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Solving graph problems with single photons and linear optics
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An important challenge for current and near-term quantum devices is finding useful tasks that can be
preformed on them. We first show how to efficiently encode a bounded n × n matrix A into a linear optical
circuit with 2n modes. We then apply this encoding to the case where A is a matrix containing information
about a graph G. We show that a photonic quantum processor consisting of single-photon sources, a linear
optical circuit encoding A, and single-photon detectors can solve a range of graph problems including finding
the number of perfect matchings of bipartite graphs, computing permanental polynomials, determining whether
two graphs are isomorphic, and the k-densest subgraph problem. We also propose preprocessing methods to
boost the probabilities of observing the relevant detection events and thus improve performance. Finally we
present both numerical simulations and implementations on Quandela’s Ascella photonic quantum processor to
validate our findings.
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I. INTRODUCTION

Quantum computing promises exponential speedups [1],
breakthroughs in quantum simulation [2], metrology [3,4],
and combinatorial optimization [5], among other advan-
tages. Yet existing and near-term quantum technologies [6]
are extremely prone to errors that hinder performance and
prospects of achieving advantages. At present, building a large
fault-tolerant quantum computer [7] remains a formidable
technological challenge despite very promising theoretical
guarantees [8], notably relevant to photonic quantum tech-
nologies [9–12], as well as recent experimental advances
[13–19].

Current and near-term quantum devices are in the so-
called noisy intermediate scale quantum (NISQ) regime [6].
These devices can provide an eventual route to large-scale
fault-tolerant architectures, but in the nearer term are also
particularly useful for implementing variational quantum al-
gorithms (VQAs) [20–22] with interesting performances,
especially when coupled to error mitigation techniques
[23].

The focus here is on discrete-variable photonic NISQ de-
vices, essentially composed of single-photon sources [24],
linear optical circuits [25], and single-photon detectors [26].
Our main contribution is to show that, beyond VQAs, such
platforms can implement a wide range of promising NISQ
algorithms specifically related to solving linear and graph
problems.

We briefly comment on earlier related works in Sec. II
and set up preliminaries in Sec. III. In Sec. IV we find a
procedure for encoding matrices, and by extension graphs via
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their adjacency matrices, into linear optical circuits. We go on
to provide an analysis linking the photon detection statistics to
properties of the matrices and graphs. In Sec. V we describe
how this method can be used to solve a variety of graph
problems [27–30], which are at the core of use cases across
diverse fields [27,31–40]. In Sec. VII, we present preprocess-
ing methods which improve the performance of our graph
algorithms, thereby improving prospects of achieving prac-
tical quantum advantages [41,42]. In Sec. VIII, we perform
numerical simulations with the PERCEVAL software platform
[22] to illustrate our encoding and some applications. Finally
in Sec. IV we implement our methods on the cloud-accessible
Ascella photonic quantum processor [43], highlighting their
interest for near-term technologies.

II. PREVIOUS WORK

The encoding procedure we use is similar to the block
encoding techniques studied in [44,45]. However, here we
study a different set of applications that can be understood
within the boson sampling framework [46] described in terms
of linear optical modes and operations rather than qubits and
qubit gates.

The Gaussian boson sampling (GBS) framework has pre-
viously been used to solve graph problems in [35,47–49].
The main differences between our encoding and that used in
[35,47–49] are first that our setup uses single photons as input
to the linear optical circuit, whereas that of [35,47–49] uses
squeezed states of light. Second, our encoding procedure is
more general as it allows for encoding any bounded n × n
matrix into a linear optical circuit of 2n modes, whereas the
encoding in [35,47–49], because of the properties of squeezed
states, can only encode Hermitian n × n matrices into 2n
mode linear optical setups. We discuss these differences in
more detail in Appendix B.
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III. PRELIMINARIES

We denote the state of n single photons arranged in m
modes as |n〉 := |n1 . . . nm〉, where ni is the number of photons
in the ith mode and

∑
i=1,...,m ni = n. There are M := (m+n−1

n

)
distinct (and orthogonal) states of n photons in m modes.
These states live in the Hilbert space Hn,m of n photons in m
modes, which is isomorphic to the Hilbert space CM [46,50].
U(m) will denote the group of unitary m × m matrices. A
linear optical circuit acting on m modes is represented by a
unitary U ∈ U(m) [51] and its action on an input state of n
photons |nin〉 := |n1,in . . . nm,in〉 is given by

|ψ〉 := U |nin〉 =
∑

n1+···+nm=n

γn|n〉, (1)

where U ∈ U(M ) represents the action of the linear optical
circuit U and γn ∈ C. Further, we denote

pU (n|nin) := |γn|2 =
∣∣Per

(
Unin,n

)∣∣2

n1,in! . . . nm,in!n1! . . . nm!
(2)

to be the probability of observing the outcome n =
(n1, . . . , nm) of ni photons in mode i, upon measuring the
number of photons in each mode by means of number resolv-
ing single-photon detectors [46]. Unin,n is an n × n submatrix
of U constructed by taking ni,in times the ith column on U and
n j times the jth row of U , for i, j ∈ {1, . . . , m} [46]. Per(.)
denotes the matrix permanent [52]. When there is no ambigu-
ity about the unitary in question we will denote pU (n|nin) as
p(n|nin ) for simplicity.

IV. ENCODING

We will now show a method for encoding bounded matri-
ces into linear optical circuits. Let A ∈ Mn(C) be an n × n
matrix with complex entries and of bounded norm, and con-
sider the singular value decomposition [53] of A

A = W �V †, (3)

where � is a diagonal matrix of singular values σi(A) � 0 of
A and W,V ∈ U(n). Let s := σmax(A) be the largest singular
value of A and let

As := 1

s
A = W

(
1

σmax(A)
�

)
V †. (4)

From Eq. (4), it can be seen that σmax(As) � 1 and therefore
that the spectral norm [54] of As satisfies

‖As‖ � 1. (5)

With Eq. (5) in hand, we can now make use of the unitary
dilation theorem [55], which shows that, when ‖As‖ � 1, As

can be embedded into a larger block matrix

UA :=
(

As

√
In×n − As(As)†√

In×n − (As)†As −(As)†

)
, (6)

which is a unitary matrix. Here, √
. denotes the matrix square

root and In×n the identity on U(n) [56].
Since UA ∈ U(2n), there exists linear optical circuits of

2n modes which can implement it [25,57]. Thus we have
found a way of encoding (a scaled-down version of) A into
a linear optical circuit. Note that determining the singular

FIG. 1. Setup for computing |Per(A)|. First, an input state com-
posed of n single photons emitted by n single-photon sources (boxes
with SPS label in the figure) is passed through a linear optical circuit
of size m = 2n encoding A (the box with Um×m labeling in the figure).
We detect the output state by means of placing m single-photon
detectors at the output modes (semiellipses with n label) and we
postselect on observing n photons in the first n output modes.

value decomposition of A can be done in time complexity
O(n3) [58,59]. Furthermore, finding the linear optical circuit
for UA can also be done in O(n2) time [25,57], thus making our
encoding technique efficient. Finally, the choice of rescaling
factor s = σmax(A) is not unique, as any s � σmax(A) gives
‖As‖ � 1, allowing for the application of the unitary dilation
theorem [55]. However, choosing s = σmax(A) maximizes the
output probability corresponding to Per(As), which can be
seen from Eq. (2), and the fact that Per(As) = 1

sn Per(A).
The encoding via Eq. (6) opens up the possibility of esti-

mating |Per(A)| for any bounded A ∈ Mn(C) by using the
setup of Fig. 1 composed of single photons, linear optical
circuits, and single-photon detectors. Indeed, using UA and

nin = n = (1, . . . , 1︸ ︷︷ ︸
n modes

, 0, . . . , 0) (7)

in Eq. (2) gives

p(n|nin ) = |Per(As)|2. (8)

Equation (8) admits a simple interpretation: passing the in-
put nin of Eq. (7) through the circuit UA of Eq. (6), then
postselecting on detecting the outcome n = nin and using
these postselected samples to estimate p(n|nin ) allows one to
estimate |Per(As)|. Since

Per(As) = Per
(

1

s
A

)
= 1

sn
Per(A), (9)

then one can also deduce an estimate of |Per(A)|. Further-
more, since we are interested in observing the outcome where
at most one photon occupies a mode, then we can use (non-
number resolving) threshold detectors, which simplifies the
experimental implementation.

