±1.7 104.7±2.6

3 101.1±0.1 103.6±0.4 108.6±0.9 1017.5±2.2

4 101.4±0.3 105.6±0.5 1016.4±1.3 1036.6±3.0

bers of parameters compared to random circuits. Indeed, for
a d-regular graph with N nodes there are exactly |E | = Nd/2
edges, so the number of parametric gates in our simulations is
given by

M = p(Nc + |E |) = pNc

(
d

2
+ 1

)
. (39)

For instance, for p = 3 and d = 3 this gives Nc = 30 and
M = 225, and a random circuit in this setup would require
processing approximately ( 3

2 )M−Nc � 2.18 × 1034 computa-
tional nodes, clearly an unmanageable amount. In contrast, for
the actual QAOA instances, we find about 109 computational
nodes to be sufficient. The distribution of Fourier terms in
the QAOA appears to be somewhat irregular although with
clustering characteristics similar to the random circuits of
equivalent complexity (see Appendix C 2 for details).

C. Hardware-efficient circuits

One frequently studied design of variational algorithms
is the hardware-efficient form [15], where the circuit is
constructed to give the maximal expressivity with limited
depth, efficiently using native hardware gates. We consider
hardware-efficient circuits with brick wall architecture, where
each block is built of an entangling controlled-Z (CZ) gate and
four single-qubit Pauli rotations, and observables of weight 2
(see Appendix C 3 for details). In this setting, we estimate the
complexity of our algorithm to exactly compute the loss func-
tion and report the results in Fig. 4. The takeaway is similar
to the QAOA case: Locality of the circuit and the observable
strongly reduces the number of Fourier terms compared to the
random case, so the computational budget needed to process
random circuits with M ∼ 180 should be sufficient to fully
characterize the Fourier series for circuits with M ∼ 600 para-
metric gates in the current local setup.

VI. DISCUSSION AND OUTLOOK

We looked at some qualitative and quantitative aspects of
Fourier series expansion of VQA loss functions. The main
observation is that restricting our study to the class of Clifford
plus Pauli circuits allows us to provide a much finer picture
than possible for generic VQAs. We presented an efficient
classical algorithm for computing the Fourier expansion level
by level, with the worst-case complexity bounded by O(N2M )
for a single Pauli observable. We estimated the complexity
of the algorithm and characterized the distribution of Fourier
terms in several examples, including random nonlocal Clif-
ford plus Pauli circuits as well as more conventional local

FIG. 4. Estimated algorithm complexity for computing the full
Fourier series of a two-local hardware efficient circuit with 50 qubits
and Pauli Hamiltonian of weight 2, as a function of the number of
parametric gates. Details are specified in Appendix C 3.

circuits such as the QAOA and HEA. We anticipate our find-
ings will provide useful tools for further study of the interplay
between the properties of VQAs and the structure of their
Fourier series expansion.

One major issue facing VQAs is trainability, where
two crucial obstacles are barren plateaus [31,32] and local
minimums [13,33]. Although many ansatz structures and ini-
tialization and optimization heuristics have been proposed to
mitigate these problems (we refer the reader to [34] for a sum-
mary and to [35,36] for a discussion of the overparametrized
setting), they persist in many practical scenarios. Interestingly,
the Fourier series contains a wealth of global information
about the loss landscape and may hence give a useful perspec-
tive of these problems. For instance, we note that the variance
of the loss function gradient, frequently used to diagnose
barren plateaus, is naturally related to the Fourier coefficients

varφ[∇F (φ)]2 = −
∫

dφ F (φ)�F (φ) =
M∑

m=0

ml (m). (40)

[To arrive at this expression first integrate by parts and then
use the fact that for every trigonometric monomial tm(φ)
of degree m it holds that �tm(φ) = −mtm(φ).] We note an
interesting recent work [37] that uses a related technique to
diagnose barren plateaus.

Therefore, already coarse-grained characteristics of the
Fourier expansion, such as the distribution of terms by level
l (m), may provide a very useful input. Note that this distri-
bution can be estimated by a Monte Carlo sampling, even
when the full computation of the loss function may be out
of reach. Also, it would be very interesting to evaluate the
role of lower- vs higher-order Fourier modes in shaping the
loss landscape. Superficially, since the higher-order modes are
more oscillatory yet typically contribute less to the L2-norm
of the loss function, they may be a justified suspect in creating
the majority of spurious local minima.

