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Characterizing large noisy multiparty quantum states using genuine multipartite entanglement is a challenging
task. In this paper, we calculate lower bounds of genuine multipartite entanglement localized over a chosen
multiparty subsystem of multiqubit stabilizer states in the noiseless and noisy scenarios. In the absence of noise,
adopting a graph-based technique, we perform the calculation for arbitrary graph states as representatives of the
stabilizer states and show that the graph operations required for the calculation have a polynomial scaling with the
system size. As demonstrations, we compute the localized genuine multipartite entanglement over subsystems
of large graphs having linear, ladder, and square structures. We also extend the calculation for graph states
subjected to single-qubit Markovian or non-Markovian Pauli noise on all qubits and demonstrate, for a specific
lower bound of the localizable genuine multipartite entanglement corresponding to a specific Pauli measurement
setup, the existence of a critical noise strength beyond which all of the postmeasured states are biseparable.
The calculation is also useful for arbitrary large stabilizer states under noise due to the local unitary connection
between stabilizer states and graph states. We demonstrate this by considering a toric code defined on a square
lattice and computing a lower bound of localizable genuine multipartite entanglement over a nontrivial loop of
the code. Similar to the graph states, we show the existence of the critical noise strength in this case also and
discuss its interesting features.
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I. INTRODUCTION

In the last three decades, characterizing multiparty quan-
tum states using multipartite entanglement [1,2] as figure of
merit has been established as one of the most important and
yet challenging problems. These quantum states are used
as resources in quantum information processing tasks, such
as measurement-based quantum computation [3–5], quantum
cryptography [6–10], and quantum dense coding [11–13] in-
volving multiple senders and receivers [14–17]. Additionally,
multipartite entanglement has also been proved a crucial in-
gredient in problems related to quantum many-body systems
[18,19], photosynthetic complexes [20–22], and even anti-
de Sitter/conformal field theory (AdS/CFT) correspondence
in quantum gravity [23–28]. These observations have driven
the world-wide effort to create multiparty-entangled quantum
states in laboratory using trapped ions [29,30], cold atoms and
optical lattices [31–34], photons [35–38], nuclear magnetic
resonance [39], and superconducting qubits [40].

Among the multiparty quantum states of interest, stabilizer
states [41,42] form an extremely important class of states
containing genuinely multipartite entanglement (GME) [1],
i.e., these states are not separable in any bipartition. Sta-
bilizer states are used widely in several areas of quantum
information theory. Arguably, the most prominent examples
of these states are the graph states [43], encompassing (1)
the multiqubit GHZ states [44] having immense applications
in quantum communication [45,46] and quantum metrology
[47], and (2) the cluster states [48] used as resource in one-
way quantum computation and in building quantum networks
[49]. Stabilizer states are also used in fault-tolerant quantum
error corrections [50,51] and in establishing secure quantum

communication [52,53]. Experimental realization and manip-
ulation of stabilizer states have also been possible [54–60],
thereby highlighting the potential for testing theoretical re-
sults in the laboratory.

Stabilizer states with a large number of qubits are required
to perform quantum error correction where error occurs on
multiple physical qubits. Therefore, it is natural to look for
methodologies to characterize large stabilizer states as well
as its subsystems under different types of noise using GME.
In this respect, graph states have received a great deal of the
attention due to the fact that all stabilizer states can be con-
nected to graph states via local unitary transformations [61],
leading to translation of the results on GME obtained for the
graph states [43,48] to the case of arbitrary stabilizer states.
However, while a few studies exist on characterizing noisy
graph states using bipartite [62,63] and genuine multipartite
entanglement [64–66], in general, calculation for mixed states
in the presence of noise becomes difficult due to the scarcity
of computable GME measures for mixed states [1]. There-
fore, a full understanding of the behavior of GME in noisy
stabilizer states and its different multiparty subsystems is far
from complete. This brings us to the investigation of the GME
over chosen subsystems of a multiqubit system described by
a stabilizer state with and without noise, which is the focus of
this paper.

Towards this, we adopt a measurement-based protocol
[67–69] for quantifying entanglement in subsystems of sta-
bilizer states, which has been established as an appropriate
approach [43,70,71] over the partial-trace-based methods [1].
This leads to localizable entanglement (LE)—the maximum
average entanglement over the chosen subsystem, maximized
over all possible single-qubit projection measurements over
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all qubits in the rest of the system [68,69]—defined in the
same vein as the entanglement of assistance [67]. Apart
from being crucial in quantifying two-qubit entanglement
in pure [43] as well as noisy stabilizer states [70,71], LE
and related ideas have also been proven a key element in
studying the entanglement length [68,69,72,73] and quantum
phase transitions [74–77] in quantum spin models, and in
defining entanglement percolation [78] in quantum networks.
Extensive investigations into the features of LE in generic
multiqubit quantum states in the presence of noise have also
been performed [79–82].

The studies on the role of LE in characterizing noiseless
and noisy quantum states have mostly considered a bipartite
split of the chosen subsystem, often a two-qubit subsystem
[43,68–78]. The exponential growth of the Hilbert space
with the number of qubits has also confined these studies
to systems of small number of qubits. While exploration of
the behavior of the localizable GME (LGME) on multiparty
subsystems of paradigmatic pure states has been attempted
[83], LGME on subsystems of noisy multipartite quantum
states of arbitrary size, to the best of our knowledge, remains
unexplored.

In this paper we focus specifically on arbitrary stabi-
lizer states [41,42] in noiseless scenarios as well as under
noise corresponding to specific noise models and compute
LGME along with its lower bounds to investigate its features.
Selecting graph states [43] as a candidate stabilizer state,
we calculate the LGME and its lower bounds over a se-
lected subsystem using a graphical approach for single-qubit
measurements [84,85] and demonstrate the results in typical
graphs having linear, ladder, and square graph structures. We
also extend the calculation in situations where the graph states
(or the stabilizer states) are subjected to single-qubit local
Pauli noises [41,86] of Markovian [87] and non-Markovian
[88–90] variants and investigate at which noise strength the
localized genuine multipartite entanglement ceases to exist.
The calculations can also be extended for arbitrary stabilizer
states due to their connection to graph states by local unitary
operations [61,91]. We demonstrate this by considering a toric
code [92,93] defined on a square lattice. A more detailed
yet nontechnical overview of the main results, discussed in
Secs. III–V, can be found in Sec. II. Section VI contains
the concluding remarks and an overview of possible future
directions.

II. OVERVIEW OF THE MAIN RESULTS

In this section we present an overview of the subsequent
sections containing the technical details and different results.
In Sec. III we consider the noiseless scenario and provide a
description of the graph states and their important features in
Sec. III A. The formal definition of LE is given in Sec. III B,
and the LGME on a chosen subsystem corresponding to
single-qubit Pauli measurements on arbitrary graph states is
discussed. Since the measurements are restricted to single-
qubit Pauli measurements on all qubits outside the chosen
subsystem, our calculation provides a lower bound of the
LGME. Specifically, we show that

(a) For a fixed Pauli measurement setup, the resulting
graphs corresponding to the postmeasured states are indepen-
dent of the measurement outcomes and

(b) The postmeasured graph states differ from each other
only by local unitary operations, thereby having identical en-
tanglement properties.

These results lead to the lower bound of the LGME on an
arbitrary subsystem of a graph to be the maximum of the GME
over the set of connected subgraphs on the chosen subsystem,
obtained from the postmeasured graphs once the Pauli mea-
surements are incorporated. In these calculations, we employ
graph operations to implement the Pauli measurements and
show that the graph operations involved in this process has a
polynomial scaling with the system size. By virtue of the local
unitary connection between an arbitrary stabilizer state and
the graph states, the above results hold for arbitrary stabilizer
states also.

We further show that depending on the structure of the
graph, the set of all possible single-qubit Pauli measurement
can be divided into two classes: (1) one, where all mea-
surement outcomes are equally probable, and (2) another,
where only a subset of outcomes having equal probability
of occurrence are allowed, and the rest are forbidden. These
classifications do not affect the calculation in the case of
pure states (see Sec. III B 2). However, in situations where the
qubits in the system are subjected to Pauli noise of Markovian
and non-Markovian types, which we discuss in Sec. IV,

(a) The postmeasured states corresponding to only the first
category of Pauli measurement setups are equally probable
and are local unitarily connected to each other.

(b) On the other hand, if the Pauli measurement setup be-
longs to the second category, transitions may happen between
the allowed and forbidden sets of measurement outcomes,
and the postmeasured states are not, in general, connected
by local unitary operators, thereby losing the advantages in
calculation.

A brief description of the specific noise channels used in
this paper can be found in Sec. IV A, while the interesting
features of the Pauli measurements on noisy graph states and
the subsequent calculation of the lower bound of LGME are
discussed in Sec. IV B.

In Sec. IV C we construct specific Pauli measurement se-
tups belonging to the first category for typical graph states,
such as the linear graph, ladder graph, and square graph, under
Markovian and non-Markovian Pauli noise, and determine a
lower bound for LGME. The main results summarized in this
section are as follows:

(a) There exists a critical noise strength for all four types
of Pauli noise considered in this paper, beyond which all
the postmeasured states corresponding to the chosen Pauli
measurement setup become biseparable.

(b) From the numerical data, we estimate the de-
pendence of this critical noise strength on the degree
of non-Markovianity, quantified by the non-Markovianity
parameter

(c) We further infer that the critical noise strength is inde-
pendent of the system size.

The methodology to compute lower bounds of LGME,
as adopted in this paper, holds for arbitrary stabilizer states
due to their local unitary connection to the graph states. To
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demonstrate this, in Sec. V we consider the toric code defined
on a square lattice and compute a lower bound of the LGME
on a nontrivial loop representing a logical operator in both
noisy and noiseless scenario by constructing an appropriate
Pauli measurement setup. We show that

(a) It is always possible to localize GME over a nontrivial
loop of the toric code in the absence of noise and

(b) Similar to the noisy graphs, a critical noise strength
exists for each type of Pauli noise such that all of the postmea-
sured states corresponding to the chosen Pauli measurement
setup become biseparable beyond it.

In the case of the bit-flip noise, we determine the form
of the critical noise strength analytically as a function of the
non-Markovianity parameter and prove its system-size inde-
pendence. In the case of other Pauli noise, our data suggest
a decrease in the value of the critical noise strength with
increasing system size and increasing non-Markovianity pa-
rameter. We also construct an appropriate Pauli measurement
setup that can provide a lower bound of localizable bipartite
entanglement between two nontrivial loops of the toric code.

III. LGME IN GRAPH STATES

In this section we discuss salient features of graph states
and present the definition of LE. We also calculate LE and one
of its lower bounds corresponding to localization maximized
for Pauli measurements.

A. Graph states

A graph [94,95] G(V, L) is a collection of N nodes V ≡
{1, 2, . . . , N}, and a set of links L ≡ {(i, j)}, i �= j, i, j ∈ V .
We are interested in graphs that are simple, i.e., have only
one edge between two nodes, connected, i.e., each node is
connected to at least another node in the graph, and undi-
rected, i.e., both nodes corresponding to a link are equivalent.
Assuming that a qubit is situated on every node of such as
graph G, a graph state |G〉 is defined with respect to G as [43]

|G〉 = [⊗(i, j)∈GCZ
(i, j)

]|+〉⊗N . (1)

Here |+〉 = (|0〉 + |1〉)/
√

2 is the eigenstate of σ 1 corre-
sponding to the eigenvalue +1, and

CZ
(i, j) = 1

2

[(
σ 0

i + σ 3
i

)
σ 0

j + (
σ 0

i − σ 3
i

)
σ 3

j

]
, (2)

with σα , α = 0, 1, 2, 3, being the 2 × 2 identity matrix and
the x, y, and z components of the Pauli matrices, respectively.
Graph states can also be considered as multiqubit stabilizer
states [41,43,50] defined by a set of stabilizer generators
{gai} ⊂ PN with

gi = σ 1
i ⊗ j∈Ni σ 3

j , (3)

where PN is the N-qubit Pauli group, and Ni is the neigh-
borhood of the node i constituted of nodes having a direct
link with the node i. Here supp(gi ) = i ∪ Ni, called the
support of gi, are the qubits on which gi acts nontrivially,
i.e., σ j �= I j ∀ j ∈ i ∪ Ni, with σ j being the contribution in
gi corresponding to the node j. The generators are mutu-
ally commuting and therefore share a common eigenspace,

given by

|Gα〉 = Zα|G〉 = ⊗i∈V
(
σ 3

i

)αi |G〉, (4)

where αi = 0, 1 ∀i ∈ V , Zα = ⊗i∈V (σ 3
i )αi , and α ≡

α1α2 . . . αN is a multi-index. Note that |G〉 is given |G0〉,
corresponding to αi = 0 ∀i ∈ V , which is the eigenstate
having eigenvalue +1 for all gi:

gi|G〉 = (+1)|G〉 ∀i ∈ V. (5)

The states {|Gα〉; α = 0, 1, 2, . . . , 2N − 1} form a complete
basis of the Hilbert space of the N-qubit system and any state,
ρ, of the system that is diagonal in this basis, having the form

ρ =
2N −1∑
α=0

pα|Gα〉〈Gα|, (6)

is called the graph-diagonal (GD) state for an arbitrary proba-
bility distribution {pα}, with

∑
α pα = 1.

B. Localizable entanglement in graph states

Let us now assume that the subsystem S contains n (2 �
n � N − 1) qubits labeled by 1, 2, . . . , n, while the rest of the
qubits {n + 1, n + 2, . . . , N} constitute the rest of the system
S′. Let us also assume that the state of the system is ρ.
Localizable entanglement [68,69,72] over the subsystem S is
the maximum average entanglement that can be localized over
S by performing single-qubit projection measurements on all
the qubits in S′. Here the maximization is performed over
the complete set of single-qubit projection measurements. We
denote the LE by ES , given by

ES = max
{Mk}

∑
k

pkE
(
�k

S

)
, (7)

where E is a chosen bipartite or multipartite entanglement
measure [1,2] computed over the unmeasured qubits after
measurement. The set {Mk} is the complete set of single-qubit
projection measurements Mk on qubits in S′, pk is the proba-
bility of obtaining the measurement outcome k, given by

pk = Tr[(I ⊗ Mk )ρ(I ⊗ Mk )†], (8)

�k
S denotes the postmeasured state on S corresponding to the

measurement outcome k, given by

�k
S = TrS′ [�k] (9)

with

�k = 1

pk
[(I ⊗ Mk )ρ(I ⊗ Mk )†], (10)

and I is the identity operator on the Hilbert space of S. For
brevity, we write

�k = 1

pk
[MkρM†

k ]. (11)

We consider rank-1 single qubit projective measurements
on the qubits in S′, such that the measurement operator Mk

takes the form

Mk = ⊗i∈S′Pki , (12)
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where Pki = |ki〉〈ki| are projectors corresponding to |ki〉 ∈
{|0i〉, |1i〉}, with

|0i〉 = cos
θi

2
|0i〉 + eiφi sin

θi

2
|1i〉,

|1i〉 = sin
θi

2
|0i〉 − eiφi cos

θi

2
|1i〉, (13)

{|0i〉, |1i〉} being the computational basis in the Hilbert space
of qubit i. The measurement outcome index k can be identified
as a multi-index k ≡ kn+1kn+2 . . . kN . Therefore, the optimiza-
tion involved in Eq. (7) reduces to a 2(N − n)-parameter
optimization problem over real parameters (θi, φi ), i ∈ S′,
with 0 � θi � π , 0 � φi � 2π .

