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Quantum algorithms for optimal effective theory of many-body systems
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A common situation in quantum many-body physics is that the underlying theories are known but too
complicated to solve efficiently. In such cases one usually builds simpler effective theories as low-energy or
large-scale alternatives to the original theories. Here the central tasks are finding the optimal effective theories
and proving their equivalence to the original theories. Recently quantum computing has shown the potential
of solving quantum many-body systems by exploiting its inherent parallelism. It is thus an interesting topic
to discuss the emergence of effective theories and design efficient tools for finding them based on the results
from quantum computing. As the first step towards this direction, in this paper, we propose two approaches
that apply quantum computing to find the optimal effective theory of a quantum many-body system given its
full Hamiltonian. The first algorithm searches the space of effective Hamiltonians by quantum phase estimation
and amplitude amplification. The second algorithm is based on a variational approach that is promising for
near-future applications.
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I. INTRODUCTION

Effective theories are powerful tools in exploring quantum
many-body systems. For many large systems, even though
the exact Hamiltonian is known, it is difficult to solve the
full quantum many-body problem. The challenge stems from
the exponentially increasing Hilbert space as the system size
increases. Fortunately, in many cases only a few relevant
degrees of freedom participate in producing large-scale phe-
nomena. This enables us to design effective theories which
are usually much simpler and easier to solve than the original
theories. More importantly, these theories isolate the most
relevant symmetries and degrees of freedom and provide
valuable insights into the underlying physics. One example
is quantum chromodynamics (QCD) for the strong interac-
tion, which is successful in describing quarks and gluons but
still not directly solvable for a finite nucleus. For nuclear
physics applications, we are mainly interested in the low-
energy regime where the quarks and gluons are confined and
frozen in nucleons and light mesons. In these cases we can
integrate out the irrelevant degrees of freedom and end up with
an effective theory for nucleons and mesons, i.e., the chiral
effective field theory (χEFT) [1,2]. As the most successful
low-energy alternative to QCD, χEFT has been extensively
used in solving nuclei as heavy as 208Pb [3–5], nuclear matter
at zero [6] or finite temperatures [7], and low-energy nuclear
reactions [8,9].

In the early years, effective theories were usually estab-
lished by trial and error, which sometimes relied on acute
physics intuitions. Later it was realized that their form could
be mostly constrained by a class of principles such as
symmetry, analyticity, and renormalizability. In cases where

*bnlv@gscaep.ac.cn
†yli@gscaep.ac.cn

the underlying microscopic theories are already known, the
Wilsonian renormalization group (RG) method [10,11] pro-
vides a systematically improvable framework for eliminating
irrelevant degrees of freedom and obtaining low-energy ef-
fective theories. However, the Wilsonian RG is difficult to
apply in many important cases, especially when the interac-
tion is nonperturbative, such as QCD at low energies. Today
most effective theories are still built from scratch under the
aforementioned general principles and are parametrized by
matching to the experiments or underlying theories. The va-
lidity of an effective theory is unknown until it is solved and
a comparison is made between its predictions and experi-
ments. Unfortunately, effective theories are still very difficult
to solve in some cases, in addition to the above restrictions.
A famous example is that the two-dimensional Ising model
for ferromagnetic systems was thought to exhibit no phase
transition for a long time, until Peierls published his argument
[12]. Today, even with the most advanced supercomputers
and algorithms, many effective theories are still not solvable,
which prohibits us from essentially understanding the relevant
physics.

Quantum computing is a fundamentally different paradigm
for performing calculations compared with its classical
counterpart. Because of its inherent property, i.e., quantum
parallelism, a quantum computer can surpass, in theory, the
conventional digital computer in solving certain problems
such as factorization [13] and unstructured database search
[14]. An important application of quantum computing is sim-
ulating quantum many-body systems [15,16], for instance,
nuclei [17] and molecules [18–20]. With Trotterization and
a quantum phase estimation algorithm, one can simulate the
real-time evolution and compute the energy spectrum of a
quantum system by using resources, i.e., quantum gates, that
scale polynomially with the system size, evolution time, and
accuracy [21,22]. In recent years, many efforts have been
made to discover new quantum algorithms that are feasible for
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near-term quantum computers [23]. For example, the varia-
tional quantum eigensolver (VQE) [24–26] enables a quantum
computer with a few qubits to calculate the ground-state en-
ergy of small molecules.

