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Optimized control for high-fidelity state transmission in open systems
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Quantum state transfer through spin chains has been extensively investigated. Two schemes, the coupling set
for perfect state transfer (PST) or adding a leakage elimination operator (LEO) Hamiltonian have been proposed
to boost the transmission fidelity. However, these ideal schemes are only suitable for closed systems and will
lose their effectiveness in open ones. In this work, we invoke a well-explored optimization algorithm, Adam,
to expand the applicable range of PST couplings and LEO to the open systems. Our results show that, although
the transmission fidelity decreases with increasing system-bath coupling strength, Markovianity and temperature
for both ideal and optimized cases, the fidelities obtained by the optimized schemes always outweigh the ideal
cases. The enhancement becomes bigger for a stronger bath, indicating a stronger bath provides more space for
the Adam to optimize. This method will be useful for the realization of high-fidelity information transfer in the
presence of environment.
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I. INTRODUCTION

High-fidelity information transfer between qubits lays a
firm foundation for the realization of large-scale fault-tolerant
quantum computers [1,2]. Spin qubits interact through
nearest-neighbor Heisenberg exchange coupling and consti-
tute a one-dimensional spin chain. Bose proposed to use a spin
chain as the channel for short-distance communication [3].
Nonetheless, the transmission fidelity decreases with the in-
creasing number of spins [3,4]. Many strategies for the fidelity
improvement have been proposed, such as arranging the
special couplings between nearest-neighbor sites for perfect
state transfer (PST) [5,6], adding well-designed external fields
[7–10]. Quantum state transfer (QST) has also been exper-
imentally investigated in a variety of platforms, including
superconducting qubit chains [11], trapped ions [12], ultra-
cold atoms [13], semiconductor quantum dots [14,15], and so
on.

Along with the above alluded to ones, the proposed
schemes are mainly based on ideally closed systems. When
considering the environments [16,17], normally the infor-
mation processing which can be performed well in closed
systems will be destroyed by the system-bath interaction.
The detrimental effects of a Markovian [4] or non-Markovian
[17–19] bath on the QST through spin chains was investigated
recently. The transmission fidelity was found to decrease with
the increasing system-environment coupling strength, envi-
ronmental characteristic frequency, and temperature [17,19].
Many schemes have been proposed to reduce these adverse
effects, like modulating the couplings between the spins [4–6]
or invoking a leakage elimination operator (LEO) [17,19].
In our recent work, we investigated the almost exact state
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transmission in a spin chain by adding a LEO Hamiltonian
[10,17]. The LEO Hamiltonian can be realized by a sequence
of control pulses. The pulse conditions have been obtained in
a closed system for almost exact QST [17]. When applying
these conditions to an open system, the fidelity decreases due
to the existence of the environments [17,20].

Gradient descent is the most basic optimization algo-
rithm [21], moving relevant parameters towards the direction
minimizing a predefined cost, or loss, function but without
guaranteeing a fast and stable convergence. The Momentum
algorithm makes progress with this problem by updating pa-
rameters according to the gradients of current and previous
iterations [22]. In addition, one of the algorithms with adap-
tive learning rates, RMSProp [23], can modulate the learning
rate on the basis of different parameters and training phases.
The Adaptive Moment Estimation (Adam) algorithm builds
on and hence inherits the above two ones, realizing more
efficient convergence behaviors, and becomes the most pop-
ular optimizer even in the noisy intermediate-scale quantum
(NISQ) device era [24–26]. Recently, we used the stochastic
gradient descent or Adam algorithm to find the optimized
pulses for the adiabatic speedup [27] or nonadiabatic QST
[28] in a noisy environment. The control pulses are designed
via optimization algorithms by considering both the system
and environment. As stated above, the ideal pulses are not
effective for the open systems. In this paper, we use the Adam
algorithm to design the optimized couplings or pulses for
high-fidelity QST through a spin chain in a non-Markovian
environment. By defining an effective loss function, which
is relevant to the system and environmental parameters, the
real unknown parameters can be revealed and the optimized
solution obtained along the gradient descent direction. We
adopt a newly developed non-Markovian quantum master
equation approach to solve the corresponding dynamics of
the system [29]. For the optimized couplings, we find that
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the achievable maximum fidelity can be enhanced and the
corresponding arrival time can be shortened as well. For the
optimized control pulses, our results show that they can ac-
quire better QST qualities than do the ideal closed-system
pulses. In both scenarios, the effects of system-bath coupling
strength �, environmental non-Markovianty γ , and tempera-
ture T on the fidelity are analyzed. The fidelity decreases with
increasing anyone of the above parameters as expected, but the
fidelity can be improved by our optimized schemes, especially
in a strong environment.

