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Quantum effects on the synchronization dynamics of the Kuramoto model
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The Kuramoto model serves as a paradigm for describing spontaneous synchronization in a system of
classical interacting rotors. In this paper, we extend this model to the quantum domain by coupling quantum
interacting rotors to external baths following the Caldeira-Leggett approach. Studying the mean-field model
in the overdamped limit using Feynman-Vernon theory, we show how quantum mechanics modifies the phase
diagram. Specifically, we demonstrate that quantum fluctuations hinder the emergence of synchronization, albeit
not entirely suppressing it. We examine the phase transition into the synchronized phase at various temperatures,
revealing that classical results are recovered at high temperatures while a quantum phase transition occurs at
zero temperature. Additionally, we derive an analytical expression for the critical coupling, highlighting its
dependence on the model parameters, and examine the differences between classical and quantum behavior.
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I. INTRODUCTION

Synchronization is an emergent collective phenomenon
that can be observed in various physical systems, such as
pendula [1], fireflies [2,3], and neurons [4]. In classical
mechanics, synchronization can occur when two or more os-
cillators interact with each other through a common coupling
[5,6]. Classical synchronization has been witnessed in sys-
tems that can operate in the quantum regime [7,8], which
is nowadays accessible to experiments due to the recent
advancements in the field of quantum technologies. For exam-
ple, optomechanical devices [9-11] have allowed the coupling
between light and mechanical motion to be controlled, leading
to the possibility of implementing nonlinear dynamics that can
result in a synchronized motion.

These perspectives, with their possible applications in
quantum technologies, have also posed a number of new ques-
tions on how to characterize and quantify synchronization in
quantum systems. In this domain, synchronization becomes
even more intriguing, as it has to deal with quantum fluctua-
tions and entanglement. Specifically, the problem of quantum
fluctuations has already attracted interest in theoretical stud-
ies, and has been addressed in models of coupled van der Pol
rotors with nonlinear dissipation [12,13] and nondissipative
Hamiltonian rotors [14]. Understanding synchronization in
the quantum realm may be a useful resource for quantum
technological applications [15,16], for example in quan-
tum thermal machines [17-19]. For this reason, an intense
theoretical activity was aimed at quantifying synchroniza-
tion in quantum systems from continuous variables [20-28]
to discrete degrees of freedom [18,29-42]. Different mea-
sures of synchronization have been introduced, ranging from
phase-space or correlation quantities [43—48] to information-
theoretical approaches [44,49-51]. This large body of work,
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however, did not address a seemingly natural question: How
to extend a paradigmatic model of classical synchronization,
the Kuramoto model [52], to study synchronization in the
presence of quantum fluctuations. This is the starting point
for our paper. The classical model describes the behavior of
interacting rotors with a nonlinear dynamics, and exhibits a
phase transition from a dynamically disordered phase, to an
ordered one characterized by phase locking. Generalizations
of the model [53-59] have allowed researchers to explore
and enrich the phase diagram by studying also the effects
of noise, inertia, disorder, and long-range interactions on the
emergence of synchronization, and extending the concept of
rotors to non-Abelian objects [60]. Despite efforts to study
and understand the emergence of collective behavior of rotors
in a semiclassical regime, where quantum fluctuations become
relevant and modify the system’s dynamics [61], a systematic
analysis of spontaneous synchronization in the fully quan-
tum regime is still lacking. Can quantum synchronization
emerge in a low-temperature regime or do quantum fluctua-
tions dominate the system’s behavior, preventing spontaneous
synchronization?

In this paper, we address this problem by exploring
whether the Kuramoto model can be extended to the quantum
regime. We study the dynamics of the model from high to low
temperature and show that synchronization survives quantum
fluctuations and a quantum phase transition is still present in
the zero-temperature limit.

The rest of the paper is organized as follows: In Sec. II we
describe the celebrated Kuramoto model with a path-integral
formalism. We also present its phase diagram and the most
relevant results, focusing in particular on the generalized mas-
sive model. In Sec. III we propose a quantum model, based on
the classical model we discuss in Sec. II. The limits in which
the model is studied are discussed, and the order parameter to
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FIG. 1. Representation of the classical Kuramoto model for
N = 5. A set of rotors (dots on dashed circles) evolve with indepen-
dent frequencies. Their mutual interactions (green solid lines) induce
a phase transition to synchronized dynamics.

detect quantum synchronization is defined. In this section we
also show that in the high-temperature regime, our model
reproduces correctly the classical one. In Sec. III we introduce
the self-consistent equation to determine the order parameter.
The self-consistent equation allows us to study the phase dia-
gram of the quantum model in the overdamped regime, and in
particular to determine analytically the critical coupling above
which the system enters a synchronized phase. The results of
this analysis are reported in Sec. IV. The last section, Sec. V,
presents some conclusions that can be drawn from our paper.

II. CLASSICAL KURAMOTO MODEL

The Kuramoto model describes the behavior of N inter-
acting planar rotors (see Fig. 1). It exhibits two phases: An
incoherent phase characterized by the rotors moving indepen-
dently, and a synchronized phase in which the system behaves
collectively. The mechanism underlying the synchronization
process is phase locking, i.e., it causes the emergence of a
fixed relation between the phases of the rotors.