V. APPLICATIONS

When A := (ai j )i, j∈{1,...,n}, ai j ∈ {0, 1}, is the adjacency
matrix [28] of a graph G(V, E ) (or G for simplicity) with
vertex set V composed of |V | = n vertices, and edge set E
composed of |E | = I edges, it turns out that computing the
permanent of A, as well as the permanent of matrices related
to A, can be extremely useful for a multitude of applications.
We will now go on to detail these applications.
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A. Computing the number of perfect matchings

A perfect matching is a set EM ⊆ E of independent n
2 edges

(no two edges have a common vertex), such that each vertex
of G belongs to exactly one edge of EM . When G is a bipartite
graph [28] with its two parts V1,V2 ⊂ V being of equal size
|V1| = |V2| = n

2 , the setup of Fig. 1 along with Eq. (9) can be
used to estimate the number of perfect matchings of G denoted
as pm(G) and given by pm(G) = √

Per(A) [60–62].

B. Computing permanental polynomials

Our setup can also be used to compute permanental poly-
nomials [30]. These are polynomials, taken here to be over the
reals, of the form

PA(x) := Per(xIn×n − A) =
∑

i=0,...,n

cix
i, (10)

with xi being the ith power of x and A the adjacency matrix
of any graph G. The coefficients {ci} are related to the perma-
nents of the subgraphs of G [30]. Taking Bx := xIn×n − A, we
can then compute the coefficients {ci} in Eq. (10) by perform-
ing n + 1 experiments, where in each experiment we encode
Bx into a linear optical circuit and then estimate Per(Bx ) using
the procedure in Fig. 1 with A replaced by Bx. For each exper-
iment j, we choose a different value x j of x, for j going from
1 to n + 1. By doing this, we obtain a system of n + 1 linear
equations in n + 1 unknowns c0, . . . , cn. In Appendix C, we
show that almost any random choice of x1, . . . , xn+1 will lead
to a solution of this system of linear equations.

C. Densest subgraph identification

In the k-densest subgraph problem [29], for a given graph
G with n � k vertices, one must find an induced subgraph
(henceforth referred to as subgraph for simplicity) of size k
with the maximal density (a k-densest subgraph). For a fixed
k, the densest subgraph is that which has the highest number
of edges. Solving the k-densest subgraph problem exactly is
NP hard [63].

We first give some intuition for why the permanent is a use-
ful tool for identifying dense subgraphs. Let Sn be the group
of permutations of {1, . . . , n} and A the adjacency matrix of
G. Looking at how the permanent of A is computed,

Per(A) =
∑
π∈Sn

∏
i=1,...,n

aiπ (i), (11)

it can be seen that, for fixed n, the value Per(A) should
increase with increasing the number of nonzero ai j , which
directly corresponds to increasing the number of edges. We
make this intuition concrete by proving the following.

Theorem 1. For even n and I

Per(A) � f (n, I ), (12)

where f (n, I ) is a function which is monotonically increasing
with increasing I for fixed n.

Theorem 1 is proven in Appendix D. Theorem 1 does
not prove that Per(A) is a monotonically increasing function
of I , rather that it is upper bounded by such a function. In
Appendix G, we provide numerical evidence that, for random

graphs, Per(A) is in general a monotonically increasing func-
tion of I , by plotting the value of Per(A) versus I , for various
values n, and for randomly generated graphs.

Taking Eq. (12) together with Eq. (2) we make the observa-
tion that denser subgraphs have a higher probability of being
sampled [64]. However, at first glance our setup does not seem
very natural for sampling subgraphs. Indeed, subgraphs of G
of size k have adjacency matrices of the form An,n, where
n = (n1, . . . , nm) with ni ∈ {0, 1} and

∑
i ni = k (the same

rows and columns are used in constructing the submatrix of
A) [35]. However, Eq. (2) shows that submatrices of the form
Anin,n are sampled in our setup and these matrices are not in
general subgraphs unless n = nin.

To get around this issue, we encode a matrix K , differ-
ent to A, into our linear optical setup. Consider a set S =
{An1,n1 , . . . , AnJ,nJ} of J subgraphs of G and define K as the
block matrix

K :=

⎛
⎜⎜⎜⎜⎜⎜⎝

An1,n1

An2,n2

. 0kJ×kJ−k

.

.

AnJ,nJ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (13)

K is a kJ × kJ matrix, where the k × k block is composed of
rows ( j − 1)k + 1 to jk and columns 1 to k are the subgraph
Anj,nj . Encoding K into a linear optical circuit UK of m := 2kJ
modes and choosing an input of k photons

nin = (1, . . . , 1︸ ︷︷ ︸
modes 1 to k

, 0, . . . , 0), (14)

then passing this input through the circuit UK and postselect-
ing on observing the outcomes

nout,j := (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
modes ( j−1)k+1 to jk

, 0, . . . , 0), (15)

for j ∈ {1, . . . , J} allows one to estimate the probabilities

p(nout,j|nin) = 1

σ k
max(K )

∣∣Per
(
Knin,nout,j

)∣∣2

= 1

σ k
max(K )

∣∣Per
(
Anj,nj

)∣∣2
. (16)

As seen previously, the densest subgraph will naturally appear
more times in the sampling. Note that, while Per(K ) = 0
since it has columns composed entirely of zeros, our pro-
cedure relies on sampling from the submatrices Anj,nj of K ,
which in general have nonzero permanent and thus nonzero
probability of appearing.

The practicality of our setup depends on J . For example,
if one wants to look at all possible subgraphs of G of size
k, then J = (n

k

) ≈ nk and therefore m = 2kJ ≈ knk , mean-
ing we would need a linear optical circuit with number of
modes exponential in k, which is impractical. Nevertheless,
we will now show a useful and practical application for our
setup. More precisely, we show how to use our setup with
J = Poly(n) to improve the solution accuracy of a classical
algorithm which approximately solves the k-densest subgraph
problem [65].
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One of the classical algorithms developed in [65] ap-
proximately solves the k-densest subgraph problem by first
identifying the 	ρk
 vertices, with 0 � ρ � 1, of the dens-
est subgraph of G of size 	ρk
, calling these vertices v1 to
v	ρk
, and then choosing the remaining �(1 − ρ)k� vertices
arbitrarily. The identification of vertices v1 to v	ρk
 is done
through an algorithm which exactly solves the 	ρk
-densest
subgraph problem. The runtime of this algorithm is O(cn) and
thus exponential in n, where c > 1 generally depends on the
ratio ρk

n [65].
Our approach is to replace the arbitrary choice of the

remaining �(1 − ρ)k� vertices from [65] with the following
algorithm. First, identify all subgraphs of size k with their first
	ρk
 vertices being v1 to v	ρk
. Then, encode these into our
setup [see Eqs. (13) to (16)]. The number of these subgraphs
is

J =
(

n − 	ρk

�(1 − ρ)k�

)
� n(1−ρ)k . (17)

Choosing ρ = 1 − O( 1
k ) and substituting into Eq. (17) gives

J ≈ nO(1) = Poly(n).