II. MODEL AND METHOD

When a quantum system is exposed to its environment, the
total Hamiltonian Htot consists of three parts

Htot = Hs + Hb + Hint. (1)

Here Hs and

Hb =
∑

k

ωkb†
kbk (2)

are the system and bath Hamiltonian, respectively. ωk indi-
cates the kth mode frequency of the bath and b†

k (bk) represents
the bosonic creation (annihilation) operator, while

Hint =
∑

k

(g∗
kL†bk + gkLb†

k ) (3)

accounts for the interaction between the system of interest
and its bath. The system is linearly coupled to a bosonic bath
through the Lindblad operator L with coupling constant gk .

Assume that the bath is initially in a thermal equilibrium
state at temperature T ,

ρ(0) = e−βHb/Z. (4)

Here Z = Tr[e−βHb] is the partition function with β =
1/(KBT ). To deal with a finite-temperature heat bath, here
we add a fictitious heat bath with the bosonic operators c†

k ,
ck to the original one and guarantee that the initial state is
the thermal equilibrium state in Eq. (4) after tracing over
the fictitious variables. Then the total Hamiltonian with the
fictitious bath is given by

Htot = Hs +
∑

k

(g∗
kL†bk + H.c.) +

∑
k

ωkb†
kbk −

∑
k

ωkc†
kck .

(5)

Introducing the boson Bogoliubov transformation

bk =
√

n̄k + 1dk + √
n̄ke†

k, (6)

ck =
√

n̄k + 1ek + √
n̄ekd†

k , (7)

which formally couples the system to two sets of bosonic
operators dk , d†

k and ek , e†
k . Here n̄k = 1

exp(β h̄ωk )−1 is the mean
thermal occupation number of quanta in mode ωk . As a con-
sequence, the Hamiltonian in Eq. (5) becomes

Htot = Hs +
∑

k

√
n̄k + 1(g∗

kL†dk + H.c.) +
∑

k

ωkd†
k dk

+
∑

k

√
n̄k (g∗

kL†e†
k + H.c.) −

∑
k

ωke†
kek . (8)

This procedure converts the finite-temperature problem to a
zero-temperature one. The initial state of the bath is |0〉 =
|0〉d ⊗ |0〉e, satisfying dk|0〉d = 0 and ek|0〉e = 0.

Now we introduce the quantum state diffusion (QSD)
equation approach here to solve the open system dynamics
[30,31]. Its major idea is to project the total wave func-
tion |�t (t )〉 to the coherent states of the bath modes |z〉
and |w〉. Then the pure state for the system |�t (z∗,w∗)〉 =
〈z,w|�t (t )〉 becomes attainable, which is commonly known
as the stochastic quantum trajectory and satisfies the following
QSD equation [30]:

∂|�t 〉
∂t

=
[

− iHs + Lz∗
t − L†

∫
dsαz(t − s)

δ

δz∗
s

+ L†w∗
t − L

∫
dsαw(t − s)

δ

δw∗
s

]
|�t 〉. (9)

Here

αz(t − s) =
∑

k

(n̄k + 1)|gk|2e−iωk (t−s), (10)

αw(t − s) =
∑

k

n̄k|gk|2eiωk (t−s) (11)

are the bath correlation functions and

z∗
t = −i

∑
k

√
n̄k + 1gkz∗

k eiωkt , (12)

w∗
t = −i

∑
k

√
n̄kg∗

kw
∗
k eiωkt (13)

are the complex Gaussian noises, which meet the conditions
M[zt z∗

s ] = αz(t − s) and M[wtw
∗
s ] = αw(t − s). M[·] is the

ensemble average over some complex Gaussian stochastic
process z: M[F] = ∏

k

1
π

∫
e−|z|2Fd2z.