Also, it looks promising to explore the potential of our
algorithm for classical computation of quantum mean values.
For circuits with local gates and constant depth, classical
algorithms exist that scale favorably with the number of qubits
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[38]. While gate locality helps in practice, our algorithm is
based on the properties of stabilizer circuits and it is not
principally constrained by the gate locality. Nor is it con-
strained by the degree of entanglement [39,40] or the circuit’s
graph tree width [41], which can be a bottleneck for sim-
ulators based on tensor networks. Apparently, our approach
is most similar to simulation schemes for circuits dominated
by Clifford gates. The parameter ranges that can be handled
look similar, involving 50–100 qubits and dozens to hundreds
of non-Clifford gates [42,43], but detailed benchmarks are
necessary to make a reasonable comparison. We should also
stress that our approach is neither a simulation algorithm (in a
weak or strong sense) nor an algorithm exclusively computing
mean values. Instead, it returns the full (or truncated) Fourier
series of a VQA and hence has an interesting character.

We would also like to mention two related works, which
appeared recently. In [44] the authors focused on a heuristic
algorithm for pointwise approximation of expectation values
of Clifford plus Pauli circuits, something we briefly touched
on in Sec. IV C. Reference [45], using a technique similar
to ours, considered the computation of expectation values in
noisy Clifford plus Pauli circuits. A remarkable conclusion of
the study is that, in the noisy setting, the simulation cost is
polynomial in both the number of qubits and the number of
parametric gates.

ACKNOWLEDGMENTS

We thank Vsevolod Yashin and V. Vijendran for useful
discussions. We are grateful for the Priority 2030 program at
the National University of Science and Technology MISIS,
Project No. K1-2022-027.

APPENDIX A: STRUCTURE OF A GENERIC FOURIER
EXPANSION

1. Level expansion and number of terms

For the sake of clarity, here we give a more detailed de-
scription of the general structure of the Fourier expansion for
the loss function introduced in Sec. II. Let us first illustrate the
trigonometric expansion of the unitary matrix (3) for the case
with M = 2 angles

U (φ1, φ2) =U00 cos
φ1

2
cos

φ2

2
+ U01 cos

φ1

2
sin

φ2

2

+ U10 sin
φ1

2
cos

φ2

2
+ U11 sin

φ1

2
sin

φ2

2
. (A1)

Note that trigonometric monomials here have the same degree
and period ω = 4π in each variable. Substituting such expan-
sions into the definition of the loss function (7) leads to the
Fourier series expansion of the loss function. Applying identi-
ties cos2 φ

2 = 1+cos φ

2 , sin2 φ

2 = 1−cos φ

2 , and cos φ

2 sin φ

2 = sin φ

2
leads to an expression involving trigonometric monomials of
a smaller period ω

2 = 2π and degrees up to M. For instance,

F (φ1, φ2) = 〈0|U †(φ1, φ2)HU (φ1, φ2)|0〉
= 1

4 〈0|U †
00HU00|0〉(1 + cos φ1 + cos φ2

+ cos φ1 cos φ2) + · · · (A2)

and we wrote explicitly only the contribution from the first
term.

More generally, terms in the expansion (9) assume the form

F0 = const, F1(φ) =
M∑

i=1

Fi(φi ), F2(φ) =
M∑

i, j=1

Fi j (φi, φ j ), F3(φ) =
M∑

i, j,k=1

Fi jk (φi, φ j, φk ), (A3)

etc. Here

Fi(φi ) = Ai cos φi + Bi sin φi,

Fi j (φi, φ j ) = Ai j cos φi cos φ j + Bi j cos φi sin φ j

+ Ci j sin φi cos φ j + Di j sin φi sin φ j, (A4)

etc. At each level m there are
(M

m

)
subsets of parameters,

enumerating possible indices of homogeneous polynomials
Fi1···im . Defining the polynomial for each parameter configu-
ration requires specifying 2m coefficients. This leads to the
counting (10) for the total number of coefficients in the
Fourier series.