Note that for systems with large N , computation of ES

can, in general, be computationally demanding. In this pa-
per we focus on the LE over a subsystem S of a graph
state |G〉 via only single-qubit Pauli measurements. A Pauli
measurement setup (PMS) in S′ is defined by a configu-
ration σ

αn+1
n+1 σ

αn+2
n+2 . . . σ

αN
N of single-qubit Pauli measurements

on the qubits in S′, which is denoted by the label α ≡
αn+1αn+2 . . . αN . There can be a total of 3N−n such setups,
since αi = 1, 2, 3, i = n + 1, n + 2, . . . , N .1 Let us denote
the maximum LE obtained from all possible PMSs (i.e., all
possible α) by EP

S , where [70,71,80,81]

EP
S = max

α

2N−n−1∑
kα=0

pkα
E

(
�

kα

S

)
, (14)

kα being the label for the measurement outcomes correspond-
ing to the PMS α. We further discard the subscript α from the
measurement outcome k to keep the text uncluttered. Due to
the restriction on the set of measurements, EP

S is referred to as
the restricted LE (RLE) [70,71,80,81], and the corresponding
LGME the restricted LGME (RLGME). Note that by defini-
tion of LE,

0 � EP
S � ES. (15)

While it is known that the Pauli measurements optimize ES

localized for subsystems S constituted of only two qubits
[43,96], to the best of our knowledge, a similar result for sub-
systems constituted of multiple qubits is yet to be proved. In
our numerical investigation, for an arbitrary graph state (also
for an arbitrary stabilizer state; see Sec. V) in the noiseless
scenario (i.e., for pure states), we always find ES = EP

S . Mo-
tivated by this, in the following, we discuss the computation
of EP

S in arbitrary graph states.

1. Localization via Pauli measurements

To analytically compute EP
S for an arbitrary graph state

ρ = |G〉〈G| corresponding to a graph G, for ease of calcu-
lation, let us first reindex the qubits in S′ as j = i − n, where
j = 1, 2, 3, . . . , N − n. We denote the projectors P

α j

k j
corre-

sponding to a Pauli measurement on the qubit j ∈ S′ as

P
α j

k j
= 1

2

[
σ 0

j + (−1)k j σ
α j

j

]
, (16)

1Note here that we discard αi = 0 in order to ensure measurement
on all qubits in S′.

with k j = ±1 being the measurement outcomes, and |k j〉 is
the eigenstate of σ

α j

j corresponding to the eigenvalue k j . Note
that a single-qubit σ

α j

j (α j = 1, 2) measurement on a given
graph state |G〉 is equivalent to a σ 3

j measurement on the graph

state U
α j †
j ρGU

α j

j , where U
α j

j is a Clifford unitary operator
from the set {σ 3

j , Hj, Rj}, Hj being the Hadamard operator,

and Rj =
√

σ 3
j . Explicitly,

U 1
j = Hj, U 2

j = RjHj, (17)

such that

σ 1
j = Hjσ

3
j Hj,

σ 2
j = RjHjσ

3
j HjR

†
j . (18)

Therefore, for a specific PMS α, the measurement operator on
S′ having the form

Mα
k = ⊗ j∈S′P

α j

k j
(19)

would result in an overall Clifford unitary operator of the form

Uα = ⊗ j∈S′U
α j

j , α j = 1, 2, (20)

on the subsystem S′ (see Fig. 1), such that U†
αMα

k Uα → Mα
k

with α j = 3 ∀ j ∈ S′ after the transformation. Note that Uα

is specific to the chosen PMS α. This further implies [from
Eq. (11)]

�k = UαMα
k ραMα†

k U†
α (21)

with

ρα = U†
αρUα (22)

being specific to the original choice of α. Figure 1(a) depicts
an eight-qubit graph state for demonstration, four of which
are measured in Pauli basis, and the corresponding U αi

i for
transforming all Pauli measurements to σ 3 measurements are
shown in Fig. 1(b).

To further simplify, note that the state Uα|G〉 can be written
as [84,85]

U†
α|G〉 = e±iφVα|G′

α〉, (23)

where e±iφ is an irrelevant global phase, and G′
α is a reduced

graph with modified connectivity that depends explicitly on α

and is defined on the nodes of the graph G. Here

Vα = ⊗i∈G′
α
Vi (24)

is a unitary operator such that Vi are local Clifford unitaries,
and

V †
j P3

k j
Vj = P3

k j
∀ j ∈ S′

1, (25)

where k j = ±1 and S′
1 are the collection of qubits that con-

struct the neighborhood of the qubits belonging to S. We
denote the set of the rest of the qubits in S′ by S′

2, where
S′ = S′

1 ∪ S′
2 and S′

1 ∩ S′
2 = ∅. The transformation

ρα → ρ ′
α = Vα|G′

α〉〈G′
α|V†

α, (26)

corresponding to Eq. (23), can be performed via a series
of local transformations on the underlying graph G using a
graphical representation of the states ρα and ρ ′

α [84,85], from
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(a) (b) (c)

S

G

S

σ1
2

σ2
1

S1

S2

S
σ3

1

σ3
2

σ3
3

σ3
4

[H]

[R1]
[R]

[R]
S

G

S

σ3
1σ3

2

σ3
3

σ3
4

(H2) (R1H1)12

34

12

34

1
2

3

4(H4) [H4]

σ3
3

σ1
4

Gα

FIG. 1. (a) Subsystems S and S′ of an arbitrary graph G. The nodes in S′ are labeled as j = 1, 2, 3, 4 (see Sec. III B 1), and a Pauli
measurement setup σ 2

1 σ 1
2 σ 3

3 σ 1
4 , denoted by α ≡ α1α2α3α4 = 2131 is assumed for demonstration. (b) The Pauli measurement setup σ 2

1 σ 1
2 σ 4

3 σ 1
4

(α = 2131) can be transformed to σ 3
1 σ 3

2 σ 3
3 σ 3

4 corresponding to α = β = 3333 via the application of the unitary operators U 2
1 , U 1

2 , and U 1
4

(definitions given in Eq. (17)), which are denoted within parentheses. The connectivity of the graph remains unchanged. (c) The graph state
ρα [depicted in (b)] can be transformed to ρ ′

α [see Eq. (23)], where G′
α is a graph on the same nodes with different connectivity, as shown in

(c). The unitary operators Vj , defined through the Eqs. (24) and (25), are shown within square brackets. The subsystem S′
1 is constituted of the

nodes that belong to the (combined) neighborhood of all the nodes in S, while S′
2 is the set of the rest of the nodes in S′ (S′

1 ∪ S′
2 = S′, and

S′
1 ∩ S′

2 = ∅). Note that the unitary operators Vj for j ∈ S′
1 are either identity, or Rj , which keeps σ 3

j invariant. However, for qubit j = 4 in S′
2,

V4 = H4, which results in H4σ
3
4 H †

4 = σ 1
4 . Therefore, after the reduction of the graph according to Eq. (23), the measurement setup in S′

2 is not
necessarily all σ 3.

which the graph G′
α can also be extracted. This transforma-

tion is a rather technical one that involves (1) redefining the
attributes of the nodes of the graphs according to the single-
qubit unitary operators U †

j and Vj applied to them and (2)
transforming the underlying graph along with the local unitary
operators using a specific set of local graph operations. It
ensures that

P1. Vj corresponding to j ∈ S′
2 are from the set

{I j, σ
3
j , Hj, Hjσ

3
j , Rj, Rjσ

3
j }

P2. Vi corresponding to a node i that either is (a) in the
neighborhood of a node j ∈ S′

2 with Vj ∈ {Hj, Hjσ
3
j } or (b) in

S′
1, are from the set {Ii, σ

3
i , Ri, Riσ

3
i } and

P3. Any two nodes j and j′ ∈ S′
2 having Vj = Hj or Vj′ =

Hjσ
3
j do not have a link connecting them,

thereby satisfying Eq. (25). For interested readers, details
on this graph transformation can be found in Appendix A,
while readers not interested in technical details can continue
with this section. The transformation ρα → ρ ′

α , according to
Eq. (23), is depicted in Fig. 1(c), along with the sets S′

1 and
S′

2, and the unitary operators Vi. The same transformation has
also been depicted using the graph transformation notation in
Fig. 21 in Appendix A. The overall protocol for obtaining
the reduced graph G′

α scales polynomially with the number
of measured nodes, as discussed in Appendix A 2.

Given a successful reduction of the graph G → G′
α for a

specific PMS α, the subgraph Gα
S on the chosen subsystem S

in G′
α can be obtained by deleting all links between the nodes

in S and all other nodes in S′. Using the above protocol, the
following proposition can be proved for E (�k

S ) and the state
|Gα

S 〉 (see Appendix B for the proof).
Proposition 1. For a given Pauli measurement setup on a

subsystem S′ of an arbitrary graph state, the average entan-
glement postmeasurement on the subsystem S, where S ∪ S′
constitutes the entire system, is (a) independent of the mea-
surement outcomes, (b) depends only on the chosen Pauli

measurement setup, and (c) is given by

E
(
�k

S

) = E
(∣∣Gα

S

〉〈
Gα

S

∣∣), (27)

where E is the chosen entanglement measure. �
Consequently, using the definition of EP

S (see Eq. (14)), the
following corollary can also be written.

Corollary 1.1. The value of EP
S on the subsystem S can

be determined by performing an optimization over all the
reduced graphs obtained from all possible Pauli measurement
setups on S′ and is given by

EP
S = max

α

[
E

(∣∣Gα
S

〉〈
Gα

S

∣∣)]. (28)

�

2. Allowed and forbidden sets of outcomes

A discussion on the different measurement outcomes k
corresponding to the measurement operators Mα

k is in order
here. By design of the graph transformation (see Appendix A)
ensuring P1–P3, σ 3

i measurements over the set of nodes Z
that form the combined neighborhood of the nodes in S′

2
with Vj = Hj, Hjσ

3
j and the nodes in S′

1 remain unchanged
due to the unitary transformations Vα .2 Therefore, following
Sec. III B 1, for a specific α, we write the transformed Mα

k
as Mα

lm, where we now relabel the measurement outcomes
corresponding to j ∈ Z as l , and the same corresponding to
nodes outside Z as m. Note that now the index m corresponds
to the nodes j ∈ S′

2, for which Vj = Hj, Hjσ
3
j , i.e., for which

a projection in the basis of σ 1
j has to be applied as part

of Mα
lm. The projections on the nodes in Z leave each of

these node completely decoupled from the rest of the graph
(since α j = 3 ∀ j ∈ Z), and apply either I or σ 3 unitaries on

2Clearly, L � |Z| � N − n, |Z| being the size of Z , and L being
the size of S′

1.
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G

1

2

S

G

1

2

S

σ3
1σ1

1

σ1
2

Uα = H1 ⊗ H2

(H1)

(H2)

Reduction

σ3
2

a

b

a

b

1

2

S

S1
S2

Gα

σ3
2

σ3
1

b

a
[Ha]

[σ3
b ]

[H2]

(a) (b)

(c)

FIG. 2. (a) A four-qubit graph state constituted of the qubits a, b,
1, and 2, where {1, 2} constitute the measured subsystems A′. (b) A
PMS given by α = 11 (α1 = 1, α2 = 1) can be converted to a setup
of σ 3 measurements on both qubits 1 and 2 via unitary operation
Uα = H1 ⊗ H2, where H1 and H2 are shown in parentheses. (c) The
state ρα can be converted to ρ ′

α with the unitary operators Vα = Ha ⊗
σ 3

b ⊗ I3 ⊗ H2, where these unitary operators are depicted in square
brackets on the reduced graph G′

α . On G′
α , qubit 1 (2) constitutes the

region S′
1 (S′

2).

the node depending on the outcomes l corresponding to its
neighborhood.3 An isolated node j in a graph is in the state
|+ j〉 and is product with the rest of the graph (see Sec. III A).
However, depending on the outcome l on its neighborhood,
after projecting all nodes in Z , the isolated node j ∈ S′

2 with
Vj = Hj, Hjσ

3
j either (a) remains in the state |+ j〉 (if I applies

to node j) or (b) changes to the state |− j〉 (if σ 3 operator
applies on j). Therefore, further projection on such nodes in
σ 1 basis may result in 〈mj |+ j〉 = 0, or 〈mj |− j〉 = 0, which
leads to a set of outcomes lm, and consequently lm ≡ k being
forbidden4 for a given Pauli measurement setup α.

We demonstrate the occurrence of the forbidden and al-
lowed set of measurement outcomes with an example of a
single four-qubit connected graph depicted in Fig. 2(a). The
region S is constituted of the qubits a and b, while the mea-
sured subsystem S′ ≡ {1, 2}. For demonstration, we choose
the PMS given by α ≡ 11 (α1 = 1, α2 = 1). The four possible
measurement outcomes corresponding to these measurements
would be k ≡ k1k2 = (+1)(+1), (+1)(−1), (−1)(+1), and
(−1)(−1). The PMS can be converted to a σ 3 measurement
setup on qubits 1 and 2 by the unitary operator Uα = H1 ⊗ H2,
which changes the measurement basis (α1: 1 → 3, α2:1 → 3)
but not the measurement outcomes [see Fig. 2(b)]. Following
the discussion in Sec. III B 1, we now label the outcomes
corresponding to qubit 1 (2) as l1 (m2). The state ρα can
now be transformed as ρ ′

α with Vα = Ha ⊗ σ 3
b ⊗ I1 ⊗ H2

and a transformed graph G′
α [see Fig. 2(c)]. Clearly, the σ 3

measurement on qubit 2 is now transformed to a σ 1 measure-

3See discussions related to Eqs. (B4) and (B8)–(B9) in Appendix B
for clarity.

4The probabilities for finding these outcomes vanish.

ment, implying α2 = 3 → α2 = 1, while α1 = 3 on qubit 1
remains unchanged, and l1 = ±1, m2 = ±1. Application of
Mα1=3

l1=+1 (Mα1=3
l1=−1) on qubit 1 decouples qubits 1 and 2 from

the rest of the graph and applies I (σ 3) on qubit 2, leav-
ing it in the state |+ j〉 (|− j〉). Therefore, further application
of Mα2=1

m2=−1 (Mα2=1
m2=+1) on qubit 2 yields 0, implying that the

k1k2 ≡ l1m2 = (+1)(−1), (−1)(+1) outcomes will never oc-
cur. A similar situation arises in the case of the example shown
in Fig. 1, where due to Vj=4 being a Hadamard operator, half
of the set of 16 possible outcomes k ≡ k1k2k3k4 are forbidden,
given by the set

(+1)(+1)(−1)(+1), (+1)(+1)(+1)(−1)

(+1)(−1)(+1)(+1), (+1)(−1)(−1)(−1)

(−1)(+1)(−1)(+1), (−1)(+1)(+1)(−1)

(−1)(−1)(+1)(+1), (−1)(−1)(−1)(−1)

We point out here that the occurrence of such forbidden
sets of measurement outcomes depends completely on the
choice of the specific PMS α. Therefore, one can divide the
PMSs into two categories: (1) the ones forming the set 
,
for which all the measurement outcomes are allowed and
(2) the ones constituting the set 
, for which occurrence of
such forbidden set is possible. For instance, in the example
presented in Fig. 2, α ≡ 33, i.e., α1 = 3, α2 = 3 represents a
PMS belonging to 
. Note also that the subgraph Gα

S after
the application of Mα1=3

l1=±1 (in Fig. 2, this corresponds to the
nodes a and b and the link connecting these two nodes), being
fully decoupled from the nodes in S′

2, is not affected by the
application of Mα2=1

m2
on the nodes in S′

2. Therefore, in the case
of pure graph states, this does not change the value of E (�k

S ),
and hence EP

S .

