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The complete quantum metric of a parametrized quantum system has a real part (usually known as the Provost-
Vallee metric) and a symplectic imaginary part (known as the Berry curvature). In this paper, we first investigate
the relation between the Riemann curvature tensor of the space described by the metric, and the Berry curvature,
by explicit parallel transport of a vector in Hilbert space. Subsequently, we write a generating function from
which the complex metric, as well as higher-order geometric tensors (affine connection, Riemann curvature
tensor), can be obtained in terms of gauge-invariant cumulants. The generating function explicitly relates the
quantities which characterize the geometry of the parameter space to quantum fluctuations. We also show that
for a mixed quantum-classical system both real and imaginary parts of the quantum metric contribute to the
dynamics, if the mass tensor is Hermitian. A many-operator generalization of the uncertainty principle results
from taking the determinant of the complex quantum metric. We also calculate the quantum metric for a number
of Lie group coherent states, including several representations of the SU(1, 1) group. In our examples nontrivial
complex geometry results for generalized coherent states. A pair of oscillator states corresponding to the SU(1, 1)
group gives a double series for its spectrum. The two minimal uncertainty coherent states show trivial geometry,
but, again, for generalized coherent states nontrivial geometry results.
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I. INTRODUCTION

A parametrized quantum system exhibits interesting
physics. In such systems a metric structure is induced on the
parameter space which is determined by the type of quantum
system in question [1]. If the metric is Riemannian, it is
then possible to derive an affine connection or a Riemann
curvature, quantities which further characterize the geometry
of the parameter space. Recently, Smith et al. [2] considered
the geodesic equation associated with a quantum metric, and
arrived at equations of motion similar to those of general rela-
tivity. This led to the intriguing suggestion to use parametrized
quantum systems in the laboratory to mimic and study space-
time physics.

The study of quantum metrics already has a long history.
The complex quantum metric of a parametrized quantum sys-
tem was first derived [1] by Provost and Vallee, and they
showed that its real part corresponds to a gauge-invariant
Riemannian metric [known as the Provost-Vallee metric
(PVM)], while its imaginary part is of symplectic structure.
After the discovery [3] of the quantum geometric phase char-
acterizing adiabatic cycles (also known as the Berry phase),
it was quickly realized [4] that the imaginary part of the
complex quantum metric is the Berry curvature (BC), whose
area integral within an adiabatic cycle gives the phase itself. In
the study of quantum phase transitions, a useful quantity is the
fidelity [5–11], an overlap [Eq. (31)] between quantum states,
and the fidelity susceptibility, which is a second derivative
of the fidelity. This construction is entirely equivalent to the
Provost-Vallee one, which also starts from an overlap of wave
functions, and in fact the fidelity susceptibility is the PVM

[Eq. (38)]. The quantum metric is also relevant in the modern
theory of polarization [12–15], where the metric tensor ex-
presses [16,17] the variance of the polarization in insulators.
It can also be connected to linear [18] and nonlinear [19]
response functions, and can be used as a gauge to distinguish
metals from insulators [20,21]. More recently, the quantum
metric has reappeared in the context of topological physics,
specifically in the description of the fractional quantum Hall
effect [22,23] and of topological insulators [24,25]. Anandan
and Aharonov [26] have characterized the geometric phase
by the Fubini-Study metric, which was shown [27–29] to be
related to the PVM. The PVM is a metric on the parameter
space, while the Fubini-Study metric is the metric of the
projective Hilbert space of the entire system. It follows that the
PVM is the pullback of the Fubini-Study metric with respect
to the map defined by the parametrized family of spectral
projectors. The Fubini-Study metric was also shown [30] to
define a measure of entanglement. Very recently Avdoshkin
and Popov [31] derived quantum geometric tensors (including
the Christoffel symbol) from a three-point Bargmann invariant
[32]. The Bargmann invariant can be interpreted as a cumulant
generating function [33], so the formalism of Ref. [31] is
related to ours.

In this work we inevstigate the full complex quantum
metric. As a start we investigate the relation between the
two curvatures which both appear as the characteristic of
a parametrized quantum system. The BC appears as the
second derivative of the scalar product of two quantum states
with respect to the parameters, while the four-index Riemann
curvature tensor appears as the fourth derivative. We clarify
the relation between these two quantities by comparing the
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parallel transport of a vector in Hilbert space (which is charac-
terized by the BC) against the parallel transport of an ordinary
vector (characterized by the Riemann curvature tensor). Sub-
sequently we write down the generating function from which
the PVM, as well as higher-order geometric quantities, can
be obtained. While it is known that the PVM is related to the
second cumulant (variance) of the fluctuations, we point out
that higher-order geometric quantities correspond to higher-
order cumulants; for example, the affine connection is related
to the third cumulant (skew), while the Riemann curvature
tensor corresponds to the fourth cumulant (kurtosis). In the
fidelity language, this means that higher-order geometric ten-
sors are related to “nonlinear fidelity susceptibilities.”

Mixed quantum-classical systems obeying the Born-
Oppenheimer approximation were considered [34,35] by
Mead and Truhlar. They predicted the “molecular Aharonov-
Bohm effect” and introduced the notion of “molecular
magnetic field,” a gauge field that modifies the force on the nu-
clei, and whose origin is the BC. In addition, according to the
analysis in Ref. [4] the PVM gives rise to a “molecular elec-
tric” counterpart of the molecular magnetic field. We revisit
this issue, considering the possibility of a complex (Hermi-
tian) mass tensor, and find that the BC also contributes to the
molecular electric field (an extra potential term arises, since
the antisymmetric part of the complex mass tensor couples to
the BC, which is also antisymmetric). Complex mass was first
introduced in 1967 by Feinberg [36]. Tachyons are quantum
fields with imaginary mass which violate physical principles
and such particles are purely hypothetical. However, recently,
Hermitian mass matrices have been invoked to explain neu-
trino oscillations, and generalizations of the Dirac equation in
this direction have also been put forth [37]. By diagonalizing
the inverse mass tensor, we show that the resulting Born-
Oppenheimer-type system is like a “usual” system whose only
possible unusual characteristic, in addition to the molecular
fields, is that the inverse masses are directionally dependent.

Requiring that the determinant of the complex quantum
metric is greater than or equal to zero leads to a many-operator
generalization of the Schrödinger uncertainty principle [38],
which is a stronger statement than the Heisenberg uncer-
tainty principle (whose many-operator generalization was
done by Robertson [39]). We also calculate the metric for
three types of Lie group coherent states [40–42]: harmonic
oscillator, atomic [SU(2)], and hyperbolic [SU(1, 1)]. Non-
trivial complex geometry results from generalized [43,44]
coherent states, which are generated from nonextremal start-
ing states, hence they are no longer minimum uncertainty
states. This generalization of coherent states was first pro-
posed by Boiteux and Levelut [43], who considered it a purely
formal development, but later, Roy and Singh [44] showed
that the time-dependent generalization of these generalized
coherent states leads to dynamics in which the probability
distribution remains undistorted, and the averages perform
classical motion. For certain special points in the parame-
ter space even the quantum metric of generalized coherent
states can become trivial—points where the complex quan-
tum metric tensor exhibits zero determinant. We analyze the
SU(1, 1) case extensively, where different representations of
the group correspond [45–50] to different quantum number
series. A case of particular interest we treat is a pair of

coupled oscillators [47–50], which corresponds to the direct
sum of two projective representations of the SU(1, 1) group,
corresponding to a spectrum of two series (squeezed vacuum
state, squeezed one-photon state). In this case we find that the
complex quantum metric is zero for the extremal states of both
series; in other words, there are two cases where the geometry
is trivial.