2. Coefficients from averages

Trivially, F0 = 〈F (φ)〉φ. Higher-order terms can be ob-
tained similarly. For instance, Fi(φi ) = 〈F (φ) − F0〉φ �=φi

, i.e.,
averaging over all angles except φi leaves only first-order
monomials involving a given angle φi. Higher-order terms can
be found recursively. Note that, in this prescription, comput-

ing terms at level m requires one to first compute and subtract
the contribution of all levels below m.

3. Fourier series and L2-norm

Here we fill in some of the technical detail omitted in
Sec. IV C. First, let us evaluate the average absolute value
〈|tI (φ)|〉φ of an order-m trigonometric monomial tI (φ) =∏m

j=1 tIj (φ j ) with I = (I1, . . . , Im) ∈ {0, 1}m [see Eq. (4)].
Since 〈|tI (φ)|〉φ = ∏m

j=1 〈|tIj (φ j )|〉φ j
and 〈|sin(φ)|〉φ =

〈|cos(φ)|〉φ = 1
2π

∫ 2π

0 dφ |cos φ| = 2
π

∫ π/2
0 dφ cos φ = 2

π
, we

have 〈|tI (φ)|〉φ = ( 2
π

)m, as claimed in the main text.
Next let us explain the relations (26) and (28) in more de-

tail. A general Fourier expansion in our case can be written as

F (φ) =
M∑

m=0

∑
Im∈{0,1}m

cImtIm (φ), (A5)

i.e., we split the sum over levels m, and within each
level trigonometric monomials tIm have the same order.
Trigonometric monomials tIm of different orders are
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FIG. 5. Normalized distribution of nonzero Fourier coefficients in (a) local circuits with random observables, (b) QAOA circuits with
d = 3 and p = 2, and (c) brick wall HEA circuits with N = 50 and M = 304. Statistics are collected for random circuits structures (except for
the HEA, where it is fixed) and random observables. Solid lines are theoretical curves for random circuits of the equivalent complexity.

orthogonal and those of the same order satisfy (12). The
coefficients cIm are averages of Pauli strings, so either cIm = 0
or |cIm | = 1. It follows that

‖F‖2 = 〈|F (φ)|2〉φ =
M∑

m=0

2−m
∑

Im∈{0,1}m

|cIm |2. (A6)

By definition,
∑

Im∈{0,1}m |cIm |2 is equal to l (m), the number of
nonzero terms at level m. This leads to (26).

To arrive at (28), we repeat this computation with

F (φ) − F (k)(φ) =
M∑

m=k

∑
Im∈{0,1}m

cImtIm (φ), (A7)

yielding

‖F (φ) − F (k)(φ)‖2 =
M∑

m=k

2−ml (m). (A8)

Recall that l (m) is the number of nonzero coefficients in the
loss function at level m, which is upper bounded by n(m),
the number of terms in the dressed Hamiltonian at that level.
Using l (m) � n(m) and the definition (21) of �(m), we obtain

‖F (φ) − F (k)(φ)‖2 �
M∑

m=k

2−mn(m) = 1 − �(k). (A9)

APPENDIX B: OPTIMIZING PAULI ORDER

A Pauli form of a Clifford plus Pauli circuit is not unique,
because adjacent Pauli rotations with commuting generators
can be swapped. In principle, the number of computational
nodes may be sensitive to this ordering. We briefly mention
two possible optimizations along these lines.

(i) Delayed branching. The first strategy may be to delay
branching as long as possible, by swapping the anticommut-
ing Pauli to the left. For illustration, consider a Pauli circuit
(P1 · · · PN P′

1 · · · P′
N |O) where all Pauli generators mutually

commute and in addition [Pi,O] = 0. Generators P′
i may not

commute with O, while processing operators P′
i up to 2N

nodes may be generated. After that, assuming that the Pi span
an X basis, no new nodes will be produced. Had we started
with the circuit (P′

1 · · · P′
N P1 · · · PN |O) instead, which is equiv-

alent by assumption, generators Pi would be eliminated right
away and no branching would be required (assuming the P′

i
also span an X basis).