C. Examples

By virtue of Proposition 1 and Corollary 1.1, it is now
possible to localize entanglement over a subsystem S of a mul-
tiqubit system, via an optimization over 3N−n reduced graph
states {|G′

α〉}, resulting from all possible PMSs, labeled by α,
where N − n is the size of S′. The localized entanglement over
S is genuinely multipartite in nature if the subgraph Gα

S , cor-
responding to the state |Gα

S 〉, in G′
α is a connected one. There-

fore, to obtain RLGME, one can perform the optimization in
Eq. (28) over only those G′

α for which Gα
S is connected. While

this restriction over the optimization may still yield a large
number of connected graphs over S making the optimization
difficult, in the case of typical regular graphs, e.g., the linear
graph, the graph with a ladder structure, and the square graph,
the number of G′

α resulting in a connected subgraph Gα
S is

considerably low and therefore advantageous. Moreover, the
connected subgraphs Gα

S can be further classified into dif-
ferent orbits such that the members of individual orbits are
connected to each other via local complementation operations
and graph isomorphism [43,48,64], thereby having identical
GME. Therefore, the number of connected subgraphs that one
needs to consider for performing the optimization in Eq. (28)
can be reduced to the number of orbits, as we demonstrate
in the following examples. Note also that in order to quan-
tify the LGME, one needs to compute a GME measure over
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Gα
S , which can still be a nontrivial task due to the possible

optimizations involved in the calculation. In this paper we use
the Schmidt measure [43,48] and the generalized geometric
measure (GGM) [83,97,98] for this purpose in the noiseless
scenario, the definition of which can be found in Appendix C.

1. Two-qubit subsystems in arbitrary graph

We first revisit the extensively investigated case of the two-
qubit subsystem on an arbitrary graph. It is well known [43]
that the optimal PMS corresponding to localizing maximum
entanglement on the chosen two-qubit subsystem S in an
arbitrary graph G is given by either (1) σ 3 measurement on
all qubits except the chosen subsystem if a direct link exists
between the selected qubits in the graph or (2) σ 1 measure-
ments on all qubits on a chosen path between the two qubits
belonging to S, and σ 3 measurements everywhere else. The
former involves a decoupling of S from the rest of the qubits
in G, thereby leaving only a connected pair of qubits on S. On
the other hand, in the latter prescription, the σ 1 measurements
create a direct link between the two chosen qubits, while
the σ 3 measurement decouples S from the rest of the qubits.
The purpose of maximizing the localizable entanglement is
fulfilled due to the fact that a connected graph of two qubits
is equivalent to a maximally entangled Bell state, or its lo-
cal unitary equivalents, which are also maximally genuinely
multiparty entangled. It is straightforward to see that for an
arbitrary graph G, the PMS described in prescription 2, via
the graph transformations introduced in Sec. III B 1, leads to
a reduced graph where the selected nodes are connected by a
direct link, thereby leading to maximal entanglement over S.
See Fig. 3 for a demonstration. It is worthwhile to note that
there may be a number of paths between the chosen qubits in
G, each of which results in a specific optimal PMS for the
LE, and subsequently a specific reduced graph with a link
between the qubits in S. However, each such PMS guarantees
the creation of a Bell pair or its local unitary equivalent on S.

2. Connected subsystems in linear graphs

We next consider a subsystem of qubits, S, in a linear
graph. Here S forms a connected patch, such that each of the
qubits in this patch is connected via a link with at least one
other qubit in the same patch (see Fig. 4). We further assume
that S contains more than two qubits. As discussed above, we
are interested only in the PMSs that provide a connected Gα

S
on S. We find that the application of the protocol discussed in
Sec. III B 1 leads to only linear connected graphs on S [see
Fig. 4(b)], irrespective of whether S is situated in the bulk,
or at the boundary of the linear graph [see Fig. 4(a)], for all
PMSs that lead to a connected Gα

S . Therefore, RLGME over a
connected subsystem S on a linear graph equals the GME in a
linear graph of size |S| = n, which is known to be �n/2� [48]
when the Schmidt measure is used for quantification.

3. Connected subsystems in square graph

We next consider a square graph and take one of the
plaquettes as the chosen subsystem S. The plaquette can be
located in the bulk, or at the corner, or at one of the boundaries
of the graph [see Fig. 5(a)]. In the situations where it is located
in the bulk, or at the boundary, application of the methodology

σ3

σ1

σ3

σ3

σ1

σ3

σ3

σ3

1

2

σ3

σ3

σ3

σ3

σ3

σ3

σ3

σ3

1

2

(H1)

(H2)

σ3

σ3

σ3

σ3

σ3

σ3

σ3

σ3

Reduction

(a) (b)

(c)

Uα = H1 ⊗ H2S S

S

a

b

a

b

a

b

FIG. 3. Transformation of a graph as per the discussion in
Sec. III B 1 and Appendix A when σ 1 measurements are performed
on qubits 1 and 2 situated on the path connecting the qubits a and b in
subsystem S (denoted by the shaded region). In the reduced graph, a
link exists between the qubits a and b, such that decoupling of S from
the rest of the qubits leads to a connected qubit pair on S, resulting in
a maximally entangled Bell pair. The components of the local unitary
transformations U†

α (Vα is identity here) are shown in parentheses.

described in Sec. III B 1 and Appendix A leads to a total of 38
possible connected Gα

S [see Fig. 5(b)] in the reduced graphs
{G′

α}, obtained from all possible PMSs, labeled by α. The 38
connected subgraphs can further be divided into two orbits:
(1) one containing the star subgraphs and the fully connected
subgraph on S [see Fig. 5(b)] and (2) the other containing the
rest 33 connected subgraphs. Since the members of individual
orbits are connected to each other via local complementation
(see Appendix A for definition) and graph isomorphism, they
have identical entanglement properties, and it is therefore

(a)

(b)

boundary

bulk

FIG. 4. (a) Connected subsystem of qubits situated at the bound-
ary or bulk of a linear graph. (b) The only connected graph Gα

S that
may occur on such a subsystem S in a linear graph as a result of the
application of the PMSs, denoted by α, on the graph is a linear graph
on S.
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boundary

bulk

corner

(a)

(b)

(c)

(i)

(ii)

FIG. 5. (a) A plaquette of four qubits as the chosen subsystem S on a square graph, situated at the corner, bulk, or boundary of the graph.
(b) If the plaquette S is located at the bulk or the boundary, there are 38 possibilities for the four-qubit connected subgraph Gα

S in the reduced
graphs {G′

α}. These 38 four-qubit graphs can be further divided into two orbits, shown as two separate shaded blocks (i) and (ii), containing 5
and 33 subgraphs, respectively. (c) If the four-qubit plaquette is located at one corner of the graph, then the number of possibilities for Gα

S is
reduced to 13, all of which belong to the same orbit.

sufficient to consider a representative from each of the orbits
to perform the optimization in Eq. (28). The lower and the
upper bounds of the Schmidt measure for Gα

S in (1) are found
to be equal to 1, while for Gα

S in (2) it is 2. This implies that
the values of the Schmidt measure in these two cases are 1 and
2, respectively, leading to EP

S = 1 and EP
S = 2, respectively.

On the other hand, if the chosen four-qubit plaquette is
located at one of the corners of the square graph, the number
of connected subgraphs Gα

S reduces to 13 [see Fig. 5(c)], all
of which belong to the same orbit. Therefore, it is sufficient
to compute the Schmidt measure of any one of these 13
subgraphs. Similar to the former case, here also the upper and
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(a)

(d)

bulk

leg

rung

boundary

(b) (c)

(i)

(ii)

1 2 3

4 5 6

7 8 9

FIG. 6. (a) A set of 2R connected qubits, where R(< N/2) is the number of rungs, as the chosen subsystem S on a graph with a ladder
structure with two legs and N/2 rungs, N being the total number of qubits. The subsystem S can be situated at the bulk, or the boundary of the
graph. (b) For R = 2 and S is connected and is located at the boundary, only three distinct connected subgraphs Gα

S are possible on S, all of
which belong to a single orbit. (c) However, if the connected subsystem S with R = 2 is in the bulk of the system, there are seven possibilities
for the four-qubit connected subgraph Gα

S , including the four-qubit star graph, which can be divided into two orbits, (i) and (ii), shown in two
different shaded blocks. (d) If the subsystem S is connected and is constituted of R > 2 rungs, then a total of nine possibilities for the connected
subgraphs Gα

S arise.

lower bounds of the Schmidt measure are found to be equal,
having a value 2, which leads to EP

S = 2.

4. Connected subsystems in ladders

We now consider a graph having a ladder structure [see
Fig. 6(a)] where two legs are connected by rungs and the
nodes of the graph are the points where the rungs meet the
legs. We choose a connected subsystem consisted of a number,
say, R, of rungs of the ladder as S and apply the protocol
described in Sec. III B 1 and Appendix A. For R = 2, and S
situated at the boundary, the set of connected subgraphs {Gα

S }

consists of only three four-qubit graphs, given in Fig. 6(b),
and EP

S = 2 as in the cases described earlier. On the other
hand, of the two-rung subsystem is situated in the bulk of
the ladder, then the four-qubit star graphs also appear in the
set of connected subgraphs {Gα

S }, containing a total of seven
distinct graph structures that can be divided into two orbits
[see Fig. 6(c), with two orbits marked by (i) and (ii)]. Here we
have reduced the number of graphs in an orbit by discarding
the four-qubit graphs that are connected directly by local
complementations with any one of the members of the orbit.
In this case also, the RLGME, as quantified by the Schmidt
measure, is obtained as EP

S = 2.
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n
=

2
n
=
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n
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4
n
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8· · ·

lo
g 1

0
M

n

(a)

(b)

FIG. 7. (a) Connected subsystem of qubits of size n (2 � n � 8)
in the form of a linear subgraph on one of the legs of the two-leg
ladder graph. (b) Variation of log10 M with n for N = 16, where M
is the total number of connected subgraphs {Gα

S } resulting from the
reduced graphs {G′

α}, obtained by the application of all PMSs on
S′. The data are fitted to a straight line of slope 0.481 and intercept
−0.788. See Eq. (29).

We now consider the scenario of a connected subsystem S
with R > 2 rungs. We find that the set of connected Gα

S on S
in G′

α , obtained from the PMSs denoted by α, contains only
nine distinct connected graph structures, shown in Fig. 6(d),
labeled as 1–9, where graphs that are connected to structures
5–9 via local complementation are discarded. Moreover, each
of these nine connected graphs on Gα

S has the same value for
the lower and upper bounds of the Schmidt measure, implying
that the value of the measure is equal to either of the bounds.
In the case of R = 3 (n = 6), the value of the Schmidt measure
for the structure 4 is 2, while all of the other graphs in Fig. 6(d)
have the value of the Schmidt measure equal to 3, implying
that EP

S = 3. On the other hand, for all cases with R > 3 (n >

6), for each of structures 1–9, the Schmidt measure is given by
n/2, implying that the RLGME, as quantified by the Schmidt
measure, is n/2.

We further consider a connected subsystem S in the form of
a linear graph on one of the legs of the ladder [see Fig. 7(a)],
where the size, n, of S is increasing. In this situation, with
increasing n, the number, M, of connected subgraphs {Gα

S }
increases exponentially [see Fig. 7(b)] with n as

M = 10α+βn, (29)

where α and β depends on N , and can be determined from fit-
ting the data to Eq. (29).5 However, the RLGME, as quantified
by the Schmidt measure, has the value �n/2�.

Note that we also compute the RLGME in terms of the
GGM, which is a measure for the GME present in a quan-
tum state, for each of the above cases, and find it to be 1/2
for all the examples. This implies that genuine multipartite
entanglement is localized on all the chosen subsystems S in
all the examples. We comment on the loss of LGME with
introduction of noise in Sec. IV.

D. Localizable bipartite entanglement

It is worthwhile to point out here that one can also compute
localizable bipartite entanglement over a chosen bipartition of
the subsystem S using the same methodology. However, the
optimization in Eq. (28), in this case, has to be performed over
all possible subgraphs Gα

S , connected or otherwise, obtained
from all possible reduced graphs G′

α , resulting from the PMSs.
Therefore, for an arbitrary graph G, the optimization can be
more demanding compared to the calculation of RLGME.
However, a few conclusions can be drawn without performing
the optimization. For example,

(a) If at least one connected Gα
S is obtained for the subsys-

tem S and
(b) If the chosen bipartition A:B of S is such that A is made

of only 1 qubit, and B consists of the rest of the qubits in S,
then maximum bipartite entanglement will be localized

between A and B since all qubits in a connected graph has
maximally mixed marginals [43,99] (see Appendix C 1). Note
that this is the case for all the examples discussed above. Fur-
ther, if n = 2, 3 in addition to the conditions (a) and (b), where
|S| = n, then maximum bipartite entanglement can be local-
ized over all bipartitions in S. For n > 3, relaxing condition
(b) and assuming A to be the smaller subsystem constituted of
at least two qubits {i, j} ∈ Gα

S , ρA = TrB(|Gα
S 〉〈Gα

S |) is either
maximally mixed or a rank-2 mixed state [43]. In the case of
the former, |Gα

S 〉 is maximally entangled in the bipartition A:B,
whereas in the case of the latter it is not. Similar conclusions
on the localizable bipartite entanglement over the partition
A:B in S hold.

IV. LGME IN NOISY GRAPH STATES

We now provide a brief description of the noise models
considered in this paper and discuss the calculation of EP

S
and one of its lower bounds corresponding to a specific PMS
in graph states under Markovian and non-Markovian noisy
channels.

A. Single-qubit Pauli noise on graph states

To describe the effect of single-qubit Pauli noise on the
graph states, we use the Kraus operator formalism as

ρ = �(ρ0) =
∑

s

Ksρ0K†
s , (30)

5For example, with N = 16, α = −0.788, and β = 0.481.
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where {Ks} are the Kraus operators satisfying∑
s

K†
s Ks = I, (31)

with I being the identity operator in the Hilbert space of
the N-qubit graph. The states ρ0 = |G〉〈G|, and ρ denote,
respectively, the pure graph state, and the mixed state of the
system under noise. In the case of Pauli noise, individual
Kraus operators are Ks = √

qsJs, where

Js = ⊗N
i=1σ

si , (32)

qs =
N∏

i=1

qsi , (33)

with si ∈ {0, 1, 2, 3}∀i ∈ G, and
∑3

si=0 qsi = 1. Note here that
the index s on the left-hand side can be interpreted as the
multiindex s ≡ s1s2 . . . sN . The factorized form of qs implies
that no spatial correlation exists between the qubits in the
graph. In this paper we focus on nondissipative Pauli chan-
nels. More specifically, we consider Markovian bit-flip (BF),
bit-phase-flip (BPF), phase-damping (PD), and depolarizing
(DP) noise channels. In terms of the probabilities associated
to different Pauli operators in the maps, the BF, BPF, PD, and
DP channels are given by

q0 = 1 − q

2
, q1 = q

2
, q2, q3 = 0, (34)

q0 = 1 − q

2
, q2 = q

2
, q1, q3 = 0, (35)

q0 = 1 − q

2
, q3 = q

2
, q1, q2 = 0, (36)

and

q0 = 1 − 3q

4
, q1 = q2 = q3 = q

4
, (37)

respectively, where 0 � q � 1, and we assume q to be identi-
cal for all qubits.