In this paper, we propose two quantum algorithms suitable
for fault-tolerant and near-term quantum computers respec-
tively, to find the optimal effective Hamiltonian of a quantum
many-body system. By “optimal,” we mean that the resulting
effective Hamiltonian is the one that best describes the origi-
nal system among a pre-specified set of candidates in a certain
subspace. In the first approach, we use quantum phase estima-
tion (QPE) and Grover’s algorithm to search for an effective
model with a fault-tolerant quantum computer. Grover’s al-
gorithm can speed up the complexity of the algorithm to
O(

√
N ), where N denotes the number of total elements in

the searching space. The second method makes use of the
variational algorithm. To do so, we transform the problem into
searching for the maximum value of the loss function after
applying a time evolution operator corresponding to the test
Hamiltonian. The form of the loss function will be discussed
in Sec. II. We take the transverse-field Ising model as an
example and numerically demonstrate that our method can
efficiently find the optimal effective Hamiltonian in a set of
candidates that best describes the original system in a certain
space of effective models. Differently from the conventional
methods of finding effective models through renormalization
group flow or trial and error, here we can simulate the full
Hamiltonian and verify the validity of the resulting theories in
the full many-body Hilbert space.

This paper is organized as follows. In Sec. II, we review
the definition and significance of the effective Hamiltonian.
In Secs. III and IV, we introduce the two methods and present
numerical results of the second method. Section V is the
conclusion of this paper.

II. THE EFFECTIVE HAMILTONIAN

There are various definitions of the effective Hamiltonian
[27–29]. Usually, the effective Hamiltonian is related to a
low-energy subspace. We use P to denote the projection onto
the subspace. Ideally, the effective Hamiltonian Heff and the
original Hamiltonian H acting on the subspace are related up
to a unitary transformation T , i.e.,

HP = T HeffT
†P. (1)

To verify the above relation with a quantum computer, we
introduce a time evolution operator in the form

U (t ) = e−i(H−T Heff T † )t . (2)

If P corresponds to an invariant subspace of H , i.e.,
[H, P] = 0, we have

|ψ〉 = U (t )|ψ〉 (3)

for all time t and state |ψ〉 in the subspace. Therefore, we
can identify the optimal effective Hamiltonian in a set of can-
didates by simulating the time-evolution operator and testing
Eq. (3). In practice, we may take a subspace that is not strictly
invariant, such as a truncation on the momentum of single
particles. Even in this case, usually, the leakage into states
outside the subspace is negligible, and our approach of finding

the effective Hamiltonian still works. We will discuss the error
introduced by leakage in Sec. III C.

In our algorithm, we find the optimal effective Hamilto-
nian in a set of candidates by maximizing the loss function
corresponding to Eq. (3). Usually, we need multiple states
and evolution times. We use (|ψi〉, ti ) to denote a trial with an
initial state |ψi〉 and evolution time ti. The transition amplitude
of one trial is fi = 〈ψi|U (ti )|ψi〉, and for our first approach we
can define the loss function of Nt trials as

F =
∣∣∣∣∣ 1

Nt

Nt∑
i=1

fi

∣∣∣∣∣. (4)

To evaluate the loss function, we can either measure the tran-
sition amplitude of each trial or directly measure the overall
transition amplitude by introducing an ancilla system. With
the ancilla system, we prepare a composite initial state in the
form

|ψ̃〉 = 1√
Nt

Nt∑
i=1

|i〉 ⊗ |ψi〉, (5)

where |i〉 is the state of an ancilla system. Then, the loss
function reads

F = ∣∣〈ψ̃ |Ũ |ψ̃〉∣∣, (6)

where the composite evolution operator is

Ũ =
Nt∑

i=1

|i〉〈i| ⊗ U (ti ). (7)

The way to define the loss function is not unique. For our
second approach, we can define the loss function as