Our paper is organized as follows. In Sec. II we give a brief
overview of the quantities used to characterize the geometry
of curved spaces. In Sec. III we derive the Berry connection
and curvature by explicit parallel transport, and compare it
to the affine connection and Riemann curvature. In Sec. IV
we write down the cumulant generating function which gen-
erates gauge-invariant cumulants for a general parametrized
quantum system. In Sec. V we investigate a mixed quantum-
classical system with a complex mass tensor. Then, in Sec. VI
we write the Christoffel symbol in terms of the third gauge-
invariant cumulant in our formalism. In Sec. VII we relate
geometric tensors and quantum fluctuations to the uncertainty
principle. Before concluding in Sec. IX, in Sec. VIII we derive
full quantum geometric tensors for coherent states, and iden-
tify when the geometries described by the tensors are trivial
or not.

II. BACKGROUND: GEOMETRIC TENSORS AND
PARALLEL TRANSPORT

In this section we provide some mathematical background
[51] used in this work. Given an N-dimensional metric space
with coordinates s1, . . . , sN , the line element squared can be
written as

dl2 = g jkds jdsk, (1)

where summation over doubly occurring indices is implied,
and gi j denotes the metric tensor. The metric tensor char-
acterizes the geometry of the space and can depend on the
coordinates {si}.

The equation for geodesic curves can be obtained by re-
quiring that the integral of the variance of dl along a curve is
zero:

δ

∫
dl = 0. (2)

This yields the second-order differential equation

gki
d2si

dl2
= −dsi

dl

ds j

dl
[i j, k], (3)

where [i j, k] denotes the Christoffel symbol of the first kind,

[i j, k] = 1
2 (∂ jgik + ∂igk j − ∂kgi j ), (4)

where

∂igk j = ∂gk j

∂si
. (5)

The Christoffel symbol of the second kind is defined as

�l
i j = 1

2 gkl (∂ jgik + ∂igk j − ∂kgi j ), (6)

where the inverse (or dual) of the metric tensor, gi j , is
given by

gi jg jk = δi
k. (7)
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The equation for parallel transporting a vector is usually given
in terms of the Christoffel symbol of the second kind. If we
parallel transport a vector along a curve sk (λ) (parametrized
by λ) in a curved space with some metric tensor gi j (λ), from
which the Christoffel symbol is obtained according to Eq. (6),
then the change in the vector in the process is given by

δV i(λ) = −�i
jk (λ)V j (λ)δsk (λ). (8)

III. BERRY CONNECTION AND BERRY CURVATURE AND
THE CHRISTOFFEL SYMBOL AND RIEMANN

CURVATURE TENSOR

In the case of parametrized quantum systems there are two
“connections” and two “curvatures.” The Berry connection
has one coordinate index, while the affine connection associ-
ated with the parameter space has three. The Berry curvature
is a two-index quantity, whereas the Riemann curvature tensor
has four indices. The Berry curvature is the imaginary part
of the complex quantum metric, which is also a two-index
quantity [defined below in Eqs. (40)–(44)].

The Berry connection and curvature correspond [52] to
the gauge fields of a fiber bundle. A fiber bundle is con-
structed by first considering the projected Hilbert space of the
parametrized quantum system, where the projection occurs
onto the space spanned by a chosen wave function or cho-
sen set of wave functions. The projection removes the phase
indeterminacy (for example, if a single state is used, then
the projection, |�(s)〉〈�(s)|, has no arbitrary phase due to
the simultaneous presence of a bra and a ket). A fiber bundle
restores the phase by assigning a fiber to each point of the
base space (which in this case is the parameter space s). For
example, in the case of a single state projection, a typical fiber
can be the space on which the phase is easily represented,
the S1 unit circle. In this sense, there is a difference between
the Berry connection or curvature (which corresponds to the
gauge fields which live on the fibers) and the Christoffel and
Riemann curvature tensors (which live on the parameter space
s); however, we demonstrate below a useful parallel between
these two sets of quantities.

We will argue below that the above discrepancy between
the number of indices between the two sets of quantities is
due to the projection of the Hilbert space necessary to obtain
physically interesting cases (it is conventional to suppress the
indices of the projected states). It is in order to cite a few
examples. The Berry phase is defined via an integral of one
quantum state over an adiabatic cycle, and the state index
is usually not explicitly indicated when writing the Berry
connection. The state under scrutiny is separated by an energy
gap from the other states. A sum over Berry phases over all the
states of a complete Hilbert space is zero [53,54]. In the case
of the generalization of the Berry phase to a degenerate subset
of states by Wilczek and Zee [55], it is the subset of states
that is carried around an adiabatic cycle, again, separated
from the rest of the states by a gap. In the modern theory of
polarization of insulating systems [12–15], a particular kind
of Berry phase, a Zak phase [56], is evaluated, which is an
integral over the Brillouin zone over an occupied band (or
bands) of states. The projection here is justified by the fact
that only some bands are occupied; unoccupied bands do not

contribute. In the case of time-reversal-invariant topological
insulators [57,58], a modified version of the Zak phase is
calculated for occupied degenerate Kramers bands. While the
gap condition can be relaxed [59], a nontrivial value for a
Berry phase or a Wilson loop still requires a projection in
Hilbert space.

We now turn to the main purpose of this section, which
is to derive the Berry connection and curvature by explicit
parallel transport of a vector in Hilbert space. Our aim is to
place emphasis on the connections (no pun intended) and the
differences between the Berry connection and curvature on
the one hand and the Christoffel symbol and the Riemann
curvature tensor on the other.

One way [51] to arrive at the Christoffel symbol and the
Riemann tensor is to consider the change in a general vector
V(s) defined on a curved parameter space. V(s) is a map-
ping from each point of the parameter space s1, . . . , sN to
V1, . . . ,VM . One can expand the vector in a local basis,

V(s) = V j (s)e j (s), (9)

where V j (s) denotes the components of the vector V(s) in
the local basis and e j (s) denotes the members of the basis
themselves. In general, a change in V(s) results from a change
in the coefficients themselves as well as a possible change in
the basis,

∂V(s)

∂sk
= ∂V j (s)

∂sk
e j (s) + V j (s)

∂e j (s)

∂sk
. (10)

We can expand the derivative in the second term as

∂e j (s)

∂sk
= �l

jk (s)el (s), (11)

where the Christoffel symbol, �l
jk (s), is the expansion coef-

ficient. Let us resolve the change in V(s) into components as

el (s) · ∂V(s)

∂sk
= ∂V l (s)

∂sk
+ V j (s)�l

jk (s). (12)

We define the covariant derivative in the k direction as

DkV
l (s) = ∂V l (s)

∂sk
+ �l

jk (s)V j (s). (13)

From the covariant derivative, it is possible to define the four-
index Riemann curvature tensor as

(DjDk − DkDj )V
l (s) = Rl

mk j (s)V m(s), (14)

where

Rl
mk j (s) = ∂ j�

l
km(s) − ∂k�

l
jm(s)

+�l
jn(s)�n

km(s) − �l
kn(s)�n

jm(s). (15)

Note, the first pair of indices in Rl
mk j (l and m) rotate the vec-

tor components, while the second pair (k and j) are sensitive
to the curvature of the surface on which the transport occurs.