There exists non-Markovian versions of the single-qubit
Pauli noise, such as the non-Markovian PD6 and DP channels
[88–90], given by

q0 =
(

1 − q

2

)[
1 − ε

q

2

]
,

q3 = q

2

[
1 + ε

(
1 − q

2

)]
,

q1 = q2 = 0, (38)

and

q0 =
(

1 − 3q

4

)[
1 − 9εq

4

]
,

q1 = q2 = q3 = q

4

[
1 + 3ε

(
1 − 3q

4

)]
, (39)

respectively, with 0 � q � 1, and 0 � ε � 1. The Markovian
PD and the DP channels are recovered from their non-
Markovian counterparts for ε = 0.

6The non-Markovian version of the BF and the BPF channels can
also be defined in a similar fashion.

Note here that the stabilizer description of graph states
implies that application of σ

si
i , si = 1, 2, on the qubit i in the

graph state leads to

σ 1
i |G〉 = ⊗ j∈Niσ

3
i |G〉,

σ 2
i |G〉 = σ 3

i ⊗ j∈Ni σ 3
i |G〉. (40)

Therefore, all Pauli noise described in Eqs. (34), (37), and
(39) are equivalent to PD noise [Eq. (36)], with a modified
probability distribution {q̃s}, which is not necessarily factor-
ized [i.e., can not be written in a form similar to Eq. (33)].
Note also that a PD noise on a connected graph state results
in a GD state [Eq. (6)], where all the diagonal elements of the
density matrix are not necessarily nonzero.

B. Localizable entanglement via Pauli measurements

We now discuss the calculation of EP
S . For a chosen α

representing a specific PMS, we proceed in a fashion similar
to the pure graph states (see Sec. III B 1) and transform α j →
3 ∀ j ∈ S′ via the application of the local Clifford operation
Uα . Explicitly, we write

�k = Mα
k

[∑
s

qsJsρ0J†
s

]
Mα†

k ,

= Uα

[∑
s

qsM
α
k Js′ραJ†

s′M
α†
k

]
U†

α, (41)

where definitions of Mα
k and ρα are as in Sec. III B 1, respec-

tively, and

Js′ = U†
αJsUα. (42)

Further transformation of ρα → ρ ′
α modifies Eq. (41) as

�k = UαVα�̃kV†
αU†

α, (43)

with

�̃k =
∑

s

qsM
α
lmJs′′ |G′

α〉〈G′
α|J†

s′′M
α†
lm , (44)

where we have followed the notations introduced in
Sec. III B 1, and

Js′′ = V†
αJs′Vα. (45)

Note here that since both U and V are Clifford unitaries,
Pauli noise is mapped to Pauli noise (see Table I), and the
transformation s → s′ → s′′ leads to the multi-index s′′ ≡
s′′

1s′′
2 . . . s′′

N−n with s′′
j = 1, 2, 3 for j ∈ S′. Note further that

σ
α′

j

j P
α j

l j ,mj
σ

α′
j

j → P
α j

l ′j ,m
′
j
, (46)

where l ′
j = l j and m′

j = mj (l ′
j �= l j and m′

j �= mj) if α j = α′
j

(α j �= α′
j), α j, α

′
j = 1, 2, 3, leading to

�̃k =
∑

s

qsJs′′Mα
l ′m′ |G′

α〉〈G′
α|Mα†

l ′m′J
†
s′′ . (47)

We now separately consider the two types of PMSs, con-
stituting the sets 
 and 
, where 
 ∪ 
 is the full set of all
possible PMSs, and 
 ∩ 
 = ∅. The set 
 is defined such
that for a specific PMS α ∈ 
, all outcomes k are equally
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TABLE I. Transformation of Pauli matrices up to a phase factor
under the Clifford operation U , where U represents the unitary opera-
tions Ui and Vi corresponding to the transformation of the graph state
ρ → ρα → ρ ′

α (see Sec. III B 1). The transformation of the Pauli
noise, as described in Sec. IV A, can also be determined using these
transformations.

U σ s σ s′ = U †σ sU
H σ 1 σ 3

H σ 2 σ 2

H σ 3 σ 1

R σ 1 σ 2

R σ 2 σ 1

R σ 3 σ 3

RH σ 1 σ 2

RH σ 2 σ 3

RH σ 3 σ 1

probable with probability 2−(N−n), which is not true for a PMS
belonging to 
. Under this consideration, the optimization
of RLGME can be considered as EP

S = max{E

S , E


S }, where
[see Eq. (14)]

E

S = max

α∈


2N−n−1∑
kα=0

pkα
E

(
�

kα

S

)
,

E

S = max

α∈


2N−n−1∑
kα=0

pkα
E

(
�

kα

S

)
, (48)

where we have reinstated the index α in k to make the equa-
tions comprehensive. Starting with the set 
, the following
proposition can be written (see Appendix D for the proof).

Proposition 2. For a subsystem S of an arbitrary graph
state subjected to single-qubit Pauli noise on all qubits, if the
chosen Pauli measurement setup on S′ with S ∪ S′ constituting
the entire system is such that α ∈ 
, then the average entan-
glement postmeasurement on the subsystem S is independent
of the measurement outcomes and depends only on α. �

Using Proposition 2 in Eq. (48), Corollary 2.1 is straight-
forward.

Corollary 2.1. The value of E

S on the subsystem S is

given by

E

S = max

α∈


[
E

(
�k

S

)]
. (49)

See Eq. (D3) for the definition of �k
S . Note that Eq. (49)

reduces to Eq. (28) in the absence of noise and in a situation
when 
 is a null set. �

Similar to the proof of Proposition 1 and Corollary 1.1 (see
Appendix B), the proof of Proposition 2 and Corollary 2.1 is
also established on the fact that for α ∈ 
, the postmeasured
states �k

S on S corresponding to different k are local unitar-
ily connected to each other, where the unitary operators are
constructed by single-qubit unitary operators. Therefore �k

S
for different k have the same entanglement content (see Ap-
pendix D). In contrast, in the situation where 
 has a nonzero
cardinality, and for a PMS α ∈ 
, �k

S corresponding to differ-
ent k are, in general, not connected by local unitary operators.

In this case, explicit calculation depends on the fact that the
change lm → l ′m′ may result in a transition between allowed
and forbidden sets of outcomes, making the computation for
the postmeasured states �k

S difficult. For interested readers, we
demonstrate the calculation step by step in Appendix E in both
the cases of α ∈ 
 and α ∈ 
, using the example of the graph
in Fig. 2. However, in all the specific examples considered in
this paper, we restrict ourselves to specific PMSs belonging to

, as discussed in Sec. IV C and V, where Proposition 2 and
Corollary 2.1 are applicable.

C. Examples

We now revisit the examples considered in Sec. III C but
in the presence of single-qubit Pauli noise of different types,
which adds obstacles in quantifying the LGME. On one hand,
understanding how to characterize mixed states in terms of
GME is far from complete, and computable measures of mul-
tipartite entanglement in mixed states are scarce [1]. On the
other hand, in the case of the mixed states, the manifesta-
tion of the effect of the measurement outcomes is different
compared to the pure graph states, indicating the necessity
of rigorous optimization over all 3N−n PMSs. To overcome
these challenges, we focus on a lower bound of the RLGME
(and in consequence, of LGME), which can be obtained by
judiciously choosing a PMS, labeled by αc. Since the defini-
tion of RLGME involves a maximization over all possible α,
the average entanglement Eαc

S obtained for the chosen PMS
αc provides a lower bound of EP

S and therefore of ES i.e.,
Eαc

S � EP
S � ES . The existence of LGME on S is guaranteed

by an αc such that Eαc
S > 0. We refer to Eαc

S as the floor of
LGME (FLGME).

A word on the choice of the PMS labeled by αc is in order
here. We choose αc such that

(a) αc ∈ 
, i.e., all measurement outcomes corresponding
to the PMS αc are equally probable with probability 1/2N−n

(b) The subgraph Gαc
S on S in the reduced graph G′

αc
is a

connected graph and
(c) The pattern of the PMS can be generalized to any

system size.
We find that such a PMS αc can be constructed in terms of

only σ 1 and σ 3 measurements for all the examples discussed
in Sec. III C. See Fig. 8 for a demonstration.

In this section we particularly focus on the evolution of
a quantum state from having GME localized on a chosen
subsystem to a state where the postmeasured states on S are
biseparable. Noticing that the postmeasured states on S after
Pauli measurements are GD states in the case of Pauli noise
(see Sec. IV B), we choose four-qubit subsystems as S, for
which the criteria for the GD state being genuine multipartite
entangled are known [100] (see Appendix G 2 for details).
Using these criteria, for each PMS labeled by α, a critical
value of q, denoted by qc, can be determined such that for qc �
q � 1, all postmeasured states corresponding to the PMS α

are biseparable. For the choice of α = αc, the values of qc

are plotted (see Figs. 9 and 10) against the non-Markovianity
parameter ε corresponding to the different types of Pauli noise
(see Sec. IV A) for the different cases discussed in Sec. III C,
where the subsystem S is a four-qubit one. From the figures,
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(a)

(b)

(c)

σ1

σ3

FIG. 8. The PMS used for the lower bound calculation in noisy (a) linear (boundary, bulk), (b) ladder (boundary, bulk), and (c) square
(corner, boundary, bulk) graph structures. The red nodes indicates the unmeasured four nodes on which a GD state of linear graph will
be localized. The blue(green) nodes indicates σ 3(σ 1) measurements. Translation to any higher system size requires only additional σ 3

measurements on the additional nodes maintaining the σ 1 measurement pattern w.r.t. localizing four nodes.

the following observations can be made:
(a) For the PMS denoted by αc and for a specific type of

Pauli noise, the values of qc depend on the effective neigh-
bourhood S′′

1 of S (see the discussion in Appendix F for the
definition of S′′

1 ). As one moves from the periphery (corner
or boundary) to the bulk of the graph, |S′′

1 | increases, and qc

decreases.
(b) Note, however, that in the case of PD noise [Figs. 9(c)

and 10(c)], |S′′
1 | remains the same in the case of the bulk, the

boundary, and the corner, which manifests in qc remaining the
same for all these cases.

(c) Moreover, for all types of Pauli noise and for a spe-
cific category of subsystem S (bulk, boundary, or corner), the
value of qc decreases with increasing ε, implying a quicker
loss of FLGME with increasing non-Markovianity in the
noise.

(d) In the case of the BF, BPF, and PD noise, qc has a
quadratic dependence on ε (qc ∼ a2ε

2 + a1ε + a0), while in
the case of the DP noise, a cubic dependence (qc ∼ a3ε

3 +
a2ε

2 + a1ε + a0) is observed, The values of the parameters

ais (i = 1, 2, 3) depends on the type of noise, the choice of
the graph, and the location of the subsystem S in the graph,
while a0 is the value of qc for ε = 0.

We point out here that for a specific type of Pauli noise,
the values of qc are independent of system size, N , for the
chosen PMS αc (cf. [101]). The values of qc in the Markovian
cases can be extracted from the data for ε = 0 (see Sec. IV A).
Due to the maximization involved in the definition of LGME,
the actual critical noise strength beyond which the LGME
perishes is greater than, or equal to, qc. Note further that in
the case of noisy systems with even noise models as simple
as Pauli noise, it is not guaranteed whether ES = EP

S . While
the equality can occur for specific noise types and for specific
values of the noise strength, in general, EP

S < ES . This calls
for a comment on the performance of Eαc

S and EP
S as lower

bounds of ES . We revisit this in Sec. V, with an example of a
stabilizer state from Kitaev’s toric code [92,93].

Note that in the above examples, (qi, εi )s on different
qubits are assumed to the identical. One can also consider
a scenario where different noise of different strengths and
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(a) (b)

(c) (d)

q c
q c

q c
q c

FIG. 9. Variations of qc as a function of ε in the case of the (a) BF, (b) BPF, (c) PD, and (d) DP noise, for a connected subsystem S of
four qubits [see Figs. 8(a) and 8(b)] located at the boundary, or bulk of a linear graph, and a graph in the shape of a ladder. All the axes in all
figures are dimensionless.

different non-Markovianity parameters apply to the qubits
(see Appendixes D and F), and similar methodologies apply.
For a demonstration, consider the example of the eight-qubit
graph shown in Fig. 11(a), where different types of noises
with different strengths q as well as different values of the
non-Markovianity parameter ε are applied on different qubits.
For the graph shown in Fig. 11(a), Eq. (F8) of Appendix F rep-
resenting the probability associated with the subclass (r, m) =
(2, 1) constituted of qubits 2, 3, and 4 takes the form

P1(2, 1) = p2 + p3 + p4 − 2(p2 p3 + p3 p4 + p2 pa)

+p2 p3 p4,

P0(2, 1) = 1 − P1(2, 1). (50)

where pi = qi

2 [1 + εi(1 − qi

2 )] for i = 2, 3, 4 are the probabil-
ity for occurrence of noise on ith qubit. In Fig. 11(b) we plot
the FLGME as a function of the noise parameters qb and q3.
We point out here that this example deals with different types
of Pauli noise and different noise strengths, as well as dif-
ferent non-Markovianity parameters for different qubits, and
thereby is a typical case of the most general scenario covered
by the noise model and the methodology considered in this
paper.

V. APPLICATION IN TOPOLOGICAL QUANTUM CODES

Since any stabilizer state can be mapped to a graph state via
local unitary transformations belonging to the Clifford group

032404-14



LOCALIZING GENUINE MULTIPARTITE ENTANGLEMENT … PHYSICAL REVIEW A 108, 032404 (2023)

(a) (b)

(c) (d)

q c
q c q c

q c

FIG. 10. Variations of qc as a function of ε in the case of the (a) BF, (b) BPF, (c) PD, and (d) DP noise, for a connected subsystem S of
four qubits [see Fig. 8(c)] located at the boundary, corner, or bulk of a square graph. All the axes in all figures are dimensionless.