Fave = 1

Nt

Nt∑
i=1

| fi|2, (8)

and we call it the average fidelity. Regardless of the form,
a loss function closer to 1 indicates that a Hamiltonian is a
better candidate. In this paper, we find the optimal effective
Hamiltonian in a set of candidates {Heff (x)}, where x is the
label of the effective Hamiltonian. Although the exact effec-
tive Hamiltonian is unknown, usually we have the intuition
for which terms may present in the effective Hamiltonian
according to the perturbation theory, renormalization theory,
or symmetry of the original Hamiltonian [30–33]. Given the
elementary terms, the problem is to select proper terms and
determine their coefficients. The candidate Hamiltonian op-
erators can be generated from these elementary terms. When
the effective Hamiltonian is formed of a fixed set of terms
and their coefficients are to be determined, x denotes the
coefficients. In general, the Hamiltonian set can also include
different combinations of terms. For each x, there is a corre-
sponding loss function F (x). According to the definitions of
the effective Hamiltonian [27–29], when T HeffT † is an exact
effective Hamiltonian, Heff is also the effective Hamiltonian
on the subspace. Hence, we can assume that T is identity
without loss of generality. The optimal effective Hamiltonian
in a set of candidates is Heff (x∗), and x∗ = arg max F (x). We
will give two algorithms for finding the optimal effective
Hamiltonian.
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FIG. 1. (a) The quantum circuit of our algorithm, where the
blocks labeled G indicate Grover’s search operators. The detailed
circuit for G is shown in (b), and the loss function-dependent phase
flip operator Vth (x) is shown in (c).

III. ACCELERATED SEARCH FOR THE EFFECTIVE
HAMILTONIAN

In this section, we present a quantum algorithm for finding
the optimal effective Hamiltonian in a set of candidates. By
taking the quantum advantage in unstructured search, we can
find the effective Hamiltonian operators with the loss function
defined by Eq. (4) above a threshold value in

√
N evaluations

of the loss function, where N = |{Heff (x)}| is the number of
candidate Hamiltonian operators. In this algorithm, quantum-
ness speeds up computing in two ways. First, the quantum
computer evaluates the loss function defined by Eq. (4) of a
many-body system under real-time evolution, which is usually
intractable in a classical computer. Second, the unstructured
search is accelerated with Grover’s algorithm [14] as a sub-
routine.

To implement our algorithm, we need three registers stor-
ing the values of x, loss function F (x), and state |ψ̃〉; see
Fig. 1. The algorithm is formed of two subroutines. The first is
amplitude amplification and estimation used for evaluating the

loss function. The second is Grover’s algorithm, in which we
find x satisfying the condition F (x) > cos θth

2 , where cos θth
2 is

the threshold of the loss function.

A. Loss function evaluation

We evaluate the loss function F (x) = |〈ψ̃ |Ũ (x)|ψ̃〉| ac-
cording to the amplitude amplification and estimation algo-
rithm [34]. As shown in Fig. 1(c), this is realized using the
quantum phase estimation algorithm [14] within Grover’s
search routine. The elementary transformation in ampli-
tude amplification is formed of two phase-flip operators
conditioned on the state, which reads

Rx = Ũ (x)(2|ψ̃〉〈ψ̃ | − 1)Ũ (x)†(2|ψ̃〉〈ψ̃ | − 1). (9)
Here, Ũ (x) is the composite evolution operator corresponding
to the effective Hamiltonian Heff (x). Given the initial state
|ψ̃〉, Rx is equivalent to a rotation in the subspace spanned
by {|ψ̃〉, Ũ (x)|ψ̃〉}. The rotation is expressed as Rx = eiσyθx ,
where σy is a Pauli operator, and we can find cos θx

2 = F (x) =
|〈ψ̃ |Ũ (x)|ψ̃〉| is the loss function. The Pauli operator acts
on the two-dimensional subspace, whose eigenstates are |y±〉
corresponding to eigenvalues ±1, respectively. The relation
between eigenstates and {|ψ̃〉, Ũ (x)|ψ̃〉} is given by

|ψ̃〉 = 1√
2

(|y+〉 + |y−〉) (10)

and

Rx|ψ̃〉 = 1√
2

(
eiθx |y+〉 + e−iθx |y−〉). (11)

The loss function is evaluated by reading phases e±iθx us-
ing the quantum phase estimation algorithm. To implement
the algorithm, we need to introduce a register in addition to
the register of |ψ̃〉, which is initialized in the state |ϕ〉 =

1√
K

∑K−1
k=0 |k〉. Here, the integer K determines the resolution

of the loss function evaluation. The quantum phase estimation
is accomplished with the transformation