In an exactly analogous manner, we can consider a quan-
tum system which is parametrized by a set of variables s =
s1, . . . , sN , and we can write a general vector in the Hilbert
space in some basis,

|�(s)〉 =
∑

ι

|ι(s)〉〈ι(s)|�(s)〉 =
∑

ι

|ι(s)〉�ι(s). (16)
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We use greek indices to label basis states. We can consider a
change in this state in the k direction,

∂k|�(s)〉 =
∑

ι

[|ι(s)〉∂k�
ι(s) + ∂k|ι(s)〉�ι(s)]. (17)

For the directions in the parameter space we use latin indices.
Multiplying from the left by another state 〈λ(s)| we obtain the
change of �(s) in the basis,

D̃k�
λ = 〈λ(s)|∂k|�(s)〉

= ∂k�
λ(s) +

∑
ι

〈λ(s)|∂k|ι(s)〉�ι(s). (18)

Comparing Eqs. (12) and (18), we see that the two terms on
the right-hand side of the equations correspond. The analog of
the Christoffel symbol in Eq. (18) is the expression

�̃λ
ιk = 〈λ(s)|∂k|ι(s)〉. (19)

The Berry connection is a special case of �̃λ
ιk . The Berry

phase arises from transporting a single energy eigenstate
around an adiabatic cycle. In other words, the state |�(s)〉 is
itself some energy eigenstate, and the basis used is also the
energy eigenbasis, resulting in

i�̃0
0k = i〈�0(s)|∂k|�0(s)〉. (20)

The general connection, �̃λ
ιk , is a three-index quantity be-

cause it connects the states indexed by λ and ι by a change
in the coordinate sk . �̃λ

ιk represents the probability ampli-
tude to go between quantum state λ and ι when a change in
the coordinate k is occurring. The Berry connection connects
the same states, and this state remains fixed during the entire
adiabatic cycle, and the only remaining index is the coordi-
nate one, k. When λ �= ι, and the system is nondegenerate,
the quantity �̃λ

ιk represents nonadiabatic transitions between
different quantum states under a change of the coordinate
sk . As such, this quantity plays a central role in the field of
nonadiabatic molecular dynamics [60–62]: the nonadiabatic
coupling vector is closely related [63] to the Pechukas [64,65]
force, the force which acts on the nuclei of a molecular sys-
tem whose electrons undergo a transition between electronic
quantum states, in other words, when the Born-Oppenheimer
approximation does not hold.

We can also derive the analog of the Riemann curvature
tensor in this case, via

(D̃kD̃l − D̃l D̃k )�λ = R̃λ
μlk�

μ, (21)

resulting in

R̃λ
μlk = ∂k�̃

λ
μl − ∂l �̃

λ
μk + �̃λ

νk�̃
ν
μl − �̃λ

νl �̃
ν
μk . (22)

Equation (22) is identically zero if the indices run over the
entire Hilbert space. To show this, we write the s-dependent
state |ι(s)〉 using a fixed basis, as

|ι(s) = U (s)|ι0〉, (23)

where |ι0〉 denotes a member of the fixed basis, and U (s) is a
unitary matrix spanning the entire Hilbert space. The quantum
Christoffel symbol becomes

�̃λ
ιk = 〈λ0|U (s)†∂kU (s)|ι0〉. (24)

Using this definition of �̃λ
ιk it is a relatively simple exercise

that R̃λ
μlk , as defined in Eq. (22), is zero. But this only holds

if the entire Hilbert space is considered; in other words, a
nontrivial quantum Riemann curvature results if the Hilbert
space is truncated, meaning that all the indices in Eq. (22)
(including the internal ones which are summed) are truncated
[53]. Projections of the types discussed above are examples
of such truncations. Comparing the sets of Eqs. (14) and (15)
and Eqs. (21) and (22), we see that there is a correspondence
between the curvature tensor of the parametrized quantum
system and the Riemann curvature tensor known from differ-
ential geometry.

The four-index tensor R̃λ
μlk is not a curvature in the sense

of the Riemann curvature tensor. To lower the index λ in R̃λ
μlk

one uses not the metric tensor of the parameter space, but that
of the Hilbert space of states (δμν for complete orthonormal
states). As for contraction the Riemann curvature tensor can
be contracted in three ways, because the indices are equiva-
lent, whereas R̃λ

μlk can only be contracted as

R̃lk = R̃λ
λlk . (25)

The contraction over the entire Hilbert space leads to zero (for
a proof of this statement, see, for example, the introduction of
Ref. [54]); however, it is possible to sum over a part of the
Hilbert space. The Berry curvature involves only one state,
its generalization [55]; the Wilson loop involves a subset of
the complete Hilbert space (usually a degenerate subspace).
In these cases R̃l k is not trivial.

If the metric tensor of the parameter space is invertible, one
can raise one of the indices of R̃l k as

R̃ j
k = gjl R̃lk, (26)

and contract it to get the scalar curvature,

R̃ = R̃ j
j . (27)

The scalar curvature obtained from the Berry curvature is zero
on account of the antisymmetry in the two coordinate indices.

IV. CUMULANT GENERATING FUNCTION FOR
QUANTUM STATES

Before stating the cumulant generating function relevant
to quantum state manifolds, let us give the definitions of
moments and cumulants from the theory of probability. In
this section, we use a notation that is closest to the original
derivation of Provost and Vallee [1]. In the Appendix we
develop a notation in which the relation between moments and
cumulants in the case of quantum state manifolds can be made
manifest.

Moments and cumulants are quantities which character-
ize probability distributions. Given a multivariate normalized
probability distribution

P(x1, . . . , xN ) � 0,∀xi,∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1 · · · dxN P(x1, . . . , xN ) = 1, (28)
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the Mth moment and the Mth cumulant are obtained from the
generating (or characteristic) function, defined as

f (k1, . . . , kN ) =
∫

dx1 · · · dxN ei
∑N

j=1 k j x j P(x1, . . . , xN ),

(29)

via the derivatives and logarithmic derivatives, respectively, as

MM =
N∏

j=1

1

imj

∂mj

∂k
mj

j

f (k1, . . . , kN )

∣∣∣∣∣∣
k1=···=kN =0

,

CM =
N∏

j=1

1

imj

∂mj

∂k
mj

j

ln f (k1, . . . , kN )

∣∣∣∣∣∣
k1=···=kN =0

, (30)

where
∑N

j=1 mj = M. Cumulants can be written in terms of
moments (and vice versa).

We now turn to quantum state manifolds. Consider a family
{�(s)} of quantum state vectors parametrized smoothly by the
n-dimensional variable s = s1, . . . , sn. We write the overlap
between two wave functions with different s as

S(s′, s) = 〈�(s′)|�(s)〉. (31)

We define the generating function for gauge-invariant cumu-
lants as

Cm′
1,...,m

′
N ;m1,...,mN = (−i)M ′

(i)M (∂ ′
1)m′

1 · · · (∂ ′
N )m′

N ∂
m1
1

. . . ∂
mN
N ln S(s′, s)

∣∣
s′=s. (32)

In Eq. (32) M ′ = m′
1 + . . . + m′

N and M = m1 + . . . + mN ,
and ∂ j (∂ ′

j) denotes a partial derivative with respect to s j (s′
j).