To convert Eq. (9) to a time-local form, first define the
Oz,(w) operators

δ|�t 〉
δz∗

s

= Oz(t, s, z∗,w∗)|�t 〉, (14)

δ|�t 〉
δw∗

s

= Ow(t, s, z∗,w∗)|�t 〉, (15)

then Eq. (9) can be written as

∂|�t 〉
∂t

= (−iHs + Lz∗
t − L†Oz + L†w∗

t − LOw )|�t 〉, (16)

where Oz,(w)(t ) = ∫ t
0 dsαz,(w)(t − s)Oz,(w)(t, s). Now the de-

termination of the Oz,(w) operators becomes the key to solving
the system dynamics in Eq. (16). However, it is usually not
easy to find their explicit expressions, except for a few simple
models. On the basis of Eq. (16), here we will derive an
approximate non-Markovian master equation as follows.

From the consistency condition ∂
∂t

δ|�t 〉
δz∗

s
= δ

δz∗
s

∂|�t 〉
∂t and

∂
∂t

δ|�t 〉
δw∗

s
= δ

δw∗
s

∂|�t 〉
∂t , the Oz,(w) operators in Eqs. (14) and (15)

can be determined:

∂Oz

∂t
= [−iHs + Lz∗

t − L†Oz + L†w∗
t − LOw, Oz]

−
(

L† δOz

δz∗
s

+ L
δOw

δz∗
s

)
, (17)
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∂Ow

∂t
= [−iHs + Lz∗

t − L†Oz + L†w∗
t − LOw, Ow]

−
(

L† δOz

δw∗
s

+ L
δOw

δw∗
s

)
. (18)

Instead of a numerical simulation for the quantum trajec-
tories, we analytically take the ensemble average to obtain a
non-Markovian master equation. Define Pt = |�t 〉〈�t |, then
ρs = M[Pt ]. Taking the Novikov’s theorem [32], Eq. (16) can
be rewritten as

∂

∂t
ρs = −i[Hs, ρs] + [L, M[Pt O

†
z ]] − [L†, M[OzPt ]]

+ [L†, M[Pt O
†
w]] − [L, M[OwPt ]], (19)

which is the general master equation for the system, but still
not closed. Normally, the Oz,(w) operators contain noise ex-
cept for some special cases. For instance, when the system
Hamiltonian Hs commutes with the Lindblad operator, Oz,(w)

proves to be noise-independent. When the coupling of the
bath to the system is weak, the originally noise-dependent
operators Oz,(w)(t, z∗,w∗) can be approximated well [33] by
the noise-independent ones Oz,(w)(t ). That leads us to a closed
master equation

∂

∂t
ρs = −i[Hs, ρs] + [L, ρsO

†
z (t )] − [L†, Oz(t )ρs]

+ [L†, ρsO
†
w(t )] − [L, Ow(t )ρs]. (20)

Here we state that the system Hamiltonian Hs can
be time-dependent or time-independent. A time-dependent
Hamiltonian in this model was used to study the adiabatic
speedup in an open system [34]. The spectral density J (ω)
characterizes the frequency-dependent system-bath couplings.
Taking the limit of a continuum of frequencies, the correlation
functions in Eqs. (10) and (11) turn into

αz(t − s) =
∫

dωJ (ω)(n̄k + 1)e−iω(t−s), (21)

αw(t − s) =
∫

dωJ (ω)n̄ j
keiω(t−s). (22)