UQPE(x) =
K−1∑
k=0

(U †
QFT|k〉〈k|) ⊗ Rk

x, (12)

where UQFT denotes the quantum Fourier transformation [14].
The quantum circuit for Rk

x is shown in Fig. 7 of the Appendix,
and the detailed process is summarized below:

|0〉 ⊗ |ψ̃〉 initialize state

−→ 1√
K

K−1∑
k=0

|k〉 ⊗ |ψ̃〉 create superposition

−→ 1√
K

K−1∑
k=0

|k〉 ⊗ Rk
x |ψ̃〉 apply R gate

= 1√
2K

⎛
⎝K−1∑

j=0

eikθx |k〉 ⊗ |y+〉 +
K−1∑
k=0

e−ikθx |k〉 ⊗ |y−〉
⎞
⎠

−→ 1√
2

(|A+〉 ⊗ |y+〉 + |A−〉 ⊗ |y−〉) inverse UQFT. (13)
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|A+〉 and |A−〉 are given by

|A+〉 =
∑

θ

fθ |θ〉, (14)

|A−〉 =
∑

θ

f ∗
θ |−θ〉, (15)

where θ = 2πm
K , m = −K

2 + 1, . . . ,−1, 0, 1, . . . , K
2 assuming

K is even, |−π〉 ≡ |π〉, and fθ = 1
K

∑
k ei(θx−θ )k . The distribu-

tion | fθ | is concentrated at θx with the width ∼ 2π
K . If θx is

in {θ}, |A±〉 = |±θx〉. Therefore, the information of the loss
function has been stored in the register |θ〉, and we can extract
the information by measuring the value of θ . Note that, to
carry out the accelerated search, here |A±〉 will not be directly
measured.

B. Loss-function-dependent approximate phase flip

We now introduce the method to amplify amplitudes for
F (x) > cos θth

2 . To do so, we need to realize a phase flip
depending on the loss function, i.e., θ . However, because the
loss function estimation has a finite resolution, the phase flip
is inexact. We approximate the loss-function-dependent phase
flip with the operator

Vth(x) = �iniUQPE(x)†(Uth ⊗ 1)UQPE(x), (16)

where �ini = |ϕ〉〈ϕ| ⊗ |ψ̃〉〈ψ̃ | and Uth = 1 −
2

∑
−θth<θ<θth

|θ〉〈θ | is the phase flip depending on θ .
Because the distribution of θ is concentrated at θx, the

θ -dependent phase flip results in a θx-dependent phase. Firstly,
let us suppose θx ∈ {θ}: If |θx| < θth, we have Uth|A±〉 =
−|A±〉; if |θx| � θth, we have Uth|A±〉 = |A±〉. In general θth

is not one of the θ values because of the finite resolution, and
in this case the effect of Uth is not a simple phase change. We
note that this problem caused by the finite resolution is only
severe when θx is close to ±θth. When θx is significantly far
away from the threshold ±θth, the distribution is concentrated
on one side of the threshold, and we can neglect the probabil-
ity on the other side.

We can detect the problem caused by the finite resolu-
tion by measuring the finial state after an inverse quantum
phase estimation operator. If θx ∈ {θ}, a phase is applied on
the state by Uth, and the inverse quantum phase estimation
transforms the state back to the initial state |ϕ〉 ⊗ |ψ̃〉 up
to a θx-dependent phase. If θx /∈ {θ}, the state does not go
back to the exact initial state. If the measurement outcome is
not |ϕ〉 ⊗ |ψ̃〉, we know that the θx-dependent phase flip has
failed. If the outcome is |ϕ〉 ⊗ |ψ̃〉, we obtain the finial state

Vth(x)|ϕ〉 ⊗ |ψ̃〉 = a(x)|ϕ〉 ⊗ |ψ̃〉, (17)

where

ax = 1
2 (〈A+|Uth|A+〉 + 〈A−|Uth|A−〉) (18)

is always real and in the interval [−1, 1]. If θx ∈ {θ}, ax = ±1
depending on θx. If θx /∈ {θ} and θx is significantly far away
from ±θth, we still have ax ≈ ±1. To illustrate this, we set
K = 4096 and |θth| = 10 × 2π

K , and plot a(x) with a change
of θx in Fig. 2. We see that the error is significant only when
θx is close to |θth|. With this approximate θx-dependent phase
flip, we can realize the accelerated search.