Since this cumulant depends on the parameters of the vec-
tor in Hilbert space |�(s)〉 and its dual 〈�(s′)|, there are
two numbers specifying the order of the cumulant, M ′, re-
ferring to the dual vector 〈�(s′)| and M referring to the
vector |�(s)〉. In Sec. VII we show that in the case where
the state |�(s)〉 is generated by simple translation operators,
Cm′

1,...,m
′
N ;m1,...,mN correspond exactly to the statistical cumu-

lants given in Eq. (30).
Gauge invariance can be shown via substituting a wave

function

|�̃(s)〉 = exp(−iα(s))|�(s)〉, (33)

a state with a modified phase, α(s), which depends on the
parameter set s. The overlap becomes

S̃(s′, s) = ln〈�̃(s′)|�̃(s)〉
= ln〈�(s′)|�(s)〉 + i(α(s′) − α(s)). (34)

While cumulants with either M or M ′ zero are not gauge
invariant, all other cases (including cumulants which corre-
spond to the geometric tensors of interest) are independent
of α(s).

The gauge-invariant quantum metric tensor of Provost and
Vallee [1] is easily generated. We first relabel the cumulants
of order M = 1 and M ′ = 1 as

C2( j; k) = C0,...,0,m′
j=1,0,....,0;0,...,0,mk=1,0,....,0. (35)

Evaluating C2( j; k) using Eq. (32), we obtain

C2( j; k) = γ jk − β jβk, (36)

where

γ jk = 〈∂ j�(s)|∂k�(s)〉,
β j = −i〈�(s)|∂ j�(s)〉. (37)

β j is the Berry connection in the state �(s). The metric tensor
g jk and the Berry curvature σ jk are given by

g jk (s) = ReC2( j; k), σ jk (s) = ImC2( j; k). (38)

g jk (σ jk) is symmetric (antisymmetric) in its indices. The
second cumulant in ordinary statistics gives only a real cor-
relation matrix. In the quantum case the particular structure of
the scalar product of the probability amplitudes of quantum
states (S(s′, s)) is what gives rise to the additional imaginary
antisymmetric component.

V. A BORN-OPPENHEIMER SYSTEM WITH HERMITIAN
INVERSE MASS TENSOR

One area in which the study of the PVM and the BC
proved crucially important was for mixed quantum-classical
systems, in which the quantum subsystem remains in one
quantum state throughout the dynamics (Born-Oppenheimer
approximation). Mead and Truhlar showed that the BC gives
rise to the “molecular magnetic field,” which is measurable in
several types of experiments, for example, pseudorotation of
triatomic molecules [66,67].

In this section we show, on the one hand, that the metric
tensor as well as its derivative (a three-index quantity related
to the Christoffel symbol) appears in mixed quantum-classical
systems. In addition, we also show that a complex inverse
mass tensor leads to a “molecular electric field” which de-
pends not only on the PVM, but also the BC.

We consider a molecular system consisting of electrons
and nuclei. Since nuclei are at least three orders of magni-
tude heavier than electrons, the dynamics of molecules are
often studied by invoking the Born-Oppenheimer approxima-
tion, which assumes that electrons remain in one electronic
state (the ground state). We first write the Hamiltonian (fully
quantum) as

Ĥtot = 1

2

∑
jk

Q∗
jk P̂j P̂k + ĥ(ξ̂ ; ŝ), (39)

where ŝ j and P̂j = i∂s j represent the positions and momenta
of the nuclei, ξ̂ denote the electronic coordinates collectively
(s denotes the nuclear coordinates collectively), and h(ξ̂ ; ŝ)
is the Hamiltonian of the electrons. Q∗

i j denotes the complex
conjugate of the inverse mass tensor. We assume that the
inverse mass tensor has real and imaginary parts,

Qjk = Q′
jk + iQ′′

jk . (40)

From the Hermiticity of the kinetic energy, it follows that
Q′

jk = Q′
k j , and Q′′

jk = −Q′′
k j .

In the Born-Oppenheimer approximation one writes the
total wave function as

�tot (ξ ; s) = ψnuc(s)φ0(ξ ; s), (41)

where ψnuc(X̂ ) denotes the nuclear wave function, and
φ0(ξ̂ ; X̂ ) denotes the ground-state electronic wave function,
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satisfying

ĥ(ξ ; s)φ0(ξ ; s) = E0(s)φ0(ξ ; s). (42)

The effective Hamiltonian acting on the nuclei that results is

Ĥeff =
∫

dξφ∗
0 (ξ ; s)Ĥtotφ0(ξ ; s). (43)

The effective Hamiltonian can be shown to be

Ĥeff =
∑

jk

Q∗
jk

2
(P̂j − Aj (s))(P̂k − Ak (s))

+�(s) + E0(s), (44)

where Aj (s) and �(s) denote a vector potential and a scalar
potential, respectively, defined as

Aj (s) = −i
∫

dξφ∗
0 (ξ ; s)∂ jφ0(ξ ; s),

�(s) = 1

2

∑
jk

Q∗
jkC2( j; k)

= 1

2

∑
jk

(Q′
jkg jk (s) + Q′′

jkσ jk (s)). (45)

g jk (s) denotes the quantum metric tensor, derived in the pre-
vious section. In Eq. (45) the real part of the mass tensor
couples to the PVM, and the imaginary part couples to the BC.
Even though the mass tensor has an imaginary component, the
terms in the effective Hamiltonian obtained above are all real,
so the above potential corresponds to a classical system with
a modified potential (modified “molecular electric field”).

It is also possible to diagonalize the Hermitian mass tensor,
and end up with a more straightforward expression:

Ĥeff =
∑

r

�̂2
r

2Mr
+ �(s) + E0(s), (46)

where

�̂r =
∑

j

Ujr (P̂j − Aj (s)), (47)

where U diagonalizes Q, and Mr are the inverse eigenvalues.
The potential adopts the form

�(s) =
∑

r

g̃r (s) + σ̃r (s)

Mr
, (48)

where

g̃r (s) =
∑

jk

(UjrU
∗
kr )′g jk (s),

σ̃r (s) =
∑

jk

(UjrU
∗
kr )′′σ jk (s). (49)

In the form of Eq. (46) the effective Hamiltonian is not very
different from systems with an “effective mass,” since the
kinetic energy has the usual from, apart from exhibiting di-
rectionally dependent masses, and the BC term only affects
the potential in which the particle is moving. It is interesting
that in the original Hamiltonian [Eq. (39)], the imaginary part
of the complex Hermitian mass tensor appears in the kinetic

energy; however, after invoking the Born-Oppenheimer ap-
proximation, it only affects the potential energy.

VI. THREE-INDEX QUANTITIES: THE QUANTUM
CHRISTOFFEL SYMBOL

We now consider the three-index quantity of the form

C3( j; kl ) = (−i∂ j′ )(i∂k )(i∂l ) ln S(s′, s)|s′=s. (50)

C3( j; kl ), like C2( j; k), is complex and takes the form

C3( j; kl ) = i
〈
∂ j�

∣∣∂2
kl�

〉 − 〈
�

∣∣∂2
kl�

〉
β j

+γ jlβk + γ jkβl − 2β jβkβl . (51)

It is possible to show that

∂lC2( j; k) = 1

2i
(C3( jl; k) − C3( j; kl )) (52)

by directly taking the derivative of C2( j; k) [as defined in
Eq. (36)] with respect to sl , and substituting Eq. (51) in the
right-hand side of Eq. (52). Using this result, we now define
the quantum extension of the Christoffel symbol as

[ jl; k]q = 1

2
(∂ jC2(l; k) + ∂lC2(k; j) − ∂kC2( j; l ))

= 1

4i
(C3( jl; k) − C3(l; k j) + C3(lk; j) − C3(k; jl )

−C3(k j; l ) + C3( j; lk)). (53)

The quantum Christoffel symbol is the analog of the expres-
sion in Eq. (4), with the full quantum metric substituted in
place of g jk . In addition, the quantum Christoffel symbol eval-
uates to a sum of various third-order cumulants. Equation (53)
establishes a definite relation between quantum fluctuations
and the Christoffel symbol.