The state of each rotor is characterized by a phase 6,
and an angular velocity v;, with i = 1, ..., N. The evolution
of this state is determined by a frequency w;, and damp-
ing y. The characteristic frequencies w; are independent of
each other and, throughout the paper, will be drawn from
an even, unimodal frequency distribution g(w), with average
@ = (0)g(w) = 0 and variance o2.

We consider here the massive version of this model de-
scribed by the following set of Langevin equations:

b = v )
mv; +myv; = F[0; ;] + &~

Here, 0 = (04, ..., 6y) and

T
Flo;o] = o — ; sin(6; — 6;). 2)

The noise in the Langevin equation is a Gaussian stochastic
process with (§(t)) =0, (&(t);(t")) = 2D$; j6(t —t’). The
initial conditions #(0) = 6y, v(0) = vy are drawn indepen-
dently for every rotor from a distribution p(6y, vy).

In the massless limit (my = const, m — 0) the Langevin
equation reduces to the Kuramoto-Sakaguchi model [62]:

0 =F[0,w]+& Vi=1,...,N. 3)

The synchronized behavior is signaled by a nonzero value,
in the stationary state, of the modulus of the complex order
parameter (¢ ) defined as

‘ 1 &
_ ipt) _ L i9;(t)
Y()=rk)e" = N ;21 e, €]

The modulus 7 of the order parameter v is bounded to the in-
terval r(¢) € [0, 1]. It efficiently detects synchronization since
it averages to zero if the rotors evolve incoherently. The phase
¢ corresponds to the phase of the collective motion of the
rotors.

In the thermodynamic limit, the definition of the order
parameter is regarded as an average over the frequency distri-
bution, the noise distribution, and the distribution of the initial
conditions, namely,

V()= / dew g(@)(e”" )¢ gy up- )
—00

where the phase 6(¢; w, &) satisfies the Langevin equation
(1) with F[0;w] = F[0;w,¥] = w — Jrsin(@ — ¢). Notice
that, to formally decouple the evolution of the rotors,
we have used % 27:1 cos(t; — 0;) = 2e(+ Zyzl e %) +
c.c. =Jrcos(6; — ¢). This results in (5) becoming a self-
consistent equation for the order parameter.

For further convenience it is useful to express the average
that defines the order parameter in a path-integral form [55].
Discretizing a la Ito, one can express (5) as (see Appendix A
for details)

2 o) o)
1//(1)=/ dee”/ dv/ dw g(w) p0, v, t;0, V).
0 —00 —00
(6)

Here p(0, v, t;w, ¥) is a probability distribution that quan-
tifies the probability for the ith rotor to have phase and
angular velocity (8, v) at time ¢, and can be expressed as (see
Refs. [63-65] and Ref. [66] chap. 4)

2 o) 6(t)=0
p(9,v,t;w,1ﬂ)=./\// d@of dv()/ Do
0 —00 6

(0)=6o

v(t)=v . )
X / Du §[0(1) — v(1)] 5]
v(0)=vg

x p (6o, vo), (7

where the classical action is given by

: t
Sa = g5 [ drmi) + myo') - FIOW 0. 0N
4D J,
®)
Solving the self-consistent equation for the order parameter
allows us to gain knowledge about the phase transition. The

behavior of the system is determined by the interplay between
the coupling strength J; the width of the frequency distribu-
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FIG. 2. Representation of the quantum Kuramoto model. Same
as Fig. 1, with the rotors as quantum systems. The coupling to
independent identical quantum baths is explicitly shown as a solid
line connecting to a set of harmonic oscillators (blue boxes).

tion, o; and the width of the noise distribution, D. In general,
the phase transition for the model described by Eq. (1) is
first order, but it becomes a continuous phase transition in the
overdamped limit [5,55].

An interesting case is the massless model, for which the
critical coupling is known analytically to be

-1
° D

From this formula, the effects of noise and of the width of the
frequency distribution are evident. Noise hinders the phase-
locking mechanism, and so does increasing the variance of
the frequency distribution. In the case of the noiseless model,

the critical coupling becomes simply J&' = ngz(O)'

III. QUANTUM KURAMOTO MODEL

Our goal is now to construct a model that reproduces the
classical one in the high-temperature limit. Since the classical
Kuramoto-Sakaguchi model is characterized by noise and dis-
sipation, it cannot be obtained as a classical limit of a quantum
Hamiltonian model. Thus, we introduce dissipation in the
quantum regime via a Caldeira-Leggett [67] model made of
N interacting rotors, each one linearly coupled to a different
and independent bath of harmonic oscillators (see Fig. 2). The
baths are assumed to be identical.