When the system-bath coupling is weak, and in the high-
temperature or low-frequency limit, 1

n̄k−1 ≈ T/ω (set KB =
1 = h̄). In this work, we consider the Ohmic type with a
Lorentz-Drude cutoff function, which reads J (ω) = �

π
ω

1+( ω
γ

)2

[35–37]. This spectrum can emerge in different systems, such
as optomechanical systems [38,39], semiconductor optical
plasmons [40], Fe-pnictides [41], and qubit-cavity coupling
systems [42,43]. Here � stands for the system-bath coupling
strength and γ is the characteristic frequency of bath. They
both are real parameters. After these approximations,

αz(t − s) = �T �(t, s) + i�
·
�(t, s), (23)

αw(t − s) = �T �(t, s). (24)

Here the Ornstein-Uhlenbeck correlation function �(t, s) =
γ

2 e−γ |t−s|. It decays exponentially with the environmental
memory time 1/γ , which characterizes the memory capacity
of the bath. Therefore, for small γ , non-Markovian properties
can be observed. The large γ corresponds to a Markovian
bath due to the shrinking environmental memory time. Fur-
thermore, the correlation function satisfies the relation

∂αz(w)(t − s)

∂t
= −γαz(w)(t − s). (25)

Now we finally obtain

∂Oz

∂t
=

(
�T γ

2
− i�γ 2

2

)
L − γ Oz

− [iHs + L†Oz + LOw, Oz], (26)

∂Ow

∂t
= �T γ

2
L† − γ Ow − [iHs + L†Oz + LOw, Ow]. (27)

As a result, we are allowed to numerically solve the dynamical
evolution equation in Eq. (20), with the help of Eqs. (26) and
(27).

When γ → ∞, the bath becomes completely Markovian
and no longer has any memory capacity. Consequently, Oz =
�T
2 L and Ow = �T

2 L†. The master equation in Eq. (20) there-
fore reduces to the Lindblad form [29]

∂

∂t
ρs = −i[Hs, ρs] + �T

2
[(2LρsL

† − L†Lρs − ρsL
†L)

+ (2L†ρsL − LL†ρs − ρsLL†)]. (28)

In this paper, we consider a one-dimensional Heisenberg
XY Hamiltonian as the system Hamiltonian [44]

Hs =
N−1∑
i=1

Ji,i+1
(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

)
. (29)

Here σα
i (α = x, y) stands for the Pauli operator acting on the

ith spin. Ji,i+1 indicates the relevant coupling strength between
the nearest-neighbor sites i, i + 1 and we set the PST cou-
pling layout Ji,i+1 = −√

i(N − i) throughout. Equation (29)
describes the interactions between the nearest-neighbor spins,
which can be experimentally realized by quantum dots [14],
ultracold atoms in optical lattices [13], or trapped ions [12].
This model can also be used to describe atoms in cavities
[43], Josephson charge states [45], or phase qubits [46]. A
collective bath can be electromagnetic environments [47]. A
recent experiment also shows that the collective baths exist.
Charge noises in a superconducting multiqubit circuit chip
are observed as highly correlated on a length scale over 600
micrometres [48].

Initially, we prepared all the spins at the down state, but the
first one at the up state, i.e., |�s(0)〉 = |1〉 = |100 · · · 0〉. Our
task is to transfer the state |1〉 from the first to the last spin of
the chain, and the target state will be |N〉 = |000 · · · 1〉. During
this process, the transmission fidelity F (t ) = √〈N|ρs(t )|N〉 is
monitored to evaluate the transfer quality. Here ρs(t ) is the
reduced density matrix of our system.
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Combining the advantages of two algorithms with fast and
steady convergence, Momentum and RMSProp, Adam has
already become the most valuable optimizer in the NISQ era
[24–26]. Now in this work we use Adam to construct an
iterative process to optimize the parameters for high-fidelity
state transfer in noisy environments.

First we need to define a loss function Loss and our goal
of high-fidelity QST is encoded as to minimize the Loss.
The specific optimization procedure of Adam algorithm is as
follows.