FIG. 2. Top: the change of a(x) with θx . Bottom: the correspond-
ing error |a(x) − ax|. The unit of the horizontal axis is 2π

K . Here we
set K = 4096 and |θth| = 10 × 2π

K .

C. Effective-Hamiltonian search with leakage

We use Grover’s algorithm to find effective Hamiltonian
operators with a loss function that exceeds the threshold. Ac-
cordingly, we need a register to store the parameter x, which
is initialized in the state |X 〉 = 1√

N

∑
x |x〉. Amplitudes of

states with |θx| < θth are amplified by iterating two operators
VX = (1 − 2|X 〉〈X |) ⊗ 1 ⊗ 1 and V ideal

th on the initial state of
the total system |X 〉 ⊗ |ϕ〉 ⊗ |ψ̃〉. Here,

V ideal
th =

∑
x

ηx|x〉〈x|, (19)

where ηx = −1 if |θx| < θth and ηx = 1 if |θx| � θth. If
the number of effective Hamiltonian operators satisfying
|θx| < θth is M, we can find one of them in O(

√
N/M ) iter-

ations [14].
In our algorithm, we approximate V ideal

th with a controlled
Vth(x), and the operator on the total system is

Vth =
∑

x

|x〉〈x| ⊗ Vth(x). (20)

Because |ax| is smaller than 1 in the vicinity of the threshold
±θth, it leads to probability leakage: For each iteration, there
is a finite probability that the θx-dependent phase flip fails, i.e.,
the measurement outcome is not |ϕ〉 ⊗ |ψ̃〉. Next, we analyze
the impact of this probability leakage.
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The error due to the difference between Vth and V ideal
th after

j iterations is∥∥[(
VXV ideal

th

) j − (VXVth ) j
]|X 〉∥∥

= ∥∥[(
VXV ideal

th

) j − VXVth
(
VXV ideal

th

) j−1

+ VXVth
(
VXV ideal

th

) j−1 − (VXVth ) j
]|X 〉∥∥

�
∥∥(

V ideal
th − Vth

)(
VXV ideal

th

) j−1|X 〉∥∥
+ ∥∥[(

VXV ideal
th

) j−1 − (VXVth ) j−1
]|X 〉∥∥. (21)

Here, we have neglected |ϕ〉 ⊗ |ψ̃〉 for simplicity, and we
have used that ‖VX ‖ = 1 and ‖Vth‖ � 1 for the matrix 2-norm.
Then, the error has the upper bound

∥∥[(
VXV ideal

th

) j − (VXVth ) j
]|X 〉∥∥ �

j∑
i=1

εi, (22)

where

εi = ∥∥(
V ideal

th − Vth
)(

VXV ideal
th

)i−1|X 〉∥∥. (23)

Suppose (
VXV ideal

th

) j−1|X 〉 =
∑

x

αx|x〉; (24)

then we have

εi =
√∑

x

|αx|2|ηx − ax|. (25)

Note that one can work out the expression of αx straight-
forwardly following Grover’s algorithm [14]. The error
|ηx − ax| is nonzero only in the vicinity of the threshold ±θth

with a radius ∼ 2π
K ; see Fig. 2. Therefore, to implement the

accelerated effective-Hamiltonian search, we need to choose
a sufficiently large K such that the radius is small, and there is
no effective Hamiltonian within the radius.

D. Implementation of the controlled Ũ (x)

In this section, we introduce the implementation details of
the operator Ũ (x) which formed the operator Rx in Eq. (9).
Here, we can define the time-evolution operators as

U (x, t ) = e−i[H−Heff (x)]t . (26)

x is the label of an effective Hamiltonian, and t is evolution
time. According to Eq. (7), the operator Ũ (x) is a composite
evolution operator

Ũ (x) =
Nt∑

i=1

|i〉〈i| ⊗ U (x, ti ). (27)

For the total system, the operator U (x, ti ) is

UX (ti ) =
∑

x

|x〉〈x| ⊗ U (x, ti ) (28)

with different evolution times ti. The following outlines the
method for implementing UX (ti ). Without loss of generality,

the candidate effective Hamiltonian can be represented as

Heff (x) =
m∑

i=1

λiHi. (29)