The Lagrangian describing this model is

Lot = L5+ Lp + Lsp. (10)

Zs is the Lagrangian of the system of rotors:

N .
Jap J
=3 | el oy Y eos(G-6) | (D)
i=1 J#

The characteristic frequencies w; are once again drawn from
a distribution g(w) having the same characteristics as in the

classical case. .Z5 is the baths’ Lagrangian:

K7 —ﬁ:z —ﬁ:% i —1M92 2 (12)
B = L B — 2 2 i |

i=1 ji=1

%sp is the interaction Lagrangian:

N N M
Lp=Y L, =CY 6 ) x;. (13)
i=1

=1 ji=1

In order to decouple the equations, as in the classi-
cal case, it is convenient to work in the thermodynamic
limit with a mean-field model. We assume ﬁzl;;l e =

(% szy:] €%y + 8y with 8¢ infinitesimal and define v =

re = (+ Z?]:l ey where the quantum averages are taken
over the rotors’ reduced density matrix. The mean-field La-

grangian . becomes up to first order in 51

N
L= (Lo + i+ L), (14)

i=1

with 7, = # + w;0; + Jrcos(0; — ¢). Notice that the
mean-field model is described by a Lagrangian decoupled in
a sum of terms depending only on the ith rotor. From now on
for brevity

V0] = —wb — Jrcos (6 — @). (15)

In order to reproduce the friction term in Eq. (1) in the
classical limit, the Caldeira-Leggett model requires an Ohmic
bath [67]. We therefore demand that, for each and every bath,
the distribution of frequencies for the collection of harmonic
oscillators is

M 2

3 C @) — ™ 0w —v).  (16)
i— ——O(w — v),
ZMQ, M—o00 T

i=1

where ©(-) is the Heaviside function and w, is a cutoff for the
frequencies of the baths’ harmonic oscillators.

A few comments about the definition domain of the phases
6; are in order. Two choices are possible: The phases of the
rotors can be defined over the circle, i.e., 6; € [0, 2], or they
can be defined over the line 6; € R. The difference lies in
identifying or not the position 8 with 6 + 2nw, n € Z. The
Langevin equation that describes the classical model in Eq. (1)
is not dependent on the choice of the phases’ domain since it
is inherently 27 periodic. For the quantum model we define
0; € R. The tilted potential term w6 and the linear coupling
with the bath are compatible with this choice (see Ref. [68]
chap. 2). We note that with this choice of phase domain, the
Lagrangian in Eq. (11) can be regarded as the Lagrangian of a
resistively shunted Josephson junction [69].

In order to understand if the system described by the mean-
field Lagrangian (14) can sustain synchronization, an order
parameter should be defined. In analogy with the classical
case, we define

, 1<
Y@ =r@) e = 23 e pse) (A7)

j=1
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where pg(t) is the reduced density matrix of the system of
rotors evolved to time ¢ after tracing out the baths’ degrees
of freedoms. Notice that, once again, in the mean-field ap-
proximation this is a self-consistent equation for the order
parameter, since the density matrix evolves with a Lagrangian
dependent on .

The initial state of the evolution is chosen to be separable
in the rotors; the mean-field approximation and the choice
of independent baths allow us to maintain the density matrix
separable in the rotors at any time. For this reason, from now
on, the dlscusswn will focus only on the evolution of the den-
sity matrix Pss of a single rotor and its own bath. The initial
density matrix for the ith rotor and the bath is also assumed
to be separable: pSB = p; ® pg. The evolution of the reduced
density matrix of a single rotor can be obtained through the
Feynman-Vernon method [70,71], appropriate to treat quan-
tum systems with a classical limit given by a stochastic
equation of motion [72-75]. Applying the Feynman-Vernon
method along the lines of Ref. [67], the density-matrix ele-
ment p;(01, 0,) = (6>]0;10:) is given at time ¢ by

01(1)=6, 0:(1)=0>
/01(91,92,0—/ d91/ d92/ D91/
0,(0)=6 62(0)=6

x Db, 7 SI=S1%D 9, 6,] p(6], 65, 0)
(18)

where Sy, = fé dt' %s.(t') for the ith rotor, and .#[6;, 6,] is
the Feynman-Vernon influence functional that accounts for the
effects of the interaction with the bath.

We can regard the previous equation as an evolution of
the density matrix due to an effective action Seg[6), 6] =
So[61] — Sol0-] — ililn %[0, 6,]. Switching to the more con-
venient variables 0, = (6 + 6,)/2,0_ = 6, — 6,,

t
Serr[04,6-] =/ dt/{m9+9_—
0

. D !
- my9,9++% / di" 6. (t/)K(t/—t”)G(t”)}.
0

=DV, + 45

g==*1

(19)

In the previous equation D = mkaT and K(¢) is given by
the Fourier transform K(t) = [ 22 [C(v)e™™", with

. 21

hv
coth . 20)
2kgT 2kgT

The temperature T is set by the bath, and the signatures of
its interaction with the rotor are the friction term my6_6, and
the imaginary term containing the memory kernel K (¢). These
terms are given, respectively, by the imaginary and real part of
the bath’s correlation function (fix(z’ — ") in the notation of
Ref. [67]). In Eq. (19), we have neglected a Lamb-shift term
in the energy originating from the influence functional, which
does not affect the dynamics of the model [72].