(ii) Early pruning. The freedom to swap commuting Pauli
generators can also be used to enforce early pruning. As
an illustration, consider the circuit (PP′

1 · · · P′
m|O), where P

commutes with all P′
i and, moreover, P is an independent

generator, in the sense that PX does not lie in the span of (P′
i )X .

If we process the circuit directly, up to 2m computational
nodes are generated and then tested against compatibility
with the last generator P. However, in the equivalent setting
(P′

1 · · · P′
mP|O) compatibility with P is tested right away and

on average half of the observables O will be pruned, leading
on average to 2m−1 computation nodes. If there are n genera-
tors of P type, savings up to 2−n can be expected.

Note that both optimizations rely on the presence of large
streaks of commuting Pauli generators. Therefore, for the non-
local random Pauli circuits very little is to be gained, while for
structured local circuits (e.g., the QAOA) the savings might be
substantial.

APPENDIX C: DETAILS OF NUMERICAL
COMPUTATIONS

An implementation of the algorithm and the data presented
in the paper are available at the GitHub repository [46].

1. Random circuits

The statistics in Fig. 3(a) are collected from 20 random
nonlocal Pauli circuits with N = 30 qubits and depth M = 25.
Note that the distribution of the norm ν(m) is not an inde-
pendent characteristic but is computed from the distribution
of nodes l (m) according to ν(m) = 2−ml (m). In Fig. 5(a) we
also plot the distribution of Fourier terms for random circuits,
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FIG. 6. Distribution of coefficients and norm (both normalized)
for various numbers of the parameter M.

where only the observable is nonlocal, while the circuit con-
sists of random Pauli exponentials of weight 2. As expected,
the average values are the same as for the nonlocal random
circuits, but the fluctuations around the mean are much higher.

We also depict the theoretical prediction for the average
distribution of coefficients and nodes for several values of
M in Fig. 6. Adjusted for the number of levels, the distribu-
tions do not shift as M varies but become more concentrated.
Note that the overlap between the plots of coefficient and
norm distributions quickly decreases with M. However, as
explained in Sec. V A, the total number of terms contributing
non-negligibly to the norm still grows exponentially with M.

2. QAOA

Given a graph G with edges Ei j , a single layer of the QAOA
circuit consists of two-qubit Pauli rotation gates ZiZ j (γi j ) =
exp(−ıZiZ jγi j/2) (here Zi stands for a Pauli string with Z on
the ith position and identities on all others) for each edge Ei j ,
followed by the sequence of single-qubit Xi(βi ) gates placed
on every qubit [see Fig. 7(a) for an example]. Note that in the
standard formulation of the QAOA, γi j = γ and βi = β, i.e.,
all ZZ gates and all X gates have the same parameters within
each layer. However, taking this correlation into account does
not simplify our analysis and we will not impose it. A single
layer repeated p times gives an instance of the QAOA with
p layers. The Hamiltonian is given by the sum of all Pauli Z
generators H = ∑

Ei j
ZiZ j .

To estimate the complexity of computing the Fourier series
for instances of the QAOA of degree d with p layers, it is
sufficient to consider circuits of size Nc (38). The statistics
presented in Table I were collected in the following way.
For each configuration (d, p) we generate 20 random regular
graphs of degree d and for each graph choose a single ob-
servable ZiZ j at random. Then for each circuit-observable pair
we estimate the complexity of the algorithm using the Monte
Carlo technique (Appendix C 4) with 104 samples. Fluctu-
ations are significant both due to inaccuracies of the Monte
Carlo sampling but more importantly due to inhomogeneous
nature of data gathered over different graphs and observables.
To represent large fluctuations more meaningfully, we com-
pute average values and deviations in logarithmic scale, i.e.,
for the exponents of the expected number of computations
nodes, hence the format used in Table I. We stress that the
numbers reported are estimated numbers of computational
nodes, i.e., the expected complexity of the algorithm. The
number of nonzero terms in the loss function is less by orders
of magnitude, but also harder to estimate with reasonable
precision.