Here, the variable x can be expressed as a vector x =
(λ1, λ2, . . . , λm). Hi represents all possible terms that may
appear in the effective Hamiltonian, while λi denotes their
coefficients, which need to be determined by our algorithm,
and m is the number of terms. To implement the operator
UX (ti ), we substitute Eq. (29) into Eq. (28) and we have

UX (ti ) =
∑

x

|x〉〈x| ⊗ e−i
(

H−∑m
i=1 λiHi

)
ti

=
∑

x

|x〉〈x| ⊗
(

e
−iHti

nt e
iλ1H1ti

nt · · · e
iλmHmti

nt

)nt

= 1

2mn/2

i1,i2,...,im=2n−1∑
i1,i2,...,im=0

|i1i2 · · · im〉〈im · · · i2i1|

⊗
[

e
−iHti

nt

(
e

iεH1ti
nt

)i1 · · ·
(

e
iεHmti

nt

)im
]nt

. (30)

Here, nt denotes the Trotter steps, and n represents the number
of qubits used to encode one coefficient λi. ε is a small
constant that signifies the resolution of the coefficients: The
second equality in Eq. (30) is based on the Trotter-Suzuki
decomposition, and

x = (λ1, λ2, . . . , λm) = ε × (i1, i2, . . . , im),

im = im,120 + im,221 + · · · + im,n2n−1,

|im〉 = |im,1im,2 . . . im,n〉, (31)

where im,n = 0, 1. For simplicity, we assume that the signs
of all terms λiHi are contained within Hi, and the values of
all λi are positive. It is important to note that we can find
some coefficients to be equal to zero in the end, and this
indicates that the corresponding terms should not be present
in the correct effective Hamiltonian.

In our approach, the number of qubits and quantum gates
required for implementing UX (ti ) increases polynomially with
O(log N ), where N denotes the number of candidate effective
Hamiltonian. As a result, when N increases, our algorithm
maintains its ability to achieve quadratic acceleration in
the search process, while necessitating additional quantum
resources that increase linearly. Note that the method to imple-
ment UX (ti ) is not unique, and our method described above is
relatively universal. The quantum circuit to implement UX (ti )
can be found in Fig. 6 of the Appendix.

E. Numerical simulations and results

To demonstrate the quadratic speedup of our algorithm in
searching for the effective Hamiltonian, we present a numeri-
cal example in this section. We take the transverse-field Ising
model [35] as an example to find its effective Hamiltonian.
The Hamiltonian of the whole system is

H = −

2

N∑
i=1

σ z
i − J

N−1∑
i=1

σ x
i σ x

i+1 (  J ). (32)
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FIG. 3. The probability distribution P(|x〉) of the state |X 〉 =
1√
24

∑
x |x〉 while applying Grover iteration to search for the coeffi-

cient of the effective Hamiltonian. The target state is set to be |0111〉.

Here, σ z
i and σ x

i are Pauli operators acting on the ith site. N
denotes the number of spins.  and J are coefficients. For
this system, we can obtain the exact second-order efficient
Hamiltonian on a low-energy subspace with the Schrieffer-
Wolff (SW) method [36–42]:

Heff = − λ

2

N−1∑
i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

)

− κ

2

N−2∑
i=1

(
σ x

i σ x
i+2 + σ

y
i σ

y
i+2

) − σ z
1 − σ z

N , (33)

where λ and κ satisfy λ = J and κ = J2

2Δ
. Here, the form of the

projector is P = ∑N
i=1 |φi〉〈φi|, where the vector |φi〉 denotes

the nth single-particle excited state and we can encode the
states as |φ1〉 = |00 · · · 001〉 and |φ2〉 = |00 · · · 010〉 and so
forth. The form of transformation T is complex and deter-
mined by the Schrieffer-Wolff (SW) method. We performed
numerical simulations using Grover’s algorithm to search for
the effective Hamiltonian of a transverse-field Ising model.
The process is simulated using QuESTlink [43,44] on a clas-
sical computer.

The results are shown in Fig. 3. In our simulations, we
set N = 2,  = 10, and J = 1. ε is set to be 1/7. Therefore,
the coefficient should satisfy λ = J = 7ε. The evolution time
is t = π , and the Trotter steps is taken to be 1000. We use
ten qubits to implement our algorithm, of which four qubits
are for encoding the coefficients x, four qubits are for im-
plementing the quantum Fourier transform in Eq. (12), and
two qubits are used for simulating the transverse-field Ising
model. We numerically display the probability distribution
of the computational basis |x〉 when applying the Grover it-
eration 0, 1, 3, and 4 times. A classical algorithm requires
24 unstructured searching operations to search for the correct
coefficients. However, our algorithm needs only

√
24 Grover

oracle operations to find the target state with high probability,
as shown in Fig. 3.