Before proceeding with the calculation of the order pa-
rameter, it is worth noticing how the classical dynamics is
recovered in the high-temperature limit of the quantum model.
In the infinite-temperature limit, the memory kernel becomes

K@) =

K() T2 8(¢) and the imaginary damping term prevents
0_ from varying (see Ref. [72] and Ref. [68] chap. 5). This
means that, starting from a “classical” diagonal state with
6_(0) = 0, the density matrix will always remain diagonal
(the off-diagonal terms are exponentially suppressed). More-
over, expanding up to first order 6_(¢), the evolution becomes

6, ()= 0+ 0_(1)=0
pi(04,0_,t) = / o', / f
0, (0)=0), 0_(0)=0"=0
% DO eéseff[(ﬂ-e—] pi(Q’ , 9’_ =0,0), @21

with the effective action being
' / iD 2 0 l pa) 2
Sei[04,0-1= | dt 797(1 ) —0_()Imb, + myo,
0

—w+ Jrsin(0y — q))]), (22)

where we have used the fact that, at first order in 6_, V[0] ~
6_F[0,]. With the change of variables % — n(t), one
recovers the classical effective action for the stochastic pro-
cess (1) shown in Eq. (A3) after the integration of the &
function in the angular velocity. Thus, the quantum model
reproduces correctly the massive Kuramoto-Sakaguchi model
in the infinite-temperature limit.

The self-consistent equation for the order parameter
In order to obtain a self-consistent equation for the order
parameter, we start by noticing that the reduced density matrix
of the rotors at time ¢ is given by pg(¢) = ®7= 1 pi(t). Equa-
tion (17) then takes the form

Z Tre p;(t) ® Trpx (23)

k#j.k=1

V) =<

j 1
N
}: ¢ pi).

In the thermodynamic limit the previous expression cor-
responds to an average over the frequency distribution g(w).
Denoting by p(¢) the density matrix of a single rotor we have

2 I

o0 o0
Y(t) =/ da)g(a))/ do, % p(O.,0- =0,1). (24)
—00 —00
To get a more explicit expression of the self-consistent equa-
tion for the order parameter, the path integration in Eq. (18)
should be performed. The specific form of the potential (15)
appearing in the effective action does not allow for a general
calculation of the path integral. However, the knowledge of
the behavior of the classical model helps: In the overdamped
limit the classical phase transition to the synchronized phase is
of second order. We expect that the quantum phase transition
in the overdamped limit is second order too. If this is the case,
assuming J ~ J¢, we can perform a perturbative expansion in
r for r ~ 0 of (24) to gain insight onto the quantum dynamics.
Thus, we will hereafter focus explicitly on the overdamped
regime %% >> 1 of the model.
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The perturbative expansion of terms in the evolution of
the density matrix in Eqgs. (18) and (19) involves only the
approximation

d fo dt’q;qcos [&(ﬂ)—qe‘%/) —co(t’)}

Jr [t 6
~1—% i dscos<9+(s)—%— (s)>

exp

iJr ! ( 0_(s) )
+— | dscos|O0.(s)+ —— —(s) ).

hoJo 2
The zeroth order of the expansion of the density matrix (18)
gives an evolution according to a Lagrangian with potential
V[6] = —w0. This Lagrangian does not contain terms that can
synchronize the rotors, hence it does not contribute to the self-
consistent equation for the order parameter. The first-order
expansion, together with the ansatz ¢(#) = 0 and with r &~ 0
constant, yields, for t — oo,

o0 o0
r=rlc tlim / dow g(a))/ d9+ei0+,0'(9+, 0_,t) (25)
— 00 — 00 —00

where
0,,0,1) = d do’, de”
1Y ( + ) = 2h ) 2, / N / [
04 (t)=0+ 0_(1)=0
X/ D9+/ D97
0, (0)=0, 0_(0)=6"
X oxp 2 Sll0. 035, 1. (61,6, 0)
(26)
and

Séff[e-‘ra 0_;s, t]c,c’ = Sﬁe[&r,@_;s, t]C,C’ +iSI,m[9—;S’ t]C’C'
t
0
. e ihcc’ ,
+ihcO, (t)s@ —s) — Te,(t)
D [t
><8(t/—s)+l—/ dr"o_(t"
I Jo

x K@ —1t")6_ (t”)}. 27

The details of the derivation of Eqgs. (27) can be found in
Appendix B.

If Eq. (25) admits a solution for r # 0, then the model
admits a phase transition to a synchronized state in the over-
damped limit, and the resulting J- gives the value of the
critical coupling for the phase transition. Notice that the first-
order expansion does not contain information about the order
of the phase transition, that could only be understood through
a third-order expansion. The goal is now to find the critical
coupling and to study its dependence on the parameters that
characterize the system: m, y, kgT, and the variance o of the
even unimodal frequency distribution g(w).

From now on, we will work taking the limit # — oo since
we are interested in the steady-state properties of the system.

The expansion to first order in the self-consistent equa-
tion has produced a Gaussian path integral that can now be
performed [74,75]. The calculation can be performed via a
decomposition of the effective action (27) in its real and
imaginary part S = Sg.[0+,60-1 4+ iS],[6-], as can be seen
from the previous equation.

The calculation, reported in Appendix B, produces the
following result for the first-order expansion of the self-
consistent equation:

00 00 —i
r= chllim/ da)g(a))/ do, e’B*( )2 A Z c
=00 J_oo o b4 .

c'=%1
t o0 o0
X / ds/ d@jr/ do’ po',.,6",0)
0 —00 —00

1 . P i
x exp{ — = Siulfois e %m 0" 8.(0) + ic 9+(s)}

(28)
where f.. are the solutions of the equations
0. — yh_()—"5¢ —5)=0
. . " . (9
0.t + yO,(t)—24+E50 —5)=0

The explicit solution of these equations is reported in
Appendix C.