Step 1: Compute the gradient vector g of loss function Loss
with respect to selected variables A (i.e., nearest-neighbor
couplings or control pulses in our work) in the kth iteration

gk = �Ak Loss(Ak ). (30)

Step 2: Compute the new exponential moving averages

mk = β1mk−1 + (1 − β1)gk, (31)

vk = β2vk−1 + (1 − β2)(gk )2. (32)

Step 3: Compute the new bias-corrected moment vectors

m̂k = mk/[1 − (β1)k], (33)

v̂k = vk/[1 − (β2)k]. (34)

Step 4: Update the variables A according to

Ak+1 = Ak − αm̂k/(
√

v̂k + ε). (35)

Step 5: Repeat steps 1 to 4 till Loss < ξ or the number of iter-
ations k > kmax. ξ and kmax are the prescribed loss ceiling and
maximal iteration number (set ξ = 0.001 and kmax = 1000
throughout), respectively.

III. RESULTS AND DISCUSSIONS

In this work, we consider two scenarios and apply
the Adam optimizer to explore high-fidelity QST through
a spin chain in open systems. For the first one, we
choose to modulate the coupling strength sequence J =
[J1,2, J2,3, . . . , JN−1,N ]. For the second one, we optimize the
pulse amplitude sequence I = [I0, I1, . . . , IM−1] to realize a
more effective LEO. We first take the Lindblad operator L =∑N

i=1 σ−
i as an example. It indicates the dissipation [10,49].

Here σ−
i = (σ x

i − iσ y
i )/2 denotes the lowering operator on the

ith spin. Note that the rotating wave approximation (RWA)
is used when L = ∑N

i=1 σ−
i along with the Hamiltonian in

Eq. (3). The RWA is known to be accurate when the system-
bath coupling is weak [50]. We only consider the weak
coupling (J/� 
 1) cases throughout, and then our choices
of parameters are compatible with the RWA.

To begin with, we try different optimization algorithms
(RMSProp, Momentum, and Adam) and compare the con-
vergence behaviors of these three gradient-based algorithms.
In Fig. 1 we plot the maximal fidelity Fmax as functions of
iterations for the three algorithms. Here we take an optimized
coupling case, for example, and the corresponding parameters
are N = 6, � = 0.1, γ = 1, and T = 10. Obviously, com-
pared to RMSProp, Adam converges at a little slower speed,

FIG. 1. Convergence behaviors of RMSProp, Momentum, and
Adam algorithms. Here N = 6, � = 0.1, γ = 1, and T = 10.

but to a higher fidelity. As for Momentum, it has no advantage
in either the speed or convergence value. From now on, we
use Adam alone.

A. Optimized couplings via Adam

In this section, we perform the coupling optimization. Re-
call that our goal is to minimize a commonly defined loss
function

Loss(J) = 1 − F (J) + λJmax, (36)

where the fidelity F (J) is obtained with the help of the opti-
mized coupling sequence J and Loss(J) is the corresponding
loss. Jmax stands for the maximal absolute value of couplings
Ji,i+1 in optimized couplings. The relaxation parameter λ is
introduced here as in Ref. [51] to modulate the proportion
of Jmax in Loss to restrain Jmax to not too large because it
is experimentally difficult to realize a big coupling between
spins.

As an example, the number of spins is taken as N = 6.
Here we take the PST couplings Ji,i+1 = −√