Thus, when a majority of vertices of the densest subgraph
have been determined classically, our encoding can be used to
identify the remaining vertices, by using linear optical circuits
acting on a Poly(n) number of modes.

Depending on how accurately we estimate the probabilities
in Eq. (16), we can in principle boost the accuracy of the
approximate solution of [65].

D. Graph isomorphism

Given two (unweighted, undirected) graphs G1(V1, E1) and
G2(V2, E2) with |V1| = |V2| = n, and with respective adja-
cency matrices A and B, G1 is isomorphic to G2 iff B =
PπAPT

π , for some Pπ ∈ Pn, the group of n × n permutation
matrices. We now explore the graph isomorphism problem
(GI): the problem of determining whether two given graphs
are isomorphic [66]. GI has previously been investigated in the
framework of quantum walks [67,68], as well as in Gaussian
boson sampling [48]. Here, we show how to use our photonic
setup to solve GI.

More concretely, let l ∈ {1, . . . , n}, and t :=
{t1, . . . , tl}, s := {s1, . . . , sl}, with si, ti ∈ {1, . . . , n}, and
si+1 � si, ti+1 � ti, for all i. Let Bt,s be an l × l submatrix
of B constructed first by constructing an l × n matrix Bs,
such that the ith row of Bs is the sith row of B, and then
constructing Bt,s such that its jth column is the t j th column
of Bs. In Appendix E we prove the following theorem.

Theorem 2. Let G1 and G2 be two unweighted, undirected,
isospectral (having the same eigenvalues) graphs with n ver-
tices and with no self-loops. Let A and B be the respective
adjacency matrices of G1 and G2. The following two state-
ments are equivalent.

(1) There exists a fixed bijection π : {1, . . . , n} →
{1, . . . , n} such that for all l , s, t, the following is satisfied:

Per(Aπ (t),π (s) ) = Per(Bt,s),

with π (s) = {π (s1), . . . , π (sl )}, π (t) = {π (t1), . . . , π (tl )}.
(2) G1 is isomorphic to G2.

Practically, Theorem 2 implies that a protocol consisting of
encoding A and B into linear optical circuits UA and UB, and
examining the output probability distributions resulting from
passing l single photons through UA and UB, for variable l
ranging from 1 to n and for all possible

(n+l−1
l

)
arrangements

of l input photons in the first n modes, is necessary and
sufficient for G1 and G2 to be isomorphic.

Theorem 2 is an interesting theoretical observation, but its
utility as a method for solving GI is clearly limited by the
number of required experimental rounds,

∑
l=1,...,n

(n+l−1
l

)
,

which scales exponentially in n. However, by using the fact
that our setup naturally computes permanents, we can im-
port powerful permanent-related tools from the field of graph
theory to distinguish nonisomorphic graphs [30,69,70]. For
example, one of these tools, which we use in our numerical
simulations in Sec. VIII, is the Laplacian permanental poly-
nomial [30], defined here over the reals, which for a graph G
with Laplacian L(G) has the form

PL(x) := Per(xIn×n − L(G)). (18)

Laplacian permanental polynomials are particularly useful
for GI. It is known that equality of the Laplacian permanental
polynomials of G1 and G2 is a necessary condition for these
graphs to be isomorphic [30]. Furthermore, this equality is
known to be a necessary and sufficient condition within many
families of graphs [69,71], although families are also known
for which sufficiency does not hold [72]. Other polynomials
based on permanents are also studied [70,71]. All of these
polynomials can be computed within our setup, similar to how
one would compute the polynomial of Eq. (10).

VI. SAMPLE COMPLEXITIES

At this point we comment on the distinction between esti-
mating |Per(A)| and (exactly) computing |Per(A)| for some
A ∈ Mn(C). When running experiments using our setup, one
obtains an estimate of |Per(A)|, by estimating p(n|nin ) from
samples obtained from many runs of an experiment. With this
in mind, one can use Hoeffding’s inequality [73] to estimate
p(n|nin ) [and consequently |Per(A)|] to within an additive
error 1

κ
by performing O(κ2) runs, with κ ∈ R+∗. In prac-

tice, one usually aims at performing an efficient number of
runs, that is κ = Poly(n). At this point, it becomes clear
that estimating permanents using our devices will not give
a superpolynomial quantum-over-classical advantage, as for
example the classical Gurvits algorithm [74,75] can estimate
permanents to within 1

Poly(n) additive error in Poly(n) time.
However, our techniques can still potentially lead to practical
advantages [41,42] over their classical counterparts for spe-
cific examples and in specific applications.

VII. PROBABILITY BOOSTING

We strengthen the case for practical advantage by demon-
strating two techniques which allow for a better approxima-
tion of Per(A) using less samples. These techniques boost
the probabilities of seeing the most relevant outcomes. They
rely on modifying the matrix A, then encoding these modified
versions in our setup. However, care must be taken so that the
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modifications allow us to efficiently recover back the value of
Per(A).

Let Ai denote the ith row of A and c ∈ {1, . . . , n} be a fixed
row number. Let Aw be a matrix; its ith row Awi is given
by Awi = Ai for all i �= c and Awc = wAc, with w ∈ R+∗.
Our first technique for boosting is inspired by the observation
following from Eq. (11) that

Per(Aw ) = wPer(A). (19)

Thus, when w > 1, this modification boosts the value of the
permanent. However, in order to boost the probability of ap-
pearance of desired outputs using this technique, the ratio of
the largest singular values σmax(A) and σmax(Aw ) of A and Aw

must be carefully considered [see Eq. (9)]. In Appendix F, we
show that

σmax(A)

σmax(Aw )
>

1

w
1
n

(20)

is a necessary condition for boosting to occur using this tech-
nique. We also find examples of graphs G where this condition
is satisfied. For a fixed n > 1, in the limit of large w, we find
that σmax(Aw ) ≈ O(w) (see Lemma 6), meaning σmax(A)

σmax(Aw ) ≈
O( 1

w
), indicating that the condition of Eq. (20) is violated.

This means that beyond some value w0 of w, depending on
A, boosting no longer occurs.

The second technique for probability boosting we develop
takes inspiration from the study of permanental polynomials
[30]. Consider the matrix

Ãε = A + εIn×n, (21)

with ε ∈ R+. Using the expansion formula for the permanent
of a sum A + εIn×n of two matrices [76], we obtain

Per(Ãε ) = Per(A) +
∑

i=1,...,n

ciε
i, (22)

where, as in the case of the permanental polynomial, ci is a
sum of permanents of submatrices of A of size n − i × n − i
[76]. If A is a matrix with non-negative entries, then ci � 0,
and therefore

Per(Ãε ) � Per(A).

Here again, the value of the permanent is boosted and one
can recover the value of Per(A) by computing Per(Ãε ) for
n + 1 different values of ε, then solving the system of linear
equations in n + 1 unknowns to determine the set of values
{Per(A), {ci}}. As with the previous technique, the boosting
provided by this method ceases after a certain value ε0 of ε

for a fixed n, as shown in Appendix F.

VIII. NUMERICAL SIMULATIONS

In this section, we highlight some of the numerical
simulations performed to test our encoding as well as
our applications. All simulations were performed using the
PERCEVAL software platform [22]. Our code, as well as a full
description of how to use it, is available at [77].