The term ¢ = 1 in the sum does not contribute because it
gets completely damped by the imaginary part of the action.
From now on we will consider only the term ¢ = —1. The
expression for é+ (0) and é+ (s) can be deduced from the result
in Appendix C. It is convenient to proceed by calculating the
integration over 6 first. Isolating the integration and all the
terms of (28) involving 6., we find

iz d9 G0 (== — 5o = Lers). (30)
27h my

This constrains the initial value of 6_ as determined by the
delta function. In the massless limit (y — o0) the value that
the delta function selects is 8 = 0; in the general overdamped
limit %X >> 1 (m and y finite) we select 0" ~ 0. Performing
now the integration over 6’ to eliminate the delta function
and denoting A_ (') o i -y @8 0F(t'; 5, 1), the self-consistent

equation becomes

—iJ
= lcr hm/ da)g(a))/ ds Zcexplc—

=%l

Lot —s)

—i
my

1
- gS{m[Gi;s, 1] (3D
where we have used the fact that in the overdamped limit
o0 h o0
/ de, p(0,, —e ")~ / do' p(6..,0)
—00 my —00
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This approximation becomes exact in the massless limit.
Also notice that the sign of the sine, sin(%) ~ %, is
always defined (and positive) in the overdamped limit, and
that the expression does not depend on the initial state of the
system.

We conclude that a nontrivial solution to the self-consistent
equation exists (if the time limit exists), thus a phase transition

happens at J.

IV. RESULTS

From the analysis in Sec. III, and Eq. (31) in particular, it
follows that the quantum Kuramoto model in the overdamped
limit admits a transition to a synchronized phase with a critical
coupling given by

1

Jo =2my ” foo do (@) ft P —i‘““'”—%sf 05,01
im w g(w se  m e
t—00"” & 0

(32)

In the limit of high temperature /iy 8 < 1 and vanishing mass,
the critical value (9) is recovered. In this limit K(t) — &(7),
and 6* has nonzero value only on the time interval [s, t],

over which 6% (') = ;& (see Appendix C). This implies that
Siml021 = R (1 — 5), thus

=2( [ dostor gt )
m/ﬂ<<1_ —o0 @8 (kT )? + w? =Jc\Kpl ).

The last result corresponds to the classical result reported
in the literature for D = kgT [5,55]. It is important to keep
in mind that it holds only in the classical regime iy 8 > 1,
nonetheless we will extend this formula to low temperatures
in order to provide a comparison with the behavior of the
quantum result in the following discussion.

The dependence of the critical coupling on temperature and
the comparison with its classical counterpart are reported in
Fig. 3, where a Gaussian frequency distribution for the char-
acteristic frequencies has been chosen to obtain the plots (see
Appendix D for the comparison with a Cauchy distribution).
From the analysis of Figs. 3(a) and 3(b), the existence of
three regimes emerges. In the classical regime, defined by
% 2> 1, the classical results are recovered (see the upper
fading line corresponding to the classical critical coupling for
the overdamped massless model). The critical coupling in this
latter case is (9), and becomes J&' = 2kzT for kzT > o. The
plots show that this limit is reached asymptotically also by the
quantum results.

A semiclassical region is met when decreasing the temper-
ature. Comparing the result in this region with the classical
one extended to lower temperature, we notice that the quan-
tum results start to deviate quantitatively from the classical,
although the behavior of the quantum and classical critical
coupling remains qualitatively similar. Notably, the quantum
critical coupling is consistently higher than the classical one,
as shown in Fig. 3(c). This is due to the emergence of quan-
tum fluctuations, that as an extra source of noise make the
synchronization harder to establish [61]. The behavior of J¢ in
this region can be understood through the expansionin 6_ =~ 0
already performed in Eq. (21) to recover the classical limit.

Jc
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FIG. 3. Temperature dependence of the inverse of critical cou-
pling in units of temperature (a) and (b) in logarithmic scale for
different values of % The legend in (a) holds for all the panels.
In (a) the classical critical coupling (upper fading line) is plotted
for reference for high temperatures. (c) Ratio between the quantum
results and the classical one (extended to low temperatures) vs tem-
perature. The difference in behavior of the classical and quantum
critical couplings is clearly evident close to zero temperature. All
results are obtained for g(w) Gaussian with zero mean and o = 2.
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0.00 0.02 0.04 0.06 0.08 0.10
kT
Tiy

FIG. 4. Critical coupling as a function of temperature for differ-
ent choices of the variance o of the Gaussian frequency distribution.
The overdamped ratio is fixed: % = 7. The dots shown for kg7 =0

cl
represent % for the classical noiseless model compatible with D =
kgT = 0. The colors of the dots are related to the choice of o as

shown in the legend.

Going beyond the first-order expansion therein, a semiclassi-
cal regime is obtained from a third-order expansion [72].
The latter yields a potential term:

—0r S (=1 cos (6, + 52 )~ + A6 sin (0, —)
+ 2 J - + (p £

s==%1
(33)

with A; « miy % considering y to set the relevant time scale.
The above expansion tells us that in the semiclassical regime
the motion happens in a potential of the same form as the
classical one, but renormalized by A;. This yields the first
deviation from the classical behavior.