[61], the methodology discussed in Secs. III–IV can also be
applied to any stabilizer state, as long as the structure of the
graph underlying the local unitarily connected graph state is
known. In this section we demonstrate this by applying the
protocol to the toric code [92,93] defined on a square lattice,
where each qubit in the system is placed on one of the edges
of the lattice (see Fig. 12). Two types of stabilizer operators,
namely, the plaquette operators Sp = ⊗i∈pσ

3
i and the vertex

operators Sv = ⊗i∈vσ
1
i are defined on the toric code, where p

and v are, respectively, the plaquette and the vertex index. The
stabilizer state |S〉 on the toric code is given by the common
eigenstate of all the stabilizer operators corresponding to the
(+1) eigenvalue:

Sp|S〉 = (+1)|S〉, Sv|S〉 = (+1)|S〉. (51)

Under the periodic boundary condition assumed along both
the horizontal and the vertical directions, the square lattice can
embedded on a genus-1 torus, hosting two nontrivial loops.
We denote the sets of nodes, in the horizontal and vertical
directions, on which these nontrivial loops are defined by H
and V , respectively (see Fig. 12), and represent four nontrivial
loop operators as

L1
α = ⊗i∈ασ 1

i , L3
α = ⊗i∈ασ 3

i , (52)

with α = H,V .
In this section, we apply the methodology discussed in

Secs. III and IV on the stabilizer states |S〉 and localize GME
on the nontrivial loops in the horizontal or the vertical di-
rection. Note that in the case of a square lattice of NP × NP

architecture hosting a Kitaev model, where NP is the number
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ba c

1

2

3

4

5

(a)

(b)

qb

q3 Eαc

S

FIG. 11. (a) Example of an eight-qubit graph, where the noise
applied on different qubits is as follows: 1: BF (5 × 10−3, 10−1),
2: BPF (10−3, 1.0), 3: BF (q3, 1.0), 4: BF (10−3, 7 × 10−1), 5: BPF
(3 × 10−3, 9 × 10−2), a: BF (4 × 10−3, 8 × 10−1), b: BPF (qb, 1.0),
c: PD (8 × 10−3, 9 × 10−1), where the numbers in parentheses are
the values of (q, ε). The FLGME is computed over the subsystem
S constituted of the three qubits labeled by a, b, and c. (b) Vari-
ation of FLGME (quantified by genuine multiparty concurrence;
see Appendix G) as a function of qb and q3, where the PMS α

corresponds to σ 3 measurements on qubits 1–5. All quantities plotted
are dimensionless.

of plaquettes in the horizontal or vertical direction, the number
of qubits in the system grows as N = 2N2

P , while the size
of a nontrivial loop is NP. Therefore, the protocol discussed
in Secs. III and IV requires an optimization over all the re-
duced graphs having a connected subgraph Gα

S on S, which
are obtained from 3NP (2NP−1) PMSs. While computation for
pure states is still possible for moderately large system size,
in the case of noisy toric codes, this is practically impossible

1 2 3

4 6
7 8

5
9

10 11 12
13 14 15

16 17 18

p

v

L1
V

L3
H

FIG. 12. A toric code of 18 qubits on a square lattice, where each
of the plaquettes p and the vertices v are constituted of four qubits.
Periodic boundary condition is assumed along both the horizontal
and the vertical directions on the lattice.

to compute when NP (and subsequently N) is large. However,
following the same approach as in the case of the noisy graph
states, one may compute FLGME, as we discuss below.

The stabilizer state |S〉 can be mapped to a graph state
via Hadamard operations on judiciously chosen qubits [91],
referred to as the control qubits, such that a star subgraph can
be obtained on S. In Fig. 13 an example of the mapping is
presented for a toric code defined on an NP = 3 square lattice,
where S is chosen to be a nontrivial loop of L3

H,V type. We
choose a PMS αc that, throughout the protocol discussed in
Sec. III B 1 and Appendix A, keeps the star structure of the
graph Gαc

S unchanged. This can be achieved by
(a) Measuring σ 1 on the control qubits and
(b) Measuring σ 3 on the rest of the qubits,

which we refer to as the star measurement setup (SMS). Note
that for a star subgraph Gαc

S is local unitary equivalent to an
n-qubit GHZ state, which is a genuinely multiparty entangled
state, leading us to the following proposition.

Proposition 3. It is always possible to localize GME on a
nontrivial loop of a toric code via single-qubit Pauli measure-
ments on the rest of the system. �

Computation of FLGME reveals that on the nontrivial loop
of the toric code, LGME is bounded from below by Eαc

S = 1,
as long as the Schmidt measure is used for quantifying GME
over S. If GGM is used, Eαc

S = 1/2.
In order to determine FLGME under noise, we follow the

methodology described in Sec. E 1. We consider the toric
code to be subjected to the Markovian and non-Markovian
single-qubit Pauli noise discussed in Sec. IV A and investigate
the evolution of the FLGME, which we now discuss. We first
consider the case of BF noise applied to all qubits in the toric
code. Our choice of αc ensures that |S′′

1 | = 0, further implying
that the corresponding FLGME Eαc

S is given by Eαc
S = E (�S ),

where �S is a GD state obtained when the hub of the star
subgraph on S in G′

αc
is subjected to PD noise, and the rest of

the qubits in S are subjected to BF noise.7 We also note that the
star subgraph on S is equivalent to the NP-qubit GHZ state via
Hadamard operations on the qubits with BF noise, implying
that E (�S ) = E (�GHZ

S ), �GHZ
S is the mixed state obtained when

PD noise is applied to all qubits on the GHZ state. In the case
of non-Markovian phase damping noise [82],

�GHZ
S = 1

2 [(|0〉〈0|)⊗NP + (|1〉〈1|)⊗NP

+ (1 − f )NP ((|0〉〈1|)⊗NP + (|1〉〈0|)⊗NP )], (53)

with

f = q

[
1 + ε

(
1 − q

2

)]
. (54)

Using this, the FLGME, as quantified by the genuine mul-
tiparty concurrence [102] (see Appendix G) as the GME
measure, E , is given by 2 max[0, λ] with

λ =
∣∣∣∣ (1 − f )NP

2

∣∣∣∣. (55)

7This can be seen easily by following the modification of the noise
through the protocol described in Sec. III B 1 and Appendix A.
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FIG. 13. Transformation of a stabilizer state |S〉 corresponding to a toric code defined on a NP = 3 square lattice via application of
Hadamard operators on the control qubits. The control qubits are denoted by the blue nodes. The chosen subsystem S is a nontrivial vertical
loop of size n = NP, on which a star graph can be obtained via a careful choice of the set of control qubits.

It is now straightforward to see that E (�GHZ
S ) = 0 at a critical

value of q given by

qc = 1 + ε − √
1 + ε2

ε
, (56)

while for all other values of 0 � q < qc and qc < q < 1,
E (�GHZ

S ) > 0 (see Fig. 14). Note also that qc is independent
of the system size NP. We also perform similar investigations
in the case of the PD, BPF, and DP noise. For each of these
noise, using the results discussed in Appendix G, we deter-
mine the values of qc beyond which all postmeasured states
corresponding to the SMS αc become biseparable.8 In contrast
to the BF noise, qc is found to decrease monotonically with
increasing NP, implying a faster loss of FLGME for larger
system. The variations of qc as a function of the system size
NP, for different values of ε, are given in Fig. 15. Note also
that for a fixed system size NP, qc decreases monotonically
with increasing non-Markovianity parameter ε.

We now estimate the performance of Eαc
S and EP

S as lower
bounds of ES . For demonstration, we consider Kitaev’s toric
code on a square lattice of dimension 2 × 2, subjected to
single-qubit Pauli noise on all qubits, where ES and EP

S as
a function of the noise strength q are computed, taking S
to be the two-qubit nontrivial loop on the code. In all cases
of bit-flip, bit-phase-flip, phase-damping, and depolarizing
channels, we find ES = EP

S for all noise strengths 0 � q � 1
and for all non-Markovianity parameters 0 � ε � 1, with ex-
amples corresponding to ε = 1.0 for different types of noise
depicted in Fig. 16. The performance of the bound Eαc

S , on
the other hand, depends on the judicious choice of αc, and
EP

S = Eαc
S iff an optimal Pauli measurement setup is chosen

as αc. For the choice of the SMS as αc, in Fig. 16, we plot Eαc
S

as functions of q for ε = 1.0. It is clear from the figures that
along with the choice of αc, the performance of Eαc

S as a lower
bound of EP

S depends also on the type of noise as well as
noise strength. For example, in the case of the bit-flip noise,
EP

S = Eαc
S for all values of q, while for the bit-phase-flip

noise, there exists a range of q over which EP
S (= ES) is

nonzero, while Eαc
S is not.

8For ε �= 0, there may be revival of the FLGME after it decays
to zero. In such cases, we consider qc to be the first instance at
which FLGME vanishes. For example, see 2 × 2 toric code under
non-Markovian PD noise [Fig. 16(c)].

We point out here that the protocol discussed in Sec. III B 1
and Appendix A and the methodology for obtaining a lower
bound of localizable entanglement in the presence of noise
works as long as a suitable αc can be constructed. For exam-
ple, one may also aim to compute the lower bound for the
localizable bipartite entanglement over a specific bipartition
AB of the subsystem S. We demonstrate this by computing
a lower bound Eαc

A:B of the localizable bipartite entanglement
between two nontrivial loops in the toric code, where the
two loops combined form the subsystem S. The appropriate
PMS αc used for this calculation is discussed in Appendix H,
while negativity [103–108] (see Appendix G) is used as the
bipartite entanglement measure E . Variations of Eαc

A:B as a
function of q are depicted for an NP = 6 square lattice, and for
increasing distances between the two chosen nontrivial loops
of the L3

H,V type in Fig. 17. Note that with increasing dis-
tance, Eαc

A:B between two nontrivial loops decreases when q is
fixed.

q

E
(

G
H

Z
S

)

NP = 3

FIG. 14. Variations of E (�GHZ
S ) as a function of q in the case of

the BF noise applied to all qubits in a toric code defined on a NP = 3
square lattice, where S is a nontrivial loop representing L3

H,V , and the
non-Markovianity parameter ε takes values ε = 0, 0.25, 0.75, and
1. Genuine multiparty concurrence is chosen as the entanglement
measure. All the axes in all figures are dimensionless.
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FIG. 15. In (a)–(c) we depict variations of E (�GHZ
S ) as a function of q in the case of (a) PD, (b) BPF, and (c) DP noise, applied to all qubits

in a toric code defined on a NP = 3 square lattice, where S is a nontrivial loop representing L3
H,V , and the non-Markovianity parameter ε takes

values ε = 0, 0.25, 0.75, and 1. Genuine multiparty concurrence is chosen as the entanglement measure. In (d)–(f) we show variations of qc

as a function of NP in the case of the (d) PD, (e) BPF, and (f) DP noise, for a nontrivial loop of a toric code defined on a NP × NP square lattice,
for ε = 0, 0.25, 0.75, and 1. In all figures, ε = 0 stands for the case of Markovian noise. All the axes in all figures are dimensionless.

VI. CONCLUSION AND OUTLOOK

In this paper we investigate LGME on subsystems of ar-
bitrary large stabilizer states in noiseless and noisy scenarios.
We demonstrate the calculation of lower bounds of LGME
for pure stabilizer states using multiqubit graph states as their
representatives, and adopting a graph-based technique for per-
forming single-qubit Pauli measurements on graphs. We also
show that the calculation of a lower bound of LGME using
the graphical technique has a polynomial scaling with the
system size. We calculate LGME over subsystems of linear,
ladder, and square graphs of arbitrary sizes. We further expand
the calculation in the case of arbitrary graph states in the
presence of single-qubit Pauli noise of Markovian and non-
Markovian types. Using the linear, ladder, and square graphs
of arbitrary sizes as examples, we demonstrate the existence
of a critical noise strength corresponding to a lower bound
of LGME for a specific Pauli measurement setup, beyond
which all postmeasured states corresponding to the chosen
measurement setup become biseparable. The results for the

graph states can be translated directly to arbitrary stabilizer
states due to their local unitary connection with graph states.
We demonstrate this by considering the stabilizer state cor-
responding to a toric code defined on a square lattice. We
also provide a specific Pauli measurement setup to determine
a lower bound of the localizable bipartite entanglement be-
tween two nontrivial loops situated a distance apart in the
code.

We conclude with a brief overview of the future research
directions arising out of this paper. The graph-based method-
ology for computing appropriate lower bounds of LGME over
chosen subsystems of arbitrary stabilizer states opens up the
possibility of thoroughly studying and characterizing LGME
on subsystems of topological quantum codes, including the
toric code [92,93] and the color code [109,110] in the ab-
sence and presence of naturally occurring local Pauli noise in
experiments [111,112]. It also provides avenues to explore lo-
calizable bipartite entanglement between two nontrivial loops
representing different logical operators in the codes and pro-
vides the motivation to look for appropriate witness operators
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FIG. 16. Variations of ES , EP
S , and Eαc

S as a function of q in the case of the stabilizer state corresponding to a 2 × 2 (NP = 2) toric code
subjected to (a) BF, (b) BPF, (c) PD, and (d) DP channels on all qubits with ε = 1.0. All quantities plotted are dimensionless.

to construct witness-based lower bounds of LGME, in the
same vein as in [70,71]. Moreover, our paper provides a way
of characterizing parts of a large quantum network built out of
stabilizer states [113].

In view of the importance of devising methodologies that
are applicable in noisy intermediate-scale quantum (NISQ)
devices [114], which are ideal test beds for dynamics of open
quantum systems, we point out that determination of LGME
using our proposed methodology requires (1) Pauli measure-
ments on subsets of qubits in a multiqubit system and (2)
determination of entanglement of a quantum state postmea-
surement. Regarding the former, measuring Pauli operators
in NISQ devices is possible and is studied extensively (see
[114] and the references therein). With respect to the latter,
we point out that while we focus on genuine multipartite

entanglement measures, one can also perform a similar study
with other types of entanglement, e.g., bipartite entanglement.
This requires detecting and quantifying entanglement of arbi-
trary states in NISQ devices, which has been an active area
of research in recent times. Specific algorithms towards this
goal already exist using the positive map criterion [115], for
computing a tangle [116] for three-qubit systems, and for
computing the entanglement spectrum [117,118]. Moreover,
we point out here that the localizable entanglement can be
connected to entanglement witness operators [70,71,77], the
expectation value of which, computed in the postmeasured
states, can provide a lower bound of localizable entanglement:
bipartite or multipartite. In the case of stabilizer states, these
witness operators are typically designed with stabilizer op-
erators, which are constituted of Pauli matrices, and whose
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E
α

c

A
:B

q

NP = 6

FIG. 17. Variations of Eαc
A:B as a function of q in the case of the

BF noise applied to all qubits in a toric code defined on a NP = 6
square lattice for various distances, d , between the nontrivial loops.
Both axes in the figure are dimensionless. See Appendix H for the
description of αc.

expectation values can be accessed in NISQ devices ([119];
see also [114] and references therein). Therefore, our method-
ology can potentially be applied to NISQ devices also, while
the specific algorithm remains to be worked out.
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APPENDIX A: OPERATIONS ON GRAPH

In this Appendix we discuss a number of graph operations
and the related local unitary operations on the corresponding
graph states. In order to distinguish between different unitary
operations on a specific node of a graph, we provide different
attributes, a, to each node. We particularly focus on the uni-
tary operations {σ 3, H, R =

√
σ 3}, where the node attributes

corresponding to different combinations of these unitary oper-
ations are shown in Fig. 18. The importance of these unitaries
is discussed in Sec. III B 1. Note that the attributes depicted in
Fig. 18 can be considered to be different combinations of three
basic binary attributes: (a) shape (s) [circle (c), or diamond
(d )], (b) fill ( f ) [red (r), or white (w)], and (c) sign (sg) [plus
(+) or minus (−), where we represent the plus sign by the ab-
sence of the sign to keep the figures uncluttered]. At the graph
level, we often describe the operations in terms of changing
one or more of these attributes, while each such operation
corresponds to a local unitary operation on the corresponding
graph state.