We performed simulations for estimating the permanent
of a matrix A by encoding it into a linear optical circuit and
postselecting as in Fig. 1. An example is provided in Table I.
We construct random graphs of six vertices with various edge

TABLE I. Mean value of estimation and calculation of perma-
nent for random graphs of six vertices. For each edge probability
four graphs were generated and the mean estimated value of the
permanent is computed by taking the average of the estimated values
of the permanent of these four graphs. These estimates are obtained
from 500 postselected samples.

p μexact μestimate

0.70 43.25 44.34
0.78 83.50 82.97
0.86 109.25 109.36
0.94 155.25 156.97
1.00 265.00 265.66

probabilities p ∈ [0, 1], where p represents the probability
that vertices i and j are connected by an edge. For each p,
we construct four random graphs with respective adjacency
matrices A1, . . . , A4 and compute an estimate E(Per(Ar )) of
Per(Ar ) for each r ∈ {1, 2, 3, 4}. This estimate is computed
by using 500 postselected samples. We then compute the
mean estimate μestimate := ∑

r=1,...,4
E(Per(Ar ))

4 . Table I shows

μestimate and the mean exact value μexact := ∑
r=1,...,4

Per(Ar )
4

with respect to p. As can be seen in Table I, a close agreement
is observed between exact and estimated values.

For dense subgraph identification we wrote code which,
given access to a subset S (of size less than k) of vertices of
the densest subgraph, first constructs all possible subgraphs
of size k containing all vertices from S , then encodes these
subgraphs into a single linear optical circuit [see Eqs. (13)–
(16)], and samples outputs from this circuit. To test our code
and our technique, we considered the graph of Fig. 2.

Taking k = 3, when S = {2}, we observed that, for a fixed
number of runs, output samples corresponding subgraph com-
posed of vertices 2,4,5 appeared the most number of times in
the runs. Similarly, when S = {4}, we observed that output
samples of the induced subgraphs of vertices 2, 4, 5 and 3, 4, 5
appeared most and with almost equal frequency. By direct
inspection, it can be seen that our simulations did indeed
manage to identify, for a given S , the densest subgraph(s) of
size k which contains S .

For graph isomorphism, our code estimates the Laplacian
permanental polynomial of Eq. (A1) randomly chosen points
x and for a user-chosen number of samples. As an application,
we used this to successfully determine that the graphs GA and
GB shown in Fig. 3 are not isomorphic. The distinction is
made by observing that, for some value of x, the correspond-
ing values of the Laplacian permanental polynomial of GA
and GB did not match.

FIG. 2. Test graph for dense subgraph code.
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FIG. 3. Example of two nonisomorphic graphs of six vertices,
GA [Fig. 3(a)] and GB [Fig. 3(b)].

As further application of our code and technique, we com-
puted both the Laplacian permanental polynomial (D1) of
Eq. (18) and the permanental polynomial (D2) of Eq. (10)
and used these to distinguish nonisomorphic (or identify
isomorphic) trees [72]. We benchmarked the performance
of these polynomials with an algorithm from [78] (D3)
which determines whether or not two graphs are isomorphic.
We generated 100 pairs (T 1

i , T 2
i ) of random trees with i ∈

{1, . . . , 100} with five vertices each and used the distinguish-
ers D1, D2, D3 to classify, for each i, whether T 1

i is isomorphic
(or not) to T 2

i . We obtained that, for 31 pairs generated, all
three distinguishers outputted the same results—for 29 of the
pairs only D1 and D3 had the same results, for 18 pairs only D2

and D3 had the same results, and for 22 pairs neither D1 nor D2

outputted the same result as D3. Our results agree with the fact
that D1 and D2 are known to not be very good distinguishers
of nonisomorphic trees [72].

We also tested the performance of the distinguishers D1

and D2 for random graphs. We generated 100 pairs of random
graphs (G1

i , G2
i ) of five vertices and edge probability p = 0.8,

with i ∈ {1, . . . , 100}, and used D1, D2, D3 to determine, for
each i, whether (or not) G1

i is isomorphic to G2
i . For 75 pairs

D1 − D3 outputted the same results, for 18 pairs only D1 and
D3 outputted the same result, for two pairs only D2 and D3

outputted the same result, and for five pairs neither D1 nor D2

had the same result as D3. This shows that our distinguish-
ers are better at distinguishing random graphs than they are
at distinguishing random trees. Finally, our performed tests
show that our distinguishers D1 and D2 have a comparable
performance to the benchmark algorithm D3.

IX. IMPLEMENTATIONS ON THE ASCELLA
QUANTUM PROCESSOR

We ran experiments on the cloud-accessible Ascella pho-
tonic quantum processor [43,79]. The processor is composed
of a fully reconfigurable universal 12 × 12 linear optical cir-
cuit, a bright single-photon source coupled to a programmable
optical demultiplexer producing up to six single photons, and
single-photon detectors. Details about the optical setup as well
as the single-photon source characteristics can be found in the
Supplemental Material of [43].

The experiments performed consist of encoding graphs of
n vertices with n ∈ {3, 4} onto the linear optical circuit by the
method of Sec. IV. For each graph, we estimate the permanent
of its adjacency matrix A using the output statistics of the
device. The estimate is computed from N = 10 000 samples
each corresponding to an event where n photons are detected,
of which npost are the postselected samples corresponding
to observing the events where nin = n (see Sec. IV). Our

TABLE II. Results of experiments performed on Ascella for es-
timating the permanent of the adjacency matrix of several graphs of
three and four vertices (see main text).

Graph Exact value Estimated value npost

2 1.841 ± 0.093 1588

4 3.512 ± 0.186 1927

4 3.967 ± 0.500 247

9 8.512 ± 0.941 320

estimate is then computed as

E(Per(A)) = σ n
max(A)

√
npost

N
. (23)

Our results are summarized in Table II, where the exact
value of the permanent of the adjacency matrix of each graph
is also shown. Error bars are computed for a 95% confi-
dence interval using Hoeffding’s inequality [73]. The results
show a good overlap between estimated and exact values.
Notably for some graphs tested, the interval [E(Per(A)) −
εest, E(Per(A)) + εest] with εest the error bar does not contain
the exact value of Per(A). This is likely a consequence of pro-
cessor noise arising through single-photon distinguishability
[80], multiphoton emissions [80], or imperfect compilation
[81]. For a characterization of these errors for Ascella, refer
to the Supplemental Material of [43].

X. DISCUSSION

In summary, we have shown an efficient method for en-
coding a bounded n × n matrix onto a linear optical circuit of
2n modes. We have shown how to use our encoding to solve
various graph problems. We performed numerical simulations
validating our techniques. Finally, we performed experiments
on photonic quantum hardware cementing the near-term util-
ity of our developed techniques.

Our work opens up possibilities for practical advantages
[41,42], in the sense that our methods outperform specific
classical strategies for some instances of a given problem and
up to some (constant) input size. An interesting follow up
question would be applying our methods to a specific use case
and highlighting the practical advantage obtained.

One might also ask whether our encoding could be used
together with adaptive measurements [21] to design new pho-
tonic quantum algorithms escaping the barrier of efficient
classical simulability [74] and thereby presenting the potential
for superpolynomial quantum speedups.

An interesting fact about our encoding is that it allows
for computation of the permanent of any bounded matrix
A and not necessarily a symmetric matrix used for solving
graph problems. As such, an interesting question would be
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identifying further problems whose solution can be linked to
matrix permanents.

The unitaries used to encode matrices A are not Haar ran-
dom, as can be seen from Eq. (6) for example. As such, one
could hope that these unitaries could be implemented using
linear optical quantum circuits of shallower depth than the
standard universal interferometers [25,57]. This is desirable
in practice, as shallower circuits are naturally more robust to
some errors such as photon loss [82,83].
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APPENDIX A: NOTATION

We present here some notation which we will use through-
out this Appendix.