Besides the overall complexity, it might be of interest to
look at the particular distributions of the Fourier terms in the
loss function. To this end, in Fig. 5(b) we plot distributions of
nonzero Fourier coefficients by level. The statistics are gath-
ered for 100 different instances of d = 3 and p = 2 QAOA
circuits, with a single randomly chosen QAOA observable for
each circuit. The theoretical curve for random circuits with
M = 30 is plotted for comparison. We note that while the dis-
tribution of the coefficients looks close enough to the random
case, the distribution of the norm has significant differences
and large fluctuations. In particular, the norm appears to be
concentrated at lower Fourier levels than expected for random
circuits (after adjusting for the distribution of terms), which
might make the truncated schemes quite useful.

3. Hardware-efficient circuits

An example of a brick wall hardware-efficient circuit that
we consider is shown in Fig. 7(b). The statistics for Fig. 4
are collected for N = 50 qubit circuits with up to M = 600
rotation gates. For each M we take ten random observables
of weight 2 and estimate the number of computational nodes
with 104 Monte Carlo samples. Similarly to the QAOA case,
due to large individual fluctuations, we compute the means
and deviations in logarithmic scale.

In Fig. 5(c) we also plot the distribution of Fourier coef-
ficients for N = 50 circuits with M = 308 parametric gates
(corresponding to 77 CZ gates), averaged over 100 random

FIG. 7. Circuit layouts for (a) the single-layer QAOA instance on a 3-regular graph with four nodes and (b) the hardware-efficient brick
wall circuit with five qubits (all rotation gates have different parameters, not indicated explicitly).
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Pauli observables of weight 2. Similarly to the QAOA case,
the most interesting part is the norm distribution, which shows
large fluctuations and also the tendency to cluster at lower lev-
els (compared to a random circuit with a similar distribution
of coefficients).

4. Estimating complexity from Monte Carlo sampling

It is useful to estimate the runtime or complexity of the
algorithm without performing the full computation. To do
this, we can use a simple version of Monte Carlo sampling
to probe the structure of the computational tree in Fig. 1.
First, we describe a version that allows us to estimate the
number of terms in the expansion of the dressed Hamiltonian.
To this end, we can use the basic algorithm to traverse the
computational tree, but instead of keeping both branches at
each split, we choose one at random and disregard the other.
This procedure produces a single complete branch from the
computational tree. The probability to generate any particular
branch is 2−m, with m the number of splits performed in the

process. Let s(m) be the number of samples with m splits. We
estimate the total number of terms n as

n ≈
∑M

m=0 2ms(m)∑M
m=0 s(m)

. (C1)

Note that in this case the number of splits m is the same as the
Fourier level of the resulting term.

To estimate the complexity of the actual algorithm, i.e., the
number of computation nodes generated during the computa-
tion, we need to take into account the pruning based on the
expectation values (see Sec. IV B). The sampling prescription
above is modified in a simple way. We traverse the compu-
tational tree and choose branches at random. Importantly, we
choose only from the branches compatible with the pruning
restrictions. If one of the branches in not admissible, the actual
algorithm will not generate additional nodes and the probabil-
ity of the sample does not need to be updated. In this case,
the Fourier level of the resulting term does not correspond
to the probability of sampling. The prescription (C1) remains
unchanged.
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[44] T. Begušić, K. Hejazi, and G. K.-L. Chan, arXiv:2306.04797.
[45] E. Fontana, M. S. Rudolph, R. Duncan, I. Rungger, and C.

Cîrstoiu, arXiv:2306.05400.
[46] N. Nemkov, E. Kiktenko, and A. Fedorov, FourierVQA (2023),

https://github.com/idnm/FourierVQA.

032406-14

https://doi.org/10.1038/s43588-023-00467-6
https://doi.org/10.1103/PhysRevResearch.3.023203
http://arxiv.org/abs/arXiv:2302.04649
https://doi.org/10.1038/s41567-020-01109-8
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevX.10.041038
https://doi.org/10.1137/050644756
https://doi.org/10.1103/PhysRevLett.116.250501
https://doi.org/10.22331/q-2019-09-02-181
http://arxiv.org/abs/arXiv:2306.04797
http://arxiv.org/abs/arXiv:2306.05400
https://github.com/idnm/FourierVQA