1 2 3 4 5 6 7 8Numbers

Attributes

FIG. 18. Attributes for the nodes of a graph according to the
application of (1) Ii, (2) σ 3

i , (3) Hi, (4) Hiσ
3
i , (5) Ri, (6) Riσ

3
i , (7)

HiRi, and (8) HiRiσ
3
i on a node in the graph. We denote the different

attributes by the corresponding numbers in the text.

a. Local complementation. Local complementation
[43,61,121–123] of a connected graph G w.r.t. a node
i ∈ G is a simple local graph operation, performed by deleting
(creating) all the links ( j, k) between the nodes j and k ∈ Ni,
if ( j, k) is present (absent) in the graph. Here Ni is the
neighborhood of the node i, constituted of all the nodes in the
graph that are connected to the node i via a link. An example
of the local complementation operation is demonstrated
in Fig. 19(a) for a graph with five nodes. Let G′ = Oi(G)
represents the graph resulting from the local complementation
on the node i in G. The corresponding graph states, |G′〉 and

G

i

G = Oi(G)

Ni

Oi(G)G

i j

Oj ◦ Oi(G)Oi ◦ Oj ◦ Oi(G)

G

i j

Oj(G)

Oi ◦ Oj(G)Oj ◦ Oi ◦ Oj(G)

O(ij)

O(ji)

(a)

(b)

FIG. 19. (a) Local complementation operation on the graph G
w.r.t. the node i. The shaded region contains the nodes that constitute
the neighborhood Ni of the node i. (b) Equivalence of Oi j and O ji

demonstrated on a linear graph of five nodes.
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Flipping the shape

Flipping the ll

Flipping the sign

Reshaping a circular node

Reshaping a diamond node

FIG. 20. Flip and reshape operations on the node attributes.

|G〉, are connected by an LC operation on the node i and its
neighboring nodes, as [61] |G′〉 = U i

LC|G〉, with

U i
LC = e−i π

4 σ 1
i ⊗ j∈Ni ei π

4 σ 3
j . (A1)

b. Local complementation along an edge. Local comple-
mentation along an edge (i, j) ∈ G is a sequence of three
local complementations on G w.r.t the nodes i and j, given by
O(i j) = Oi ◦ O j ◦ Oi, where O j ◦ Oi(G) = O j (Oi(G)). Lo-
cal complementation along an edge is symmetric with an
interchange of i with j, i.e., O(i j) ≡ O( ji). This is demon-
strated in Fig. 19(b) in the case of a linear graph with five
nodes. Evidently, local complementation along an edge rep-
resents a local unitary operation on the corresponding graph
state, which is constituted by the unitaries of the form U i

LC, as
given in Eq. (A1).

c. Flip. The flip operation Fa
i on the node i in G reverses

one of the binary attributes, shape, fill, and sign of the node,
where the superscript a in Fa

i represents the value of the
flipped binary attribute, with a = s, f , sg. The flip operations
are consolidated in Fig. 20.

d. Reshape. Reshaping is an operation that is specific to
the shape attribute of a node. We denote this operation by Rs

i ,
where the superscript s is the shape attribute of the node prior
to applying Rs

i , on which the action of Rs
i depends. If the

shape of a node is a circle, then Rc
i results in only a flip of the

shape that changes the shape attribute from circle to diamond,
i.e., Rc

i ≡ F c
i . On the other hand, if the shape of a node is a

diamond, then Rd
i is equivalent to (a) a flip of the shape that

changes the shape attribute from diamond to circle, and (b)
a flip of the sign from + (−) to − (+). These rules are also
consolidated in Fig. 20.

1. Obtaining the reduced graph

We now discuss the graph transformation G → G′
α for a

specific choice of the PMS α, which is a key ingredient of the
protocol for computing EP

S over an arbitrary S in an arbitrary
G, as discussed in Sec. III B 1. Starting from ρ corresponding
to an arbitrary graph G, we achieve this in two steps, Step A
and Step B. In Step A we graphically represent the state ρα =
U†

αρUα [see Eq. (22)]. Next, we perform Step B to obtain
the graphical representation of the state ρ ′

α = Vα|G′
α〉〈G′

α|V†
α ,

from which the graph G′
α can be straightforwardly extracted.

Step A. As stated in Sec. III B 1, we are specifically inter-
ested in the single-qubit unitary operations {σ 3

i , Hi, Ri} on the
qubit i. Based on the graph operations described above, these
unitaries can be represented as follows [84,85].

A.1 Hi on any node: F f
i (F r

i (G) or Fw
i (G), depending on

whether f = r or w for the node i).
A.2 Ri on a node with f = r: Rs

i [Rc
i (G) or Rd

i (G), de-
pending on whether s = c or d for the node i].

A.3 Ri on a node with f = w, s = c, sg = +: Rs
Ni

◦ Oi,
where Rs

Ni
represents Rs

j operations on all nodes j ∈ Ni.
A.4 Ri on a node with f = w, s = c, sg = −: F sg

Ni
◦ Rs

Ni
◦

Oi, where Rs
Ni

represents Rs
j operations on all nodes j ∈ Ni,

and F sg
Ni

stands for F sg
j ∀ j ∈ Ni.

A.5 Ri on a node with f = w, s = d , sg = +: F sg
Ni

◦ Rs
Ni

◦
Oi ◦ Fd

i ◦ Fw
i where F sg

Ni
,Rs

Ni
denotes flip and reshape oper-

ations, respectively, on the entire neighborhood of the node.
A.6 Ri on a node with f = w, s = d , sg = −: Rs

Ni
◦ Oi ◦

Fd
i ◦ Fw

i
A.7 σ 3

i on a node with f = r: F sg
i [R+

i (G) or R−
i (G),

depending on whether sg = ± for the node i]
A.8 σ 3

i on a node with f = w, s = c: F sg
Ni

. Where F sg
Ni

denotes flip of sign on all neighborhood nodes.
A.9 σ 3

i on a node with f = w, s = d: F sg
i ◦ F sg

Ni

For ease of representation, we denote the graph opera-
tions corresponding to the rules A.1, . . . , A.9 as A1, . . . ,A9,
where, for example, A3 ≡ Rs

Ni
◦ Oi. Note that a subset of the

transformations {A1, . . . ,A9} according to a specific unitary
operator Uα corresponding to a specific PMS α provides a
graphical representation of the state ρα [see Eq. (22) and the
corresponding discussion].

Step B. To achieve this step, we additionally use two
graph transformations, referred to as the equivalence trans-
formations, that correspond to Eq. (23) in Sec. III B 1. These
graph transformations, denoted by B1 and B2, are described
below:

B.1 The graph operations constituting B1 on a node i with
s = d are as follows, in the specified order: (1) flip the fill of
the node i, (2) perform local complementation on the node
i, (3) reshape the neighbors of the node i in the transformed
graph, (4) flip the sign of the node i, and (5) if sg = − for
the node i in the resulting graph, then flip the signs of the
neighbors of the node i in the transformed graph also.

B.2 The graph operations constituting B2 on a link (i, j) ∈
G, such that both i and j have s = c, are as follows, in the
specified order: (1) flip the fills of the nodes i and j, (2)
perform a local complementation along the edge (i, j), (3) flip
the signs of the nodes that are connected to both of i and j in
the transformed graph, and (4) if either of the nodes i and j in
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the transformed graph has sg = −, flip the sign of that node
as well as the signs of its neighbors in the transformed graph.

We now present the algorithm for obtaining G′
α in the form

of a pseudocode, using the above equivalence transformations.

input (1) The graphical representation of ρα , as obtained
from Step A, with nodes of eight different attributes and the
links, and (2) sets S′ and S of measured and unmeasured
nodes:

1. Obtain the set Ddw of all nodes with s = d, f = w (i.e.,
type 7 and type 8 nodes; see Fig. 18), and the set Lcw of
all pairs (i, j) of nodes with s = c, f = w [i.e., (type 3,
type 3), (type 3, type 4), (type 4, type 3), and (type 4,
type 4) links], such that the link (i, j) exists. The sizes
of these sets are given by |Ddw| and |Lcw|, respectively.
(a) while |Lcw| > 0 or |Ddw| > 0, do

(I) operate B1 on all nodes i ∈ Ddw

(II) operate B2 on all (i, j) ∈ Lcw

(b) determine |Lcw|, |Ddw|.
(c) if |Lcw| > 0 or |Ddw| > 0, repeat (a)–(c).

else exit
2. Obtain the set EB of all boundary links (i, j) having

node i ∈ S′, and node j ∈ S, such that i is either of
type 3, type 4 nodes (see Fig. 18). Let us denote the set
of these nodes i ∈ S′ as NS.
(a) for all (i, j) ∈ EB such that i ∈ NS, do

(I) if j has s = c, apply B2 on (i, j)
else first apply B1 to node j, and then to node i

3. Extract the unitary operation V from the node attributes
4. Replace all nodes by type 1 nodes (see Fig. 18)

converting it to a normal graph, and extract the
connectivity of G′

α .
output (1) The reduced graph G′

α and (2) the unitary V in
terms of the set of unitaries {Vi, i ∈ G′

α}.

Implementation of the algorithm presented in the pseu-
docode up to step 2 ensures the following for ρ ′

α .
(a) The neighborhood S′

1 of S has at least one node, and the
nodes in S′

1 can be only of the types 1, 2, 5, or 6 (see Fig. 18),
so that σ 3 measurement on these nodes remain unchanged.

(b) The nodes in S′
2, in addition to being of the types 1,

2, 5, or 6, can also be of the types 3 or 4 (see Fig. 18). This
ensures that only σ 3 and σ 1 measurements are allowed in S′

2.
(c) If a type 3 node, or a type 4 node occurs in S′

2, then its
neighborhood will be constituted of types 1, 2, 5, and 6 nodes
only.

Because of these characteristics of ρ ′
α , it is always possible

to fully disconnect types 3 and 4 nodes of S′
2 by measuring σ 3

only on the nodes of types 1, 2, 5, and 6. Note that when σ 3

is measured on a node i ∈ {type 1, type 2, type 5, type 6}, the
outcomes ±1 are equiprobable, and the graph postmeasure-
ment can be obtained by

(1) Deleting all the edges between the node i and its neigh-
bors Ni

(2) Replacing the node i with type 3 (type 4) node if the
outcome is +1 (−1) and

(3) Performing F sg
Ni

if the outcome is −1.

If one now measures σ 3 on a node i ∈ {type 3, type 4}
belonging to S′

2, due to the absence of a connection between
the node and the rest of the graph, the measurement leaves the
graph unaltered, and the measurement outcome is +1 (−1)
for the node of type 3 (type 4) with certainty. See Fig. 21 for
an example of the construction of reduced graph using above
prescription.

2. Scaling with system size

We now explore how the protocol discussed in Sec. III B 1
and Appendix A scales with the number of measured nodes
|S′| = N − n = m in a graph G, which is given by the depen-
dence of the total number of graph operations, C, performed
during the protocol on m. Since the graph G changes during
each step of the protocol, it is in general difficult to obtain the
exact dependence of C on m. However, to estimate an upper
bound, C′, of C, consider a fully connected graph of size N ,
where σ 2 measurement9 on m nodes is performed so that a
maximum number of graph operations in terms of flipping of
the node attributes and creation or deletion of the links in local
complementations have to be performed. The measurement
transformation σ 2 → σ 3 in Step A on m nodes corresponds to
2m graph operations. On the other hand, the number of graph
operations during the reduction in Step B is upper bounded by
m iteration of B1, each of which requires at most N2 − N + 4
graph operations. Therefore, the dependence of C on m is
overall upper bounded by

C′ = m(N2 − N + 6). (A2)

In the limit N ≈ m10

C′ = m3 − m2 + 6m, (A3)

which is a polynomial dependence on m.
In order to test this estimate, in Fig. 22, we present the

numerical data for the variation of C with m, for cubic, square,
and linear graphs states on N = 83 = 343, N = 182 = 324,
and N = 325 nodes, respectively. We randomly choose n
nodes from the graph and perform σ 2 measurement on m =
N − n nodes, followed by a calculation of C. We see that the
numerical data are always upper bounded by C′, as per our
estimation. Note here that the actual values of the total graph
operations depend on the structure of the chosen graph, as
expected.

APPENDIX B: PROOF OF PROPOSITION 1

Proof. For reasons that will be clear shortly, we relabel
the measurement outcomes corresponding to qubits in S′

1 (S′
2)

by l (m), such that l j = k j (mj = k j) if j ∈ S′
1 (S′

2). We
can therefore regroup the outcome index k as k ≡ lm with
l ≡ l1l2 . . . lL, and m ≡ mL+1mL+2 . . . mN , where we have as-
sumed, without any loss in generality, that L is the size of S′

1
such that S′

2 has N − n − L qubits. In this notation Mα
k ≡ Mα

lm,

9This is the costliest Pauli measurement in terms of graph opera-
tions. See Appendix A.

10This is typically the case when the actual system is large enough
compared to the subsystem on which entanglement is localized.
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S
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3
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4

σ3
3

ρα ρα

FIG. 21. Transformation of the graph G → GR shown in Fig. 1 in the graphical representation described in Appendix A.

and using Eq. (23) in Eq. (21), we obtain

�k = UαMα
lmραMα†

lm U†
α

= UαVαMα
lm|G′

α〉〈G′
α|Mα†

lm V†
αU†

α, (B1)

with Mα
lm ← V†

αMα
lmVα , such that after this transformation,

α j = 3 only ∀ j ∈ S′
1. Note that Vα can change only the mea-

surement basis, not the measurement outcome. The graph
transformation algorithm discussed in Appendix A ensures
that the measurement on any of the qubits in S′

2 can be either a
σ 3, or a σ 1, i.e., α j = 1, 3 if j ∈ S′

2. Now, application of Mα
lm

on the graph state |G′
α〉 results in the normalized state of the

form

Mα
lm|G′

α〉〈G′
α|Mα†

lm = Wlm
[(⊗ j∈S′

1
|l j〉〈l j |

) ⊗ (⊗ j∈S′
2
|mj〉〈mj |

)
⊗ (∣∣Gα

S

〉〈
Gα

S

∣∣)]W†
lm, (B2)

where Gα
S is the subgraph on S in G′′

α , which is obtained by
performing the graph transformations corresponding to the

m

lo
g 1

0
C

log10 C

FIG. 22. Variation of the total number of graph operations with
the number of measured nodes, m, in cubic, square, and linear graphs
on respectively N = 343, 324, and 325 nodes. To draw the variation
of the analytically estimated upper bound, C′, we use N = 324.

single-qubit Pauli measurements on the graph G′
α for all qubits

in S′. These transformations, for a measurement on a single
qubit, are given by [43,48]

σ 1
j : G′

α → Oa(O j (Oa(G′
α ))\ j), (B3)

σ 3
j : G′

α → G′
α\ j, (B4)

with a being any node in the neighborhood N j of the node
j ∈ G′

α , and G′
α\ j is obtained from G′

α by deleting all links
connected to the node j. The graph operation O j (G) w.r.t. a
node j represents a local complementation [43,61,121–123]
operation (see also Appendix A for the definition). These
single-qubit Pauli measurements on all j ∈ S′ also result in
Clifford unitary operators operating postmeasurement on the
qubits constituting the graph, leading to the unitary operations
Wlm, given by [43,48]

Wlm = ( ⊗ j∈S′
1

W 3
l j

)( ⊗ j∈S′
2

W 1,3
mj

)
, (B5)

where for each j,

W 1
+1 = ei π

4 σ 2
a ⊗b∈N j\(Na∪a) σ 3

b , (B6)

W 1
−1 = e−i π

4 σ 2
a ⊗b∈Na\(N j∪ j) σ 3

b , (B7)

W 3
+1 = I j, (B8)

W 3
−1 = ⊗b∈N j σ

3
b , (B9)

with a being chosen as in Eq. (B3).
It is worthwhile to point out here that Eqs. (B3)–(B4)

indicate that G′′
α and consequently Gα

S is independent of the
measurement outcomes l and m. Using (B2) in Eq. (B1), and
tracing out the subsystem S′, we obtain

�k
S = VS,αWS,l

∣∣Gα
S

〉〈
Gα

S

∣∣W†
S,lV

†
S,α, (B10)

where the subscript S is introduced in the unitary operators
to signify the components of the unitaries that have support
only on S, and we have dropped the index m from WS as the
components of W on S are governed only by l . Therefore,

E
(
�k

S

) = E
(∣∣Gα

S

〉〈
Gα

S

∣∣), (B11)

which is independent of the measurement outcomes l and m.
This proves Proposition 1. �
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APPENDIX C: ENTANGLEMENT IN PURE GRAPH STATES

Here we discuss quantification and characterization of bi-
partite and multipartie entanglement in graph states.