We will denote by G(V, E ) (or sometimes G for simplicity)
a graph with a vertex set V = {v1, . . . , vn} and edge set E =
{e1, . . . , el}, with n, l ∈ N∗. The degree of vertex vi will be
denoted as |vi| and is the number of edges connected to vi. The
adjacency matrix corresponding to G will be denoted as A(G)
(or sometimes A for simplicity). Unless otherwise specified,
we will deal with unweighted, undirected, and simple graphs
G. In these cases, the adjacency matrix A(G) is a symmetric
(0,1) matrix [28]. The Laplacian of a graph G is defined as
[30]

L(G) := D(G) − A(G), (A1)

with D(G) := diag(|v1|, . . . , |vn|) a diagonal matrix whose
ith entry is the degree of vertex vi.

Let Ei be a 1 × n row vector with zeros everywhere except
at entry i which is one. The n × n identity can then be written
as

In×n =

⎛
⎜⎜⎜⎜⎜⎜⎝

E1

E2

.

.

.

En

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let π : {1, . . . , n} → {1, . . . , n} be a permutation of the set
{1, . . . , n}; we will denote the symmetric group or order n (i.e.,
the set of all such permutations) as Sn. The permutation matrix
corresponding to π is defined as

Pπ :=

⎛
⎜⎜⎜⎜⎜⎜⎝

Eπ (1)

Eπ (2)

.

.

.

Eπ (n)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A2)

The set of all such permutation matrices forms a group, which
we will denote as Pn [86].

Let Mn(C) be the set of n × n complex matrices and let
M := (Mi j )i, j∈{1,...,n} ∈ Mn(C). We will denote by ‖M‖ the
spectral norm of M, defined as

‖M‖ := σmax(M ) =
√

λmax(M†M ), (A3)

where σmax(M ) is the largest singular value of M, which is
equal to the square root of the largest eigenvalue of M†M,
denoted as λmax(M†M ); M† denotes the conjugate transpose
of M. MT will denote the transpose of M. Also, let

‖M‖∞ := maxi

∑
j=1,...,n

|Mi j |, (A4)

where maxi denotes the maximum of the above defined sum
over all rows i ∈ {1, . . . , n} of M, as well as

‖M‖1 := max j

∑
i=1,...,n

|Mi j |, (A5)

where max j denotes the maximum of the above defined sum
over all columns j ∈ {1, . . . , n} of M.

APPENDIX B: DETAILED COMPARISON WITH
PREVIOUS WORK

The main differences between our encoding and that of
[35,47–49], which in general also encodes a (real symmet-
ric) n × n matrix A into a photonic setup with 2n modes,
are (1) our encoding directly embeds A into a linear optical
circuit, whereas the encoding in [35,47–49] encodes A by
using a combination of squeezed states of light, as well as
linear optical circuits, and (2) our encoding works also for
general nonsymmetric bounded matrices A, whereas that of
[35,47–49] supports only symmetric matrices A. Of course,
there are ways to construct, starting from nonsymmetric A,
a larger matrix A which is symmetric [87], then encoding A
using techniques in [35,47–49]. However, this requires using a
photonic setup of L > 2n modes and it is unclear whether the
number of modes could be reduced back to 2n in this setting.
Finally, (3) our photonic setup composed of single-photon
sources, linear optical circuits, and single-photon detectors,
when used together with our encoding, naturally allows the
computation of the permanent of a matrix, whereas the setup
in [35,47–49] computes the Hafnian [Haf(.)] of a matrix
[88,89]. The Hafnian is in some sense a generalization of the
permanent, since

Haf
(

0n×n A
AT 0n×n

)
= Per(A), (B1)

where 0n×n is the all-zeros n × n matrix. Nevertheless,
Eq. (B1) highlights the fact that, using the setup in [35,47–
49] together with their encoding to compute Per(A), requires
in general a number of modes exactly double that needed to
compute Per(A) using our setup. To explain this point further,
first note that, although A = (0n×n A

AT 0n×n
) is symmetric, it does

not satisfy the criteria of encodability onto a Gaussian state
mentioned in [47], since the off-diagonal blocks need to be
equal as well as positive definite. Thus one needs to use
A

⊕
A, which maps onto a Gaussian covariance matrix [47],
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but this is a 4n × 4n matrix. Finally, note that input states other
than squeezed states, such as thermal states, have been used
in Gaussian boson sampling for encoding and computing the
permanent of positive-definite matrices [90].

APPENDIX C: COMPUTING PERMANENTAL
POLYNOMIALS

In order to compute the coefficients {ci} in Eq. (10), we
perform n + 1 experiments, where in each experiment we en-
code Bx into a linear optical circuit and then estimate Per(Bx ).
For each experiment i, we choose a different value xi of x,
for i going from 1 to n + 1. By doing this, we obtain the
following system of n + 1 linear equations in n + 1 unknowns
c0, . . . , cn:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 . . . xn
1

1 x2 . . . xn
2

. . . . . .

. . . . . .

.

. . . . .

1 xn+1 . . . xn
n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

c0

c1

.

.

.

cn

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

PA(x1)
PA(x2)

.

.

.

PA(xn+1)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C1)

Let

D(x1, . . . , xn+1) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 . . . xn
1

1 x2 . . . xn
2

. . . . . .

. . . . . .

.

. . . . .

1 xn+1 . . . xn
n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The determinant

f (x1, . . . , xn+1) := Det[D(x1, . . . , xn+1)] (C2)

is a polynomial of (x1, . . . , xn+1) ∈ Rn+1, which is noniden-
tically zero; thus we can make use of the following lemma
proven in [91].

Lemma 1. Let f (x1, . . . , xn+1) be a polynomial of real
variables (x1, . . . , xn+1) ∈ Rn+1, which is nonidentically
zero. Then the set {(x1, . . . , xn+1) | f (x1, . . . , xn+1) = 0} has
Lebesgue measure zero in Rn+1.

Lemma 1 implies that almost any choice of (x1, . . . , xn+1)
gives an invertible matrix D(x1, . . . , xn+1), since its deter-
minant is nonzero for almost any choice (except a set of
measure zero) of (x1, . . . , xn+1). This is important, as it allows
one to solve the system of linear equations in Eq. (C1) with
high probability by randomly choosing n + 1 values of x and

thereby determine the coefficients {ci} of the permanental
polynomial.

As a final remark, note that our setup allows estimating
|Per(Bx )| rather than Per(Bx ) needed to solve the sys-
tem of linear equations. We can, however, knowing the
sign of Per(Bx ), always deduce it from |Per(Bx )|. Choos-
ing x ∈ R− gives Per(Bx ) = (−1)nPer(−xIn×n + A), where
Per(−xIn×n + A) � 0. In this way we can always know the
sign of Per(Bx ) beforehand. By lemma 1, choosing points
of the form (x1, . . . , xn+1) with xi � 0 allows for solving the
system of linear equations, since the set of these points does
not have measure zero in Rn+1.

APPENDIX D: k-DENSEST SUBGRAPH PROBLEM

In this section we prove Theorem 1 which we restate here
for convenience.

Let G(V, E ) be a graph with |V | = n, |E | = I , with n, I ∈
N∗, and n, I even. Let A = (ai j )i, j∈{1,...,n}, with ai j ∈ {0, 1}
being the adjacency matrix of G. Theorem 1 states that

Per(A) � f (n, I ),

where f (n, I ) is a monotonically increasing function with
increasing I , for fixed n.

Proof. Let ri = ∑
j=1,...,n ai j . Consider the upper bound

for Per(A) for a (0,1)-matrix A shown in [92,93]

Per(A) �
∏

i=1,...,n

(ri!)
1
ri . (D1)

Also, note the following upper bound shown in [94] for simple
graphs G with even n and I:∏

i=1,...,n

(ri!)
1

2ri � ω(n, I ), (D2)

with

ω(n, I ) :=
(⌊

2I

n

⌋
!