The usual Christoffel symbol of the first kind, which results
from taking the derivative of the PVM, is given by

Re[ jl; k]q = [ jl; k], (54)

and

Im[ jl; k]q = 1
2 (∂ jσlk + ∂lσk j − ∂kσ jl ). (55)

In the usual Christoffel symbol [Eq. (6)], the first and the last
terms change sign upon exchanging indices j and k, and in
Im[ jl; k]q exactly the opposite happens. For this reason, using
[ jl; k]q, we can write the force associated with the potential
�(X̂ ) as

Fl = −1

2

∑
jk

Q∗
jk[ jl; k]q,

−1

2

∑
jk

(Q′
jkRe[ jl; k]q + Q′′

jkIm[ jl; k]q). (56)

The force is thus dependent on the extended quantum
Christoffel symbol. The broader conclusion is that in the most
general case the parallel transport of a vector in the parameter
space s proceeds via not only the derivative of the PVM, but
also of the BC. A quantum Christoffel symbol of the second
kind can only be defined if the complex quantum metric
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C2( j; k) is invertible. In that case the definition in Eq. (6) can
be used.

Since it is always possible to take further derivatives ac-
cording to Eq. (52), and the resulting higher-order cumulants
can then be combined to conform to expressions of higher-
order geometric tensors (for example, the Riemann curvature
tensor), geometric tensors of any order can be expressed as
quantum fluctuations of the same order.

VII. GEOMETRIC TENSORS, QUANTUM
FLUCTUATIONS, AND THE UNCERTAINTY PRINCIPLE

In this section we investigate how quantum fluctuations
are related to geometric tensors. The most straightforward
example [1] involves states generated by commuting operators
{Â j}, from some quantum state |�0〉, as

|�〉 = exp

⎛
⎝i

∑
j

s j Â j

⎞
⎠|�0〉. (57)

Apart from the fluctuations in |�0〉, this example can be con-
sidered classical. Substituting Eq. (57) into Eq. (32), we obtain
ordinary statistical cumulants [Eq. (30)]. The metric tensor
g jk is simply the second statistical cumulant; σ jk is zero in
this case. C3( jk; l ) only has a real part and corresponds to the
third-order statistical cumulant (the skew).

Further insight can be gained via considering a state
generated by assuming that the set of operators {Â j} are non-
commuting (generators of a Lie group). To start, we study the
fluctuations near the origin of the parameter space, by taking
s to zero in Eq. (32). In this case, the cumulants will have
imaginary parts. The second-order cumulant looks like

g jk = 1
2 〈[Â j, Âk]+〉0 − 〈Â j〉0〈Âk〉0,

σ jk = 1
2 〈[Â j, Âk]−〉0, (58)

where [, ]+ ([, ]−) indicates an anticommutator (commutator),
and 〈 〉0 indicates average over the state |�0〉. A nontrivial
Berry phase is a result of noncommuting generators.

It is instructive to consider the matrix C2( j; k) for a system
with a two-dimensional parameter space, where there are only
two generators, Â1 and Â2. In this case, the quantities C2(1; 1)
and C2(2; 2) are simply the variances of operators Â1 and Â2.
Since the quantity C2( j; k) is itself a variance, and therefore
has a determinant greater than or equal to zero, we obtain

σ 2
j σ

2
k �

∣∣ 1
2 〈[Â j, Âk]+〉0 − 〈Â j〉0〈Âk〉0

∣∣2 − ∣∣ 1
2 〈[Â j, Âk]−〉0

∣∣2
.

(59)

This equation is a form of the uncertainty relation, known
as the Schrödinger uncertainty relation [38], which is a
stronger form of this principle than the well-known one due to
Heisenberg. Considering now the general case of an arbitrary
number of dimensions, a multidimensional generalization of
the uncertainty principle can be obtained via

det[C2( j; k)] � 0. (60)

This form of the uncertainty principle places a constraint
on the variances σ1, . . . , σN if the parameter space is N
dimensional. The many-operator version of the Heisenberg
uncertainty relation was first derived by Robertson [39].

If the determinant of C2( j; k) is zero, it means that the com-
plex metric C2( j; k) cannot be inverted. This also means that a
Christoffel symbol of the second kind cannot be constructed,
and that the parameter space, when considered together with
the quantum fluctuations, has a trivial geometry; the en-
tire parameter space represents the same point (all distances
are zero). In the next section we give examples of both
cases.

VIII. COHERENT-STATE EXAMPLES

In this section we will analyze the geometry of quan-
tum systems using coherent states. Reviews of this subject
are found in Refs. [41,42,68]. After deriving the uncertainty
relation in a coherent-state context, we will consider three
well-known examples of coherent states associated with Lie
groups. They are known as Glauber, SU(2), and SU(1, 1)
coherent states. Glauber coherent states are associated with
the Weyl-Heisenberg group [69]. Glauber coherent states are
minimum uncertainty states of a quantum harmonic oscillator.
SU(2) coherent states are constructed using angular momen-
tum operators. The generators of the SU(1, 1) group can be
obtained by modifications of the SU(2) algebra. An interest-
ing connection [45,46] exists between the SU(2) and SU(1, 1)
groups. The SU(2) space corresponds to a sphere, which is a
compact space. The basis states of the SU(2) correspond to the
bound states of the Pöschl-Teller potential. The modifications
leading to the SU(1, 1) algebra lead to a noncompact group
space (a hyperboloid) and the modified basis states correspond
to the scattering states of the same potential. The SU(1, 1)
group space has several projections, which correspond to dif-
ferent series of quantum numbers. In the case of SU(1, 1)
we will consider several representations of the group space
below, including the case when the group space is the univer-
sal covering space of the hyperboloid, as well as projections
thereof.

Before turning to our concrete examples, we give a
brief overview of coherent states. Our purpose here is to
calculate and analyze the quantum geometric tensor associ-
ated with coherent states, but we believe it is in order to
give the general steps of their construction in a Lie group
context.

Given is a Lie group G with a Lie algebra consisting of
the identity Î and two sets of generators, {Âi} and {B̂i}. The
original coherent states [42] are minimum uncertainty states
whose starting point is an extremal state. The set {Âi} together
with the identity forms the stability subgroup of G, which we
call H , consisting of operators which leave the extremal state
invariant. The set {B̂i}, the complement of H in G, consists of
operators which do not leave the extremal state invariant, and
include at least one operator, which eliminates the extremal
state. In practice, this means that the extremal state is an eigen-
state of the operators included in H , with definite quantum
numbers, and the operators of the complement of H in G
are ladder (raising and lowering, or creation and annihilation)
operators. Coherent states are then constructed by applying
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the shift operator, D̂(s),

|s〉 = D̂(s)|0〉, D̂(s) = exp

⎛
⎝∑

j

s j B̂ j

⎞
⎠, (61)

to the extremal state. The argument of the exponential opera-
tor D(s) consists of a sum over operators of the complement
of H in G, and the parameters s j are coordinates designating
points on the geometrical space of the quotient group G/H .
The complex metric can be written [70] as

C2( j; k) =
∑
m �=0

〈0|[D̂†(s)∂ j D̂(s)]†|m〉〈m|D̂†(s)∂kD̂(s)|0〉.