1. Bipartite entanglement

Let us consider a system of qubits V ≡ {1, 2, . . . , N} form-
ing a connected graph G. Let us now consider a bipartition
of the system V as A ∪ B = V and A ∩ B = ∅, where dA =
dim(HA) (dB = HB), HA (HB) are the Hilbert space asso-
ciated with A (B). For each pure state |G〉 in HA ⊗ HB,
orthonormal basis {bi

A} ∈ HA and {bj
B} ∈ HB exist such that

in Schmidt decomposed form,

|G〉 =
d∑

i=1

√
λi

∣∣bi
Abi

B

〉
, (C1)

with d = min{dA, dB}, and nonnegative Schmidt coefficients√
λi with λi � 0 and

∑d
i=1 λi = 1. The marginals of |G〉,

given by

ρA(B) = TrB(A)[|G〉〈G|]

=
d∑

i=1

λi

∣∣bi
A(B)

〉〈
bi

A(B)

∣∣, (C2)

have the spectrum {λi; i = 1, . . . , d}. The state |G〉 is max-
imally entangled (ME) [1,2] in the bipartition A : B if λi =
1/d ∀i, which corresponds to the marginal of the subsystem
of dimension d to be maximally mixed, i.e., I/d , where I is
the identity matrix on the Hilbert space of dimension d . Oth-
erwise, |G〉 is nonmaximally entangled (NME) in the partition
A : B. In situations where |G〉 is maximally entangled across
any bipartition (see also [124,125]), they are referred to as
the absolutely maximally entangled (AME) states [126–130].
To compute the bipartite entanglement EA:B(G) between the
partitions A and B of G, one needs to compute the marginals
ρA(B) for |G〉, which can be obtained in terms of the generators
g̃A(B)

i as [43,48]

ρA(B) = 1

dA(B)

∑
{g̃A(B)

i }
g̃A(B)

i , (C3)

where {
g̃A(B)

i

} = {gi|supp(gi ) ∈ A(B)}, (C4)

i.e., {g̃A(B)
i } is the subset of {gi} with support on i ∈ A(B). For

an arbitrary connected graph G, the single-qubit marginals
corresponding to all qubits are maximally mixed [43,99], im-
plying |G〉 is ME in all bipartitions of a qubit and the rest.
Also, note that for N = 2, 3, d = 2 [see Eq. (C1)], and |G〉 is
AME. On the other hand, in case of G with arbitrary N > 3,
and assuming A to be the smaller subsystem constituted of two
qubits {i, j} ∈ G (i.e., d = 4), ρA = ρi j is either maximally
mixed, or a rank-2 mixed state [43]. In the case of the former,
|G〉 is ME in the bipartition A : B, whereas in the case of the
latter, it is not.

Note that it is sufficient to investigate connected graphs. In
the case of graphs that are not connected, the bipartite entan-
glement present in the graph will be decided by the bipartite

entanglement present in the graph states corresponding to the
connected segments of the full graph.

2. Multipartite entanglement

We now discuss the multipartite entanglement in graph
states. A multiqubit quantum state is genuinely multiparty
entangled if it is not separable in any possible bipartition.
Connected pure graph states are known to be genuinely mul-
tiparty entangled [48], where the degree of entanglement can
be quantified using the Schmidt measure [43,48] and the gen-
eralized geometric measure [83,97].

a. Schmidt measure

A pure state of N qubits can be written as

|ψ〉 =
R∑

i=1

ci

∣∣ψ (1)
i

〉 ⊗ · · · ⊗ ∣∣ψ (N )
i

〉
, (C5)

where cis are complex numbers subject to normalization∑
i |ci|2 = 1, |ψ (l )

i 〉 belongs to the Hilbert space of the qubit
l , l = 1, 2, . . . , N , and R is an integer <2N . The Schmidt
measure of |ψ〉 is given by [48,131]

E (|ψ〉〈ψ |) = log2(r), (C6)

where r is the minimum possible value of R over all possible
linear decompositions of |ψ〉 into product states. In general,
the Schmidt measure is a difficult one to compute for an arbi-
trary pure multiqubit state. However, there exist computable
lower and upper bounds of the measure for certain multi-
qubit states, including the graph states. A lower bound to the
Schmidt measure in the case of graph states can be obtained
as follows [48]. For a given graph G and a bipartition A:B
such that G = A ∪ B, the adjacency matrix 
G can be written,
without any loss in generality, as


G =
(


A 
T
AB


AB 
B

)
(C7)

by rearranging the nodes, where T denotes the transposition
operation. The Schmidt measure of the graph state w.r.t. the
partition A:B is given by the rank of the matrix 
AB:

E (|G〉〈G|) = rank[
AB]. (C8)

The lower bound to the Schmidt measure w.r.t the partitioning
of the system into smallest possible subsystems11 is given by
maximizing E (|G〉〈G|) over all possible bipartitions [48], as

EL(|G〉〈G|) = max
∀{A:B}

E (|G〉〈G|). (C9)

On the other hand, an upper bound to the Schmidt measure
in the case of graph states is given by the Pauli persistency,
defined as the minimum number of local Pauli measurements
required to completely disentangle the state [48]. We exploit
the measurement protocol for the evaluation of this upper
bound as follows. For a graph state |G〉 on N qubits, and for
a chosen Pauli measurement setup P on these N qubits, let
us denote the reduced graph, obtained according to Eq. (23),

11In the present case, each partition would hold one qubit.
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by G′. The minimal vertex cover of this reduced graph G′ is
defined as the minimum cardinality of the subset of nodes in
G′ such that upon deletion of edges on them is left behind
a completely disconnected graph on N vertices which we
denote by M(G′). An upper bound to the Schmidt measure
of |G〉 is given by minimizing M(G′) over all possible Pauli
measurements:

EU (|G〉〈G|) = min
P

M(G′). (C10)

b. Generalized geometric measure

Let us consider a K-separable N-qubit quantum state |φK〉,
which can be divided into K product state partitions, where
2 � K � N . The GME in an N-qubit state |ψ〉 is quantified by
the K-geometric measure (K-GM) of entanglement, defined as
the minimum distance of the state |ψ〉 from the set SK of all
possible K-separable states:

E (|ψ〉) = 1 − max
SK

|〈φK |ψ〉|2. (C11)

The original definition of the geometric measure is recovered
for K = N , while at the other extremum K = 2, the measure
is called the generalized geometric measure (GGM). The op-
timization in the definition of the GGM can be achieved via
a maximization of the Schmidt coefficients across all possible
bipartitions of |ψ〉[98], leading to

E = 1 − max
SA:B

{
λ2

A:B

}
, (C12)

where λA:B is the maximum Schmidt coefficient of |ψ〉 in the
bipartition A : B, and the maximization in Eq. (C12) is over
the set SA:B of all possible bipartitions A : B of the N-qubit
system. The GGM of a pure state of arbitrary number of
qubits, N , can be computed using Eq. (C12).

APPENDIX D: PROOF OF PROPOSITION 2

Proof. Using

Js′′ = JS,s′′ ⊗ JS′,s′′ (D1)

and

qs = qS,s × qS′,s (D2)

with qS(S′ ),s = ∏
j∈S(S′ ) qsj , and

∑
(S′,s) qS′,s = ∑

(S,s) qS,s = 1,
one can trace out S′ from �k to obtain

�k
S = VS,α�̃k

SV†
S,α (D3)

with

�̃k
S =

∑
(S,s)

qS,sJS,s′′ ρ̃SJ†
S,s′′ , (D4)

where ρ̃S is a GD state in the graph-state basis corresponding
to the graph Gα

S on the subsystem S, obtained from G′
α [see

Eq. (B10)]. We write ρ̃S as

ρ̃S =
∑
ψ

λψ (α, s)|ψ〉〈ψ |, (D5)

{|ψ〉} being the graph basis in the Hilbert space of S where
ψ ∈ [0, 2n − 1], and ψ can be identified as ψ ≡ ψ1ψ2 . . . ψn,
where ψi ∈ {0, 1}∀i ∈ S. In this notation |0〉〈0| ≡ |Gα

S 〉〈Gα
S |,

and (see Sec. III A)

|ψ〉 = ⊗i∈S
(
σ 3

i

)ψi
∣∣Gα

S

〉
. (D6)

Note that the mixing probabilities λψ (α, s) are in general
functions of the PMS, α, and the type of the noise, s. These
probabilities and subsequently the state ρ̃S can be calculated
from the knowledge of the connectivity between the sets of
qubits S and S′′

1 , where S′′
1 ⊆ S′

1 such that s j = 1, 2 ∀ j ∈ S′′
1 ,

i.e., the noise on S′′
1 does not commute with the measurement,

which is σ 3 for all qubits in S′
1. A technical account of the

prescription for calculating ρ̃S is given in Appendix F for
interested readers.

Note further that an application of Eq. (D4) on ρ̃S leads
to another GD state on S. To determine this, we first obtain
the GD state resulting from the application of Eq. (D4) on
|ψ〉〈ψ | ≡ |0〉〈0| = |Gα

S 〉〈Gα
S | [using Eq. (40)] as∑

(S,s)

qS,sJS,s′′ |0〉〈0|J†
S,s′′ =

∑
ψ ′

λψ ′ (α, s)|ψ ′〉〈ψ ′|, (D7)

and then use Eqs. (D5) and (D7) in Eq. (D4), with the aid of
Eq. (D6), to obtain

�̃k
S =

∑
(S,s)

qS,sJS,s′′

⎡
⎣∑

ψ

λψ |ψ〉〈ψ |
⎤
⎦J†

S,s′′ (D8)

=
∑
ψ,ψ ′

λψλψ ′ |ψ ⊕ ψ ′〉〈ψ ⊕ ψ ′|, (D9)

where ψ ⊕ ψ ′ represents modular two addition of the binary
strings ψ and ψ ′. Also to arrive at Eq. (D9), we use σ 3σ jσ 3 =
σ j, j ∈ {1, 2, 3} up to irrelevant multiplicative factors.

From Eq. (D3), it is clear that

E
(
�k

S

) = E
(
�̃k

S

)
. (D10)

Moreover, note that for two distinct outcomes k1 and k2 having
their respective components in S′′

1 as l ′
1 and l ′

2
12, l ′

2 = l ′
1 ⊕ L′ in

binary representation, where L′ is another binary string of the
same length as l ′

1, l ′
2. Therefore, a sum over l ′

1 [see Eq. (47)]13

is equivalent to a sum over l ′
2 for a fixed L′. This results in

local unitary connected states for the two outcomes k1 and k2

as

�̃
k1
S = WL′

S �̃
k2
S WL′

S , (D11)

where WL′
S is a local unitary operator acting on S, having the

form

WL′
S =

∏
j∈S′′

1

⊗i∈N j∩S
(
σ 3

i

)L′
j , (D12)

where L′
j is the outcome on the jth qubit, j ∈ S′′

1 . Therefore,

E (�̃k1
S ) = E (�̃k2

S ) for any two distinct outcomes k1, k2, which,
along with Eq. (D10), leads to

ES
(
�

k1
S

) = ES
(
�

k2
S

)
. (D13)

Hence the proof. �

12Note that l ′
1 and l ′

2 can be seen as the parts of corresponding l ′s
that belong to S′′

1 .
13Note that the sum over s in Eq. (47) can be seen as an effective

sum over all possible l ′
1.

032404-25



HARIKRISHNAN K. J. AND AMIT KUMAR PAL PHYSICAL REVIEW A 108, 032404 (2023)

TABLE II. Change of outcomes due to Pauli noise on a qubit in the case of the example shown in Fig. 2, where BPF noise is applied to all
qubits, and (A) σ 3 and (B) σ 1 measurements are performed on qubits 1 and 2. In the case of (B), allowed and forbidden outcomes are labeled
by (a) and (f).

A. α ∈ 
 (all outcomes are allowed)

k ≡ l1m2 k′ ≡ l ′
1m′

2

s1 = 0, s2 = 0 s1 = 0, s2 = 2 s1 = 2, s2 = 0 s1 = 2, s2 = 2

(+1)(+1) (+1)(+1) (+1)(−1) (−1)(+1) (−1)(−1)
(+1)(−1) (+1)(−1) (+1)(+1) (−1)(−1) (−1)(+1)
(−1)(+1) (−1)(+1) (−1)(−1) (+1)(+1) (+1)(−1)
(−1)(−1) (−1)(−1) (−1)(+1) (+1)(−1) (+1)(+1)

B. α ∈ 
 (some outcomes are allowed)

k ≡ l1m2 k′ ≡ l ′
1m′

2

s1 = 0, s2 = 0 s1 = 0, s2 = 2 s1 = 2, s2 = 0 s1 = 2, s2 = 2

(+1)(+1) (a) (+1)(+1) (a) (+1)(−1) (f) (−1)(+1) (f) (−1)(−1) (a)
(+1)(−1) (f) (+1)(−1) (f) (+1)(+1) (a) (−1)(−1) (a) (−1)(+1) (f)
(−1)(+1) (f) (−1)(+1) (f) (−1)(−1) (a) (+1)(+1) (a) (+1)(−1) (f)
(−1)(−1) (a) (−1)(−1) (a) (−1)(+1) (f) (+1)(−1) (f) (+1)(+1) (a)

APPENDIX E: CALCULATING LOCALIZABLE
ENTANGLEMENT FOR THE GRAPH

IN FIG. 2 UNDER NOISE

To demonstrate the calculation of localizable entanglement
in the presence of noise, we consider the graph in Fig. 2(a),
where each qubit is subjected to BPF noise.

1. When no outcomes are forbidden

Let us consider σ 3 measurements performed on qubits 1
and 2 constituting S′. Since Uj = Vj = I corresponding to
qubits j = 1, 2 in the case depicted in Fig. 2(a), the reduced
graph is equivalent to the original graph, and s′′ = s′ = s in
Eqs. (41)–(47). The change l1 → l ′

1 and m2 → m′
2 in Eq. (47)

due to the values of s, according to Eq. (46), is tabulated in
Table II(A). Note that in this specific example, all four mea-
surement outcomes k ≡ l1m2 are equally probable and remain
so even after the change l1 → l ′

1 and m2 → m′
2. Since both

qubits in S′′
1 = {1, 2} are connected to the two qubits in S, the

normalized state ρ̃S [see Eq. (D5)] corresponding to outcome
k = (+1)(+1) ≡ 00, occurring with a probability 1/4, can be
written in a row vector notation as∑

ψ

λψ |ψ〉〈ψ | ≡
[

1 − q + q2

2
, 0, 0, q − q2

2

]
, (E1)

where λψ is the value in the position ψ of the row. Similarly,
equivalent to Eq. (D7), one may write∑

ψ ′
λψ ′ |ψ ′〉〈ψ ′| ≡

[
1 − q + q2

2
, 0, 0, q − q2

2

]
. (E2)

Combining the above equations in the case where S′
2 = ∅ and

k = l = (+1)(+1) ≡ 00, one obtains, equivalent to Eq. (D9),

�̃
(+1)(+1)
S =

[(
1 − q + q2

2

)2

+
(

q − q2

2

)2

, 0, 0,

2

(
1 − q + q2

2

)(
q − q2

2

)]
. (E3)

The states �̃k
S for k = (+1)(−1), (−1)(+1), (−1)(−1) are

also equally probable with probability 1/4 and can be
obtained from �̃

(+1)(+1)
S via local unitary transformations,

where the local unitary operators can also be seen from
Table II(A). For example outcomes k = (+1)(+1) ≡ 00 and
k = (−1)(+1) ≡ 10 are connected by L = 10, and the corre-
sponding states by the local unitary operator WL

S = σ 3
1 ⊗ σ 3

2 .