) n
2 −α⌊
2I
n

⌋(⌈
2I

n

⌉
!

) α⌈
2I
n

⌉
, (D3)

with

α := I − n

⌊
I

n

⌋
(D4)

and 	.
, �.� denoting the ceiling and floor functions, respec-
tively. Taking the square root of Eq. (D1) and plugging it in
Eq. (D2), we get √

Per(A) � ω(n, I ). (D5)

Squaring Eq. (D5), then defining f (n, I ) := [ω(n, I )]2, while
noting that ω(n, I ) [and therefore f (n, I )] is monotonically
increasing with increasing I for fixed n, as observed in [35],
completes the proof. �

APPENDIX E: GRAPH ISOMORPHISM

Let A and B be the adjacency matrices of two (unweighted,
undirected, no self-loops) graphs G1 and G2 with n vertices
each. We will also assume that G1 and G2 are isospectral; that
is, they have the same eigenvalues. Isomorphic graphs are also
isospectral; this can be seen by noting that, if B = Pπ APT

π ,

032405-8



SOLVING GRAPH PROBLEMS WITH SINGLE PHOTONS … PHYSICAL REVIEW A 108, 032405 (2023)

then the characteristic polynomials of A and B are equal. That
is,

Det(λIn×n − B) = Det
(
λIn×n − PπAPT

π

)
= Det

[
Pπ (λIn×n − A)PT

π

]
= Det

(
PπPT

π

)
Det[(λIn×n − A)]

= Det[(λIn×n − A)],

since PπPT
π = In×n. The converse, however, that isospectral

graphs are isomorphic, is not true [95]. Since determining
the eigenvalues of an n × n matrix takes O(n3) time [59], it
is good practice to check whether G1 and G2 are isospectral
before proceeding to check if they are isomorphic, as there is
no point in continuing if they are not isospectral.

We will now prove Theorem 2 in the main text.
Proof. Proof that (2) ⇒ (1).
G1 is isomorphic to G2; then B = PπAPT

π , with Pπ ∈ Pn.
Writing A as A = (ai j )i, j∈{1,...,n}, we can write B as B =
(bi j )i, j∈{1,...,n} = (aπ (i)π ( j) )i, j∈{1,...,n}, with π : {1, . . . , n} →
{1, . . . , n} the bijection corresponding to Pπ . That B can be
written this way can be seen directly by noting that Pπ (re-
spectively PT

π ) permutes the rows (respectively columns) of
A according to π . For l ∈ {1, . . . , n}, s = {s1, . . . , sl}, t =
{t1, . . . , tl}, the submatrix Bt,s is given by

Bt,s =

⎛
⎜⎜⎜⎜⎝

bs1t1 . . . bs1tl
.

.

.

bsl t1 . . . bsl tl

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

aπ (s1 )π (t1 ) . . . aπ (s1 )π (tl )

.

.

.

aπ (sl )π (t1 ) . . . aπ (sl )π (tl )

⎞
⎟⎟⎟⎟⎠ = Aπ (t),π (s).

Thus Per(Aπ (t),π (s) ) = Per(Bt,s) and this holds ∀ l, s, t.
Therefore, we recover statement (1).

Proof that (1) ⇒ (2). We have that ∀ l, s, t, Per(Bs,t ) =
Per(Aπ (t),π (s) ). In particular, consider the case where s =
{i, . . . , i}, t = { j, . . . , j}, with i, j ∈ {1, . . . , n}. We then have

Per(Bs,t ) = bl
i jPer

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
1 1 . . . 1

.

.

.

1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠

= Per(Aπ (t),π (s) ) = al
π (i)π ( j)Per

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
1 1 . . . 1

.

.

.

1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus

bl
i j = al

π (i)π ( j),

which holds ∀ l , where π is a fixed bijection. Since G1, G2

are unweighted and undirected, this means that aπ (i)π ( j), bi j ∈
{0, 1}, and therefore that

bi j = aπ (i)π ( j),

which holds ∀ l, i, j ∈ {1, . . . , n}, and where π is fixed.
Therefore, we can deduce that B = (aπ (i)π ( j) )i, j∈{1,...,n} =

Pπ APT
π . We have thus recovered statement (2).

This completes the proof of Theorem 2. �
As already mentioned in the main text, and made concrete

through Theorem 2, we have shown that our setup provides
necessary and sufficient conditions for two graphs to be iso-
morphic. However, the number of experiments we need to
perform scales exponentially with the number of vertices of
the graphs (see main text). To get around this, we can in-
stead choose to compute Laplacian permanental polynomials
[Eq. (18)], which are powerful distinguishers on nonisomor-
phic graphs [30]. We now prove the following lemma, which
is probably found in the literature, showing that isomorphic
graphs have the same Laplacian permanental polynomials.

Lemma 2. Let G1 and G2 be two isomorphic graphs with
adjacency matrices A, B, where B = PπAPT

π , with Pπ ∈
Pn. Let L(G1) and L(G2) be the Laplacians of G1 and
G2; then L(G2) = PπL(G1)PT

π , and furthermore Per[xIn×n −
L(G1)] = Per[xIn×n − L(G2)], for all x ∈ R.

Proof. L(G2) = D(G2) − B, with B = PπAPT
π , and

D(G2) = [d (G2)ii]i∈{1,...,n}, with d (G2)ii degree of vertex
i of G2, which is vertex π (i) of G1. Thus D(G2) =
[d (G1)π (i)π (i)]i∈{1,...,n} = Pπ D(G1)PT

π and, consequently,
L(G2) = PπL(G1)PT

π . Using this, we have that

Per[xIn×n − L(G2)] = Per
[
xIn×n − PπL(G1)PT

π

]
= Per

[
Pπ [xIn×n − L(G1)]PT

π

]
= Per(xIn×n − L(G1)),

where the last equality holds from the fact that the perma-
nent is invariant under permutations [96]. This concludes the
proof. �

Computing the coefficients of Laplacian permanental poly-
nomials can be done using our setup, in a similar way to how
these coefficients are computed for permanental polynomials,
as seen in Appendix C. Indeed, replacing Bx = xIn×n − A
in Appendix C, with Bx = xIn×n − L(G), then following the
same steps as in Appendix C, allows one to compute the
coefficients of the Laplacian permanental polynomial.

APPENDIX F: BOOSTING OUTPUT PROBABILITIES

1. First method for boosting

Consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1

.

.

.

An

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with Ai = (ai1, . . . , ain) the ith row vector of A ∈ Mn(R). We
will first discuss the method where we attempt to boost the
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probability of the appearance of the output corresponding to
Per(A) in our setup by modifying A as follows. Let

Aw =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

.

.

.

Ac−1

wAc

Ac+1

.

.

.

An

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (F1)

where the cth row of A is multiplied by w ∈ R+∗. We first
prove the following lemma.

Lemma 3. Per(Aw ) = wPer(A).
Proof. Let A = (ai j )i, j∈{1,...,n} and Aw = (bi j )i, j∈{1,...,n}.

Looking at Eq. (11) for Per(Aw ), an element of the cth
row appears exactly once in each product

∏
i=1,...,n biπ (i)

in the sum. Since bcπ (c) = wacπ (c) thus
∏

i=1,...,n biπ (i) =
w

∏
i=1,...,n aiπ (i). Thus

∑
π∈Sn

∏
i=1,...,n biπ (i) =

w
∑

π∈Sn

∏
i=1,...,n aiπ (i), which completes the proof. �

Lemma 3 allows one to efficiently compute an estimate of
Per(A), given an estimate of Per(Aw ).