The quantum region, characterized by % ~ 0 shows the
most significant deviations from the classical result. In this
region quantum fluctuations make the behavior of the two
critical couplings different and the deviation appears to be
stronger than linear in the decrease of temperature

This is particularly evident from Fig. 3(c) showing the ratio

between the quantum and the classical extended result % The

ratio is greater than 1, enforcing the fact that it is more dicfﬁcult
to reach the synchronized phase in the quantum regime, as it
increases approaching zero temperature.

An important result emerging from this discussion is the
existence of a finite critical coupling at any temperature
ranging from 7 = 0 to infinite 7. A phase transition to a
synchronized state is possible at every temperature and thus
quantum fluctuations do not manage to prevent the emergence
of this collective phenomenon.

Another analysis should be carried out. Figure 4 shows the
critical coupling for a fixed value of the overdamped ratio and
for different choices of o, the variance of the frequency distri-
bution g(w). This plot suggests that in the quantum realm, the
width of the frequency distribution affects the critical coupling

0.6 m
— my_
=10
moy
0.5 — F=9
—_ my _
0.4 =S
= — m_
=T
g my _
3031 ho=
my _
=0
0.2
0.1
0.0 : : : . :
0 5 10 15 20 25
vy
7

FIG. 5. Phase diagram of the quantum model in the coupling-
temperature space; the region below the curves corresponds to the
synchronized phase. A quantum phase transition appears at zero
temperature. The result is obtained for a Gaussian distribution of
frequencies with zero mean and variance o = 2.

more than in the classical case. In both cases (quantum and
classical), we notice that the wider the frequency distribution,
the more difficult to synchronize. The quantum regime seems
to be more affected by this effect. This can be understood
studying the behavior of just two rotors. Suppose the rotors
0, and 6, have characteristic frequencies w; = o, Wy, = —0.
Their phase difference ®_ = 6, — 6, has a behavior that is
determined by the washboard potential V[®_] = —0®_ —
Jcos(®_) and the coupling with the bath. If ®_ is locked
in a minimum of the potential, phase locking happens. From
the shape (suppose o < J) of the potential it is clear that, de-
creasing o, the height of the energy barrier that separates two
minima (AV =2J,/1 — (J’—; + 20 sin_'(%) — 7o) increases,
making it easier to lock ®_ in a minimum. Notice that, in
the semiclassical region, Eq. (33) suggests that the amplitudes
of the oscillations are given by J(1 4+ A;) > J, explaining
the enhancement of the disorder effect outside the classical
regime.

It should also be noticed that for any finite variance o
of the frequency distribution, the critical coupling at zero
temperature is finite, yielding a quantum phase transition
to a synchronized state. The interplay of different elements
emerges from this plot: Decreasing the temperature increases
the effects of quantum fluctuations and yields higher critical
couplings with respect to the classical case; decreasing the
width of the distribution helps the emergence of synchroniza-
tion.

These considerations are summarized in Fig. 5, that shows
the phase diagram of the quantum model. The perspective to
study the model in this plot is reversed: The coupling is fixed
to a value J and the plot shows the behavior of the critical
temperature Tr, below which the system is synchronized. The
synchronized phase corresponds to the one below the lines
in the plot; the part above the curves corresponds to the
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incoherent motion phase. Two important features are captured
in this picture. The quantum phase transition is evident: Fi-
nite coupling is required to synchronize the system at zero
temperature. Moreover, the classical result for the massless
overdamped model, given by kgTe = J/2, is reached by our
results in the high-temperature limit.

V. DISCUSSION AND CONCLUSIONS

In this paper we introduced a generalization to the quan-
tum regime of the well-known Kuramoto model. The model
is built out of quantum interacting rotors coupled to envi-
ronments modeled a la Caldera-Leggett as a collection of
harmonic oscillators. The Feynman-Vernon technique allows
us to obtain an evolution for the reduced density matrix that
describes the subsystem of the rotors. The coherences in
the reduced density matrix are exponentially damped in the
high-temperature limit, yielding a classical distribution that
satisfies the Klein-Kramer equation associated to the classical
stochastic process that defines the noisy classical Kuramoto
model. The mean-field quantum model has been studied in its
overdamped limit, that enables one to perform a perturbative
expansion around the critical coupling and carry out the cal-
culations analytically.

This shows that the introduced quantum Kuramoto model
in the overdamped regime admits a phase transition from a
incoherent motion phase, to a synchronized one. The phase
transition occurs at any temperature, yielding also a quantum
phase transition at zero temperature. The critical coupling
for the phase transition has been calculated analytically. It
correctly reproduces the classical one at high temperature and
shows deviation from this result extended to lower tempera-
tures. In particular two regions can be observed, beyond the
classical regime. A semiclassical region is first met when
decreasing the temperature below the inverse damping rate
%; here quantum fluctuations make the critical coupling