2. When forbidden set of outcomes is present

For α ∈ 
, there exists a set of outcomes that are forbid-
den (see Sec. III B 2). In such cases, results discussed in the
previous section hold except for the calculation of ρ̃S , and the
explicit calculation depends on the fact that the change lm →
l ′m′ may result in a transition between allowed and forbidden
sets of outcomes. We demonstrate this using the graph shown
in Fig. 2(a), where each qubit is subjected to BPF noise, and
σ 1 measurements are performed on qubits 1 and 2 constituting
S′. Since Uj = H corresponding to qubits j = 1, 2, and V1 =
H,V2 = I in this case, one has to work with the reduced graph
shown in Fig. 2(b). Also, s′′ = s′ = s in Eqs. (41)–(47), since
BPF does not change under Hadamard operation. The trans-
formations l1 → l ′

1 and m2 → m′
2 in Eq. (47) due to the values

of s, according to Eq. (46) are tabulated in Table II(B). Since
S′

2 = {1} and S′
1 = S′′

1 = {2} are connected to the two qubits
in S, ρ̃S corresponding to the outcome k = lm = (+1)(+1) ≡
00 occurring with probability (1 − q + q2/2)/2, can be writ-
ten as [equivalent to Eq. (D5)]

∑
ψ

λψ |ψ〉〈ψ | ≡
[

1 − q + q2

4

1 − q + q2

2

, 0, 0,

q2

4

1 − q + q2

2

]
. (E4)

It is worthwhile to point out that in contrast to the case dis-
cussed in Sec. E 1, the probabilities are no longer independent
of q—an artifact due to the transition between the outcomes
belonging to the allowed and forbidden sets. Proceeding as
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S

C1

C2

C3

C3
1C2

1

C1
1 C1

3

C1
2

C2
2

C3
2

FIG. 23. Schematic representation of the class structure of the
subsystem S′′ of a graph, where entanglement is to be localized over
a subsystem S of size 3. To keep the figure uncluttered, only the
subsystems S′′

1 , S, the links between S′′
1 and S, and the links between

the nodes in S are drawn.

before, one can write the normalized �̃
(+1)(+1)
S as

�̃
(+1)(+1)
S =

[
1 − q + q2

4
+

(
q − q2

2

) q2

4

1 − q + q2

2

, 0, 0,

q2

4
+

(
q − q2

2

)(
1 − q + q2

4

)
1 − q + q2

2

]
. (E5)

In a similar fashion, one may also obtain �̃
(+1)(−1)
S as

�̃
(+1)(−1)
S = [

1
2 , 0, 0, 1

2

]
, (E6)

which clearly indicates that �̃
(+1)(−1)
S and �̃

(+1)(+1)
S are not

connected by local unitary operators. Thus, in general, a lo-
cal unitary connection among states corresponding to all the
allowed outcomes does not exists, thereby taking away the
advantage in the computation, as opposed to the case de-
scribed in Sec. E 1, specifically in situations where the system
size is large. Note also that the outcomes which are initially
forbidden at q = 0 need not necessarily remain forbidden for
q > 0. In the above example, k = (−1)(+1) is forbidden at
q = 0 but acquires a nonzero probability q(1 − q/2)/2 for
q > 0.

APPENDIX F: DETERMINATION OF ρ̃S

Here we discuss the calculation of ρ̃S (see Sec. D and
Sec. E 1). Let us define S′′

1 ⊆ S′
1 such that S′′

1 consists of all
nodes in S′

1 that have s′′ ∈ {1, 2}. Let us further divide the
nodes in S′′

1 into n classes, n being the size of S, such that
the each of the nodes in the mth class, Cm (m = 1, 2, . . . , n),
is connected to m nodes in S. Since m nodes from S can be
chosen in

(n
m

)
possible ways, the mth class can be further

divided into
(n

m

)
subclasses, which we denote by Cr

m, where
each Cr

m has a size |Cr
m|, 1 � r �

(n
m

)
. See Fig. 23 for an

example of a possible class structure in the case of n = 3.
We once again use the binary representation to work using

the graph state basis {|ψ〉} (see Sec. D), where |GS〉 = |0〉.

The local unitary corrections (either I or σ 3) applied to |GS〉
can be represented in binary representation as

|ψ〉 = Wψ |0〉, with Wψ = ⊗n
j=1(σ 3

j )ψ j . (F1)

In this representation, one can determine the effective correc-
tion of each of the subclasses Cr

m in the mth class on S by
a parity bit, denoted by γ (r, m), such that for γ (r, m) = 0
(γ (r, m) = 1), there will be no correction (a σ 3 correction)
applied to each node in S that are connected to the nodes in
Cr

m [see Eqs. (B8) and (B9)]. The overall correction, denoted
by Wψ , applied on S will be the product of all corrections due
to all subclasses from all of the classes:

Wψ =
n∏

m=1

(n
m

)∏
r=1

(
σ 3
N(r,m)

)γ (r,m)
, (F2)

where N(r,m) denotes the set of all nodes in S connected to the
subclass Cr

m.
Note that there may exist different combinations of γ (r, m)

giving rise to the same correction Wψ . For example, in the
case of n = 3 (Fig. 23) both γ (r, m) = 0∀m, r and γ (r, m) =
1∀m, r give rise to the trivial correction I ⊗ I ⊗ I in S. Defin-
ing the total number of possible subclasses with m � 2 as

D =
n∑

m=2

(n
m

)
, (F3)

there will be a total of n + D subclasses for S since ( n
1 ) = n.

The purpose of this division into D and n will be evident soon.
We now denote a binary string of n + D bits as

γ = γ (1, 1)γ (2, 1) . . . γ (n, 1)γ (1, 2)γ (2, 2) . . . γ (n, 2)

. . . γ (1, n)γ (2, n) . . . γ (1, n). (F4)

The first n of the parity bits in γ are reserved for m = 1
class, and the other D bits are assigned to the remaining D
subclasses of the classes m = 2, . . . , n. In this notation mixing
probabilities, λψ , are given by

λψ =
2D−1∑
γ=0

n∏
m=1

(n
m

)∏
r=1

Pγ (r,m)(r, m) (F5)

with

Pγ (r,m)(r, m) = 1
2

[
1 + (−1)γ (r,m)(1 − 2qn)|C

r
m|] (F6)

and

γ (i, 1) = ψi ⊕
⊕

{(r,m)},m>1
i∈N(r,m)

γ(r,m), (F7)

where i denotes a qubit in S, the i ∈ N(r,m) condition picks up
only those subclasses in which a connection exists between
i and Cr

m, ⊕ denotes modular 2 addition, and qn is the total
probability of occurrence of change of outcome on a single
qubit, l j → l ′

j [see Eq. (46)], for various noises considered in
this paper. For an example qn = q/2 for Markovian BF and
qn = 0 for Markovian PD noises. An explicit calculation with
n = 2 can be found in [132].

We point out here that the above calculation assumes
identical noise strengths and non-Markovianity parameters on
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each qubit, irrespective of the type of noise present on the
qubit in a specific subclass. However, one can also generalize
to a scenario where (qi, εi ) on different qubits in a subclass
are different, which originates from different (qi, εi ) on dif-
ferent qubits in the original graph. This leads to a form of
Pγ (r,m)(r, m) given by

P1(r, m) =
2|Cr

m |∑
β=1,

⊕βi=1

∏
i∈Cr

m

pβi
i (1 − pi )

1⊕βi ,

P0(r, m) = 1 − P1(r, m), (F8)

where β = β1β2 · · ·β|Cr
m| is a multi-index with βi ∈ {0, 1},

and pi is the probability of occurrence of noise on qubit i,
given by

pi = qi

2

[
1 + εi

(
1 − qi

2

)]
(F9)

for the BF and the BPF noise, and

pi = qi

4

[
1 + 3εi

(
1 − 3qi

4

)]
(F10)

for the DP noise. An example of this scenario can be found in
Sec. IV C.

APPENDIX G: ENTANGLEMENT IN GRAPH
STATES UNDER NOISE

In the presence of noise, and for states with more than two
qubits, the problem of quantifying entanglement is signifi-
cantly more complicated. For a given bipartition of a graph
state under Pauli noise, the bipartite entanglement can be
quantified by negativity [106]. On the other hand, for a certain
class of mixed states obtained when graph states are subjected
to noise, such as the graph-diagonal states, useful criteria for
detecting multipartite entanglement directly from the density
matrix of the state exist [100,133]. One can also compute a
genuine multiparty concurrence [102] for graph states under
noise with an X state as the density matrix. We briefly discuss
these in this section.

1. Negativity as a bipartite measure for a graph-diagonal state

For a graph-diagonal state ρ representing a graph with two
partitions A and B, the negativity between A and B is defined
as [106]

NAB = ||ρTA || − 1

2
, (G1)

where TA denotes the transposition of ρ w.r.t. the subsystem
A, and ||A|| = Tr[

√
A†A] for the matrix A.

2. Genuine multiparty entanglement in graph-diagonal states

Determination of the multipartite entanglement measures
is difficult in the case of mixed states. However, in the case
of specific types of mixed states, such as the graph diagonal
states of certain types or number of parties, criteria for the
state to be genuine multiparty entangled, or biseparable, or
fully separable can be determined using the density matrix of
the state [133]. We first consider the example of a mixed state
of N qubits, which is diagonal in the graph state basis [see

σ1 σ2

σ3

σ1 σ1 σ1

σ3

σ3

σ3 σ3

σ3 σ3 σ3 σ3 σ3

σ3 σ3 σ3 σ3 σ3

[ ]
Repeat

LU

(a)

(b)

(c)

(d)

edge node

A

B

A

B

A

B

A

B

FIG. 24. (a) Pauli measurement setup to create a direct link be-
tween two subsystems A, B of a connected graph joined by a path
(shaded), where the edge nodes are denoted by black dots. (b) Mea-
surement transformations on each node on the path, including the
edge nodes, where qubits outside the path are omitted for brevity.
(c) The first of the five consecutive B1 operations on the nodes on
the path that connects A and B during the graph reduction. (d) After
the completion of graph reduction and the σ 3 measurements, A and
B are connected by a direct link, and the corresponding graph state
is equivalent to the state for this graph, up to local unitary operations
(denoted by “LU”).

Eqs. (4)–(6)] corresponding to an N-qubit star graph, where

|G〉 = 1√
2

[|00〉 ⊗N−1
i=1 |+i〉 + |10〉 ⊗N−1

i=1 |−i〉
]
, (G2)

with the node “0” being the hub to which all other nodes
i = 1, 2, . . . , N − 1, are attached. We refer to this state as
the star-graph-diagonal (SGD) state. Since an N-qubit star
graph can be converted to the N-qubit GHZ state via single-
qubit Hadamard operations on all qubits except the qubit “0”
of the star graph, the SGD state can be transformed to a
GHZ-diagonal (GHZD) state, given by Eqs. (4)–(6), with |G〉
replaced by the N-qubit GHZ state. Therefore, the bisepara-
bility criteria of an N qubit GHZD state [133] is equivalent to
that of the N-qubit SGD state. An N-qubit GHZD state ρ is
biseparable if the matrix elements ρ(i, j), 1 � i, j � 2N , of ρ

in the computational basis satisfy

∣∣ρ(1,2N )

∣∣ � 2N−1−1∑
i=1

[
ρ(1+i,1+i)ρ(2N −i,2N −i)

] 1
2 . (G3)

Violation of (G3) indicates presence of GME in the state.
Note that the above example includes a full description of

separability of all GD states on a three-qubit graph, since all
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possible connected graphs on three qubits are local unitary
equivalent to a star graph, representing a three-qubit GHZ
state. Apart from the above example, the biseparability criteria
for the case of four qubit GD states are also known [100]. Con-
sider the four-qubit graph state |G〉1234, where the qubits are
labeled such that 1 and 4 are the edge qubits. For a diagonal
state, ρ, in the graph state basis, where the fidelities in the
said basis are defined as Fi jkl = 〈i jkl|ρ|i jkl〉 with |i jkl〉 =
(σ 3)i ⊗ (σ 3) j ⊗ (σ 3)k ⊗ (σ 3)l |G〉1234, ∀i, j, k, l ∈ {0, 1}, the
biseparability criteria are given by

Fαβγ δ �
1

2

∑
i, j

(Fαi jδ + Fαi jδ + Fαi jδ ), (G4)

Fαβγ δ + Fαμνδ �
1

2

∑
i, j

(Fαi jδ + Fαi jδ + Fαi jδ + Fαi jδ ). (G5)

Here α = (1 + α) mod 2. A violation of either of the in-
equalities (G4) or (G5) indicates existence of GME in the
state ρ.

3. Genuine multiparty concurrence

We also point out that the density matrix of a GHZD state
has the form of an X state. For such states, one may compute
the genuine multiparty concurrence [102] (GMC) as a multi-
partite entanglement measure for X states, which is defined as
CGM = 2 max j[0, λ] with

λ = ∣∣ρ( j,2N − j−1)

∣∣ −
2N−1−1∑
i=1,i �= j

[
ρ(1+i,1+i)ρ(2N −i,2N −i)

] 1
2 . (G6)

We use this measure specifically in the case of the topological
quantum codes under noise (see Sec. V).

APPENDIX H: MEASUREMENT PROTOCOL FOR
LOCALIZING CONNECTED SUBSYSTEM

In this section, we introduce a PMS through which any
two subsystems A, B of a connected graph G can be directly
connected by a link, given that there exists a path in the
original graph G connecting the two subsystems A and B. Let
us denote the nodes in the path that is connected to a qubit in
either A or B as edge nodes. The PMS, then, would be such
that (see Fig. 24)

(a) σ 2 measurement is performed on one of the edge
nodes, while σ 1 measurement is performed on the rest of the
nodes in the path and

(b) σ 3 measurement is performed on all other nodes in the
graph.

Note that the σ 3 measurements on qubits not in the path
leave only A, B and the path connected. Further, starting
from the σ 2 measurement on the edge node, a series of B1

operations occur during the graph reduction (see Sec. A 1)
along the path, so that A and B, at the end, become connected
by a direct link. Note also that if both the edge nodes share
only one link each with A and B, respectively, then the above
PMS results in a direct link between A and B without changing
the connectivity within A and B. We use this PMS in the case
of Fig. 17, with additional basis transformations according to
Table I due to the Hadamard operations on the control nodes
connecting the stabilizer state from the toric code, and the
local unitarily connected graph.
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