i(N − i) as an
initial guess. For a fair comparison between PST and opti-
mized couplings, the optimized ones are limited in [−3,−2],
which is the same region as that of the PST couplings. In
addition, it is necessary to mention that, in closed systems,
PST can be observed at t = nπ/4 (n is an odd integer) for
the PST couplings. Accordingly, the total evolution time is
taken as Ttot = π/4 throughout. In Fig. 2 we plot the time
evolution of the fidelity F (t/Ttot ) with PST and optimized
couplings for different environmental parameters. The param-
eters are taken as γ = 2, T = 10 [Fig. 2(a)], � = 0.1, T = 10
[Fig. 2(b)], and � = 0.1, γ = 2 [Fig. 2(c)], respectively. At
first, without optimization, the exposure to the environment
always decreases the fidelity. A larger �, γ or T corresponds
to a lower fidelity F , i.e., a stronger system-bath interaction,
a more Markovian or higher-temperature bath will destroy the
system more severely, which is in accordance with the results
found in Refs. [17,19]. This result still holds for the optimized
coupling cases. For example, in Fig. 2(b), the maximum fi-
delity Fmax = 0.740 is obtained for γ = 2 and as γ grows,
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FIG. 2. The fidelity F versus the rescaled time t/Ttot with PST
and optimized couplings for different parameters (a) �, γ = 2, T =
10; (b) γ , � = 0.1, T = 10; (c) T , � = 0.1, γ = 2.

Fmax decreases. Second, comparing Fmax for the PST and
optimized couplings with the same environmental parameters,
we find that the optimized Fmax are always higher than these in
the ideal cases. In other words, using the optimized couplings,

Fmax can always be enhanced in the presence of environment.
This is the key observation of our paper. It is not so obvious
but worth mentioning that the maximal fidelity improvement
increases with increasing � and T . That is to say, the bath
destroys the system more severely, the improvement is more
significant. Namely, a stronger bath provides more space for
Adam to optimize. Clearly, without environment [� = 0 in
Fig. 2(a)], the evolutions are same for PST and optimized
couplings. Third, defining the arrival time Ta when Fmax is
achieved, with PST couplings, Ta occurs at Ttot for different
� and T , and nearly at Ttot for different γ . The bath slightly
affects the arrival time Ta for PST couplings. However, after
optimization, Ta is evidently shorter than Ttot, which bears
the advantage that Fmax arrives earlier and thus the accumu-
lative detrimental effects of the environment can be partially
avoided. In Fig. 2, Ta is shorter for larger �, γ , and T . At
last, even for the Markovian case [Fig. 2(b)], Fmax can still
be enhanced by the coupling optimization. In sum, our opti-
mized couplings via the Adam algorithm can simultaneously
enhance the transmission fidelity and shorten the arrival time.
Figure 3 plots the corresponding PST and optimized couplings
used in Fig. 2. The optimized coupling configuration is similar
to the PST one: bigger in the middle and smaller in both ends.
However, for a stronger bath (bigger �, γ , and T ), Adam
finds a flatter configuration, i.e., the minimum and maximum
get closer. Also, the symmetry of the couplings with respect
to the middle of the chain is broken due to the existence
of the environments, which can be clearly seen for a strong
bath [� = 0.1 in Fig. 3(a), γ = 5 in Fig. 3(b), or T = 15 in
Fig. 3(c)].

B. Optimized pulses via Adam

1. QST under ideal pulse control

Environmental noise normally destroys the transmission
fidelity and the authors of Refs. [19,29] introduced a LEO
approach to address this problem. The main idea of this LEO
approach is to add an additional Hamiltonian HLEO to the
system Hamiltonian Hs, ensuring the quantum system evolves
along a predefined passage. For example, denoting HPST as
the Hamiltonian in Eq. (29) with PST couplings, we can set
|�(t )〉 = exp(−iHPSTt )|1〉 as the evolution passage. The LEO
Hamiltonian in the adiabatic frame [52] can be constructed as

HLEO = c(t )|�(t )〉〈�(t )|, (37)

where c(t ) is the control function. The total Hamiltonian be-
comes

Htot = Hs + HLEO. (38)

The LEO Hamiltonian can be achieved by a series of control
pulses that can be divided into perturbative and nonperturba-
tive versions. In this paper we consider the later one whose
pulse intensity and duration are finite. The pulse conditions
for effective control were theoretically deduced by the P-Q
partitioning technique in closed systems [20,53,54]. For sine
pulses c(t ) = I sin(ωt ), the corresponding pulse condition is

J0

(
Iτ

π

)
= 0. (39)
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FIG. 3. The corresponding PST and optimized couplings in Fig. 2.