J

slowly deviate from the classical result, yet behave qualita-
tively similarly to the classical one. The quantum region, met
around zero temperature % <« 1, shows significant devia-
tions from the classical result: Around zero temperature a

sudden increase of the ratio % happens, and at 7 = 0 the
c

critical coupling for the quantum model is higher than the
classical one but finite (for finite variances of the distribution
of the characteristic frequencies). The ratio between the quan-
tum and the classical extended result is always greater than
1, signaling the fact that quantum fluctuations work against
the emergence of synchronization without destroying it. The
question of whether the behavior we found undergoes changes
beyond the mean-field limit remains open. Gaining insight
into the role that entanglement plays in quantum synchro-
nization would be interesting. More specifically, it would be
pertinent to determine whether entanglement monogamy and
dissipation processes suffice to constrain the effects of entan-
glement on the findings of our paper.
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APPENDIX A: PATH-INTEGRAL FORMULATION FOR THE CLASSICAL STOCHASTIC PROCESS

The average value over disorder of the observable e

i0(t0,8)

must encode the fact that the phase 0 satisfies the Langevin

equation (1). With a path-integral formalism and discretizing a la Ito, it gives

0(t)=0

A 2w o]
(ezé)(z;w;-’é))éE =j\[/ d@/ dU/DS
0 oo 0(0)=ty

X 8(0; — v) 8(mi. +myv, — Fl0; 0, Y]+ £).

v(t)=v 1 t
Do D —— | drEX)H) + b
[ vy [

O)=v
(Al)

The second delta function, enforcing the Langevin dynamics, can be represented in exponential form through the use of an

auxiliary field n(7):

8(mvr +myve — Fl0r; 0, Y]+ &) « /Dn expi/ df’n(t/)é(t’)expi/ dt'n(t"){mv(") + myv(t") — FIO(t'); 0, ¥ ()]}
0 0

(A2)
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Notice that choosing this representation of the delta function we now have a Gaussian path integral over the noise variable & (¢)
with both quadratic and linear terms. This integration generates another Gaussian form in the auxiliary variable 7:

o 0(1)= 9 v(t)=v ]
(eP:)y, /\// d9e’9/ dvan/ / Dvs@(r) — v(1))
6(0)=6y v(0)=vg

X exp —D/O dt’nz(t’)expifo dt'n(t"){mv(t") + myv(t") — FIO(t'); 0, ¥ ()]} (A3)

It is straightforward to see that the Gaussian integration over the auxiliary field » yields

P 0(1)= 9 v(t)=v )
() N/ do 619/ dv/ / Dvs(0(r) — v(z))
0

(0)=6y (0)=vy
X €Xp ~1D /0 dt'{mo(t") + myv(t') — F[0(t); w, ¥ (1)]}>. (A4)

The previous expression describes the average value of the observable ¢ for a stochastic process in the form of Eq. (1). It
is also convenient to write down the same average value for the same stochastic process in the massless limit. Keeping in mind
that the only constraint is now satisfying the Langevin equation 8 = F[6; w, ¥] + £(¢), one can follow the previous steps and
write

2 0(t)=6 t
(ePTEN = N / de e / Do exp—L / dr'{6(") — F16(t)); w, ¥ ()]} (A5)
0 0 4D Jo

(0)=bo

APPENDIX B: FIRST-ORDER EXPANSION OF THE SELF-CONSISTENT EQUATION

The expansion to first order of the self-consistent equations along with the ansatz ¢(¢) = 0 and with » & 0 constant yields
zJCr 04 ()= 0+ 6_(t)=0
11m / dow g(w) / do, ¢ / de., / / Do_
04 (0)=0 0_(0)=06"
0_ 0_
/ds[cos@(s)_ﬁ)_cos(w )]
0 2 2

| 4 .. . D 4
X exp % / dt' (mb_6, — my6_0, + wb_)exp - / dr'dt"o_(tK(t' —t")0_(t") p(@..,0). (B1)
0 0

Rewriting the trigonometric term in exponential form, one gets straightforwardly

iJor 0,4 (1)=0; 0_(1)=0 :
r=———lim dwg(w)/ de, e / dol, f Do, / DQ_/ ds
2h t—o0 0, (0)=6,, 6_(0)=6" 0

| 4 .. . D 4
X exp % f dt' (mé_6, —my 60_6, + wb_) exp - / dr'dt"0_ (K —t")0_(t")p 0,0 ). (B2)
0 0

c,c’==%

Denoting the argument of the exponential as S/ [0, 6_] and regarding it as a new effective action, one finally gets Eq. (27).

The path integration that now should be calculated is simply Gaussian. Decomposing the new effective action (27) in its
real and imaginary part S_; = Si [0+, 6_1+ iS;,,[0_], one can easily get the result of the path integration. The real part of the
effective action contains quadratic and linear terms in both fields 6, and 6_. The imaginary part contains only a quadratic term
in 6_. Notice that there are not quadratic terms just in the field 6, .

The strategy is now to find the saddle point of S, i.e., to find 6, (t") and 6_(¢") such that the first derivative in both fields is
zero, respecting the boundary conditions 6. (¢) = 6.(t) and 6..(0) = 6.(0).