Let p(n|nin) [respectively pw(n|nin)] be the probabilities
of observing outcomes corresponding to Per(A) [respectively
Per(Aw )] in our setup. Boosting happens when

pw(n|nin) > p(n|nin ). (F2)

We will now show the following.
Lemma 4. pw(n|nin) > p(n|nin ) ⇒

σmax(A)

σmax(Aw )
>

1

w
1
n

. (F3)

Proof. Plugging Eq. (8) in Eq. (F2), while choosing s =
σmax(A) [respectively σmax(Aw )] for p(n|nin ) [respectively
pw(n|nin)] and using Lemma 3 gives

w2 |Per(A)|2
σ 2n

max(Aw )
>

|Per(A)|2
σ 2n

max(A)
.

Assuming Per(A) �= 0 allows for removing it from both sides
of the above equation. Regrouping the terms in the above
equation and taking it to the (.)

1
2n power completes the

proof. �
Although Lemma 4 gives a necessary condition for boost-

ing to occur, it is not very informative as it does not answer
the question: what properties should A verify for boosting to
be possible under our above defined modification? It will be
the aim of the rest of this section to dig deeper in an attempt
to answer the above question.

Let

γ :=
∑

j

|ac j |, (F4)

with ac j the element of the cth row and jth column of A. Note
that

γ � ‖A‖∞

and also that

σmax(A) �
√

n‖A‖∞, (F5)

where this last equation follows immediately from the well-
known relation [97]

‖A‖ �
√

n‖A‖∞. (F6)

From the definition of γ , ‖.‖∞, and Aw, we also have

‖Aw‖∞ = max(wγ , ‖A‖∞). (F7)

Finally, recall the following relation for the trace [de-
noted as Trace(.)] of matrices L = (li j )i, j∈{1,...,n} and M =
(mi j )i, j∈{1,...,n}:

Trace(LM ) =
∑

i=1,...,n

∑
j=1,...,n

li jm ji. (F8)

With the above equations in hand we will now prove the
following.

Lemma 5.
√∑

i σ
2
i (A)

n � σmax(A) � √
n‖A‖∞, with

{σi(A)}i∈{1,...,n} the singular values [98] of A.
Proof. The upper bound on σmax(A) follows immediately

from Eq. (F5). For the lower bound, we begin by noting, from
the definition of singular values of A, that

Trace(AAT ) =
∑

i=1,...,n

σ 2
i (A).

Using the fact that σi(A) � σmax(A), ∀ i ∈ {1, . . . , n}, and
plugging this into the above equation gives∑

i=1,...,n

σ 2
i (A) � nσ 2

max(A). (F9)

Rearranging the terms in Eq. (F9) and taking the square root
of it gives the desired lower bound and completes the proof.�

For Aw, we show the following.

Lemma 6.
√∑

i σ
2
i (A)+(w2−1)δ

n � σmax(Aw ) �√
nmax(wγ , ‖A‖∞), with δ := ∑

j a2
c j .

Proof. The upper bound for σmax(Aw ) follows from plug-
ging Eq. (F7) in the relation σmax(Aw ) � √

n‖Aw‖∞. For the
lower bound, denote A = (ai j ), Aw = (bi j ), and consider

Trace
(
AwAT

w

) =
∑

i

∑
j

b2
i j =

∑
i �=c

∑
j

a2
i j + w2

∑
j

a2
c j,

where the second equality follows from using the relation of
Eq. (F8) and the third equality follows from noting that bi j =
ai j for i �= c and bc j = wac j . Now,∑

i �=c

∑
j

a2
i j + w2

∑
j

a2
c j =

∑
i

∑
j

a2
i j + (w2 − 1)

∑
j

a2
c j

= Trace(AAT ) + (w2 − 1)δ

=
∑

i

σ 2
i (A) + (w2 − 1)δ.
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Thus

Trace
(
AwAT

w

) =
∑

i

σ 2
i (A) + (w2 − 1)δ. (F10)

Noting that

Trace
(
AwAT

w

)
� nσ 2

max(Aw ),

then plugging this into Eq. (F10), rearranging, and taking the
square root, one obtains the desired lower bound for σmax(Aw ).
This completes the proof. �

Taking w > 1, and with Lemmas 5 and 6 in hand, we can
make the following observations. First, if

wγ < ‖A‖∞, (F11)

the upper bounds of σmax(A) and σmax(Aw ) coincide. Further-
more, if

(w2 − 1)δ �
∑

i

σ 2
i (A) = Trace(AAT ), (F12)

then the lower bounds of σmax(A) and σmax(Aw ) almost
coincide.

Verifying the conditions in Eqs. (F11) and (F12) for some
values of w and n likely implies that σmax(Aw ) ≈ σmax(A), and
therefore that the condition

σmax(A)

σmax(Aw )
>

1

w
1
n

is satisfied, which, from Lemma 4, is a necessary condition for
boosting, since δ, γ , ‖A‖∞, and Trace(AAT ) are properties of
A which are easily computable. We have thus established a
way to test whether boosting using our technique is possible,
given some matrix A.

What remains is to find matrices A satisfying the above
properties [Eqs. (F11) and (F12)] for some w and some val-
ues of n. One example which we, numerically, find satisfies
these properties, and for which we observe boosting, is the
adjacency matrix of the ten vertex graph

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1 1 1 0
1 0 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 0
1 1 1 1 0 1 1 1 1 0
1 1 1 1 1 0 1 1 1 0
1 1 1 1 1 1 0 1 1 0
1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1 0 0
0 1 1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (F13)

and where we choose c = 10 when constructing Aw (i.e., we
multiply the tenth row of A by w). The graph corresponding
to A is represented in Fig. 4. The conditions in Eqs. (F11) and
(F12) appear to be satisfied, up to a certain value of w, when-
ever row c corresponds to a vertex which has a significantly
lesser degree than other vertices in the graph, as can be seen
in the above chosen example.

Let

R := pw(n|nin)

p(n|nin )
. (F14)

In Fig. 5, we have plotted the curve of R as a function of w for
the graph of Fig. 4 and Eq. (F13). As can be seen in Fig. 5, we

FIG. 4. Graph with adjacency matrix A in Eq. (F13).

can boost the probability p(n|nin ) up to ≈4.5 times its value
by using our boosting technique on the graph of Eq. (F13).
However, note that the boosting is not indefinite, as there is
a value w0 of w beyond which using our technique results in
lower probabilities (in Fig. 5, w0 ≈ 5.5). For a given fixed n
this behavior is to be expected. Indeed, by looking at the upper
and lower bounds of σmax(Aw ) in Lemma 6 for w � 1, it can
be seen that these both increase linearly with the increase in w

and so σmax(Aw ) ≈ O(w). Therefore, for fixed n > 1, we get
something like

σmax(A)

σmax(Aw )
≈ O

(
1

w

)
<<

1

w
1
n

,

meaning that the condition in Lemma 4 is violated and conse-
quently no boosting is possible anymore.

It is interesting to speculate whether the apparent impos-
sibility of indefinite boosting sheds light on the fundamental
incapability of quantum devices to efficiently solve �P-hard
problems, namely in this case exactly computing the perma-
nent of an n × n matrix [84,99]. Unfortunately, we have not
been able to advance in addressing this fascinating question.

2. Second method for boosting

Our second technique for boosting is to boost by consider-
ing the modified adjacency matrix

Ãε = A + εIn×n,

FIG. 5. R (blue curve) as a function of w for the graph of
Eq. (F13). Any value of R > 1 (above the horizontal purple line)
indicates boosting.
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where ε ∈ R+. We will consider matrices A ∈ Mn(R+) with
non-negative entries. In this case, we have

Per(Ãε ) � Per(A).