(62)
It is also possible to construct generalized [43,44] coherent
states via acting with the displacement operator on a state
which is not extremal, but still an eigenstate of the stability
group. Such states are no longer minimum uncertainty states,
but they are interesting, because their time-dependent gener-
alization corresponds [44] to the averages moving according
to classical dynamics, while the full quantum distribution
remains rigid. Other generalizations of the original coherent-
state formalism include a variety of squeezed states [42,47–
49].

To summarize, our construction of coherent states and the
calculation of the quantum geometric tensor in Secs. VIII B,
VIII C, and VIII D will proceed via the following steps:

(i) Identify the stability group and its complement.
(ii) Identify states which are eigenstates of the operators

of the stability group.
(iii) Apply the shift operator to eigenstates of the stability

group.
(iv) Calculate the quantum geometric tensor.
For the case of SU(1, 1) we will first analyze (Sec. VIII D)

single-valued representations of the group which correspond
to the universal covering space of the hyperboloid. It is also
possible to construct projective representations in which the
groups are multivalued. In Sec. VIII E we give one example
of this. The reader should note that the group theoretical ap-
proach to potential problems is a very colorful subject, whose
mathematical intricacies are beyond the scope of this work,
but excellent references exist to quench unsatisfied further
curiosity [45,46,71].

A. Uncertainty principle in terms of coherent states

We can derive an uncertainty relation of the Schrödinger
type for Lie group coherent states of the form of Eq. (61).
These relations will include only the operators of the coset
space, and we show that it remains valid at any point on the
geometrical space G/H . We can write the operator

D̂†(s)∂kD̂(s) =
∑

l

Akl (s)B̂l , (63)

where Akl (s) is a matrix which depends on the coordinates s.
This linear combination includes only operators of the coset
space. Therefore, we can write C2( j; k) as

C2( j; k) = 〈0|[D̂†(s)∂ j D̂(s)]†D̂†(s)∂kD̂(s)|0〉. (64)

Using Eq. (63) we can write C2( j; k) as

C2( j; k) =
∑
lm

A†
jl (s)Akm(s)〈0|B̂†

l B̂m|0〉. (65)

The general complex variance can be written as

C2( j; k) =
∑
lm

A†
jl (s)Akm(s)C(0)

2 (l; m). (66)

Taking the determinant leads to

Det[C2] = Det[A†(s)A(s)]Det[C(0)
2 ]. (67)

Since Det[A†A] is greater than or equal to zero, and we already
know that this is so for DetC(0)

2 from the uncertainty relation,
it follows that

Det[C2] � 0. (68)

Alternatively, it follows that the usual uncertainty relation will
hold anywhere in the parameter space.

B. Glauber coherent states

For Glauber coherent states the relevant group is the
Weyl-Heisenberg group [69], which consists of elements
{Î, n̂, â†, â}, where â (â†) denotes the annihilation (creation)
operator, and n̂ = â†â. The stability group is {Î, n̂}. Minimum
uncertainty coherent states are generated using the shift oper-
ator, as

|α〉 = exp(αâ† − α∗â)|0〉, (69)

where α = α1 + iα2 (the complex plane) is the parameter
space. We will also consider generalized Glauber states, con-
structed from an excited harmonic oscillator state,

|α〉m = exp(αâ† − α∗â)|m〉. (70)

Using Eq. (62), the result for the quantum geometric tensor is

C2 =
(

2m + 1 i
−i 2m + 1

)
. (71)

For m > 0 the metric is invertible and there exists a nontrivial
complex metric; however, for m = 0 the metric is not invert-
ible, and the geometry is trivial. Stated differently, coherent
states constructed starting from extremal states give rise to
a trivial geometry, whereas generalized coherent states are
endowed with a nontrivial geometry.

C. SU(2) (atomic) coherent states

The Lie group of angular momentum G is generated by the
angular momentum Lie algebra, g = {Ĵx, Ĵy, Ĵz}, which obeys
the commutation relations

[Ĵi, Ĵ j] = iĴk, (72)

where i, j, k denote a cyclic permutation of the coordinates
x, y, z. For later use we also define the raising and lowering
operators,

Ĵ± = Ĵx ± iĴy. (73)

A convenient basis is formed by the states | j, m〉, which satisfy

Ĵ2| j, m〉 = j( j + 1)| j, m〉, Ĵz| j, m〉 = m| j, m〉, (74)
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and for which

j = 1
2 , 1, 3

2 , 2, . . . ,

m = − j,− j + 1,− j + 2, . . . , j − 2, j − 1, j. (75)

The Casimir operator of the group G, Ĵ2, is defined as

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z . (76)

The stability group H of the group G is the subgroup gener-
ated by rotations about the z axis (subalgebra h = {Ĵz}). The
coset space of G/H corresponds to a sphere (which we can
parametrize by angles θ, φ).

A generalized coherent state (|τ 〉) can be generated by the
SU(2) shift operator

D(τ ) = exp(τ Ĵ+) exp(β Ĵz ) exp(−τ ∗Ĵ−), (77)

where

τ = tan
θ

2
eiφ, β = ln(1 + |τ |2), (78)

by acting on a basis state

|τ 〉 = D(τ )| j, m〉. (79)

The usual atomic coherent states, which are minimum uncer-
tainty states, are generated by the above procedure from the
extremal basis functions of which in this case there are two:
the lower and upper bounds of the series of spherical harmonic
solutions (m = − j or m = j).

After some algebra it is possible to show that

D(τ )†∂θD(τ ) = 1

2

[
e−iφ Ĵ+ − eiφ Ĵ−

]
,

D(τ )†∂φD(τ ) = −i sin θ

2

[
e−iφ Ĵ+ + eiφ Ĵ−

]
. (80)

Using Eq. (62), we obtain the complex metric for the atomic
coherent states,

C2 = 1

2

(
j( j + 1) − m2 −im sin θ

im sin θ ( j( j + 1) − m2) sin2 θ

)
. (81)

Taking the determinant results in

Det[C2] = 1
4 [ j( j + 1) − m(m + 1)][ j( j + 1) − m(m − 1)]

× sin2 θ. (82)

The PVM together with the BC is recovered by setting m =
− j in Eq. (81). We also find that there are four values of m for
which the determinant vanishes, m = − j − 1,− j, j, j + 1,
but two of these do not contribute, because they are outside
the range of m for the representation of the SU(2) group
[Eq. (75)]. Hence, for arbitrary values of the coordinates, only
the extremal states correspond to a trivial complex quantum
metric. For the remaining states the metric is nontrivial, except
if θ = 0, π , which are the north and south poles of the sphere.

We can consider a mixed quantum-classical system of the
type chronicled in Sec. V. A 2 × 2 inverse mass tensor has the
form

Q =
(

Q′
11 Q′

12
Q′

12 Q′
22

)
− i

(
0 Q′′

12−Q′′
12 0

)
, (83)

leading to a potential term of the form

�(θ ) = (
j( j + 1) − m2)(Q′

11 + Q′
22 sin2 θ ) + 2mQ′′

12 sin θ.

(84)

The second term is the contribution due to the imaginary
component of the inverse mass tensor.