Then, the following change of variables should be performed: 64 (t") = 0. (') + 86+ (t'), with 86..(0) = 86.(¢) = 0. The path
integration will be now performed over the fields 0, (t) and §6_(t). After having performed the change of variables, it is
convenient to rewrite the action in matrix form:

- 1 [
l80:, 8035, 1lec = Syl Ds5. 1o + 5 / dr'di" (36, (t)30_(1))AG — 1")(8604(")86_(1"))
0

+ / dt'B(t")" (860,(1")86_(1")) (B3)
0
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with
0 _ma//([/ _ t//) + myS’(t’ _ [//)
Al —t") = b ,
_maﬂ(t// _ t/) _ msl(t” _ t/) ITK(I/ _ t//)
. iD 0
B = —| ., ~

h fo dt/l(K(t/ _ t//) + K(t// _ t/)e_([//))

and V(1) = #fﬂ,) A is the matrix that contains the coefficients of the quadratic terms in the fields 6_, and B contains the

coefficients of the linear terms. Notice that the first entry of both A and B is zero, since there are not quadratic and linear terms
in the fields 66, only.
The Gaussian path integration over the variables 56, yields

7 t 00 o] : » _ 1 t
p0:,0,0=— 3 ¢ / ds / do’, / d0! N(t) exp —S'l0ys .05, t]oe exp—— f dr'di" B Y A~ (¢ — ")B(").
2 = ) P - i 4),

(B4)

Since the inverse of the matrix A has the form A~! = (CCZ g), the matrix product appearing above gives B'A~'B = 0 and does

not contribute to the result of the path integration.
Thus, the last issue we are left with is finding the solutions to the saddle-point equations:

351/{8 = , P , hc ’
=0_(t")—yo_(t')— —o6(t' —5)=0,
89+ 0y m
9SRe z : ., o hed
=0,)+y0 () — —+ —6(" —5)=0. (BS)
90_ |5, m  2m

The solutions to these equations have jump discontinuities in the derivatives; the jump is proportional to % and thus it gets
smaller in the overdamped limit. In the massless limit the discontinuities appear directly in the solutions (not just in the
derivatives). The solutions to the saddle-point equations can be found in Appendix C.

Substituting the solutions (C1) and (C2), in the first-order approximation of the self-consistent equation, one gets in the
infinite time limit the final expression in Eq. (28).

APPENDIX C: SOLUTIONS TO THE SADDLE-POINT EQUATIONS

The solutions to the saddle-point equations (BS5) that respect the boundary conditions 0.(0) = 0., 6_(t) =0, §+ (t) = 64 are

, L hee?S—hie—yml_ eV V'VS (e —fic—ymb!_e¥S+)
, (e 71)(*9,+ (@) (V1) ) <<
. 0 + e 0L <s
0_(t') = ; (CDH
e’”(ey’/—eV')(c‘he”—ch—ymﬁ/_ey"'-k—) ,
@ —T) s<t' <t
" eVl (e7VS—e V1) (—chc' eV +chc’ —2ymb! +2y6 m=2tw) ©
S _])( 2ym(e?T—1) + +9+_0++;7m) ’ wt’ ’
é ([,) - e rs—1 + Q+ + y_m O < r<s (CZ)
() = .
e (e —e ! )(—chc'e?S+chc' =2y mb! +2y 0, m—2tw) wt’ to ,
- HO, o e s< <t

2ym(e’'—1) ym ym

It is interesting to notice that in the massless limit ( % =cost, y — 00), the expressions of the saddle-point equations get
easier but discontinuities appear:

0" 0<t <=
)Lngo 0-(t") = 0 —cl s<t <t> (C3)
my
r_
my [hi=cost 0 =
0! =0
1/li%rréo 6.t = 9++cc’%+%;” 0<t <s, (C4)
h= ,
my [li=cost 9+ n (' —1) s <t <

my
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APPENDIX D: CRITICAL COUPLING
FOR A CAUCHY DISTRIBUTION

The expression for the critical coupling in Eq. (32) holds
for all even unimodal frequency distributions g(w) with zero
mean. It is interesting to consider also a Cauchy distribution,
and compare the results for the critical coupling with the one
obtained with the Gaussian distribution already considered
above. For this reason we introduce the Gaussian distribution
g1(w) and the Cauchy distribution g, (w):

(@) 5 @)=~ —7
ww) == —¢€ h~’ w)—m  — ———.,
81 77702 82 T w2+0-2

The results for the critical coupling J¢ obtained for the two
choices are contained in Fig. 6. From this plot it is clear
that the behavior is the same for the two distributions: A
phase transition can happen at any temperature and a quantum
phase transition is present at k7' = 0. Both quantum results
approach their classical limit (dashed lines) for higher temper-
atures. As expected from the classical model [5], the Cauchy
distribution yields a higher critical coupling. This is related
to the fact that a Cauchy distribution with width o has higher
tails than a Gaussian distribution with variance o, and thus the
system with a Cauchy distribution is more disordered.

— Gaussian

Cauchy

1071.

SlE
1 —1
6 x 102 10
4x1071!
4 %1072
3x 107! .
0.15 0.20 0.25
3x 1072 . . . . .
0.00 0.01 0.02 0.03 0.04 0.05 0.06
kgT
Ty

FIG. 6. Critical coupling as a function of temperature for a Gaus-
sian (darker line) and Cauchy (lighter line) distribution in logarithmic
scale. The overdamped ratio is fixed to % = 10. The dots on the ;—f/
axis refer to Jc for the noiseless classical model. The inset shows
how both the quantum results approach their classical limit (dashed
lines) for higher temperatures.
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