Furthermore, Per(A) can be recovered from computing Ãε

at n + 1 values of ε, then deducing Per(A), as is done for
permanental polynomials in Appendix C. Let

pε(n|nin) := |Per(Ãε )|2
σ 2n

max(Ãε )
. (F15)

What is remarkable about pε(n|nin) is that, for fixed n, it can
be made arbitrarily close to one, with increasing ε. To see this,
consider the case where ε � maxi, j (ai j ), where maxi, j (ai j )
is the maximum entry of A. In this case we have

Per(Ãε ) ≈ Per(εIn×n) = εn.

Also,

σmax(Ãε ) ≈ σmax(εIn×n) = ε.

Plugging these into Eq. (F15) gives

pε(n|nin) ≈ 1.

At this point, one is tempted to say that the boosting
provided by this method is indefinite. This is a misleading
conclusion, however, but the reason why is subtle. In the
rest of this section, we will aim to expose this subtlety and
understand under what conditions this technique provides a
useful boosting.

First, we need to prove the following.

Lemma 7.
√

σ 2
min(A) + 2εTrace(A)

n + ε2 � σmax(Ãε ) �√
n(‖A‖∞ + ε), where σmin(A) is the lowest singular value of

A.
Proof. To compute the upper bound, recall the iden-

tity σmax(Ãε ) � √
n‖Ãε‖∞. Now, ‖Ãε‖∞ = ‖A + εIn×n‖∞ �

‖A‖∞ + ε‖In×n‖∞ = ‖A‖∞ + ε, where the last part of this
equation follows from applying the triangle inequality for
norms. Plugging this into the above identity completes the
proof for the upper bound.

For the lower bound, consider

Trace
(
ÃεÃT

ε

) = Trace[(A + εIn×n)(AT + εIn×n)]

= Trace(AAT )+2ε Trace(A)+ε2Trace(In×n)

= Trace(AAT ) + 2ε Trace(A) + nε2

=
∑

i

σ 2
i (A) + 2ε Trace(A) + nε2. (F16)

Now,

Trace
(
ÃεÃT

ε

) =
∑

i

σ 2
i (Ãε ) � nσ 2

max(Ãε )

and ∑
i

σ 2
i (A) + 2ε Trace(A) + nε2

� nσ 2
min(A) + 2ε Trace(A) + nε2.

Plugging these into Eq. (F16) gives

nσ 2
max(Ãε ) � nσ 2

min(A) + 2ε Trace(A) + nε2. (F17)

Dividing both sides of Eq. (F17) by n then taking the square
root results in the desired lower bound. This concludes the
proof of Lemma 7. �

Recall that we can write

Per(Ãε ) =
∑

i=0,...,n

ciε
i,

with c0 = Per(A), cn = Per(In×n) = 1, and ci � 0, since they
are related to sums of permanents’ submatrices of A [30].
Let λ1 := max(c0, c1, . . . , cn) and λ2 := min(c0, c1, . . . , cn)
be the maximum and minimum values of the coefficients ci.
We now prove that the following.

Lemma 8. λ2
εn+1−1

ε−1 � Per(Ãε ) � λ1
εn+1−1

ε−1 .
Proof. The proof of the upper bound follows first from

noting that
∑

i=0,...,n ciε
i � λ1

∑
i=0,...,n εi, then by using the

geometric series identity
∑

i=0,...,n εi = εn+1−1
ε−1 . The proof

of the lower bound is similar, but the starting point is∑
i=0,...,n ciε

i � λ2
∑

i=0,...,n εi. �
We will now consider the case where ε → ∞ and n is

fixed. In this case, Lemma 7 implies

σmax(Ãε ) ≈ O(ε). (F18)

Similarly, Lemma 8 gives

Per(Ãε ) ≈ O(εn). (F19)

With these equations in hand, we will now argue that, after
a certain point, estimating Per(A) starting from Per(Ãε ) will
require a higher sample complexity (number of experiments
needed to be performed) than estimating Per(A) directly. This
will show why, although the probabilities pε(n|nin) can be
boosted indefinitely with our method, our method will cease
being advantageous after a certain value of ε.

Recall that, in order to estimate probabilities in our setup
to within additive error 1

κ
, we require O(κ2) samples from

standard statistical arguments [73]. In order to estimate
|Per(Ãε )|2 to a good precision in our setup, we need 1

κ
≈

O( 1
σ 2n

max(Ãε )
) ≈ O( 1

ε2n ), since the output probabilities [propor-

tional to |Per(Ãε )|2] are scaled down by σ 2n
max(Ãε ) in our

setup. Thus the total number of experiments we need to
perform to estimate Per(Ãε ) [and therefore estimate from it
Per(A)] is

EÃε
= O(κ2) = σ 4n

max(Ãε ) = O(ε4n). (F20)

By a similar argument, directly estimating A by encoding A
into our setup without modification and collecting samples
requires

EA = O
(
σ 4n

max(A)
) = O(1), (F21)

since n is fixed. It is now clear that, with ε increasing, there is
a point ε0 after which

EÃε
> EA.

At this point, it will no longer be advantageous to use our
modification to compute the permanent of A.
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TABLE III. Results of testing boosting for different multiplica-
tion values by multiplying by w node 5 of the graph represented in
Fig. 8. The middle column of this table contains estimates of Per(A)
for each value of w tested and the rightmost column contains the
times required to compute these estimates.

w Permanent estimation Time

1 8.776 104 min 43.6 s
2 8.694 35 min 5.2 s
3 8.613 30 min 13.8 s
4 9.303 51 min 18.5 s
5 9.637 158 min 27.4 s
6 — > 200 min

As a concluding remark for this section, although the
methods we discussed here for boosting do not provide an
indefinite advantage, they may nevertheless be useful to obtain
advantages in practice, especially in the context of NISQ
hardware where the number of photons n in our setup is small
to modest.

APPENDIX G: NUMERICS

Here we provide numerical support for Theorem 1, stating
that the permanent of a given graph (with even number of
vertices and edges) is upper bounded by a monotonically
increasing function of the number of edges. This is at the heart
of why our setup can be used to identify dense subgraphs,
as denser subgraphs tend to appear more when sampling. We
performed numerical tests for random graphs of a different
number of vertices and an increasing number of edges per
each vertex number. The results are plotted in Figs. 6 and 7.
We can indeed observe, as predicted by Theorem 1, that the
exact value of the permanent increases with the graph edge
probability.

FIG. 6. Mean value of the permanent of 15 randomly generated
graphs of eight vertices plotted in function of edge probability. The
edge probability represents the probability that any two vertices i and
j of the randomly generated graph are connected by an edge.

FIG. 7. Mean value of the permanent of 15 randomly generated
graphs of seven vertices plotted in function of edge probability.

Finally, we constructed code to test our first method for
boosting (see Appendix F). We considered the graph of Fig. 8,
which has the following adjacency matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 0
1 0 1 1 1 1
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 0 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (G1)

Note that Per(A) = 9. Multiplying the last row of the matrix
in Eq. (G1) by w ∈ {1, 2, 3, 4, 5, 6}, we obtain a matrix

Aw =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 0
1 0 1 1 1 1
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 0 0
0 w 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (G2)

For each value of w ∈ {1, 2, 3, 4, 5, 6}, we computed an esti-
mate of Per(Aw ), and deduced from it an estimate of Per(A)
[see Eq. (19)] using 100 postselected samples, and recorded
the time needed to collect those samples. We report these
results in Table III. As can be clearly observed in Table III,
we observe boosting for w ∈ {2, 3, 4}, as manifested in the
time needed to compute an estimate of the permanent with
these values of w versus the time needed to compute it with
no modification (w = 1) of the adjacency matrix. We also
observe that multiplying by w > 4 ceases to boost the desired
output probabilities.

FIG. 8. Test graph for boosting.
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