D. SU(1, 1) coherent states

SU(1, 1) coherent states are generated by the Lie algebra,
g = {Ĵx, Ĵy, Ĵz}, whose members obey the relations

[Ĵx, Ĵy] = −iĴz, [Ĵy, Ĵz] = iĴx, [Ĵz, Ĵx] = iĴy. (85)

The raising and lowering operators are defined according to
Eq. (73). A convenient basis is formed by the states | j, m〉,
which satisfy

Ĵ2| j, m〉 = j( j + 1)| j, m〉,
Ĵz| j, m〉 = m| j, m〉, (86)

but here the Casimir operator of the group G, Ĵ , is defined as

Ĵ2 = Ĵ2
x + Ĵ2

y − Ĵ2
z . (87)

The algebra of the stability group is h = {Ĵz}, and the coset
space of G/H corresponds to a hyperboloid (parametrized
below by ρ, φ).

The SU(1, 1) group has several possible series of quantum
numbers, depending on representation [46]. Using the nota-
tion used in Ref. [46], here we list the ones corresponding
to the single-valued representations of the group. There are
two discrete series, D+

j and D−
j , and two continuous series, C0

k

and C1/2
k . For D+

j , the quantum number j can take negative
integer or half-integer values, while m can start from − j and
can increase in integral steps, but unlike the SU(2) series, the
m quantum number is not bounded from above. We have

j = − 1
2 ,−1,− 3

2 ,−2, . . . ,

m = − j,− j + 1,− j + 2, . . . . (88)

The series of m values is only bounded from below. For the
series D−

j , the quantum number j can take negative integer or
half-integer values, while m can start from j and can decrease
in integral steps:

j = −1

2
,−1,−3

2
,−2, . . . ,

m = j, j − 1, j − 2, . . . . (89)

The series of m values are only bounded from above. For the
two continuous series,

j = − 1
2 + ik,

m = 0,±1,±2, . . . for C0
k ,

m = ± 1
2 ,± 3

2 , . . . for C1/2
k , (90)

where k is a real number, such that k > 0.
A generalized SU(1, 1) coherent state (|τ 〉) is generated by

the SU(1, 1) shift operator,

D(τ ) = exp(τ Ĵ+) exp(β Ĵz ) exp(−τ ∗Ĵ−), (91)
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where

τ = − tanh
ρ

2
e−iφ,

β = ln(1 − |τ |2), (92)

by acting on a basis state | j, m〉,
|τ 〉 = D(τ )| j, m〉. (93)

After some algebra it is possible to show that

D(τ )†∂ρD(τ ) = −1

2
[e−iφ Ĵ+ − eiφ Ĵ−],

D(τ )†∂φD(τ ) = i

2
sinh(ρ)[e−iφ Ĵ+ + eiφ Ĵ−]. (94)

Using Eq. (62), we obtain the complex metric for the hyper-
bolic coherent states,

C2 = 1

2

(
[− j( j + 1) + m2] −im sinh ρ

im sinh ρ [− j( j + 1) + m2] sinh2 ρ

)
.

(95)

Taking the determinant results in

Det[C2] = 1
4 [ j( j + 1) − m(m + 1)][ j( j + 1) − m(m − 1)]

× sin h2ρ. (96)

This determinant is zero if ρ = 0. It is also possible to get
zero for particular values of the quantum numbers. The de-
terminant of the complex quantum metric is zero for the
extremal states in each of the series D+

j (m = − j) and D−
j

(m = j). For the two continuous series there is no way for
the determinant of the complex quantum metric to be zero.
We note in passing that there exists [46] also a supplementary
series for the SU(1, 1) group. This series does not contribute
to the solution of the relevant Laplace equation (defined on a
hyperboloid), since the series D+

j , D−
j , C0

k , and C1/2
k together

form a complete set in which any function can be expanded.
For this supplementary series,

− 1
2 < j < 0, m = 0,±1,±2, . . . . (97)

The determinant of the complex quantum metric is never zero.
We also consider a mixed quantum-classical system with

inverse mass tensor of the form given in Eq. (83); the potential
term will be of the form

�(ρ) = (− j( j + 1) + m2)(Q′
11 + Q′

22 sinh2 ρ)

+ 2mQ′′
12 sinh ρ. (98)

Again, the second term is the contribution due to the imagi-
nary component of the inverse mass tensor.

E. Projective representations of SU(1, 1) and two coupled
oscillators as an example

Group spaces can have single-valued and multivalued rep-
resentations. The former correspond to the universal covering
space of the group, whereas the latter correspond to projec-
tive representations. An intuitive example is the case of the
one-dimensional translation group, which is single valued,
and its group space is the one-dimensional line. The group
of uniaxial rotations correspond to a projective representation

of the one-dimensional translation group, but in this case the
representation is no longer single valued, and the group space
will be the circle. The one-dimensional translation group is
known as the universal covering group of the group of uniaxial
rotations. Analogously, the one-dimensional line is the univer-
sal covering space of the circle. Exactly this situation occurs
for SU(1, 1). In addition to the single-valued representations
studied in the previous section, SU(1, 1) also has projective
representations, which correspond to multivalued group rep-
resentations.

The Lie algebras are the same [Eq. (85)], because locally
the universal covering space and the group space of the multi-
valued representations are the same. The form of the quantum
metric is also the same as that of the single-valued repre-
sentations, given by Eq. (95); what changes are the series of
quantum numbers. We state without proof that the projective
discrete representation corresponds to the series

m = − j,− j + 1, . . . , (99)

for j < 0, j real. In this case, Det[C2] is zero for m = − j.
The projective continuous representation is characterized by
two numbers:

j = − 1
2 + iδ, δ = real > 0,

m0 = real, 0 � m0 < 1. (100)

The spectrum of Jz in this case is

m = m0, m0 ± 1, m0 ± 2, . . . . (101)

As an example we can consider the case of a pair of
coupled oscillators, a system which has been studied in
Refs. [47–50]. We define

Ĵ+ = 1

2
â†â†, Ĵ− = 1

2
ââ, Ĵz = 1

2

(
â†â + 1

2

)
, (102)

where â† (â) are bosonic creation (annihilation) operators. It
can easily be shown that the operators Ĵ+, Ĵ−, and Ĵz satisfy the
SU(1, 1) commutation rules, showing that the Lie algebra is
the same as before. The Casimir operator is also unchanged,
meaning that Eq. (86) is still valid. After some algebra we
find, though, that the Casimir operator, using the definitions
in Eq. (102), becomes

Ĵ2 = − 3
16 Î, (103)

where Î denotes the identity. Solving Eq. (86) results in two
possible j values,

j = −1

4
,−3

4
. (104)

The essential point is that Eq. (103) does not fit into any of
the sequences given in Sec. VIII D (D+

j , D−
j , C0

k , and C1/2
k )

even though the Lie algebra of the generators is unchanged.
However, it can be accommodated by the sequence given in
Eq. (99):

m = 1

4
,

5

4
, . . . , m = 3

4
,

7

4
, . . . . (105)

The two series are each distinct projective discrete repre-
sentations, and their direct sum is the representation of the
two-oscillator system. The series corresponding to j = − 1

4
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( j = − 3
4 ) are the odd (even) photon squeezed vacuum states

[48] (see also Refs. [47–50]). In such a system, characterized
by a direct sum, there are two instances where the geometry
becomes trivial, m = 1

4 and m = 3
4 .

IX. CONCLUSION

In this paper we investigated the complex geometric tensor
of quantum state manifolds. We showed that the imaginary
part of this tensor, the Berry curvature, gives rise to a potential
term in mixed quantum-classical systems obeying the Born-
Oppenheimer approximation, if the inverse mass tensor has
an imaginary component.