Here I and τ represent the pulse intensity and half period, and
J0(x) denotes the zero-order Bessel function of the first kind.
Note that the integral of such pulses over a period is zero (i.e.,
zero-area condition of pulses) [20,52]. The control pulses such
as rectangular and triangular ones have also been investigated
[54].

2. High-fidelity QST

Although the above ideal pulse conditions are derived the-
oretically from closed systems, they can be applied to open
ones with no guarantee of their effectiveness. In this section,
we aim to design optimized pulses for certain environmental
parameters with the help of Adam, and then compare their
performances with those of ideal counterparts. To make fair
comparisons, the optimized pulses also satisfy the zero-area
condition [20,52]. First we design the optimized sine pulses
(single pulses)

c(t ) = I (t ) sin(ωt ). (40)

Here I (t ) is a P segment piecewise constant function whose
P values are drawn in order from the pulse amplitude se-
quence I = [I0, I1, . . . , IP−1] and take the equal time interval
�t = Ttot/P (ω = 2π/�t and set P = 5). Notice that the
zero-area condition [20,52] is followed in iterative procedures
as in theoretical derivation. We consider the corresponding
ideal values I = [96.200, 96.200, . . . , 96.200], derived from
the pulse condition in Eq. (39) as our initial guess. The number
of spins is N = 4. Furthermore, the maximal intensity of the
optimized pulses is not supposed to outweigh that of their
ideal counterparts. Similar to Eq. (36), the loss function is
accordingly defined as

Loss(I) = 1 − F (I) + λcmax. (41)

Here cmax is the maximum of the control function c(t ). In
Eq. (41), there also is a competition between infidelity 1 −
F (I) and maximal control intensity cmax for Loss, and a relax-
ation parameter λ to restrict cmax [51]. As in the previous case,
it is also difficult to realize a big pulse strength experimentally.
In Fig. 4, we plot the fidelity F as a function of the rescaled
time t/Ttot for different environmental parameters with ideal
and optimized pulses. In Fig. 4(a), γ = 10 and T = 10. When
� = 0.1, the maximal fidelity Fmax(t ) dramatically rockets,
from 0.585 without control to 0.958 with ideal pulses and
0.959 with single pulses. Note that the single pulses ultimately
reach the similar fidelities as the ideal pulses can do. We then
propose the combinatorial sine pulses (combinatorial pulses)
to obtain a higher fidelity

c(t ) =
Q−1∑
i=0

Ii sin [(i + 1)ωt], (42)

where we turn to set the control function c(t ) as a combination
of Fourier sine components. Here Q denotes the number of
Fourier components and we consider Q = 10. Notice that
the zero-area condition [20,52] is still satisfied. Obviously,
when � = 0.1 and 0.2, combinatorial pulses overshadow the
ideal and single counterparts, and there are minor but evident
increases on QST fidelities. In what follows, we choose to
optimize combinatorial pulses alone. In Figs. 4(b) and 4(c),
we plot the influences of the parameter γ and temperature
T on the fidelity. In Fig. 4(b), � = 0.1 and T = 10 while in
Fig. 4(c), � = 0.1 and γ = 10. For all the situations, without
exception, the combinatorial pulses outshine the ideal ones.
Furthermore, an increasing �, γ , or T corresponds to a de-
creasing fidelity F . Still, in a stronger bath, the optimized
pulses can make larger corrections for this fidelity deteri-
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FIG. 4. The fidelity F versus the rescaled time t/Ttot with ideal
and optimized (single and combinatorial) pulses for different param-
eters (a) �, γ = 10, T = 10; (b) γ , � = 0.1, T = 10; (c) T , � = 0.1,
γ = 10.

oration. Figure 5 gives the profiles of corresponding ideal
and optimized (single and combinatorial) pulses in Fig. 4.
Figure 5(a) shows that the single pulses are almost indis-
tinguishable from the ideal ones. As for the combinatorial