IV. VARIATIONAL SEARCH FOR THE EFFECTIVE
HAMILTONIAN

With limited quantum resources, searching for the effective
Hamiltonian based on QPE and Grover’s algorithm is not
feasible for noisy intermediate-scale quantum (NISQ) devices
[45]. In this section, we introduce an alternative method, vari-
ational search, to find the optimal effective Hamiltonian in a
set of candidates with a shallow quantum circuit, such that it
can be implemented on NISQ devices.

A. Theory of the variational quantum simulation

The variational quantum simulation [46–52] is a hybrid
classical-quantum algorithm that has various applications in
solving many-body problems. With a quantum computer, we
first have a trial state |�(�θ )〉 that can be prepared by a
quantum circuit with a parameterized gate set. The state
at time t is represented as |�(t )〉 = |�(�θ (t ))〉 with time-
dependent parameters �θ (t ). The variational quantum simula-
tion is used to find the best solution �θ (t + δt ) such that the
state evolves from |�(�θ (t ))〉 to |�(�θ (t + δt ))〉 according to
Schrödinger’s equation:

|�(�θ (t + δt ))〉 ≈ |�(�θ (t ))〉 − iδtHtest|�(�θ (t ))〉. (34)

Here, the test Hamiltonian Htest is defined by H − Heff . H
and Heff denote the original Hamiltonian and the effective
Hamiltonian respectively. To optimize the parameters, we take
the method introduced in [53]. The evolution of parameters
can be found by solving∑

j

Ai, j θ̇ j = −iCi, (35)

where the matrix elements of A and C are defined by

Ai, j = ∂〈�(�θ (t ))|
∂θi

∂|�(�θ (t ))〉
∂θ j

Ci = ∂〈�(�θ (t ))|
∂θi

Htest|�(�θ (t ))〉. (36)

Then, we can iteratively update the parameters under

�θ (t + δt ) → �θ (t ) + δtA−1C. (37)

The overall flow of the variational quantum simulation is
summarized as follows: First, we select initial parameters
�θ (0) and a small time step δt . Second, we solve Eq. (35)
using the classical computer, in which the matrix Ai, j and
the vector Ci in the equation are evaluated using the quantum
computer. Repeating the second step, we can get the solution
that approximates Eq. (34).

B. Numerical simulations and results

We take the transverse-field Ising model shown in Eq. (32)
as an example. To find the optimal effective Hamiltonian in
a set of candidates, we choose Nt trials (|ψi(�θ (0))〉, t ) with
initial states |ψi(�θ (0))〉 and evolution time t to maximize the
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FIG. 4. The average fidelity Fave with the change of the coefficients λ and κ . The evolution time is fixed to be t = 2π . (a) and (b) represent
results from numerical simulations and experiments on IBM’s quantum device respectively.

average fidelity

Fave(x) = 1

Nt

Nt∑
i=1

|〈ψi(�θ (t ))|ψi(�θ (0))〉|2 (38)

corresponding to Eq. (3), where the parameter �θ (t ) is deter-
mined by Eq. (37) with a fixed time step δt = 2π/1000. The
trial state at time t is given by

|ψi(�θ (t ))〉 = e−iHtestt |ψi(0)〉. (39)

We evaluate the average fidelity corresponding to Eq. (38)
with different coefficients of the test Hamiltonian Htest . When
given an initial coefficient x0 = (λ0, κ0), we can use the
gradient ascent method [54] to maximize the loss func-
tion defined in Eq. (38). In our example, there are only
two parameters that need to be determined. Therefore, we
employed the grid search method to identify the optimal
parameters.