From the scalar product of two quantum states a generating
function can be written, which generates, in principle, all or-
ders of quantum fluctuations. The second cumulant (variance)
corresponds to the complex quantum metric, higher-order
cumulants correspond to higher-order geometric quantities,
the skew is related to the affine connection, and the kurtosis
gives the complex analog of the four-index Riemann curvature
tensor. Requiring the determinant of the complex quantum
metric to be positive definite gives generalized uncertainty
relations. Our calculations for Lie group coherent states led
to trivial geometries for the usual coherent states, when they
are generated from an extremal state; however, for other cases,
the determinant of the complex metric can be nontrivial. Of
particular interest is the representation of the SU(1, 1) group
formed by coupling a pair of harmonic oscillator creation and
annihilation operators, whose representation consists of the
direct sum of two projective representations of the group. In
this case the extremal states of both direct sums give zero
for the determinant of the complex quantum metric, meaning
the geometry is trivial. Again, for other states the geometry is
nontrivial.

We envision a variety of interesting further studies based on
the formalism we presented. In quantum optics, the properties
of squeezed coherent states are measured via various correla-
tion functions of the number operator [47–49], which are four
operator products of creation and annihilation operators. An-
other interesting direction would be to study time-dependent
coherent states to connect the underlying geometry with the
dynamics.
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APPENDIX: MOMENTS AND CUMULANTS

In this Appendix, we derive the moments and cumulants
from the scalar product of two quantum states and compare
them to relations known for ordinary moments and cumulants

used in statistics. First we review the definition of ordinary
moments and cumulants.

Given a multivariate normalized probability distribution:

P(x1, . . . , xN ) � 0,∀xi,∫ ∞

−∞
· · ·

∫ ∞

−∞
dx1 · · · dxN P(x1, . . . , xN ) = 1. (A1)

The generating (or characteristic) function is defined as

f (k1, . . . , kN ) =
∫

dx1 · · · dxN ei
∑N

j=1 k j x j P(x1, . . . , xN ).

(A2)

Moments are obtained by taking derivatives of f (k1, . . . , kN ).
The first three moments can be written

M1(l ) = 1

i

∂

∂kl
f (k1, . . . , kN )|k=0

= 〈xl〉,

M2(l, m) = 1

i2

∂2

∂kl∂km
f (k1, . . . , kN )|k=0

= 〈xlxm〉,

M3(l, m, n) = 1

i3

∂3

∂kl∂km∂kn
f (k1, . . . , kN )|k=0

= 〈xlxmxn〉. (A3)

Cumulants are logarithmic derivatives of the characteristic
function. The first three cumulants are defined as

C1(l ) = 1

i

∂

∂kl
ln f (k1, . . . , kN )|k=0,

C2(l, m) = 1

i2

∂2

∂kl∂km
ln f (k1, . . . , kN )|k=0,

C3(l, m, n) = 1

i3

∂3

∂kl∂km∂kn
ln f (k1, . . . , kN )|k=0, (A4)

or, in terms of moments, they can be written

C1(l ) = M1(l ),

C2(l, m) = M2(l, m) − M1(l )M1(m),

C3(l, m, n) = M3(l, m, n) − M2(l, m)M1(n)

−M2(l, n)M1(m) − M2(m, n)M1(l )

+2M1(l )M1(m)M1(n). (A5)

In the formalism used in our work the role of the charac-
teristic function is played by the scalar product S(s′, s) =
〈�(s′)|�(s)〉 [Eq. (31)]. There are two sets of variables, the
primed ones, s′ = s′

1, . . . , s′
n, associated with the bra vector

of the scalar product, and the unprimed ones, s = s1, . . . , sn,
associated with the ket. Derivatives of either one can be used
to define the analog of a moment. There are two types of first
moments, for which we introduce the following notation:

M1(_; l ) = (i∂l )S(s′, s)|s′=s,

M1(l; _) = (−i∂ ′
l )S(s′, s)|s′=s. (A6)

The underscore is used when no derivatives are taken for a
particular set of variables. For the first moments, it holds that

M1(_; l ) = M1(l; _) = M1(l ) = −βl . (A7)
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See Eq. (37) for the definition of βl . Depending on whether
derivatives are applied to the primed or unprimed variables,
there are three different types of second moments. We write
them as

M2(_; kl ) = (i∂k )(i∂l )S(s′, s)|s′=s,

M2(k; l ) = (−i∂ ′
k )(i∂l )S(s′, s)|s′=s,

M2(kl; _) = (−i∂ ′
k )(−i∂ ′

l )S(s′, s)|s′=s. (A8)

M2(k; l ) corresponds to γkl in Eq. (37). As for third moments,
there are four distinct types, but we will only write the two that
are useful in establishing the third-order Christoffel symbol
(Sec. VI):

M3( j; kl ) = (−i∂ ′
j )(i∂k )(i∂l )S(s′, s)|s′=s,

M3( jk; l ) = (−i∂ ′
j )(−i∂ ′

k )(i∂l )S(s′, s)|s′=s. (A9)

Cumulants are obtained in a similar way, by applying deriva-
tives to ln S(s′, s). The first-order cumulants can be written

C1(_; l ) = (i∂l ) ln S(s′, s)|s′=s,

C1(l; _) = (−i∂ ′
l ) ln S(s′, s)|s′=s, (A10)

the second ones as

C2(_; kl ) = (i∂k )(i∂l ) ln S(s′, s)|s′=s,

C2(k; l ) = (−i∂ ′
k )(i∂l ) ln S(s′, s)|s′=s,

C2(kl; _) = (−i∂ ′
k )(−i∂ ′

l ) ln S(s′, s)|s′=s, (A11)

and the third-order ones we use here as

C3( j; kl ) = (−i∂ ′
j )(i∂k )(i∂l ) ln S(s′, s)|s′=s,

C3( jk; l ) = (−i∂ ′
j )(−i∂ ′

k )(i∂l ) ln S(s′, s)|s′=s. (A12)

In the text it was shown that cumulants which have at least
one derivative as a function of each set of parameters (the
primed and unprimed) are gauge invariant. Moments are not
gauge invariant. It can also be shown that cumulants can be
expressed in terms of moments, and the expressions look sim-
ilar to Eq. (A5), with appropriate modifications. For first-order
cumulants, it holds that

C1(_; l ) = C1(l; _) = M1(l ). (A13)

For the second-order cumulants, we have

C2(_; kl ) = M2(_; kl ) − M1(_; k)M1(_; l ),

C2(k; l ) = M2(k; l ) − M1(k; _)M1(_; l ),

C2(kl; _) = M2(kl; _) − M1(k; _)M1(l; _). (A14)

The indices on both sides of the equation “keep their sides
of the semicolon,” otherwise the second cumulants obey the
same relation as for ordinary statistical cumulants [Eq. (A5)].
For the third-order cumulants, we have

C3( j; kl ) = M3( j; kl ) − M2( j; k)M1(_; l )

−M2( j; l )M1(_; k) − M1( j; _)M2(_; kl )

+2M1( j; _)M1(_; k)M1(_; l ),

C3( jk; l ) = M3( jk; l ) − M1( j; _)M2(k; l )

−M1(k; _)M2( j; l ) − M2( jk; _)M1(_; l )
+2M1( j; _)M1(k; _)M1(_; l ). (A15)

Again, the indices maintain “their sides of the semicolon.”
Further simplifications can be made, by using M1(l ), but we
wanted to emphasize the pattern of the placement of indices.
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