FIG. 5. The corresponding ideal and optimized (single and com-
binatorial) pulses in Fig. 4.

pulses, they are only similar with the ideal pulses in terms
of the magnitude. From the above analysis, we conclude that
the scheme of optimized control pulses can play more helpful
roles than the ideal ones, especially in stronger baths.
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FIG. 6. The fidelity F versus the rescaled time t/Ttot, for different
segments of the piecewise constant function I (t ), with (a) the ideal
and single pulses; (b) the ideal and combinatorial pulses. Here � =
0.1, γ = 10, and T = 10.

Next we investigate how the segment P of the piecewise
constant function I (t ) in Eq. (40) affects the behaviors of
optimized (single and combinatorial) pulses. In Fig. 6, we plot
the fidelity F versus the rescaled time t/Ttot for P = 4, 5, 6
with the ideal, single, and combinatorial pulses, respectively.
The environmental parameters are still � = 0.1, γ = 10, and
T = 10. Obviously, in Fig. 6(a), larger P indeed corresponds
to a higher transmission fidelity, but does not lead the sin-
gle pulses to a better performance than do the ideal ones.
These two types of pulses still have similar results. However,
Fig. 6(b) shows that, for smaller P, the combinatorial pulses
are able to make more progress than the ideal ones. How-
ever, the cases with more segments have better transmission
fidelities. At last we consider different types of Lindblad
operator L. We will compare the effects of L = ∑N

i=1 σ−
i and

FIG. 7. The fidelity F versus the rescaled time t/Ttot for different
Lindblad operators L = ∑N

i=1 σ x
i and L = ∑N

i=1 σ−
i with (a) PST and

optimized couplings; (b) ideal and optimized (combinatorial) pulses.
T = 10. N = 6, � = 0.05, and γ = 2 in Fig. 7(a). N = 4, � = 0.1,
and γ = 10 in Fig. 7(b).

L = ∑N
i=1 σ x

i [10], and the last of these corresponds to the
spin-boson interaction. We do not consider the dephasing
(L = ∑N

i=1 σ z
i ) because [L, ρsO

†
] = [L†, Oρs] = 0. There-

fore, the bath only randomly changes the global phase of
the system [10,49,55]. In Fig. 7 we plot the cases with dif-
ferent Lindblad operators. Figure 7(a) shows that the fidelity
obtained by the optimized couplings exceeds the PST ones
regardless of what the Lindblad operator L is. The parameters
are taken as N = 6, � = 0.05, γ = 2, and T = 10. Figure 7(b)
demonstrates the implications of L on performances of opti-
mized pulses. Again, optimized pulses show their advantages
over the ideal counterparts on reducing the effects of environ-
mental noise. We take N = 4, � = 0.1, γ = 10, and T = 10
in the simulations.
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IV. CONCLUSION

QST is one of the basic tasks in quantum computation. PST
and almost exact QST through a spin chain can be realized
for PST couplings and LEO control, respectively. However,
theses conditions are derived theoretically from the ideally
closed systems and thus their effectiveness is lost when they
are applied to an open system, i.e., being coupled to a heat
bath results in their dissipation dynamics. In this paper, we
take a one-dimensional XY spin chain with nearest-neighbor
couplings as an example and introduce a well-developed
optimization algorithm, Adam, to seek for the optimized cou-
plings and control pulses in the presence of environment. By
minimizing a predefined loss function, high-fidelity transmis-
sion is obtained for both schemes. In addition, we discuss
the effects of system-bath coupling strength �, environmental

non-Markovianity parameter γ , and temperature T on our
schemes. Although the fidelity F decreases with anyone of
these parameters’ increasing, our optimized schemes perform
better, especially for a stronger bath. Our work shows that the
Adam algorithm is a powerful tool to search the optimized
parameters in open quantum systems, which are important in
performing quantum information processing tasks.
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