We performed numerical simulations using QuESTlink on
a classical computer and experiments on IBM’s cloud quan-
tum computer “ibmq-athens.” We take N = 5,  = 10, and
J = 1. Then the exact values of the coefficients in the effec-
tive Hamiltonian Heff are λ = J = 1 and κ = J2

2Δ
= 0.05. We

choose σ x
i |00000〉 (i = 1, . . . , 5) as the initial states, where

σ x
i is the Pauli operator acting on the ith site. The ansatz is

chosen as the three-step Trotter circuit.
The results are shown in Fig. 4. In both simulations and

experiments, we see that when λ and κ are close to the ex-
act values, the average fidelity Fave becomes higher. Owing
to circuit noise, measurement error and shot noise (shots =
8192), the resolution of the coefficients to be determined
with experimental results is about 0.01–0.02 and the fidelity
obtained from experiments is generally lower than that from
simulations. Nevertheless, in both cases, the fidelity reaches
the maximum at the correct value of the coefficients λ = 1
and κ = 0.05.

Note that the state in Eq. (39) can also be realized with
the Trotter-Suzuki decomposition [22] at the cost of deeper

quantum circuits. According to the method, the time evolution
operator U (t ) becomes

U (t ) = e−iHtestt �
( ∏

j

e−iHjτ

)nt

, (40)

where Htest = H − Heff is expressed as Htest = ∑
j Hj and t

denotes the total time of evolution. Each term e−iHjτ repre-
sents the evolution driven by Hj for a short time τ , which can
be realized with quantum gates. Usually, τ = t/nt , and when
nt is larger the approximation is better. In our simulations we
fix τ = 2π/1000.

Figure 5 shows the evolution of the average fidelity of the
quantum states obtained from the Trotter and the variational
method simulated classically. We see that the two methods
show very similar performance since the two curves nearly

FIG. 5. The change of average fidelity as the evolution time t
increases. The thick green (upper) line, thin blue line, and dashed
red line represent results from the Trotter method. The green circle,
blue triangle, and red square represent results from the variational
method. κ is fixed to be 0.05. The average fidelity is evaluated with
different λ.

032403-7



YANG, ZHANG, XU, LU, AND LI PHYSICAL REVIEW A 108, 032403 (2023)

overlap as t changes. However, the Trotter method uses much
deeper circuits, e.g., with over 103 more gates than those
required in the variational method at t = 6π . Therefore, our
method is more suitable for NISQ devices.

V. CONCLUSION

To summarize, we propose two quantum algorithms to
search for the effective Hamiltonian of many-body systems.
Based on the assumption that the possible terms in the ef-
fective Hamiltonian are known but their coefficients are to be
determined, our methods can find the optimal effective Hamil-
tonian in a set of candidates with different coefficients. We
define a loss function to measure how close the candidate ef-
fective Hamiltonian is to the exact one. when the loss function
reaches the maximum value of 1, we find the exact solution.
Therefore, the Hamiltonian searching problem is converted to
a loss function maximization problem for which the two quan-
tum algorithms are designed. In the first algorithm, we make
use of the quantum phase estimation algorithm to encode the
loss function into phase information and Grover’s algorithm
to speed up the complexity of searching to O(

√
N ), where N

denotes the total number of all candidate effective Hamiltoni-

ans Heff (x). Performing this quantum algorithm requires deep
circuits that are not feasible for near-term quantum computers.
Therefore, we introduce the second quantum algorithm, based
on the variational simulation method, which is suitable for
NISQ devices. We define a test Hamiltonian Htest = H − Heff

and realize the time evolution operator e−itHtest with a quan-
tum computer. Both numerical simulations and experiments
on an IBM quantum machine were conducted. The results
suggest our method can successfully find the optimal effective
Hamiltonian in a set of candidates with noise and limited
measurement shots. Our algorithms show that a quantum com-
puter without fault tolerance can also search for the effective
Hamiltonian. Thus, it is an interesting topic for future research
to find other applications of near-term quantum computers for
studying the effective theory.
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APPENDIX: DETAILED QUANTUM CIRCUITS FOR GROVER’S ALGORITHM

In Figs. 6 and 7, we show the detailed quantum circuits for the operators UX (ti ) and Rk
x .

FIG. 6. The quantum circuit for performing the operator UX (ti ) in Eq. (30). nt denotes the Trotter steps, and n is the number of qubits used
to encode one coefficient λi. ε is a small constant that determines the resolution of the coefficient to be found.
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FIG. 7. The quantum circuit for performing the operator Rk
x in Eq. (12). The operator F = 2|ψ̃〉〈ψ̃ | − 1.
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